JP2006229174A - Anisotropic heat conducting material and heat transfer method using it - Google Patents

Anisotropic heat conducting material and heat transfer method using it Download PDF

Info

Publication number
JP2006229174A
JP2006229174A JP2005044771A JP2005044771A JP2006229174A JP 2006229174 A JP2006229174 A JP 2006229174A JP 2005044771 A JP2005044771 A JP 2005044771A JP 2005044771 A JP2005044771 A JP 2005044771A JP 2006229174 A JP2006229174 A JP 2006229174A
Authority
JP
Japan
Prior art keywords
heat
thermal
constituent material
anisotropic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005044771A
Other languages
Japanese (ja)
Other versions
JP4550613B2 (en
Inventor
Hidemichi Fujiwara
英道 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2005044771A priority Critical patent/JP4550613B2/en
Publication of JP2006229174A publication Critical patent/JP2006229174A/en
Application granted granted Critical
Publication of JP4550613B2 publication Critical patent/JP4550613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material and a method which can avoid heat effect between elements that are densely arranged on the substrate of an electronic device, an electronic equipment module or the like, and can take out heat effectively. <P>SOLUTION: An anisotropic heat conducting material is a combination of a thermal resonant material and an intramembranous highly heat conducting material, and can provide thermal insulation in the film thickness direction and high heat conductance in the intramembranous direction. The material effectively transfers heat generated by an electronic device or electronic equipment; and can be applied to electronics fields, automobile waste heat recovery fields and the like. As a concrete example, the material can be used as lower wiring layers of semiconductor transistors so as to avoid thermal interference between the transistors across more than one layer for preventing thermal malfunction. The material can be also used as a hot electrode of a thermoelectric element so as to achieve higher efficiency through reduction in the film thickness of the thermoelectric element. Furthermore, the anisotropic heat conducting material can be applied to the surface of a conductor to obtain a planar anisotropic heat conducting material that can transfer heat emitted by the conductor to a desired location and discharge the heat. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

電子機器、電子デバイスから発生する熱を有効に移動させることが必要とされるエレクトロニクス分野、自動車廃熱利用分野に用いられる異方熱伝導材料に関する。具体的な例として、半導体のトランジスタ配線層の下部層として本発明を適用し、層間をまたがるトランジスタ間の熱的な干渉を避け、トランジスタの熱的誤作動を防止したり、熱電素子の熱極に本発明を適用し、熱電素子の薄膜化による高効率化を計ったりすることができる。さらに、導体表面に本発明を適用し、導体から発する廃熱を直接外部に放出せず、目的の場所まで熱を移送し、目的の場所に熱を排出することが可能な、省スペースの熱移送や廃熱利用等が可能な面状異方熱伝導材料に関する。   The present invention relates to an anisotropic heat conductive material used in the field of electronics and the use of automobile waste heat that require effective transfer of heat generated from electronic equipment and electronic devices. As a specific example, the present invention is applied as a lower layer of a semiconductor transistor wiring layer to avoid thermal interference between transistors straddling the layers, to prevent thermal malfunction of the transistor, The present invention can be applied to increase the efficiency by reducing the thickness of the thermoelectric element. Furthermore, the present invention is applied to the conductor surface, and the waste heat generated from the conductor is not directly released to the outside, but the heat can be transferred to the target location and discharged to the target location. The present invention relates to a planar anisotropic heat conductive material that can be used for transfer and waste heat utilization.

放熱、熱の移送を行う場合に、液体と熱交換して流体による熱輸送を行ったり、熱伝導性の高い材料に伝熱させたり、ヒートパイプなどの蒸発、凝集型の電熱モジュールを用いていた。   When performing heat dissipation or heat transfer, heat exchange with fluid is performed by exchanging heat with liquid, heat is transferred to a material with high thermal conductivity, or evaporation or agglomeration type electric heat modules such as heat pipes are used. It was.

流体と熱交換を行う場合、ヒートパイプなどの蒸発、凝集型の電熱モジュールは熱輸送路の向きや寸法、構成に制限があり、性能、用途が限定されているため、機器の小型化に限界があることから、省スペースが必要な携帯機器用のデバイス冷却に用いることができなかった。従来の熱伝導性の高い材料により伝熱させる方法では熱絶縁特性が低いために、伝熱過程で熱放出するという問題があり、十分な熱輸送量を得ることができず、さらに伝熱過程での熱の放出、拡散などによる機器への悪影響がある。   When exchanging heat with fluids, the heat-evaporated and agglomerated electric heat module has restrictions on the direction, dimensions, and configuration of the heat transport path, and its performance and applications are limited. Therefore, it could not be used for cooling a device for a portable device requiring space saving. The conventional method of transferring heat using a material with high thermal conductivity has a problem that heat is released during the heat transfer process due to the low thermal insulation properties, and a sufficient amount of heat transport cannot be obtained. There is an adverse effect on the equipment due to the release and diffusion of heat.

また、特許文献1のように、熱絶縁材料としては、α−Siリッチ相とβ−Siリッチ相を多層化して異相界面におけるフォノン散乱を利用して熱絶縁化をはかる方法なども検討されている。この熱絶縁材料は、積層厚が100μm程度とフォノンの自由工程距離よりも大幅に大きい厚さであり、固溶体のある相と固溶体のない相を積層したものであり、本発明のような膜厚方向に熱絶縁化しているが、膜面内では高熱伝導性を有していない。
非特許文献1には、多層膜による膜厚方向の熱絶縁に関する理論的な考察が記載されているが、膜内方向への熱伝導性を高め、膜内にて熱飽和が起こることを抑制する手段については、まったく触れられていない。
非特許文献2には、Siチップ内での熱伝導性制御に薄膜形成を用いる方法などが述べられているが、膜厚方向と膜面方向への熱伝導率の差についての記述はなく、多層化の効果なども述べられていない。
Further, as in Patent Document 1, as a thermal insulating material, α-Si 3 N 4 rich phase and β-Si 3 N 4 rich phase are multilayered to achieve thermal insulation using phonon scattering at the heterophase interface. Methods are also being considered. This thermal insulating material has a lamination thickness of about 100 μm, which is significantly larger than the free process distance of phonons, and is a laminate of a phase with a solid solution and a phase without a solid solution. Although it is thermally insulated in the direction, it does not have high thermal conductivity in the film plane.
Non-Patent Document 1 describes theoretical considerations regarding thermal insulation in the film thickness direction by a multilayer film, but increases thermal conductivity in the film inner direction and suppresses thermal saturation from occurring in the film. There is no mention of how to do it.
Non-Patent Document 2 describes a method of using thin film formation for thermal conductivity control in a Si chip, but there is no description about the difference in thermal conductivity between the film thickness direction and the film surface direction. There is no mention of the effects of multilayering.

特開平8−276537JP-A-8-276537 S.Tamura et.al:Physical Review B,vol38,1427.S. Tamura et. al: Physical Review B, vol38, 1427. A.A.Balandian:NASA−Ames,FEB28,2003A. A. Balandian: NASA-Ames, FEB28, 2003

電子デバイス、電子機器モジュールから発生する熱を省スペースで、有効に取り出すことができる材料及び方法がないためにこれを解決することと、特に基板上に密に配置された素子相互間の熱影響を防止すること等が本発明の課題である。   Solving this because there is no material and method that can effectively extract heat generated from electronic devices and electronic equipment modules in a space-saving manner, and in particular, thermal effects between elements arranged closely on a substrate It is an object of the present invention to prevent such problems.

本発明は、熱共振材料と膜内高熱伝導性材料を組み合わせることによって、膜厚方向には熱絶縁性、膜内方向には高熱伝導性を発現できる異方熱伝導材料が得られる。廃熱の移送や有効利用ができるようにしたものである。以下発明の詳細を示す。   According to the present invention, an anisotropic heat conductive material capable of exhibiting thermal insulation in the film thickness direction and high heat conductivity in the film direction can be obtained by combining the thermal resonance material and the high heat conductivity material in the film. Waste heat can be transferred and effectively used. Details of the invention will be described below.

請求項1に記載の発明は、熱を膜面ならびに膜厚方向の両方に伝達する熱伝導体1(構成材料A)と膜面に対して垂直成分からなる入熱の一部に対して回折現象を起こして、熱絶縁特性を示す熱共振体2(構成材料B)を積層してなる異方熱伝導材料であり、さらに熱共振体2(構成材料B)の膜厚tと入熱を構成するフォノン中にて波長分布密度の大きいフォノン波長λが以下の関係を満たすことを特徴とする異方熱伝導材料である。
mλ/2.2<t<mλ/1.8 (mは整数)

これにより異方熱伝導性を発現させることができるのは、熱伝導体1(構成材料A)が膜内から膜の端部に熱を移動させる役割を果たし、端部からの熱の取り出しが容易になり、熱共振体2(構成材料B)はフォノン共振を起こす役割を果たし、膜厚方向への熱伝導性を著しく低下させ、熱絶縁性をもたせるからである。つまり、入熱より励起されるフォノン振動が構成材料Bを伝達して熱伝導体1(構成材料A)との界面にて反射されることにより、構成材料B中でフォノン振動の共振が起こり、熱伝導体1(構成材料A)中に移行する熱量が制限され、膜厚方向への熱の移動速度を低下させる役割を果たす。また、熱共振体2(構成材料B)の膜厚tと入熱中における波長分布密度の大きいフォノン波長λの関係を規定したのは、フォンの膜厚が上記の範囲からはずれると、熱共振体2(構成材料B)内でのフォノン共振効果が非常に弱くなり、膜厚方向での熱絶縁性が低下し、結果として異方熱伝導効果が得られないからである。
The invention according to claim 1 diffracts a part of heat input composed of a heat conductor 1 (constituent material A) for transferring heat to both the film surface and the film thickness direction and a component perpendicular to the film surface. This is an anisotropic heat conduction material that is formed by laminating the thermal resonator 2 (construction material B) exhibiting a thermal insulation characteristic, and further determines the film thickness t and heat input of the thermal resonator 2 (construction material B). A phonon wavelength λ having a large wavelength distribution density in a phonon constituting satisfies the following relationship.
mλ / 2.2 <t <mλ / 1.8 (m is an integer)

