JP2006225414A - Recovering method and recovering system of unreacted monomer component in polymerization of acrylonitrile monomer - Google Patents

Recovering method and recovering system of unreacted monomer component in polymerization of acrylonitrile monomer Download PDF

Info

Publication number
JP2006225414A
JP2006225414A JP2005037188A JP2005037188A JP2006225414A JP 2006225414 A JP2006225414 A JP 2006225414A JP 2005037188 A JP2005037188 A JP 2005037188A JP 2005037188 A JP2005037188 A JP 2005037188A JP 2006225414 A JP2006225414 A JP 2006225414A
Authority
JP
Japan
Prior art keywords
unreacted monomer
polymer
water
polymerization
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005037188A
Other languages
Japanese (ja)
Other versions
JP4886990B2 (en
JP2006225414A5 (en
Inventor
Yoshinobu Kodera
芳伸 小寺
Yoshio Manabe
由雄 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2005037188A priority Critical patent/JP4886990B2/en
Publication of JP2006225414A publication Critical patent/JP2006225414A/en
Publication of JP2006225414A5 publication Critical patent/JP2006225414A5/ja
Application granted granted Critical
Publication of JP4886990B2 publication Critical patent/JP4886990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a monomer-recovering method capable of increasing recovery efficiency of unreacted monomer components recovered in a recovery process of acrylonitrile monomers, and a recovery system of an acrylonitrile polymer. <P>SOLUTION: The monomer components are recovered by vaporizingly separating the monomer components and water from the polymer by distillation of a monomer/polymer/water solution obtained by polymerization in a polymerization reaction tank (5) and subsequently condensing the vaporized monomer components and water, where a deaeration tube part (6) having a tube body (9) of a small diameter is interveningly disposed between the polymerization reaction tank (5) and a distillation column (7) and the polymer/unreacted monomer/water solution obtained in the polymerization reaction tank (5) is continuously fed directly to the distillation column (7) through the deaeration tube part (6). Thus, the amount of AAP (Acrylonitrile Addition Products), formed by the reaction of acrylonitrile (AN) with sodium hydrogen sulfite as a reducing agent for a polymerization initiation reaction and subsequently discharged outside the system, is remarkably decreased thereby to increase the recovery efficiency of AN. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水系懸濁重合によるアクリル系ポリマーの重合時に残留するモノマー成分の回収方法とアクリル系ポリマーの重合システムに関し、特に未反応の前記モノマー成分を重合時の原料モノマーとして回収し、循環利用する未反応モノマー成分の効率的な回収方法とその回収システムに関する。   The present invention relates to a method for recovering a monomer component remaining during polymerization of an acrylic polymer by aqueous suspension polymerization and a polymerization system for the acrylic polymer, and in particular, recovers the unreacted monomer component as a raw material monomer at the time of polymerization, The present invention relates to an efficient method for recovering unreacted monomer components and a recovery system thereof.

アクリル繊維は、羊毛に似た優れた嵩高性、風合、染色鮮明性等の性質を有し、広範囲の用途に利用されている。また、このアクリル繊維は、炭素繊維の原料としても多用されている。その紡糸法には、原料となるアクリル系共ポリマーを有機溶媒、又は無機溶媒に溶解する溶解工程を経て、湿式紡糸法、乾式紡糸法又は半乾式紡糸法によりステ−プル又はフィラメントとされる。この原料となるアクリルニトリル系共ポリマーは、アクリルニトリルモノマーとそれと共重合可能なアクリル酸エステル、メタクリル酸エステル、酢酸ビニル、アクリルアミドなどの非イオン性のコモノマーとをラジカル重合させることにより製造される。   Acrylic fibers have properties such as excellent bulkiness similar to wool, texture, and clearness of dyeing, and are used in a wide range of applications. The acrylic fiber is also frequently used as a raw material for carbon fiber. In the spinning method, a raw material acrylic copolymer is dissolved in an organic solvent or an inorganic solvent, and then a staple or filament is formed by a wet spinning method, a dry spinning method, or a semi-dry spinning method. The raw material acrylonitrile copolymer is produced by radical polymerization of an acrylonitrile monomer and a nonionic comonomer such as an acrylic ester, methacrylic ester, vinyl acetate or acrylamide copolymerizable therewith.

通常、アクリルニトリル系共ポリマーの製造は、水を反応媒体とする、連続懸濁重合方式を採用することが多い。この連続懸濁重合方式では、原料タンク及びモノマー回収工程よりアクリルニトリルのモノマーとコモノマーとが個別に計量され、モノマー調製タンクに供給される。調製タンク内のモノマー仕込組成は、製造するポリマーの共重合組成により、アクリルニトリルとコモノマーの反応性比を考慮して、一定値に厳密に設定する必要がある。   In general, the acrylonitrile copolymer is often produced by a continuous suspension polymerization system using water as a reaction medium. In this continuous suspension polymerization method, the acrylonitrile monomer and comonomer are individually metered from the raw material tank and the monomer recovery step and supplied to the monomer preparation tank. The monomer charge composition in the preparation tank needs to be strictly set to a constant value in consideration of the reactivity ratio of acrylonitrile and comonomer depending on the copolymer composition of the polymer to be produced.

重合反応釜には、調製されたアクリルニトリルとコモノマー、水、触媒などとともに、重合開始剤が添加されて重合が行われる。このときの重合開始剤としては、一般的に無機系開始剤が使用される。無機系開始剤としては、例えば過硫酸アンモニウム−亜硫酸水素ナトリウム−硫酸第一鉄の酸化−還元系の組合せが多く使われており、上記コモノマーを含むアクリルニトリルを主成分とするモノマー成分が、反応媒体として作用する硫酸酸性水を使用して重合反応すると、数十ミクロンの粒子状のポリマーが形成され、水性分散液の状態でアクリルニトリル系ポリマーが得られる。   The polymerization reactor is polymerized by adding a polymerization initiator together with the prepared acrylonitrile, comonomer, water, catalyst and the like. In general, an inorganic initiator is used as the polymerization initiator. As the inorganic initiator, for example, an ammonium persulfate-sodium hydrogen sulfite-ferrous sulfate oxidation-reduction system combination is often used, and a monomer component mainly composed of acrylonitrile containing the above comonomer is used as a reaction medium. When the polymerization reaction is performed using sulfuric acid acid water acting as a polymer, a particulate polymer of several tens of microns is formed, and an acrylonitrile-based polymer is obtained in the state of an aqueous dispersion.