As a result, the anisotropic heat conductivity can be expressed because the heat conductor 1 (the constituent material A) plays a role of transferring heat from the inside of the film to the end of the film, and the heat is taken out from the end. This is because the thermal resonator 2 (the constituent material B) plays a role of causing phonon resonance, significantly lowers the thermal conductivity in the film thickness direction, and has thermal insulation. That is, the phonon vibration excited by heat input is transmitted through the constituent material B and reflected at the interface with the thermal conductor 1 (the constituent material A), thereby causing the resonance of the phonon vibration in the constituent material B. The amount of heat transferred into the heat conductor 1 (the constituent material A) is limited, and plays a role of reducing the heat transfer rate in the film thickness direction. Further, the relationship between the film thickness t of the thermal resonator 2 (the constituent material B) and the phonon wavelength λ having a large wavelength distribution density during heat input is defined when the film thickness of the phon deviates from the above range. This is because the phonon resonance effect in 2 (constituent material B) becomes very weak, the thermal insulation in the film thickness direction is lowered, and as a result, the anisotropic heat conduction effect cannot be obtained.

請求項2に記載の発明において、請求項1の構成を1回から複数回設け交互に繰り返した構造とすることを特徴とした異方熱伝導材料である。請求項1の構成を1回設けた場合でも、熱共振体2(構成材料B)による熱絶縁効果は認められるものの、熱共振体2(構成材料B)を同じ膜厚として繰り返し構造とし、複数回設けた場合さらに、熱絶縁効果が高まる。この理由は、共振する層を複数設けることにより、共振層が1層の場合より膜厚方向の絶縁性をより高めることができるからである。一方、入熱により励起されるフォノン振動周波数に幅がある場合、共振を起す熱共振体2(構成材料B)の膜厚を変化させて繰り返し構造とすることにより、励起されたフォノン振動の膜厚方向への伝達性を低める、つまり絶縁性を高めることに効果があるため、入熱により励起されるフォノン振動周波数に幅がある場合は、熱共振体2(構成材料B)の膜厚を変化させることが有効である。   According to a second aspect of the present invention, there is provided an anisotropic heat conductive material characterized in that the structure of the first aspect is provided once to a plurality of times and is alternately repeated. Even when the structure of claim 1 is provided once, although the thermal insulation effect by the thermal resonator 2 (the constituent material B) is recognized, the thermal resonator 2 (the constituent material B) has the same film thickness and has a repeated structure. Furthermore, when it is provided once, the thermal insulation effect is enhanced. This is because by providing a plurality of resonating layers, the insulation in the film thickness direction can be further enhanced as compared with the case where the resonance layer is a single layer. On the other hand, when there is a range in the phonon vibration frequency excited by heat input, the film of the excited phonon vibration is formed by changing the film thickness of the thermal resonator 2 (the constituent material B) that causes resonance to form a repeated structure. Since there is an effect in reducing the transmissibility in the thickness direction, that is, improving the insulation, when the phonon vibration frequency excited by heat input has a width, the film thickness of the thermal resonator 2 (the constituent material B) is reduced. It is effective to change.

請求項3に記載の発明において、請求項1または請求項2に記載の熱共振体2(構成材料B)の厚さが入熱より励起されるフォノン振動の内の少なくとも一部の周波数の音響フォノンの自由行程距離Lよりも小さいことを特徴としたのは、熱共振体2(構成材料B)の厚さが入熱により励起されるフォノン振動のすべての周波数の音響フォノンの自由行程距離よりも大きいと、フォノン振動が、熱共振体2(構成材料B)を伝わる際に散乱され、共振現象を示さなくなるためである。   In the invention according to claim 3, the thickness of the thermal resonator 2 (the constituent material B) according to claim 1 or 2 is an acoustic wave having at least a part of the frequency of the phonon vibration excited by heat input. The feature is that the thickness of the thermal resonator 2 (the constituent material B) is smaller than the free stroke distance L of the phonon than the free stroke distance of the acoustic phonon of all frequencies of the phonon vibration excited by heat input. Is larger, the phonon vibration is scattered when traveling through the thermal resonator 2 (the constituent material B), and the resonance phenomenon is not exhibited.

請求項4の発明において、請求項1から請求項3のいずれかに記載の異方熱伝導材料の熱共振体2(構成材料B)の結晶が膜厚方向に連続し結晶粒界が存在しないことを特徴としたのは、熱共振体2(構成材料B)の結晶が膜厚方向に不連続で、膜厚方向に粒界等が存在すると、粒界による直接的なフォノン散乱や粒界で散乱されたフォノンとフォノンの相互作用による散乱などにより、熱励起されるフォノンの自由行程距離が非常に短くなるためである。   In the invention of claim 4, the crystal of the thermal resonator 2 (component material B) of the anisotropic heat conducting material according to any one of claims 1 to 3 is continuous in the film thickness direction and there is no crystal grain boundary. The feature is that when the crystal of the thermal resonator 2 (the constituent material B) is discontinuous in the film thickness direction and there is a grain boundary or the like in the film thickness direction, direct phonon scattering or grain boundary by the grain boundary is present. This is because the free path distance of the thermally excited phonon becomes very short due to the scattering caused by the interaction between the phonon and the phonon scattered by.

請求項5に記載の発明は、請求項1に記載の構成材料Aと熱共振体2(構成材料B)の構成を1回から複数回交互に繰り返した構造とする構成の異方熱伝導材料の最表面の熱共振体2(構成材料B)の構成として、熱共振体2(構成材料B)を膜面に部分的に構成するか、熱共振体2(構成材料B)を膜面の一部に構成した残りの部分に熱伝導体1(構成材料A)を構成した構造とすることを特徴とした異方熱伝導材料である。
このような構成にすることで、異方熱伝導材料の表面に熱絶縁特性を有する熱共振体2(構成材料B)と熱を膜面ならびに膜厚方向の両方向に伝達する構成材料Aの両者を存在させることができる。上記構成の材料を利用し、発熱部品を熱伝導体1(構成材料A)上に実装し、発熱部品の近傍の電子部品を熱共振体2(構成材料B)に実装することで、発熱部品の近傍の熱部品への熱影響を避けて、部品実装を行うことができる。この時最表面の熱伝導体1(構成材料A)と熱共振体2(構成材料B)の表面の高さは、熱共振体2(構成材料B)のみ熱伝導体1(構成材料A)の表面に成膜して構成しているため異なるが、その高さの差は、膜厚が数百nmオーダである場合には、部品実装上特に問題とならないし、さらに厚く問題となる場合は、最表面の構成材料Bにマスクを行い、構成材料Aのみ成膜を行って、熱共振体2(構成材料B)と熱伝導体1(構成材料A)とが同一平面を構成するようにできる。
The invention according to claim 5 is an anisotropic heat conductive material having a structure in which the constitution of the constituent material A and the thermal resonator 2 (constituent material B) according to claim 1 is alternately repeated from one time to a plurality of times. As the configuration of the outermost thermal resonator 2 (component material B), the thermal resonator 2 (component material B) is partially configured on the film surface, or the thermal resonator 2 (component material B) is formed on the film surface. It is an anisotropic heat conductive material characterized by having a structure in which the heat conductor 1 (the constituent material A) is formed in the remaining part formed in part.
By adopting such a configuration, both the thermal resonator 2 (the constituent material B) having a thermal insulation characteristic on the surface of the anisotropic heat conductive material and the constituent material A that transmits heat in both the film surface and the film thickness direction. Can exist. Using the material of the above configuration, the heat generating component is mounted on the heat conductor 1 (component material A), and the electronic component in the vicinity of the heat generating component is mounted on the thermal resonator 2 (component material B). The component mounting can be performed while avoiding the thermal effect on the thermal component in the vicinity of the. At this time, the surface height of the outermost thermal conductor 1 (component material A) and thermal resonator 2 (component material B) is such that only the thermal resonator 2 (component material B) is the thermal conductor 1 (component material A). However, when the film thickness is on the order of several hundreds of nanometers, the difference in height is not particularly problematic in terms of component mounting. Mask the outermost constituent material B and deposit only the constituent material A so that the thermal resonator 2 (the constituent material B) and the thermal conductor 1 (the constituent material A) form the same plane. Can be.

請求項6に記載の発明は、熱共振体2(構成材料B)上に、請求項1に記載の熱伝導体1(構成材料A)と熱共振体2(構成材料B)の構成を、1回から複数回交互に繰り返し最上層はともに構成材料Bである構造とすることを特徴とした異方熱伝導材料である。このような構成の構造とすることにより、膜厚方向には熱絶縁特性に優れる異方熱伝導性に優れる材料が得られる。異方熱絶縁材料を使用して熱移送する場合には、異方熱絶縁材料で、発熱体から放熱部までの必要距離を熱移送することになるが、発熱部品や放熱部との接続部の最表層は、熱移送部の構成材料の構成から熱共振体2(構成材料B)を除いた熱伝導体1(構成材料A)が最表層となる構成とした。   In the invention according to claim 6, the configurations of the thermal conductor 1 (constituent material A) and the thermal resonator 2 (constituent material B) according to claim 1 are arranged on the thermal resonator 2 (constituent material B). It is an anisotropic heat conductive material characterized in that the uppermost layer is repeated from one to several times alternately, and the uppermost layer has a structure that is the constituent material B. By adopting such a structure, a material excellent in anisotropic thermal conductivity excellent in thermal insulation characteristics in the film thickness direction can be obtained. When using an anisotropic heat insulating material to transfer heat, the anisotropic heat insulating material will transfer the required distance from the heating element to the heat dissipation part. The outermost layer was configured such that the heat conductor 1 (the constituent material A) excluding the thermal resonator 2 (the constituent material B) from the constitution of the constituent material of the heat transfer portion was the outermost layer.

請求項7に記載の発明は、発熱体と、放熱部材又は回路基板、電子部品基板とを、請求項1から請求項6のいずれかに記載の異方熱伝導部材とを介して接触させることを特徴とする異方熱伝導材料を用いた放熱構造である。このような構成とするためには、放熱部材又は回路基板、電子部品基板上に請求項1乃至6記載の積層構造を成膜により構成するか、あるいは後述のテープ形状あるいはチューブ状からなる膜をはんだ付けすることにより発熱部品からの放熱が可能となる。Cのようなはんだ付けができないものは高熱伝導性材料等を含む接着材で接合することもできる。   In the invention described in claim 7, the heating element is brought into contact with the heat radiating member, the circuit board, or the electronic component board via the anisotropic heat conducting member according to any one of claims 1 to 6. This is a heat dissipation structure using an anisotropic heat conductive material. In order to achieve such a configuration, the laminated structure according to any one of claims 1 to 6 is formed by film formation on a heat radiating member, a circuit board, or an electronic component substrate, or a tape-shaped or tube-shaped film described later is formed. By soldering, it is possible to dissipate heat from the heat-generating component. Those that cannot be soldered, such as C, can be joined with an adhesive including a high thermal conductivity material.

請求項8に記載の発明は、前記発熱体が半導体素子又は半導体パッケージであることを特徴とする請求項7に記載の異方熱伝導材料を用いた放熱構造である。発熱体は樹脂やセラミックスで封止したパッケージである場合は、これらの半導体素子や半導体パッケージとの熱的な接続は、熱伝導体1(構成材料A)がAg、Cu、Pt等の金属である場合には、はんだ付けで行うことが可能であり、Cのように非金属の場合には、導電性接着剤等で接合を行うことができる。   The invention according to claim 8 is the heat dissipation structure using the anisotropic heat conductive material according to claim 7, wherein the heating element is a semiconductor element or a semiconductor package. When the heating element is a package sealed with resin or ceramics, the thermal conductor 1 (component A) is made of a metal such as Ag, Cu, or Pt. In some cases, it can be performed by soldering, and in the case of non-metal such as C, bonding can be performed with a conductive adhesive or the like.

請求項9に記載の発明は、基板に、請求項1から請求項5および請求項7、請求項8のいずれかに記載の異方熱伝導材料構造を一体に組み込んだ半導体部品、電子機器部品である。上記のような構成にすることにより、異方熱伝導材料構造を一体に組み込んだ半導体部品、電子機器部品に組み込むことが可能となる。   According to a ninth aspect of the present invention, there is provided a semiconductor component or an electronic device component in which the anisotropic heat conducting material structure according to any one of the first to fifth, seventh, and eighth aspects is integrally incorporated in a substrate. It is. With the configuration as described above, it is possible to incorporate the semiconductor device into the semiconductor component and electronic device component in which the anisotropic heat conductive material structure is integrated.

請求項10に記載の発明は、基板に、請求項1から請求項8のいずれかに記載の異方熱伝導材料構造を組み込んだ自動車用制御機器である。本発明の異方熱伝導材料構造は発熱部位が多い自動車用制御機器にも応用可能である。   A tenth aspect of the present invention is an automotive control device in which the anisotropic heat conductive material structure according to any one of the first to eighth aspects is incorporated in a substrate. The anisotropic heat conductive material structure of the present invention can also be applied to automotive control equipment having many heat generating parts.

請求項11に記載の発明は、導電材料の外周部に請求項1から請求項8のいずれかに記載の異方熱伝導材料構造を組み込んだ電気と熱の両者を伝達する電気・熱移送材料である。具体的には、導電材料自体で電気を移送し、その外周部の異方熱伝導材料で熱を移送することで、熱と電気を移送する材料が得られる。   An eleventh aspect of the present invention is an electric / heat transfer material that transmits both electricity and heat in which the anisotropic heat conductive material structure according to any one of the first to eighth aspects is incorporated in the outer periphery of the conductive material. It is. Specifically, a material that transfers heat and electricity can be obtained by transferring electricity with the conductive material itself and transferring heat with the anisotropic heat conductive material on the outer periphery thereof.

請求項12に記載の発明は、テープ状又はチューブ状からなる膜からなることを特徴とする請求項1から請求項11のいずれかに記載の異方熱伝導材料である。 The invention according to claim 12 is the anisotropic heat conductive material according to any one of claims 1 to 11, wherein the anisotropic heat conductive material is formed of a film having a tape shape or a tube shape.

請求項13に記載の発明は、熱伝導体1(構成材料A)としてAg又はCを選定し、熱共振体2(構成材料B)としてSiを選定した請求項1から請求項12のいずれかに記載の異方熱伝導材である。熱伝導体1(構成材料A)としてAg又はCを用い、熱共振体2(構成材料B)としてSiを用いることにより、優れた異方熱伝導材料が得られる。   The invention according to claim 13 is one of claims 1 to 12 in which Ag or C is selected as the thermal conductor 1 (component material A) and Si is selected as the thermal resonator 2 (component material B). It is an anisotropic heat conductive material as described in. By using Ag or C as the heat conductor 1 (the constituent material A) and Si as the thermal resonator 2 (the constituent material B), an excellent anisotropic heat conductive material can be obtained.

請求項14に記載の発明は、熱伝導体1(構成材料A)としてCu又はCを選定し、熱共振体2(構成材料B)としてCrを選定した請求項1から請求項12のいずれかに記載の異方熱伝導材料である。熱伝導体1(構成材料A)としてCu又はCを用い、熱共振体2(構成材料B)としてCrを用いることにより、優れた異方熱伝導材料が得られる。   The invention described in claim 14 is any one of claims 1 to 12 in which Cu or C is selected as the thermal conductor 1 (component material A) and Cr is selected as the thermal resonator 2 (component material B). The anisotropic heat conductive material described in 1. By using Cu or C as the thermal conductor 1 (constituent material A) and using Cr as the thermal resonator 2 (constituent material B), an excellent anisotropic heat conductive material can be obtained.

請求項15に記載の発明は、熱伝導体1(構成材料A)としてCu又はCを選定し、熱共振体2(構成材料B)としてRuを選定した請求項1から請求項12のいずれかに記載の異方熱伝導材料である。熱伝導体1(構成材料A)としてCu又はCを用い、熱共振体2(構成材料B)としてRuを用いることにより、優れた異方熱伝導材料が得られる。   The invention described in claim 15 is any one of claims 1 to 12, wherein Cu or C is selected as the thermal conductor 1 (component material A), and Ru is selected as the thermal resonator 2 (component material B). The anisotropic heat conductive material described in 1. An excellent anisotropic heat conductive material can be obtained by using Cu or C as the thermal conductor 1 (constituent material A) and using Ru as the thermal resonator 2 (constituent material B).

請求項16に記載の発明は、熱伝導体1(構成材料A)としてPt又はCを選定し、熱共振体2(構成材料B)としてAgを選定した請求項1から請求項12のいずれかに記載の異方熱伝導材料である。熱伝導体1(構成材料A)としてCu又はCを用い、熱共振体2(構成材料B)としてRuを用いることにより、優れた異方熱伝導材料が得られる。   The invention described in claim 16 is any one of claims 1 to 12, wherein Pt or C is selected as the thermal conductor 1 (component material A) and Ag is selected as the thermal resonator 2 (component material B). The anisotropic heat conductive material described in 1. An excellent anisotropic heat conductive material can be obtained by using Cu or C as the thermal conductor 1 (constituent material A) and using Ru as the thermal resonator 2 (constituent material B).

請求項17は、請求項1から請求項16のいずれかに記載の異方熱伝導材料において、請求項1から請求項16に記載の異方熱伝導材料を用いることによる熱移送方法。   A seventeenth aspect is the heat transfer method according to any one of the first to sixteenth aspects, wherein the anisotropic heat conductive material according to any one of the first to sixteenth aspects is used.