重合反応釜から取り出したポリマーに、重合停止剤を添加し反応を停止させる。アクリルニトリル系ポリマーを水系懸濁重合で製造する場合の重合停止剤としては、反応系の酸性水溶液を中和する機能を保持することが必要であり、シュウ酸ナトリウム、重炭酸ナトリウム、エチレンジアミン4酢酸2ナトリウム塩などの電解質水溶液が用いられる。また、貯蔵中や輸送中においてアクリルニトリルのモノマーの重合を禁止すべく、通常、原料モノマーに、例えばp- メトキシフェノールなどの重合禁止剤が予め添加されている。   A polymerization terminator is added to the polymer taken out from the polymerization reaction kettle to stop the reaction. As a polymerization terminator in the case of producing an acrylonitrile-based polymer by aqueous suspension polymerization, it is necessary to maintain the function of neutralizing the acidic aqueous solution of the reaction system. Sodium oxalate, sodium bicarbonate, ethylenediaminetetraacetic acid An aqueous electrolyte solution such as a disodium salt is used. In order to inhibit the polymerization of acrylonitrile monomer during storage or transportation, a polymerization inhibitor such as p-methoxyphenol is usually added to the raw material monomer in advance.

重合反応の重合停止剤は、通常、アクリルニトリル系ポリマーを水系懸濁重合方式で製造する際に使用されるものであれば問題はない。ポリマー水溶液に重合停止剤を添加した後、未反応モノマーの回収を行う。このとき略1wt%の未反応モノマーが未重合のまま残る。この未反応モノマーの回収方法としてはポリマー水溶液を直接蒸留したのち、気化してポリマー水溶液から分離した未反応モノマー成分と水がコンデンサーに送られ凝縮し、モノマー/水の溶液となる。この溶液をデカンターによりモノマー成分と水とに分離する。分離した未反応モノマー成分は重合反応釜に戻される。一方、ポリマー中に残った水分は通常の乾燥方式によって取り除かれる。   There is no problem as long as the polymerization terminator for the polymerization reaction is usually used when an acrylonitrile-based polymer is produced by an aqueous suspension polymerization method. After adding a polymerization terminator to the polymer aqueous solution, the unreacted monomer is recovered. At this time, approximately 1 wt% of unreacted monomer remains unpolymerized. As a method for recovering the unreacted monomer, the polymer aqueous solution is directly distilled, and then the unreacted monomer component and water separated from the polymer aqueous solution are sent to the condenser and condensed to form a monomer / water solution. This solution is separated into a monomer component and water by a decanter. The separated unreacted monomer component is returned to the polymerization reaction kettle. On the other hand, water remaining in the polymer is removed by a normal drying method.

上記重合工程にあっては、稼働効率を考えて重合反応釜を単基で稼働することはなく、通常は複数基の重合反応釜を同時に稼働して重合がなされる。このとき重合反応釜から取り出されたポリマー/未反応モノマー/水の容液は下流側に配された大型(容積:50m3 )のスラリータンクに一旦導入されたのち、ポンプを介して蒸留部へと送られて既述したとおりポリマーと未反応モノマー/水とに分離される。また、重合停止後に複数基の重合反応釜の導出口を一斉に開いて、全てのポリマー/未反応モノマー/水の溶液を、前記スラリータンクに排出し、重合反応釜にて重合が再開されるまで貯留する。従って、このスラリータンクにはポリマー/未反応モノマー/水の溶液が常時貯留されている。通常、前記ポリマー/未反応モノマー/水の溶液は同スラリータンクに略2〜3時間貯留されてから蒸留部へと送られている。 In the polymerization step, the polymerization reaction kettle is not operated with a single group in consideration of the operation efficiency, and usually, polymerization is performed by simultaneously operating a plurality of polymerization reaction kettles. At this time, the polymer / unreacted monomer / water solution taken out from the polymerization reaction kettle is once introduced into a large (50 m 3 ) slurry tank arranged on the downstream side, and then to the distillation section via a pump. As described above, the polymer and the unreacted monomer / water are separated. In addition, after the polymerization is stopped, the outlets of a plurality of polymerization reaction kettles are opened all at once, and all the polymer / unreacted monomer / water solutions are discharged to the slurry tank, and the polymerization is resumed in the polymerization reaction kettle. Store up to. Therefore, a polymer / unreacted monomer / water solution is always stored in the slurry tank. Usually, the polymer / unreacted monomer / water solution is stored in the slurry tank for about 2 to 3 hours and then sent to the distillation section.

ところで、硫酸酸性水中でアルリロニトリル系ポリマーが重合されるとき、重合開始剤である過硫酸アンモニウム−亜硫酸水素ナトリウム−硫酸第一鉄の組合せのうち、重合開始反応の還元剤である亜硫酸水素ナトリウム(NaHSO3 :CDという。)は、次に示すようにアクリルニトリル(AN)と反応して、AAP(Acrilonitril Addition Product)を生成する。 By the way, when an allylonitrile-based polymer is polymerized in sulfuric acid acidic water, among the combination of ammonium persulfate-sodium hydrogen sulfite-ferrous sulfate as a polymerization initiator, sodium bisulfite (reducing agent for polymerization initiation reaction) NaHSO 3 : CD) reacts with acrylonitrile (AN) to produce AAP (Acrilonitril Addition Product) as shown below.

CH=CHCN + NaHSO3 → NaO3SCH2CH2CN(Sodiumβ-Sulfo Propianitrile)
(AN) (CD) (AAP)
このAAPは水溶性であるため、全てがモノマーストリップ塔(MS塔)の底部から排水として系外に排出されてしまい回収できないため、ANをロスする最も大きな原因の一つとなっている。
CH = CHCN + NaHSO 3 → NaO 3 SCH 2 CH 2 CN (Sodium β-Sulfo Propianitrile)
(AN) (CD) (AAP)
Since this AAP is water-soluble, all of it is discharged out of the system as waste water from the bottom of the monomer strip tower (MS tower) and cannot be recovered, which is one of the biggest causes of AN loss.

こうしたAAPは、勿論、重合反応釜や蒸留塔及びMS塔にても生成されるが、上述のように、重合工程にて得られるポリマー/未反応モノマー/水の溶液を、前記スラリータンクに導入し、同スラリータンクに長時間貯留する場合には、その生成量は重合反応釜や蒸留塔及びMS塔における生成量と比較すると、一段と高いことが判明している。因みに、実験によれば、前記スラリータンクにて生成されるAAPの量は、全工程で生成されるAAPの発生量の6割にも達する。   Of course, such AAP is also produced in the polymerization reaction kettle, distillation tower and MS tower, but as described above, the polymer / unreacted monomer / water solution obtained in the polymerization process is introduced into the slurry tank. However, when it is stored in the slurry tank for a long time, it has been found that the amount produced is much higher than the amount produced in the polymerization reaction kettle, distillation column and MS column. Incidentally, according to experiments, the amount of AAP generated in the slurry tank reaches 60% of the amount of AAP generated in all processes.

本発明は、以上のようなAAPの発生を極力低減してアクリルニトリル系モノマーの効率的な回収を可能にするアクリルニトリル系モノマーの重合工程における未反応モノマーの回収方法と同モノマーの回収システムとを提供することを目的としている。   The present invention relates to a method for recovering unreacted monomers and a monomer recovery system in the polymerization step of an acrylonitrile monomer that enables efficient recovery of the acrylonitrile monomer by reducing the generation of AAP as much as possible. The purpose is to provide.

本発明者らは、重合工程におけるAAPの発生量について、重合反応釜、スラリータンク及び蒸留塔からMS塔までの工程中の3ヵ所について調査した。その結果、重合反応釜で0.15%bop、スラリータンクで0.31%bop、蒸留塔からMS塔までで0.06%bopと、スラリータンクにて発生するAAPの量が最も高いことが分かった。   The present inventors investigated the amount of AAP generated in the polymerization process at three points in the process from the polymerization reaction tank, the slurry tank, and the distillation column to the MS column. As a result, the amount of AAP generated in the slurry tank is the highest, 0.15% bop in the polymerization reactor, 0.31% bop in the slurry tank, and 0.06% bop from the distillation column to the MS column. I understood.

この調査結果に基づき、AAPの発生原因の一つに亜硫酸水素ナトリウムを含有するポリマー/未反応モノマー/水の溶液の滞留時間が関係すると予測した。そこで、AAPの発生量と前記溶液の滞留時間との関係を求める試験を行った。この試験は、重合反応釜から得られたポリマー/未反応モノマー/水の溶液に亜硫酸水素ナトリウムを添加して、その溶液をビーカーに入れて45℃に保温しながら、測定開始から30分、60分、120分経過ごとにAAPの発生量を測定した。
図4は、そのときの結果をグラフに示したものである。
Based on the results of this investigation, it was predicted that one of the causes of AAP was related to the residence time of the polymer / unreacted monomer / water solution containing sodium bisulfite. Then, the test which calculates | requires the relationship between the generation amount of AAP and the residence time of the said solution was done. In this test, sodium bisulfite was added to the polymer / unreacted monomer / water solution obtained from the polymerization reaction kettle, and the solution was placed in a beaker and kept at 45 ° C. for 30 minutes from the start of measurement. The amount of AAP generated was measured every minute and 120 minutes.
FIG. 4 is a graph showing the results at that time.

同図によると、測定開始時を零分としたとき、零分ではAPPの発生量が0.75%bopであったものが、1時間後には1.75%bopまでほぼ直線的に増加しており、その後は高い発生量の間で緩やかに増加しており、2時間後には1.85%bopの発生量に達していることが分かる。   According to the figure, when the measurement start time is assumed to be zero minutes, the amount of APP generated at 0.75% bop at zero minutes increases almost linearly to 1.75% bop after one hour. After that, it gradually increases between the high generation amounts, and after 2 hours, the generation amount reaches 1.85% bop.

発明者らは、この試験結果から、前記溶液の滞留時間を可能な限り短くすれば、AAPの発生を抑えることができると推定した。   The inventors estimated from this test result that the generation of AAP can be suppressed by shortening the residence time of the solution as much as possible.

そこで、まずスラリータンクを排除して、重合反応釜からオーバーフローするポリマー/未反応モノマー/水の溶液をスラリー送液ポンプを介して直接蒸留塔に導入することを試みた。しかしながら、スラリー送液ポンプがエアーを吸い込み、蒸留塔で真空切れが発生したため運転を継続することが不可能となった。   Therefore, first, the slurry tank was excluded, and an attempt was made to directly introduce the polymer / unreacted monomer / water solution overflowing from the polymerization reaction kettle into the distillation column via the slurry feed pump. However, the slurry feeding pump sucked air and a vacuum break occurred in the distillation tower, making it impossible to continue the operation.

更に多様な試験運転を行ったところ、請求項1に記載したとおり、本発明の基本構成である、アクリルニトリル系ポリマーの水系懸濁重合工程で発生する未反応モノマー成分の回収方法に到達した。すなわち、重合工程で得られるポリマー/未反応モノマー/水の混合物を蒸留して未反応モノマー成分と水とをポリマーから気化分離させる未反応モノマー成分の気化分離工程と、気化した未反応モノマー成分と水とを凝縮させて未反応モノマー成分を回収する未反応モノマー成分回収工程とを含み、前記重合工程で得られるポリマー/未反応モノマー/水の混合物を小内径の筒体を有する脱気筒部を介して脱気しつつ前記気化分離工程へと連続して導入することを含んでなることを特徴とするアクリルニトリル系モノマー成分の回収方法を採用することにより、重合工程全体としてのAAPの発生を大幅に減少させることができた。   As a result of further various test operations, as described in claim 1, a method for recovering unreacted monomer components generated in the aqueous suspension polymerization step of the acrylonitrile-based polymer, which is the basic constitution of the present invention, has been reached. That is, a step of vaporizing and separating an unreacted monomer component in which a polymer / unreacted monomer / water mixture obtained in the polymerization step is distilled to vaporize and separate the unreacted monomer component and water from the polymer; An unreacted monomer component collecting step of condensing water and recovering an unreacted monomer component, and a decylinder portion having a cylinder with a small inner diameter of the polymer / unreacted monomer / water mixture obtained in the polymerization step. By adopting a method for recovering an acrylonitrile-based monomer component, which comprises continuously introducing into the vaporization separation step while degassing through the generation of AAP as a whole polymerization step It was possible to greatly reduce.