本発明によれば、非常に薄い材料で、膜厚方向に非常に高い熱絶縁性を有し、しかも膜端部から熱の取り出しができるため、熱遮断性が重要なデバイスなどに応用できるとともに、端部から抽出された廃熱を有効に利用することができる。従って、この異方熱伝導材料は、電子機器、電子デバイスから発生する熱を有効に移動させることができる。そして、エレクトロニクス分野、自動車廃熱利用分野に用いることができる。具体例として、半導体のトランジスタ下部配線層としてトランジスタ間の熱的な干渉を避け、トランジスタの熱的誤作動を防止する効果を有する。熱電素子の熱極に本発明を適用し、熱電素子の薄膜化による高効率化を計ったりできる。さらに、本発明を適用し、導体の発熱を直接外部に放出せず、目的の場所まで熱を移送して排出することができるために、省スペースで熱移送や廃熱利用等が可能な面状異方熱伝導材料が得られる。   According to the present invention, it is a very thin material, has a very high thermal insulation in the film thickness direction, and can take out heat from the film end, so that it can be applied to a device in which thermal insulation is important. The waste heat extracted from the end can be used effectively. Therefore, this anisotropic heat conductive material can effectively move the heat generated from the electronic equipment and electronic device. And it can be used in the electronics field and the automobile waste heat utilization field. As a specific example, the semiconductor transistor lower wiring layer has the effect of avoiding thermal interference between transistors and preventing thermal malfunction of the transistors. The present invention can be applied to the thermoelectrode of the thermoelectric element to increase the efficiency by making the thermoelectric element thin. Furthermore, since the present invention is applied and the heat of the conductor is not directly emitted to the outside, the heat can be transferred and discharged to a target location, so that heat transfer and waste heat utilization can be performed in a small space. An anisotropic heat conducting material is obtained.

異方熱伝導性の膜を形成するためには、構成材料B中で熱共振現象をおこして、熱絶縁性を示すことと、熱伝導体1(構成材料A)において、膜面方向への熱の伝導性が非常に高いことが重要である。構成材料中で、熱共振現象が起こるためには、熱共振体2(構成材料B)の厚さが入熱により励起されるフォノンの自由行程距離よりも長いことが重要である。フォノンの自由行程距離Lは、熱伝導率ω、比熱容量C、フォノン速度Vによって、近似的に以下の式で表される。
L=3ω/(C・V)
フォノン速度Vは弾性率M、比重ρによってV=(M/ρ)1/2の関係で表されるため、フォノンの自由行程距離Lは、L=3ωρ1/2/(C・M1/2)で見積もることができる。熱移動のほとんどの部分に音響フォノンモードが関与している。
In order to form an anisotropic thermal conductive film, a thermal resonance phenomenon is caused in the constituent material B to show thermal insulation, and in the thermal conductor 1 (the constituent material A), It is important that the thermal conductivity is very high. In order for the thermal resonance phenomenon to occur in the constituent material, it is important that the thickness of the thermal resonator 2 (the constituent material B) is longer than the free stroke distance of the phonon excited by heat input. The free path distance L of the phonon is approximately expressed by the following equation depending on the thermal conductivity ω, the specific heat capacity C, and the phonon velocity V.
L = 3ω / (C ・ V)
Since the phonon velocity V is expressed by the elastic modulus M and the specific gravity ρ as V = (M / ρ) 1/2 , the free path distance L of the phonon is L = 3ωρ 1/2 / (C · M 1 / It can be estimated in 2 ). The acoustic phonon mode is involved in most of the heat transfer.

また、熱共振体2(構成材料B)の厚さは、自由行程距離Lよりも長いと同時に共振条件を満たさなくてはならない。フォノン振動が共振をおこす条件は、熱共振体2(構成材料B)の膜厚をtとした場合、フォノンの波長をλとした場合、t=mλ/2(mは自然数)で表される。mはt<Lが満たされる範囲で有効である。入熱によって励起されるフォノン波長は分布を持っているため、波長を厳密には規定できないが、波長の主成分が上記の関係から大きくずれるとフォノン共振現象が見られなくなるため、できるだけ、主成分波長λと熱共振体2(構成材料B)の厚さが上記関係に近いほど好ましい。
熱伝導体1(構成材料A)は、高熱伝導率である必要があり、特に膜厚方向よりも膜面方向の熱伝導性に優れていることが望まれる。このような条件を満たす物質としては、層状物質が代表的であり、グラファイト系の材料が挙げられる。膜厚方向に対しては、低い弾性率をもち、膜面方向に高い弾性率をもつ材料であるのは、熱伝導体1(構成材料A)としての要件を満たしている。
Further, the thickness of the thermal resonator 2 (the constituent material B) must be longer than the free stroke distance L and satisfy the resonance condition. The condition for causing the phonon vibration to resonate is expressed by t = mλ / 2 (m is a natural number), where t is the thickness of the thermal resonator 2 (component B), and λ is the wavelength of the phonon. . m is effective as long as t <L is satisfied. The phonon wavelength excited by heat input has a distribution, so the wavelength cannot be specified strictly. However, if the main component of the wavelength deviates greatly from the above relationship, the phonon resonance phenomenon will not be seen. It is preferable that the wavelength λ and the thickness of the thermal resonator 2 (the constituent material B) are closer to the above relationship.
The heat conductor 1 (the constituent material A) needs to have a high thermal conductivity, and in particular, it is desired that the heat conductivity in the film surface direction is superior to the film thickness direction. As a substance satisfying such conditions, a layered substance is typical, and a graphite-based material is exemplified. A material having a low elastic modulus in the film thickness direction and a high elastic modulus in the film surface direction satisfies the requirements as the heat conductor 1 (the constituent material A).

熱伝導体1(構成材料A)と熱共振体2(構成材料B)の界面でのフォノン共振を引き起こす弾性的散乱効率は、熱伝導体1(構成材料A)と熱共振体2(構成材料B)中の音速V、比重ρから決定される透過係数Pによって決定される。
P=4(MA・ρA1/2・(MB・ρB1/2/((MA・ρA) 1/2+(MB・ρB)1/22
この式で求められるPの値ができるだけ小さい熱伝導体1(構成材料A)と熱共振体2(構成材料B)の組み合わせが好ましく、膜厚方向の熱絶縁性を決定していることがわかる。散乱係数は、膜厚方向への熱絶縁性を期待するには、できるだけ小さい値であることが好ましい。
The elastic scattering efficiency that causes phonon resonance at the interface between the thermal conductor 1 (component material A) and the thermal resonator 2 (component material B) is as follows: the thermal conductor 1 (component material A) and the thermal resonator 2 (component material). B) is determined by the transmission coefficient P determined from the sound speed V and the specific gravity ρ.
P = 4 (M A · ρ A ) 1/2 · (M B · ρ B ) 1/2 / ((M A · ρ A ) 1/2 + (M B · ρ B ) 1/2 ) 2
It is understood that a combination of the thermal conductor 1 (constituent material A) and the thermal resonator 2 (constituent material B) having the smallest possible P value obtained from this formula is preferable and determines the thermal insulation in the film thickness direction. . The scattering coefficient is preferably as small as possible in order to expect thermal insulation in the film thickness direction.

熱伝導体1(構成材料A)および熱共振体2(構成材料B)の成膜技術について、特に規定されるものではないが、熱共振体2(構成材料B)の特性を左右するフォノン自由行程距離は、熱共振体2(構成材料B)の膜厚方向への結晶の完全性に依存しているため、膜厚方向に連続した結晶が生成できる方法であることが望ましい。また、熱伝導体1(構成材料A)は、膜厚方向よりも膜面内方向の熱伝導率が高いことが好ましいため、膜面内方向で構造が安定する製造方法が好ましい。   The film formation technology of the thermal conductor 1 (constituent material A) and the thermal resonator 2 (constituent material B) is not particularly defined, but the phonon freedom that affects the characteristics of the thermal resonator 2 (constituent material B) Since the stroke distance depends on the completeness of the crystal in the film thickness direction of the thermal resonator 2 (the constituent material B), it is desirable that the method can generate a continuous crystal in the film thickness direction. Moreover, since it is preferable that the heat conductor 1 (the constituent material A) has a higher thermal conductivity in the in-film direction than in the film thickness direction, a manufacturing method in which the structure is stable in the in-film direction is preferable.

熱共振体2(構成材料B)の膜厚方向に連続した結晶が安定して生成する結晶生成方法としては、イオンクラスタビーム法やMBE法などがあり、構成材料Aの膜面内方向の構造安定のためには、MBE法が望ましい。   Examples of a crystal generation method for stably generating a continuous crystal in the film thickness direction of the thermal resonator 2 (the constituent material B) include an ion cluster beam method and an MBE method. The MBE method is desirable for stability.

熱共振体2(構成材料B)の厚さは、使用する温度により熱励起されるフォノンのデバイ周波数が異なることから、これに合わせて、熱共振体2(構成材料B)の厚さを変えることができる。熱共振体2(構成材料B)の厚さは、構成材料Bのフォノン自由工程距離内において、厚くすればするほど熱絶縁性は上がるものの、膜厚を厚くするとコスト上昇を招くことから、これらのバランスを考慮して決定することが重要である。また、熱伝導体1(構成材料A)の厚さは、膜面内方向の熱伝導率を高くする面から考えると厚い方が好ましいが、膜厚が厚すぎて、その厚さがフォノン自由工程距離を越えてしまうと、熱伝導体1(構成材料A)を通過したフォノン振動の周波数分布が広がったり、フォノン伝達方向のばらつきが大きくなることから、好ましくない。   The thickness of the thermal resonator 2 (the constituent material B) is different from the Debye frequency of the phonon that is thermally excited depending on the temperature used. Therefore, the thickness of the thermal resonator 2 (the constituent material B) is changed accordingly. be able to. As the thickness of the thermal resonator 2 (the constituent material B) increases within the phonon free process distance of the constituent material B, the thermal insulation increases as the thickness increases. However, increasing the thickness causes an increase in cost. It is important to decide in consideration of the balance. In addition, the thickness of the heat conductor 1 (the constituent material A) is preferably thick from the viewpoint of increasing the thermal conductivity in the in-plane direction of the film, but the film thickness is too thick and the thickness is phonon free. Exceeding the process distance is not preferable because the frequency distribution of the phonon vibration that has passed through the thermal conductor 1 (the constituent material A) is widened and the variation in the phonon transmission direction is large.