好ましくは、前記脱気筒部の小径筒体は、内径が200〜500mm、高さが2000〜6000mm、容量が0.05〜1.2m3 に設定されている。そして、所定量の前記ポリマー/未反応モノマー/水の溶液を前記筒体内部の溶液導出部に貯留しつつ前記気化分離工程へと連続して導入する。更に、前記脱気筒部の内壁面に向けて水を噴射することが望ましい。 Preferably, the small diameter cylindrical body of the decylinder part has an inner diameter of 200 to 500 mm, a height of 2000 to 6000 mm, and a capacity of 0.05 to 1.2 m 3 . Then, a predetermined amount of the polymer / unreacted monomer / water solution is continuously introduced into the vaporization separation step while being stored in the solution outlet portion inside the cylinder. Furthermore, it is desirable to inject water toward the inner wall surface of the decylinder part.

一方、水系懸濁重合方式により発生するアクリルニトリル系モノマー成分の回収システムは、重合部と、同重合部に流路を介して連結された脱気筒部と、同脱気筒部に流路を介して連結され、ポリマー/未反応モノマー/水の混合物を蒸留して未反応モノマー成分と水とをポリマーから気化分離させる未反応モノマー成分の気化分離部と、同気化分離部にて気化分離された未反応モノマー成分と水とを凝縮させて未反応モノマー成分を回収する未反応モノマー成分回収部とを備えており、前記脱気筒部の端部を上下方向の向きに配するとともに、少なくともその上端部には脱気口が、下端部には前記ポリマー/未反応モノマー/水の混合物の導出口が設けられてなることを特徴としている。   On the other hand, a system for recovering an acrylonitrile monomer component generated by an aqueous suspension polymerization system includes a polymerization part, a decylinder part connected to the polymerization part via a flow path, and a flow path to the decylinder part. The polymer / unreacted monomer / water mixture was distilled to evaporate and separate the unreacted monomer component and water from the polymer. An unreacted monomer component collecting unit that condenses the unreacted monomer component and water to recover the unreacted monomer component, and arranges the end of the decylinder unit in the vertical direction and at least the upper end thereof The part is provided with a degassing port, and the lower end part is provided with a discharge port for the polymer / unreacted monomer / water mixture.

前記脱気筒部は、内径が200〜500mm、高さが2000〜6000mm、容量が0.05〜1.2m3 に設定された筒体を含んでおり、ポリマー/未反応モノマー/水の溶液の導出口と前記蒸留部との間の流路に送液ポンプを配することが望ましい。また、前記脱気筒部の少なくとも上端部に、噴射口を同脱気筒部の内壁面に向けた水噴射口を有するようにするとよい。更には、前記脱気筒部が所定範囲の液面を検出する検出手段を有するとともに、同液面検出手段の検出値に基づき液面位置を前記範囲内となるように、前記送液ポンプの送液量を制御する液面制御手段を有してもよい。 The de-cylinder part includes a cylindrical body having an inner diameter of 200 to 500 mm, a height of 2000 to 6000 mm, and a capacity of 0.05 to 1.2 m 3 , and a polymer / unreacted monomer / water solution. It is desirable to arrange a liquid feed pump in the flow path between the outlet and the distillation section. Further, it is preferable that at least an upper end portion of the de-cylinder portion has a water injection port with an injection port directed toward the inner wall surface of the de-cylinder portion. Further, the de-cylinder part has a detecting means for detecting a liquid level within a predetermined range, and the liquid feed pump feeds the liquid level position within the range based on the detection value of the liquid level detecting means. You may have a liquid level control means which controls a liquid quantity.

作用効果Effect

重合工程で得られるポリマー/未反応モノマー/水の溶液は重合反応釜からオーバーフローして、小内径の筒体を有する脱気筒部へと導入される。このとき混入するエアーは同脱気筒部から脱気通路を介して脱気される。一方、脱気筒部に導入されたポリマー/未反応モノマー/水の溶液は、同脱気筒部の内部を通過して、気化分離工程へと連続して送り込まれる。前記脱気筒部の小径筒体は、内径が200〜500mm、高さが2000〜6000mm、容量が0.05〜1.2m3 に設定されており、現状において採用を予定している実機と従来のスラリータンクとを比較すると、従来のスラリータンクの1/60〜1/125と極めて小さな容量となる。その結果、専有空間も極めて小さくなるため、前記脱気筒部を同時に稼働している複数の重合反応釜に隣接して配することができる。 The polymer / unreacted monomer / water solution obtained in the polymerization step overflows from the polymerization reaction kettle and is introduced into the decylinder portion having a small-bore cylindrical body. The air mixed at this time is deaerated from the de-cylinder part through the deaeration passage. On the other hand, the polymer / unreacted monomer / water solution introduced into the de-cylinder part passes through the inside of the de-cylinder part and is continuously sent to the vaporization separation step. The small-diameter cylindrical body of the cylinder removing portion has an inner diameter of 200 to 500 mm, a height of 2000 to 6000 mm, and a capacity of 0.05 to 1.2 m 3. When compared with the conventional slurry tank, the capacity is as small as 1/60 to 1/125 of the conventional slurry tank. As a result, the exclusive space becomes extremely small, so that the decylinder part can be arranged adjacent to a plurality of polymerization reaction kettles operating simultaneously.

因みに、従来のスラリータンクでは溶液の通過時間が2〜3時間であるのに比べて、本発明による前記脱気筒部を前記溶液が通過する時間はせいぜい1分程度である。その結果、既述したとおりAPPの発生量が大幅に減少する。他方、本発明にあっては、従来の前記スラリータンクは普段使用せずに緊急用として残しておいてもよい。   Incidentally, in the conventional slurry tank, the time for the solution to pass through the de-cylinder portion according to the present invention is at most about 1 minute, compared with the time for the solution to pass for 2 to 3 hours. As a result, the amount of APP generated is significantly reduced as described above. On the other hand, in the present invention, the conventional slurry tank may be left for emergency use without being normally used.