熱共振体2(構成材料B)における熱絶縁特性を評価するのを膜面に垂直な方向で説明したが、実際には入熱によって励起されるフォノンは、全てが膜面に垂直な方向成分をもつ訳ではなく、熱伝導体1(構成材料A)内には、膜面に対して任意の角度を持つフォノンも存在するため、例えば膜面に対して、θの角度を持つものが多数存在するがその垂直成分を取り出してこれらの総和を取った場合と考えられる。   The evaluation of the thermal insulation characteristics of the thermal resonator 2 (component B) has been described in the direction perpendicular to the film surface. In reality, however, all phonons excited by heat input are directional components perpendicular to the film surface. In the thermal conductor 1 (the constituent material A), there are also phonons having an arbitrary angle with respect to the film surface. For example, there are many phonons having an angle θ with respect to the film surface. Although it exists, it is considered that the vertical component is taken out and the sum of these is taken.

一方、熱伝導体1(構成材料A)においては、熱共振体2(構成材料B)との界面においてフォノン反射が起こる際に、ロス分として熱伝導体1(構成材料A)に伝達してくるフォノンを考える必要があり、熱伝導体1(構成材料A)から伝達してきたフォノン振動と同じ方向成分を持つフォノンは、熱伝導体1(構成材料A)の膜厚方向に伝達して、内部を通過した後、一部は隣接する熱共振体2(構成材料B)に伝達し、一部は熱共振体2(構成材料B)界面で再度散乱を受ける。熱伝導体1(構成材料A)中で散乱を受けたフォノンは、膜内方向への伝達成分を持っているため、熱伝導膜により膜外部に抽出される。   On the other hand, in the thermal conductor 1 (the constituent material A), when phonon reflection occurs at the interface with the thermal resonator 2 (the constituent material B), the loss is transmitted to the thermal conductor 1 (the constituent material A). It is necessary to consider the coming phonon, and the phonon having the same direction component as the phonon vibration transmitted from the thermal conductor 1 (component material A) is transmitted in the film thickness direction of the thermal conductor 1 (component material A), After passing through the inside, a part is transmitted to the adjacent thermal resonator 2 (the constituent material B), and a part is again scattered at the interface of the thermal resonator 2 (the constituent material B). The phonons scattered in the heat conductor 1 (the constituent material A) have a transmission component in the in-film direction, and are thus extracted outside the film by the heat conductive film.

熱共振体2(構成材料B)に再度伝達したフォノンは、材料B中を伝わり、熱伝導体1(構成材料A)界面で散乱を受け、一部のフォノンは熱伝導体1(構成材料A)の膜厚にて決定される反射条件を満たすものにおいて、再度共振現象を起こす。この繰り返しによって、膜厚方向に伝達するフォノンは膜内方向に伝達するフォノンへと変換され、膜端部より熱抽出ができ、膜厚方向には熱絶縁性が得られる。   The phonons transmitted again to the thermal resonator 2 (the constituent material B) are transmitted through the material B and scattered at the interface of the thermal conductor 1 (the constituent material A), and some of the phonons are the thermal conductor 1 (the constituent material A). In the case of satisfying the reflection condition determined by the film thickness, the resonance phenomenon occurs again. By repeating this process, the phonons transmitted in the film thickness direction are converted into phonons transmitted in the in-film direction, heat extraction can be performed from the film end, and thermal insulation can be obtained in the film thickness direction.

熱移動の一部に光学フォノンも関与するが、音響的フォノンのみを取り上げたのは、光学フォノンは、エネルギー密度や周波数の関係で、影響が小さく、音響フォノンの影響が非常に大きいためである。   Optical phonons are also involved in heat transfer, but only acoustic phonons are taken into account because optical phonons are less affected by energy density and frequency and are much more affected by acoustic phonons. .

本発明における熱伝導体1(構成材料A)、熱共振体2(構成材料B)の組み合わせは、幾つか材料の組み合わせについて、熱伝導体1(構成材料A)と熱共振体2(構成材料B)とに関して予測計算を行なった結果、実施例に示す材料の組み合わせを選んだ。   The combination of the thermal conductor 1 (constituent material A) and the thermal resonator 2 (constituent material B) in the present invention is the thermal conductor 1 (constituent material A) and the thermal resonator 2 (constituent material) for some combinations of materials. As a result of the prediction calculation regarding B), the combination of materials shown in the examples was selected.

(実施例1)
熱共振体2(構成材料B)としてSiを選定し、熱伝導体1(構成材料A)としてAg、グラファイトCを選択して、単結晶Si(100)を基板として10mm×10mmの多層膜を構成し、熱共振体2(構成材料B)の膜厚の影響を評価した。熱共振体2(構成材料B)は分子線エピタキシ法で形成し、熱伝導体1(構成材料A)はCVD法もしくは、スパッタリング法によって形成した。いずれの場合も単結晶Si上にまず、熱伝導体1(構成材料A)を形成し、続いてその上に熱共振体2(構成材料B)を形成し、50周期作成した。シリコン基板多層膜の構成を表1に示す。また、膜端面には、微細熱電対を接続し、5℃温度が上昇する際の時間と温度変化を測定した。なお、膜厚方向の熱伝導率はサーモリフレクタンス法によって測定した。入熱はパルスレーザを用いて膜中央部に1mmφの領域にあて、コヒーレントフォノンを励起し、加熱を行った。条件2、3、6、7では膜厚方向の熱伝導率が非常に低くなっており、入熱により励起されたフォノン振動が共振現象を起こしたと考えられる。また共振現象を起こしたと考えられる条件では、膜内方向での熱の伝わりが早くなり、膜面方向での熱伝導率は向上していると考えられる。
Example 1
Si is selected as the thermal resonator 2 (component material B), Ag and graphite C are selected as the thermal conductor 1 (component material A), and a 10 mm × 10 mm multilayer film is formed using single crystal Si (100) as a substrate. The film thickness of the thermal resonator 2 (component material B) was evaluated. The thermal resonator 2 (component material B) was formed by molecular beam epitaxy, and the heat conductor 1 (component material A) was formed by CVD or sputtering. In either case, first, the thermal conductor 1 (the constituent material A) was formed on the single crystal Si, and then the thermal resonator 2 (the constituent material B) was formed thereon, and 50 periods were formed. Table 1 shows the structure of the silicon substrate multilayer film. Further, a fine thermocouple was connected to the film end face, and the time and temperature change when the temperature rose by 5 ° C. were measured. The thermal conductivity in the film thickness direction was measured by the thermoreflectance method. The heat input was applied to a 1 mmφ region at the center of the film using a pulse laser, excited by coherent phonons, and heated. Under conditions 2, 3, 6, and 7, the thermal conductivity in the film thickness direction is very low, and it is considered that the phonon oscillation excited by heat input caused a resonance phenomenon. In addition, under the condition that the resonance phenomenon is considered to occur, heat transfer in the in-film direction is accelerated, and the thermal conductivity in the film surface direction is considered to be improved.

Figure 2006229174
Figure 2006229174

(実施例2)
実施例1に示した厚さ500ミクロンの単結晶Si上にAg/Si形成を行った材料ならびに厚さ500ミクロンの単結晶SiをBiTe半導体からなる熱電素子の熱極として用いて、熱電効率の測定を行った。熱極間の間隔を1.2mmとした。Si上にAg/Si膜を形成したものを熱極として用いた場合の熱電素子の熱電変換効率が35%であったのに対して、Si単結晶膜を用いた場合には、熱電変換効率は15%にとどまった。以上のことから、本発明は、熱電素子の高効率化に大きな効果をもたらすと考えられる。
(Example 2)
The material obtained by forming Ag / Si on the single-crystal Si having a thickness of 500 microns shown in Example 1 and the single-crystal Si having a thickness of 500 microns are used as the thermoelectrode of the thermoelectric element made of BiTe semiconductor. Measurements were made. The distance between the hot electrodes was 1.2 mm. The thermoelectric conversion efficiency of the thermoelectric element when an Ag / Si film formed on Si is used as the thermoelectrode was 35%, whereas the thermoelectric conversion efficiency when the Si single crystal film was used. Only 15%. From the above, the present invention is considered to have a great effect on increasing the efficiency of thermoelectric elements.