所定量の前記ポリマー/未反応モノマー/水の溶液を前記筒体内部の溶液導出部に貯留しつつ、前記気化分離工程へと連続して導入すると、脱気筒部においてエアーが完全に排気されて、前記溶液が気化分離工程に導入されるときにはエアーの混入がなく、ポリマーと未反応モノマー/水との間でエアーを混入しない円滑な気化分離がなされる。このとき、前記脱気筒部の内壁面に向けて水を噴射すると、ポリマーがスラリー導出部に詰まることがなくなるばかりでなく、筒体の内面に付着することも防げる。   When a predetermined amount of the polymer / unreacted monomer / water solution is stored in the solution outlet part inside the cylinder and continuously introduced into the vaporization separation step, air is completely exhausted in the decylinder part. When the solution is introduced into the vaporization separation step, there is no air mixing, and smooth vaporization separation without air mixing between the polymer and the unreacted monomer / water is performed. At this time, when water is sprayed toward the inner wall surface of the de-cylinder part, the polymer is not clogged in the slurry outlet part, and can also be prevented from adhering to the inner surface of the cylinder.

前記脱気筒部は端部を上下方向の向きに配して、少なくともその上端部には脱気口を、下端部には前記ポリマー/未反応モノマー/水の溶液の導出口を設ければ、それらの溶液からなるスラリーの円滑な流れを得ることができる。また、ポリマー/未反応モノマー/水の溶液の導出口と前記気化分離部との間の流路に送液ポンプを配しておけば、前記スラリーの積極的な送液が可能であるばかりでなく、その出力を制御すれば脱気筒部内に貯留するスラリーの液面を常に適正な位置に維持することが出来るようになる。そのため、既述したとおり上記液面制御手段を設け、液面検出手段により検出される液面位置に基づき、前記液面制御手段から信号が発せられて前記送液ポンプの出力を制御するようにする。   If the decylinder part is provided with an end in the vertical direction, at least the degassing port at the upper end and the outlet for the polymer / unreacted monomer / water solution at the lower end, A smooth flow of the slurry comprising these solutions can be obtained. In addition, if a liquid feed pump is arranged in the flow path between the polymer / unreacted monomer / water solution outlet and the vapor separation section, the slurry can be actively fed. If the output is controlled, the liquid level of the slurry stored in the de-cylinder part can always be maintained at an appropriate position. Therefore, as described above, the liquid level control means is provided, and based on the liquid level position detected by the liquid level detection means, a signal is emitted from the liquid level control means to control the output of the liquid feed pump. To do.

以下、本発明の代表的な実施の形態を図面に基づいて詳細に説明する。
本発明は、水系懸濁重合方式によるアクリルニトリル系重合体の製造時に発生する未反応のモノマー成分を原料モノマーの調製タンクに戻すべく効率的に回収する技術に関する。
Hereinafter, typical embodiments of the present invention will be described in detail with reference to the drawings.
The present invention relates to a technique for efficiently recovering unreacted monomer components generated during production of an acrylonitrile-based polymer by an aqueous suspension polymerization method so as to return them to a raw material monomer preparation tank.

図1は、その重合・回収工程の全てを模式的に示している。まず、主原料であるアクリルニトリル貯留タンク1から液体状のアクリルニトリルが第1の計量ポンプ2aにより計量されながらモノマー調製タンク3に所定量投入される。本実施形態では、前記アクリルニトリル貯留タンク1に貯留されるアクリルニトリルには貯留中に重合を起こさないように、重量比で20〜100ppmのp- メトキシフェノールが添加されている。重合禁止剤としては、前記p- メトキシフェノールの他に、ハイドロキノン、p- t- ブチルカテコール、ジフェニルピクリルヒドラジル、ベンゾキノン、ガルビノキシル、1,3,5−トリフェニルフェルダジルなどが使用できる。   FIG. 1 schematically shows all of the polymerization / recovery steps. First, a predetermined amount of liquid acrylonitrile is charged into the monomer preparation tank 3 while being metered by the first metering pump 2a from the acrylonitrile storage tank 1, which is the main raw material. In this embodiment, 20 to 100 ppm by weight of p-methoxyphenol is added to the acrylonitrile stored in the acrylonitrile storage tank 1 so as not to cause polymerization during storage. As the polymerization inhibitor, hydroquinone, p-t-butylcatechol, diphenylpicrylhydrazyl, benzoquinone, galvinoxyl, 1,3,5-triphenylferdazyl and the like can be used in addition to the p-methoxyphenol.

前記モノマー調製タンク3には、更にアクリルニトリルと共重合する第2成分であるコモノマーが、コモノマー貯留タンク1aから同じく第2の計量ポンプ2bで計量されながら所定の割合で投入される。モノマー調製タンク3に所定の割合で投入され調整されたアクリルニトリルとコモノマーの溶液はポンプによりモノマー供給タンク4へと送られる。モノマー供給タンク4で調製された粘調な原料液は、第3の計量ポンプ2cを介して重合反応釜5へと送り込まれる。この重合反応釜5には、そのほかに必要量のイオン交換水IDが供給され、同時に各種の触媒や重合開始剤、各種の助剤が添加される。   The monomer preparation tank 3 is further charged with a comonomer which is a second component copolymerized with acrylonitrile at a predetermined ratio while being measured by the second metering pump 2b from the comonomer storage tank 1a. A solution of acrylonitrile and comonomer, which is charged into the monomer preparation tank 3 at a predetermined ratio and adjusted, is sent to the monomer supply tank 4 by a pump. The viscous raw material liquid prepared in the monomer supply tank 4 is sent to the polymerization reaction kettle 5 through the third metering pump 2c. In addition, a necessary amount of ion-exchanged water ID is supplied to the polymerization reaction kettle 5 and various catalysts, polymerization initiators, and various auxiliary agents are added simultaneously.