(実施例3)
熱共振体2(構成材料B)としてSiを選定し、熱伝導体1(構成材料A)としてAg、グラファイトCを選択して、単結晶Si(100)を基板として10mm×10mmの多層膜を実施例1と同様の方法で構成した。実施例1と異なるのは、Si基板上に、熱共振体2(構成材料B)と熱伝導体1(構成材料A)の積層回数の影響をみたところにある。また、膜端面には、微細熱電対を接続し、5℃温度が上昇する際の時間と温度変化を測定した。なお、膜厚方向の熱伝導率はサーモリフレクタンス法によって測定した。入熱はパルスレーザを用いて膜中央部に1mmφの領域にあて、コヒーレントフォノンを励起し、加熱を行った。熱伝導体1(構成材料A)と熱共振体2(構成材料B)を複数回積層した材料(条件32、33、35、36)では膜厚方向の熱伝導率が、1周期層繰り返した条件31、34と比べて、非常に低くなっている。この理由は、複数回積層した効果により、膜厚方向の熱伝達率が著しく低下したものと考えられる。なお、31および34では、共振現象が認められるにもかかわらず、端部の温度変化に時間がかかっているが、入熱総量に対して、熱電対の熱容量が大きく温度上昇に時間を要したものと思われる。
(Example 3)
Si is selected as the thermal resonator 2 (component material B), Ag and graphite C are selected as the thermal conductor 1 (component material A), and a 10 mm × 10 mm multilayer film is formed using single crystal Si (100) as a substrate. The same method as in Example 1 was used. The difference from Example 1 is that the influence of the number of laminations of the thermal resonator 2 (the constituent material B) and the thermal conductor 1 (the constituent material A) on the Si substrate is observed. Further, a fine thermocouple was connected to the film end face, and the time and temperature change when the temperature rose by 5 ° C. were measured. The thermal conductivity in the film thickness direction was measured by the thermoreflectance method. The heat input was applied to a 1 mmφ region at the center of the film using a pulse laser, excited by coherent phonons, and heated. In the material (Conditions 32, 33, 35, and 36) in which the thermal conductor 1 (the constituent material A) and the thermal resonator 2 (the constituent material B) are stacked a plurality of times, the thermal conductivity in the film thickness direction was repeated for one period layer. Compared with the conditions 31 and 34, it is very low. The reason for this is considered to be that the heat transfer coefficient in the film thickness direction is significantly reduced by the effect of stacking a plurality of times. In addition, in 31 and 34, although the resonance phenomenon was recognized, it took time to change the temperature at the end, but the heat capacity of the thermocouple was large with respect to the total heat input, and it took time to increase the temperature. It seems to be.

Figure 2006229174
Figure 2006229174

(実施例4)
熱共振体2(構成材料B)としてCrを選定し、熱伝導体1(構成材料A)としてCu、グラファイトCを選択して、(111)配向Cu板を基板として10mm×10mmの多層膜を構成した。熱共振体2(構成材料B)は分子線エピタキシ法で形成し、熱伝導体1(構成材料A)はCVD法もしくは、スパッタリング法によって形成した。いずれの場合も配向性Cu基板上にまず、構成材料Aを形成し、続いてその上に熱共振体2(構成材料B)を形成し、50周期作成した。Cu基板多層膜の構成を表3に示す。また、膜端面には、微細熱電対を接続し、5℃温度が上昇する際の時間と温度変化を測定した。なお、膜厚方向の熱伝導率はサーモリフレクタンス法によって測定した。入熱はパルスレーザを用いて膜中央部に1mmφの領域にあて、コヒーレントフォノンを励起し、加熱を行った。条件に38、39、42、43では膜厚方向の熱伝導率が非常に低くなっており、入熱により励起されたフォノン振動が共振現象を起こしたと考えられる。また共振現象を起こしたと考えられる条件では、膜内方向での熱の伝わりが早くなり、膜面方向での熱伝導率は向上していると考えられる。
Example 4
Cr is selected as the thermal resonator 2 (component material B), Cu and graphite C are selected as the thermal conductor 1 (component material A), and a 10 mm × 10 mm multilayer film is formed using the (111) oriented Cu plate as a substrate. Configured. The thermal resonator 2 (component material B) was formed by molecular beam epitaxy, and the heat conductor 1 (component material A) was formed by CVD or sputtering. In any case, first, the constituent material A was formed on the oriented Cu substrate, and then the thermal resonator 2 (the constituent material B) was formed thereon, and 50 periods were prepared. Table 3 shows the structure of the Cu substrate multilayer film. Further, a fine thermocouple was connected to the film end face, and the time and temperature change when the temperature rose by 5 ° C. were measured. The thermal conductivity in the film thickness direction was measured by the thermoreflectance method. The heat input was applied to a 1 mmφ region at the center of the film using a pulse laser, excited by coherent phonons, and heated. Under the conditions of 38, 39, 42, and 43, the thermal conductivity in the film thickness direction is very low, and it is considered that the phonon vibration excited by heat input caused a resonance phenomenon. In addition, under the condition that the resonance phenomenon is considered to occur, heat transfer in the in-film direction is accelerated, and the thermal conductivity in the film surface direction is considered to be improved.

Figure 2006229174
Figure 2006229174

(実施例5)
熱共振体2(構成材料B)としてRuを選定し、熱伝導体1(構成材料A)としてAg、グラファイトCを選択して、(100)配向Cu板を基板として10mm×10mmの多層膜を構成した。熱共振体2(構成材料B)は分子線エピタキシ法で形成し、熱伝導体1(構成材料A)はCVD法もしくは、スパッタリング法によって形成した。いずれの場合も配向性Cu基板上にまず、熱伝導体1(構成材料A)を形成し、続いてその上に熱共振体2(構成材料B)を形成し、50周期作成した。Cu基板多層膜の構成を表4に示す。また、膜端面には、微細熱電対を接続し、5℃温度が上昇する際の時間と温度変化を測定した。なお、膜厚方向の熱伝導率はサーモリフレクタンス法によって測定した。入熱はパルスレーザを用いて膜中央部に1mmφの領域にあて、コヒーレントフォノンを励起し、加熱を行った。条件46、47、50、51では膜厚方向の熱伝導率が非常に低くなっており、入熱により励起されたフォノン振動が共振現象を起こしたと考えられる。また共振現象を起こしたと考えられる条件では、膜内方向での熱の伝わりが早くなり、膜面方向での熱伝導率は向上していると考えられる。
(Example 5)
Ru is selected as the thermal resonator 2 (constituent material B), Ag and graphite C are selected as the thermal conductor 1 (constituent material A), and a 10 mm × 10 mm multilayer film is formed using the (100) oriented Cu plate as a substrate. Configured. The thermal resonator 2 (component material B) was formed by molecular beam epitaxy, and the heat conductor 1 (component material A) was formed by CVD or sputtering. In any case, first, the thermal conductor 1 (the constituent material A) was formed on the oriented Cu substrate, and then the thermal resonator 2 (the constituent material B) was formed thereon, and 50 periods were prepared. Table 4 shows the structure of the Cu substrate multilayer film. Further, a fine thermocouple was connected to the film end face, and the time and temperature change when the temperature rose by 5 ° C. were measured. The thermal conductivity in the film thickness direction was measured by the thermoreflectance method. The heat input was applied to a 1 mmφ region at the center of the film using a pulse laser, excited by coherent phonons, and heated. Under the conditions 46, 47, 50 and 51, the thermal conductivity in the film thickness direction is very low, and it is considered that the phonon vibration excited by heat input caused a resonance phenomenon. In addition, under the condition that the resonance phenomenon is considered to occur, heat transfer in the in-film direction is accelerated, and the thermal conductivity in the film surface direction is considered to be improved.

Figure 2006229174
Figure 2006229174

(実施例6)
熱共振体2(構成材料B)としてAgを選定し、熱伝導体1(構成材料A)としてPt、グラファイトCを選択して、(100)配向Fe板を基板として10mm×10mmの多層膜を構成した。熱共振体2(構成材料B)は分子線エピタキシ法で形成し、熱伝導体1(構成材料A)はCVD法もしくは、スパッタリング法によって形成した。いずれの場合も単結晶Fe上にまず、熱伝導体1(構成材料A)を形成し、続いてその上に熱共振体2(構成材料B)を形成し、50周期作成した。Fe基板多層膜の構成を表3に示す。また、膜端面には、微細熱電対を接続し、5℃温度が上昇する際の時間と温度変化を測定した。なお、膜厚方向の熱伝導率はサーモリフレクタンス法によって測定した。入熱はパルスレーザを用いて膜中央部に1mmφの領域にあて、コヒーレントフォノンを励起し、加熱を行った。
いずれのサンプルにおいても共振現象は見られず、膜厚方向において熱伝導性が高い傾向にあった。また、熱が膜厚方向で貫通してしまうため、膜内方向に対する熱伝導性は積層状態としても大きな変化は認められなかった。
(Example 6)
Ag is selected as the thermal resonator 2 (component material B), Pt and graphite C are selected as the thermal conductor 1 (component material A), and a (100) oriented Fe plate is used as a substrate to form a 10 mm × 10 mm multilayer film. Configured. The thermal resonator 2 (component material B) was formed by molecular beam epitaxy, and the heat conductor 1 (component material A) was formed by CVD or sputtering. In either case, first, the thermal conductor 1 (the constituent material A) was formed on the single crystal Fe, and then the thermal resonator 2 (the constituent material B) was formed thereon, and 50 periods were formed. Table 3 shows the structure of the Fe substrate multilayer film. Further, a fine thermocouple was connected to the film end face, and the time and temperature change when the temperature rose by 5 ° C. were measured. The thermal conductivity in the film thickness direction was measured by the thermoreflectance method. The heat input was applied to a 1 mmφ region at the center of the film using a pulse laser, excited by coherent phonons, and heated.
In any of the samples, no resonance phenomenon was observed, and the thermal conductivity tended to be high in the film thickness direction. Moreover, since heat penetrates in the film thickness direction, the heat conductivity in the in-film direction was not significantly changed even in the laminated state.