本実施形態における重合開始剤として、無機系レドックス開始剤を使用している。無機系レドックス開始剤としては、通常の酸化剤、還元剤の中から選ぶことができる。酸化剤と還元剤との組合せからなるレドックスの場合、代表的なものは、酸化剤としては過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の通常使用されるものであり、還元剤は亜硫酸ナトリウム、亜硫酸アンモニウム、亜硫酸水素ナトリウム、亜硫酸水素アンモニウム、チオ硫酸ナトリウム、チオ硫酸アンモニウム、亜二チオン酸ナトリウム、ナトリウムホルムアルデヒドスルフォキシレート、L−アルコルビン酸、デキストロ−ズ等の通常使用されているものである。硫酸第一鉄又は硫酸銅などの化合物も組合せて使用できる。その中で、過硫酸アンモニウム−亜硫酸水素ナトリウム(アンモニウム)−硫酸第一鉄の組合せが好ましい。還元剤と酸化剤の比率はどんな割合でも可能であるが、重合をより効率よく進めるうえで還元剤と酸化剤との当量比を1〜4にすることが好ましい。   As the polymerization initiator in this embodiment, an inorganic redox initiator is used. The inorganic redox initiator can be selected from ordinary oxidizing agents and reducing agents. In the case of redox consisting of a combination of an oxidizing agent and a reducing agent, typical ones are usually used as an oxidizing agent such as ammonium persulfate, potassium persulfate, sodium persulfate, etc., and the reducing agent is sodium sulfite, Ammonium sulfite, sodium hydrogen sulfite, ammonium hydrogen sulfite, sodium thiosulfate, ammonium thiosulfate, sodium dithionite, sodium formaldehyde sulfoxylate, L-alcorbic acid, dextroses and the like are commonly used. Compounds such as ferrous sulfate or copper sulfate can also be used in combination. Among them, a combination of ammonium persulfate-sodium hydrogen sulfite (ammonium) -ferrous sulfate is preferable. Any ratio of the reducing agent and the oxidizing agent is possible, but it is preferable that the equivalent ratio of the reducing agent and the oxidizing agent is 1 to 4 in order to proceed the polymerization more efficiently.

本実施形態で用いられるアクリルニトリル系ポリマーは、アクリルニトリルモノマーの他にこれと共重合可能なモノオレフィン性モノマーとからなる繰り返し単位からなるものであってもよい。ここでアクリルニトリル系ポリマーは、少なくとも60重量%のアクリルニトリルモノマーから構成される必要がある。アクリルニトリルモノマーの含有量が60重量%未満であると、アクリルニトリル系合成繊維が本来有する繊維機能を保有することができないためである。ここで共重合可能なモノオレフィン性モノマーとしては、例えばアクリル酸、メタクリル酸及びそれらのエステル、アクリルアミド、酢酸ビニル、スチレン、塩化ビニル、塩化ビニリデン、無水マレイン酸、N−置換マレインイミド、ブタジエン、イソプレン等を挙げることができる。また、p−スルフォニルメタリルエーテル、メタリルスルフォン酸、アリルスルフォン酸、スチレンスルフォン酸、2−アクリルアミド−2−メチルプロパンスルフォン酸、2−スルフォエチルメタクリレート及びこれらの塩も共重合可能なモノマーとして使用できる。   The acrylonitrile-based polymer used in the present embodiment may be composed of a repeating unit comprising an acrylonitrile monomer and a monoolefinic monomer copolymerizable therewith. Here, the acrylonitrile-based polymer needs to be composed of at least 60% by weight of an acrylonitrile monomer. This is because if the content of the acrylonitrile monomer is less than 60% by weight, the fiber function inherent to the acrylonitrile-based synthetic fiber cannot be retained. Examples of the copolymerizable monoolefinic monomer include acrylic acid, methacrylic acid and esters thereof, acrylamide, vinyl acetate, styrene, vinyl chloride, vinylidene chloride, maleic anhydride, N-substituted maleimide, butadiene, and isoprene. Etc. Moreover, p-sulfonyl methallyl ether, methallyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, 2-sulfoethyl methacrylate and salts thereof are also used as copolymerizable monomers. it can.

アクリルニトリル系モノマーの重合は、次のような条件で行う。すなわち、重合反応温度は30〜80℃にすることが好ましい。重合温度が80℃を超えるとアクリルニトリルが蒸発し、反応系外へ離散し、重合転化率が低下する。また30℃未満では重合速度が低下し、生産性が低下するばかりでなく、重合安定性を損なう。重合媒体としての水はイオン交換水を使用することが好ましい。さらにモノマーに対するイオン交換水の割合(以下、水/モノマー比という)は如何なる比率でも可能であるが、好ましくは水/モノマー比は1.0〜5.0の範囲である。重合反応釜内でのモノマーの平均滞在時間は、アクリルニトリル系ポリマーを水系懸濁重合方式で製造する際に採用される通常の時間でよい。重合反応釜内での水素イオン濃度は使用される触媒がすみやかに酸化・還元反応を起こす範囲であればよく、好ましくはpH2.0〜3.5の酸性領域がよい。   Polymerization of the acrylonitrile monomer is performed under the following conditions. That is, the polymerization reaction temperature is preferably 30 to 80 ° C. When the polymerization temperature exceeds 80 ° C., acrylonitrile evaporates and disperses outside the reaction system, and the polymerization conversion rate decreases. On the other hand, if it is less than 30 ° C., the polymerization rate is lowered, the productivity is lowered, and the polymerization stability is impaired. It is preferable to use ion-exchanged water as the polymerization medium. Furthermore, the ratio of ion-exchanged water to the monomer (hereinafter referred to as water / monomer ratio) can be any ratio, but the water / monomer ratio is preferably in the range of 1.0 to 5.0. The average residence time of the monomer in the polymerization reaction vessel may be a normal time employed when the acrylonitrile polymer is produced by the aqueous suspension polymerization method. The hydrogen ion concentration in the polymerization reaction vessel may be in a range in which the catalyst used promptly causes an oxidation / reduction reaction, and is preferably an acidic region having a pH of 2.0 to 3.5.

重合反応釜5から取り出した重合体水溶液に重合停止剤を添加し反応を停止させる。重合反応の停止剤は通常アクリルニトリル系ポリマーを水系懸濁重合で製造する際に使用されるものであれば限定されない。スラリー状の重合体水溶液に重合停止剤を添加した後、未反応モノマーの回収を行う。未反応モノマーの回収は重合工程の全ての過程にて発生する未回収の未反応モノマーであれば、可能な限り回収して未反応モノマー回収タンク1bに回収する。前述の重合反応釜5にて得られるポリマー/未反応ポリマー/水からなる重合体水溶液から未反応モノマーを回収する方法としては、本発明の特徴部の一つである脱気筒部6を介して脱気しつつ前記気化分離工程である蒸留塔7へと連続して導入し、蒸留する方法が採用される。   A polymerization terminator is added to the aqueous polymer solution taken out from the polymerization reaction kettle 5 to stop the reaction. The terminator for the polymerization reaction is not limited as long as it is generally used when an acrylonitrile-based polymer is produced by aqueous suspension polymerization. After adding a polymerization terminator to the slurry polymer aqueous solution, the unreacted monomer is recovered. The unreacted monomer is recovered as much as possible and recovered in the unreacted monomer recovery tank 1b as long as it is an unrecovered unreacted monomer generated in the entire polymerization process. As a method for recovering the unreacted monomer from the polymer aqueous solution composed of polymer / unreacted polymer / water obtained in the above-described polymerization reaction vessel 5, the decylinder unit 6 which is one of the features of the present invention is used. A method of continuously introducing and distilling into the distillation column 7 which is the vaporization separation step while deaeration is employed.

この脱気筒部6を介して脱気しつつ前記蒸留塔7へと連続して導入し、蒸留塔7にて気化分離させて未反応モノマーを回収すると、既述したとおり、還元剤としての亜硫酸水素ナトリウムが添加されることにより生成されるAAPの生成量を、従来の大型のスラリータンクを使用するときとは比較にならない量までに減少させることができる。   When the unreacted monomer is recovered by continuously introducing into the distillation column 7 while degassing through the decylinder unit 6 and evaporating and separating in the distillation column 7, as described above, sulfite as a reducing agent. The amount of AAP produced by adding sodium hydride can be reduced to an amount that is not comparable to when using a conventional large slurry tank.

本実施形態にあっては、重合反応釜5で重合を終えてオーバーフローする重合体水溶液は、図2に示すように、重合反応釜5から前記脱気筒部6を通したのち、送液ポンプ8によって蒸留塔7へと積極的に送り出される。前記脱気筒部6の小径筒体9は、図2に示すように逆ロケット形状を有しており、その内径は200〜500mm、高さは2000〜6500mm、容量は0.05〜1.2m3 である。この容量から、従来の巨大な容量24〜50m3 をもつスラリータンクと比較すれば、前記小径筒体9が如何に小型化されているかが理解できよう。なお、本実施形態では従来のスラリータンク18を緊急用として重合反応釜5と蒸留塔7との間に設置している。このスラリータンク18は、普段は使用しない。 In this embodiment, the polymer aqueous solution overflowing after the completion of the polymerization in the polymerization reaction vessel 5 passes through the decylinder portion 6 from the polymerization reaction vessel 5 as shown in FIG. Is actively sent to the distillation column 7. As shown in FIG. 2, the small-diameter cylindrical body 9 of the decylinder part 6 has an inverted rocket shape, and has an inner diameter of 200 to 500 mm, a height of 2000 to 6500 mm, and a capacity of 0.05 to 1.2 m. 3 . From this capacity, it can be understood how small the small-diameter cylindrical body 9 is compared with a conventional slurry tank having a huge capacity of 24 to 50 m 3 . In the present embodiment, a conventional slurry tank 18 is installed between the polymerization reaction kettle 5 and the distillation column 7 for emergency use. This slurry tank 18 is not normally used.

前記脱気筒部6の小径筒体9は、その端部を上下に向けて設置され、その筒体周面の一部から筒体内部へと上記重合体水溶液が導入される。本実施形態にあっては、3基の重合反応釜5により得られる重合体水溶液が前記小径筒体9の内部に導入される。同筒体9の下端部には前記重合体水溶液の導出口9aが形成されており、同導出口9aは送液ポンプ8を介して蒸留塔7に配管により接続される。因みに本実施形態による脱気筒部6の全長は、各種の出入口を含めて5320mm、小径筒体9の内径306.5mm、容量0.3m3 である。 The small-diameter cylindrical body 9 of the decylinder section 6 is installed with its end facing up and down, and the polymer aqueous solution is introduced into the cylindrical body from a part of the peripheral surface of the cylindrical body. In the present embodiment, an aqueous polymer solution obtained by the three polymerization reaction kettles 5 is introduced into the small diameter cylindrical body 9. An outlet port 9 a for the polymer aqueous solution is formed at the lower end of the cylindrical body 9, and the outlet port 9 a is connected to the distillation tower 7 via a liquid feed pump 8 by piping. Incidentally, the total length of the cylinder removal portion 6 according to the present embodiment is 5320 mm including various entrances, the inner diameter of the small-diameter cylinder 9 is 306.5 mm, and the capacity is 0.3 m 3 .

小径筒体9の内部構造は、下端の重合体水溶液導出口9aの部分を除いて完全な円筒形の空洞を有しており、図2に示すように、筒体9の上端に蓋体9bが配され、その蓋体9bの中央部には脱気口9cを有している。同筒体9の周面には上記重合体水溶液の3つの導入口9dと、任意の数(本実施形態では5個)のイオン交換水導入口9eとが形成されている。また、筒体9の周面の上下にはそれぞれ離間して配された差圧式液面計と反射式液面計の各液面検出部9f,9gを有している。前記イオン交換水導入口9eからは、図3に示すように、筒体内壁面に向けてイオン交換水DIが噴射される。このイオン交換水DIの噴射により、筒体内面が常に水により洗い流されるため、ポリマーが内壁面に付着することがなくなり、且つ重合体水溶液の導出口9aの詰まりをも排除する。   The internal structure of the small-diameter cylindrical body 9 has a complete cylindrical cavity except for the polymer aqueous solution outlet port 9a at the lower end. As shown in FIG. And a deaeration port 9c at the center of the lid 9b. On the peripheral surface of the cylindrical body 9, there are formed three inlets 9d for the polymer aqueous solution and an arbitrary number (five in this embodiment) of ion exchange water inlets 9e. In addition, liquid level detectors 9f and 9g of a differential pressure type liquid level gauge and a reflection type liquid level gauge are provided above and below the peripheral surface of the cylindrical body 9, respectively. As shown in FIG. 3, ion exchange water DI is jetted from the ion exchange water inlet 9e toward the wall surface of the cylinder. Since the inner surface of the cylindrical body is always washed away with water by the injection of the ion-exchanged water DI, the polymer does not adhere to the inner wall surface, and clogging of the polymer aqueous solution outlet 9a is also eliminated.