Figure 2006229174
Figure 2006229174

図1は、異方熱伝導材料の効果を示す模式図である。図1は、熱を膜面ならびに膜厚両方向に伝達する熱伝導体1(構成材料A)と膜面に対して垂直成分からなる入熱3に対して回折現象を起して熱絶縁特性を示す熱共振体2(構成材料B)を複数回交互に繰り返した構造となっている。ここで、共振現象を生じさせることを目的とした熱共振体2(構成材料B)の膜厚は各層毎に少し変化させた構造となっている。ここで、熱共振体2(構成材料B)の膜厚は、回折を起させる入熱3の温度領域により、共振周波数(振動数)が異なる。入熱3が高温になるほど、共振振動数は高く、波長は短くなる傾向を示し、入熱3が低温になるほど、共振振動数は低く、波長が長くなる傾向を示す。   FIG. 1 is a schematic diagram showing the effect of the anisotropic heat conductive material. FIG. 1 shows a thermal insulation characteristic by causing a diffraction phenomenon with respect to a heat conductor 1 (constituent material A) that transfers heat in both directions of a film surface and a film thickness and heat input 3 composed of components perpendicular to the film surface It has a structure in which the illustrated thermal resonator 2 (the constituent material B) is alternately repeated a plurality of times. Here, the thickness of the thermal resonator 2 (the constituent material B) for the purpose of causing a resonance phenomenon is slightly changed for each layer. Here, the film thickness of the thermal resonator 2 (the constituent material B) differs in the resonance frequency (frequency) depending on the temperature region of the heat input 3 that causes diffraction. The higher the heat input 3, the higher the resonance frequency and the shorter the wavelength, and the lower the heat input 3, the lower the resonance frequency and the longer the wavelength.

図2は、図1の構成の表層の異方熱伝導材料の熱共振体2(構成材料B)の一部を熱伝導体1(構成材料A)で置き換え、その上部に発熱体5を積層又は接着した構成及び図1の構成の表層の熱共振体2(構成材料B)の一部を、発熱体5で置換した構成を示す。このような構成とすることで、両者はともに発熱体の熱を効果的に熱伝導体1(構成材料A)を通じて、効率的に他に逃がすことができる。図3は、異方熱伝導膜6を、発熱体5と放熱体7で繋いで、熱を逃がす場合の構成を示す。図3のような構成とすることにより、効率的に熱を発熱体5から放熱体7に効率的に逃がすことができる。   In FIG. 2, a part of the thermal resonator 2 (component material B) of the anisotropic heat conductive material on the surface layer in the configuration of FIG. 1 is replaced with the heat conductor 1 (component material A), and a heating element 5 is laminated thereon. Alternatively, a configuration in which a part of the thermal resonator 2 (the constituent material B) on the surface layer in the bonded configuration and the configuration in FIG. By setting it as such a structure, both can escape efficiently the heat | fever of a heat generating body through the heat conductor 1 (construction material A) efficiently elsewhere. FIG. 3 shows a configuration in which the anisotropic heat conductive film 6 is connected by the heat generator 5 and the heat radiator 7 to release heat. With the configuration as shown in FIG. 3, heat can be efficiently released from the heating element 5 to the radiator 7.

図4には、半導体チップ内への熱注出への応用例を3ゲートトランジスタの場合で示す。Si基板上に異方熱伝導膜を形成し、さらにその上層にバックゲートSi膜とシリコン酸化物基板13を形成し、3ゲートトランジスタ8を形成した例である。トランジスタにおいて発生した熱は、異方熱伝導膜6を通して、チップ外部に抽出される。また、トランジスタ上部に逃げた熱は、上部配線層に形成する異方熱伝導膜6によって、チップ外への熱抽出が可能であり、配線層間の熱的な干渉を避けることができ、より高密度の配線に対応できるものである。   FIG. 4 shows an example of application to heat extraction into a semiconductor chip in the case of a three-gate transistor. In this example, an anisotropic heat conductive film is formed on a Si substrate, and a back gate Si film and a silicon oxide substrate 13 are further formed thereon to form a three-gate transistor 8. Heat generated in the transistor is extracted outside the chip through the anisotropic heat conductive film 6. Further, the heat escaping to the upper part of the transistor can be extracted to the outside of the chip by the anisotropic heat conductive film 6 formed in the upper wiring layer, and thermal interference between the wiring layers can be avoided. It can handle high density wiring.

図5、図6には、高効率熱電素子の模式図を2つ示す。熱の受け渡しを行う熱極部分に異方熱伝導膜14、異方熱伝導膜6を用いることで、電極17(熱極)間のN型半導体15とP型半導体16を交互に電極を挟んで連接した場合に、電極17(熱極)間の距離を非常に小さくしても、電極17(熱極)間の熱的な干渉が少なく、非常に薄くできるため、高効率の熱電素子を得ることができる。   5 and 6 show two schematic diagrams of high-efficiency thermoelectric elements. By using the anisotropic heat conductive film 14 and the anisotropic heat conductive film 6 in the heat electrode portion for transferring heat, the electrodes are alternately sandwiched between the N-type semiconductor 15 and the P-type semiconductor 16 between the electrodes 17 (heat electrodes). If the distance between the electrodes 17 (thermal electrodes) is very small, the thermal interference between the electrodes 17 (thermal electrodes) is small and can be made very thin. Obtainable.

異方熱伝導材料の効果を示す模式図Schematic diagram showing the effect of anisotropic heat conduction material 半導体チップ内の熱抽出への応用例Application examples for heat extraction in semiconductor chips 高効率熱伝導素子構造High efficiency heat conduction element structure 3ゲートトランジスタに異方熱伝導膜を応用した例Example of application of anisotropic heat conduction film to 3-gate transistor 高効率熱伝導素子構造AHigh efficiency heat conduction element structure A 高効率熱伝導素子構造BHigh efficiency heat conduction element structure B

符号の説明Explanation of symbols

1.熱伝導体(構成材料A)
2.熱共振体(構成材料B)
3.入熱
4.透過熱
5.発熱体
6、14.異方熱伝導膜
7.放熱体
8.3ゲートトランジスタ
9.ソース
10.ドレン
11.シリコンボディ
12.多結晶シリコン電極
13.バックゲートSi膜と酸化物基板、またはバックゲートSi膜と絶縁基板
15.N型半導体
16.P型半導体
17.電極
18.絶縁基板
20.熱導体膜面内の熱移送方向

1. Thermal conductor (component A)
2. Thermal resonator (component B)
3. Heat input4. Transmission heat Heating element 6,14. 6. Anisotropic heat conductive film 8. Heat radiator 8.3 Gate transistor Source 10 Drain 11. Silicon body 12. Polycrystalline silicon electrode 13. 15. Back gate Si film and oxide substrate, or Back gate Si film and insulating substrate N-type semiconductor 16. P-type semiconductor 17. Electrode 18. Insulating substrate 20. Heat transfer direction in the heat conductor film surface

Claims (17)

熱を膜面ならびに膜厚方向の両方に伝達する構成材料Aと膜面に対して垂直成分からなる入熱の一部に対して回折現象を起こして、熱絶縁特性を示す構成材料Bを積層してなる異方熱伝導材料であり、さらに構成材料Bの膜厚tと入熱を構成するフォノン中の分布密度の大きいフォノンの波長λが以下の関係を満たすことを特徴とする異方熱伝導材料。
mλ/2.2<t<mλ/1.8 (mは整数)
Laminating component material A that transmits heat to both the film surface and the film thickness direction, and component material B that exhibits thermal insulation characteristics by causing a diffraction phenomenon to occur in part of heat input composed of a component perpendicular to the film surface Further, the anisotropic heat conduction material is characterized in that the film thickness t of the constituent material B and the wavelength λ of the phonon having a large distribution density in the phonon constituting the heat input satisfy the following relationship: Conductive material.
mλ / 2.2 <t <mλ / 1.8 (m is an integer)
請求項1に記載の構成材料Aと構成材料Bの構成を、1回から複数回交互に繰り返した構造とすることを特徴とした異方熱伝導材料。 An anisotropic heat-conducting material characterized in that the constitution of the constituent material A and the constituent material B according to claim 1 is alternately repeated from one time to a plurality of times. 請求項1または請求項2に記載の異方熱伝導材料において、構成材料Bの厚さが入熱より励起されるフォノン振動において、少なくとも一部の周波数の音響フォノンの自由行程距離Lよりも小さいことを特徴とする異方熱伝導材料。 3. The anisotropic heat conducting material according to claim 1 or 2, wherein the thickness of the constituent material B is smaller than the free path distance L of acoustic phonons of at least some frequencies in the phonon vibration excited by heat input. An anisotropic heat conducting material characterized in that. 請求項1から請求項3のいずれかに記載の異方熱伝導材料において、構成材料Bの結晶が膜厚方向に連続し結晶粒界が存在しないことを特徴とする異方熱伝導材料。 The anisotropic heat conductive material according to any one of claims 1 to 3, wherein the crystal of the constituent material B is continuous in the film thickness direction and there is no crystal grain boundary. 請求項1に記載の構成材料Aと構成材料Bの構成を1回から複数回交互に繰り返した構造とする構成の異方熱伝導材料の最表面の構成材料Bの構成として、構成材料Bを膜面に部分的に構成するか、構成材料Bを膜面の一部に構成した残りの部分に構成材料Aを構成した構造とすることを特徴とした異方熱伝導材料。 As a configuration of the constituent material B on the outermost surface of the anisotropic heat conductive material having a configuration in which the configuration of the constituent material A and the constituent material B according to claim 1 is alternately repeated from one time to a plurality of times, the constituent material B is An anisotropic heat-conducting material characterized in that the material is partially formed on the film surface, or the structure material A is formed on the remaining part of the film material formed on a part of the film surface. 構成材料B上に、請求項1に記載の構成材料Aと構成材料Bの構成を、1回から複数回交互に繰り返し最上層はともに構成材料Bである構造とすることを特徴とした異方熱伝導材料。 The composition of composition material A and composition material B according to claim 1 on composition material B is repeated one to several times alternately, and the uppermost layer has a structure of composition material B. Thermal conductive material. 発熱体と、放熱部材又は回路基板、電子部品基板とを、請求項1から請求項6のいずれかに記載の異方熱伝導部材とを介して接触させることを特徴とする異方熱伝導材料を用いた放熱構造。 An anisotropic heat conducting material, wherein the heat generating member is brought into contact with the heat radiating member or circuit board or electronic component board via the anisotropic heat conducting member according to any one of claims 1 to 6. Heat dissipation structure using 前記発熱体が半導体素子又は半導体パッケージであることを特徴とする請求項7に記載の異方熱伝導材料を用いた放熱構造。 The heat dissipation structure using the anisotropic heat conductive material according to claim 7, wherein the heating element is a semiconductor element or a semiconductor package. 基板に、請求項1から請求項5および請求項7、請求項8のいずれかに記載の異方熱伝導材料構造を一体に組み込んだ半導体部品、電子機器部品。 A semiconductor component or electronic device component in which the anisotropic heat conductive material structure according to any one of claims 1 to 5, 7, and 8 is integrally incorporated in a substrate. 基板に、請求項1から請求項8のいずれかに記載の異方熱伝導材料構造を組み込んだ自動車用制御機器。 An automotive control device in which the anisotropic heat conductive material structure according to any one of claims 1 to 8 is incorporated in a substrate. 導電材料の外周部に請求項1から請求項8のいずれかに記載の異方熱伝導材料構造を組み込んだ電気と熱の両者を伝達する電気・熱移送材料。 An electric / heat transfer material that transmits both electricity and heat, wherein the anisotropic heat conductive material structure according to any one of claims 1 to 8 is incorporated in the outer periphery of the conductive material. テープ形状あるいはチューブ状からなる膜からなることを特徴とする請求項1から請求項11のいずれかに記載の異方熱伝導材料。 The anisotropic heat-conducting material according to claim 1, comprising a film having a tape shape or a tube shape. 異方熱伝導材料は、構成材料AとしてAg又はCを選定し、構成材料BとしてSiを選定した請求項1から請求項12のいずれかに記載の異方熱伝導材料。 The anisotropic heat conductive material according to claim 1, wherein Ag or C is selected as the constituent material A and Si is selected as the constituent material B. 異方熱伝導材料は、構成材料AとしてCu又はCを選定し、構成材料BとしてCrを選定した請求項1から請求項12のいずれかに記載の異方熱伝導材料。 The anisotropic heat conductive material according to claim 1, wherein Cu or C is selected as the constituent material A and Cr is selected as the constituent material B. 異方熱伝導材料は、構成材料AとしてCu又はCを選定し、構成材料BとしてRuを選定した請求項1から請求項12のいずれかに記載の異方熱伝導材料。 The anisotropic heat conductive material according to claim 1, wherein Cu or C is selected as the constituent material A and Ru is selected as the constituent material B. 異方熱伝導材料は、構成材料AとしてPt又はCを選定し、構成材料BとしてAgを選定した請求項1から請求項12のいずれかに記載の異方熱伝導材料。 The anisotropic heat conductive material according to claim 1, wherein Pt or C is selected as the constituent material A and Ag is selected as the constituent material B. 請求項1から請求項16のいずれかに記載の異方熱伝導材料を用いることによる熱移送方法。

The heat transfer method by using the anisotropic heat conductive material in any one of Claims 1-16.

JP2005044771A 2005-02-21 2005-02-21 Anisotropic heat conduction material Active JP4550613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044771A JP4550613B2 (en) 2005-02-21 2005-02-21 Anisotropic heat conduction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044771A JP4550613B2 (en) 2005-02-21 2005-02-21 Anisotropic heat conduction material

Publications (2)

Publication Number Publication Date
JP2006229174A true JP2006229174A (en) 2006-08-31
JP4550613B2 JP4550613B2 (en) 2010-09-22

Family

ID=36990224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044771A Active JP4550613B2 (en) 2005-02-21 2005-02-21 Anisotropic heat conduction material

Country Status (1)

Country Link
JP (1) JP4550613B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201458A (en) * 2005-12-28 2007-08-09 Furukawa Electric Co Ltd:The Anisotropic cooling element and semiconductor element equipped with the same
JP2007221109A (en) * 2006-01-17 2007-08-30 Furukawa Electric Co Ltd:The Semiconductor element, semiconductor module, and electronic apparatus
US20080287797A1 (en) * 2007-05-15 2008-11-20 General Electric Company Fluid-fillable ultrasound imaging catheter tips
US20090190312A1 (en) * 2007-03-28 2009-07-30 Masako Katayama Heat transfer film, semiconductor device, and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181550A (en) * 1988-01-12 1989-07-19 Toppan Printing Co Ltd Multi-layer electronic circuit
JPH11500580A (en) * 1995-02-17 1999-01-12 ペインター,ビー.エイ.,ザ サード Phonon resonator and method of manufacturing the same
JP2000299504A (en) * 1999-04-13 2000-10-24 Sharp Corp Semiconductor material and manufacture thereof
JP2003008263A (en) * 2001-06-27 2003-01-10 Sony Corp Heat conduction member and electronic device having heat conduction member
WO2003032408A1 (en) * 2001-10-05 2003-04-17 Research Triangle Institute Phonon-blocking, electron-transmitting low-dimensional structures
JP2005002410A (en) * 2003-06-11 2005-01-06 National Institute Of Advanced Industrial & Technology Method of forming ceramic composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181550A (en) * 1988-01-12 1989-07-19 Toppan Printing Co Ltd Multi-layer electronic circuit
JPH11500580A (en) * 1995-02-17 1999-01-12 ペインター,ビー.エイ.,ザ サード Phonon resonator and method of manufacturing the same
JP2000299504A (en) * 1999-04-13 2000-10-24 Sharp Corp Semiconductor material and manufacture thereof
JP2003008263A (en) * 2001-06-27 2003-01-10 Sony Corp Heat conduction member and electronic device having heat conduction member
WO2003032408A1 (en) * 2001-10-05 2003-04-17 Research Triangle Institute Phonon-blocking, electron-transmitting low-dimensional structures
JP2005002410A (en) * 2003-06-11 2005-01-06 National Institute Of Advanced Industrial & Technology Method of forming ceramic composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201458A (en) * 2005-12-28 2007-08-09 Furukawa Electric Co Ltd:The Anisotropic cooling element and semiconductor element equipped with the same
JP2007221109A (en) * 2006-01-17 2007-08-30 Furukawa Electric Co Ltd:The Semiconductor element, semiconductor module, and electronic apparatus
US20090190312A1 (en) * 2007-03-28 2009-07-30 Masako Katayama Heat transfer film, semiconductor device, and electronic apparatus
US8475923B2 (en) * 2007-03-28 2013-07-02 Furukawa Electric Co., Ltd. Heat transfer film, semiconductor device, and electronic apparatus
US20080287797A1 (en) * 2007-05-15 2008-11-20 General Electric Company Fluid-fillable ultrasound imaging catheter tips
US8721553B2 (en) * 2007-05-15 2014-05-13 General Electric Company Fluid-fillable ultrasound imaging catheter tips

Also Published As

Publication number Publication date
JP4550613B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
KR102281065B1 (en) Cooling thermoelectric moudule and device using the same
US8294272B2 (en) Power module
JP4430112B2 (en) Thermal conductive film, semiconductor device and electronic equipment provided with thermal conductive film
JP5534067B1 (en) Electronic component and electronic component cooling method
JP6380037B2 (en) Semiconductor device and electronic component using the same
JP5707810B2 (en) Manufacturing method of semiconductor module
KR102434261B1 (en) Heat conversion device
JP6423731B2 (en) Semiconductor module
JP2001168256A (en) Heat dissipation structure for semiconductor component and semiconductor device provided with that
JP4550613B2 (en) Anisotropic heat conduction material
JP2024029018A (en) thermoelectric module
JP2006269966A (en) Wiring substrate and its manufacturing method
JP4833827B2 (en) Anisotropic cooling element, Peltier module including the same, light emitting diode element, semiconductor laser element
JP2021511668A (en) Thermoelectric element and its manufacturing method
JP2010251427A (en) Semiconductor module
JP2010232545A (en) Semiconductor device
JP2021529431A (en) Thermoelectric element
JP5943369B2 (en) Thermally conductive laminated film member and manufacturing method thereof, heat dissipation component and heat dissipation device using the same
KR20200007265A (en) Heat conversion device
JP2002164585A (en) Thermoelectric conversion module
KR102316222B1 (en) Heat conversion device
JP7293116B2 (en) Thermoelectric sintered bodies and thermoelectric elements
KR102405457B1 (en) Thermoelectric device module
JP6327513B2 (en) Semiconductor device and manufacturing method thereof
KR102492207B1 (en) Heat conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

R151 Written notification of patent or utility model registration

Ref document number: 4550613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350