また、同じく図3に示すように、前記差圧式液面計と反射式液面計との液面検出部9f,9gから検出器LTによって所要の範囲の液面が検出される。その検出信号は、液面制御部LICに送られ、同制御部LICに予め設定された液面高さとなるように上記送液ポンプ8に制御信号が発せられて、同送液ポンプ8の吐出流量を制御する。この吐出流量の制御により、前記脱気筒部6の小径筒体9の重合体水溶液導出口9aの上流側に所定の範囲の液面高さを維持して、重合体水溶液が重合反応釜5からオーバーフローする間に混入するエアーを液面の上方に配された脱気口9cから完全に脱気させたのちに、蒸留塔7へと送り込む。   Similarly, as shown in FIG. 3, the liquid level in a required range is detected by the detector LT from the liquid level detectors 9f and 9g of the differential pressure type liquid level gauge and the reflection type liquid level gauge. The detection signal is sent to the liquid level control unit LIC, and a control signal is issued to the liquid feed pump 8 so that the liquid level is set in advance in the control unit LIC. Control the flow rate. By controlling the discharge flow rate, a liquid surface height within a predetermined range is maintained on the upstream side of the polymer aqueous solution outlet port 9a of the small-diameter cylindrical body 9 of the decylinder unit 6 so that the polymer aqueous solution is discharged from the polymerization reaction vessel 5. The air mixed during the overflow is completely deaerated from the deaeration port 9c disposed above the liquid surface, and then sent to the distillation column 7.

もし、この液面制御を行わないと、筒体内部に重合体水溶液が貯留されることなく、エアーを混入したまま蒸留塔7に導入されてしまい、蒸留塔7で気液分離された未反応モノマーと水蒸気との混合気体にエアーが混じってしまい、次工程のコンデンサー10で凝縮されたのちデカンター11によって水と未反応モノマーとが分離されて回収された未反応モノマーにエアーが混入して残ってしまい、このエアーが混入した状態で未反応モノマーが重合反応釜5に戻されてしまうと重合が円滑になされなくなる。   If this liquid level control is not performed, the aqueous polymer solution is not stored inside the cylinder, but is introduced into the distillation column 7 with air mixed therein, and the unreacted gas-liquid separated in the distillation column 7 Air is mixed into the mixed gas of the monomer and water vapor, and after being condensed by the condenser 10 in the next step, water and unreacted monomer are separated by the decanter 11 and air is mixed into the recovered unreacted monomer and remains. If the unreacted monomer is returned to the polymerization reaction vessel 5 in a state where the air is mixed, the polymerization is not smoothly performed.

蒸留塔7に導入された重合体水溶液は、ポリマーとモノマー/水とに分離されるとともに、モノマー/水の混合液を蒸留塔7で蒸留して気化し、コンデンサー10に導入されて凝縮し、未反応のモノマー成分と水の混合液となる。コンデンサー10で液化されたモノマー成分と水との混合液はデカンター11を介して分離され、モノマー成分はスクラバー8を介して重合反応釜5に戻される。   The aqueous polymer solution introduced into the distillation column 7 is separated into the polymer and the monomer / water, and the monomer / water mixture is vaporized by distillation in the distillation column 7, introduced into the condenser 10, and condensed. It becomes a liquid mixture of unreacted monomer components and water. The mixed liquid of the monomer component and water liquefied by the condenser 10 is separated through the decanter 11, and the monomer component is returned to the polymerization reaction vessel 5 through the scrubber 8.

前記蒸留塔7にて分離されたポリマーは水とともに第2スラリータンク12を介して洗浄部13にてイオン交換水によって洗浄されると同時にフィルターを通して濾過され、ペレタイザ14にて粒子状に成形されたのち、乾燥機15にて乾燥される。前記洗浄部13から排出される水溶液は、濾洗液タンク16にて貯留されて水を主成分とする未反応モノマー成分を含む液はMS塔(モノマーストリップ塔)17に送られて、蒸気により気液分離されて排水を塔底から取り出し、塔頂部から水と未反応モノマーとが回収されて上記蒸留塔7へと戻される。   The polymer separated in the distillation column 7 was washed with ion-exchanged water in the washing unit 13 through the second slurry tank 12 together with water, and simultaneously filtered through a filter, and formed into particles by a pelletizer 14. After that, it is dried by the dryer 15. The aqueous solution discharged from the washing section 13 is stored in the filter washing liquid tank 16 and the liquid containing unreacted monomer components mainly composed of water is sent to the MS tower (monomer strip tower) 17 and is vaporized. The gas and liquid are separated and the waste water is taken out from the bottom of the tower, and water and unreacted monomers are recovered from the top of the tower and returned to the distillation tower 7.

表1は、前述のようにして重合反応釜5からオーバーフローする重合体水溶液を前記小径筒体9を介して蒸留塔7に送り込む本発明方法と、重合反応釜5からオーバーフローする重合体水溶液を大型のスラリータンクを介して蒸留塔7に送り込む従来法とを、次の試験条件で試験運転したときの、各部所における上記AAPの発生量の分布を示している。この試験では、比較的生産能力の低いランクを選んだ。   Table 1 shows the method of the present invention in which the aqueous polymer solution overflowing from the polymerization reaction vessel 5 as described above is sent to the distillation column 7 through the small-diameter cylindrical body 9 and the large amount of the aqueous polymer solution overflowing from the polymerization reaction vessel 5. The distribution of the amount of AAP generated in each part when the conventional method fed to the distillation column 7 through the slurry tank is tested under the following test conditions is shown. In this test, a rank with a relatively low production capacity was selected.

(試験条件)
スラリータンク容量:24m3
小径筒体 :内径306.5mm、高さ4720mm、容量0.3m3
スラリータンク内の滞留時間:30〜40分
筒体内の滞留時間 :約1分
(Test conditions)
Slurry tank capacity: 24m 3
Small diameter cylinder: 306.5 mm in inner diameter, 4720 mm in height, 0.3 m 3 in capacity
Residence time in slurry tank: 30 to 40 minutes Residence time in cylinder: about 1 minute

Figure 2006225414
Figure 2006225414

この表1から理解できるように、重合反応釜にて得られたアクリルニトリル系ポリマー/未反応モノマー/水との水溶液を、上記小径筒体を通して蒸留塔に連続して直接送り込むと、従来の大型スラリータンクに長時間滞留させてから蒸留塔に送り込む場合と比較して、AAPの全体の発生量を0.52−0.33=0.19%bopの発生量までに大幅に減少させることができた。   As can be understood from Table 1, when the aqueous solution of acrylonitrile polymer / unreacted monomer / water obtained in the polymerization reaction vessel is continuously fed directly to the distillation column through the small-diameter cylindrical body, Compared with the case where the slurry tank is kept in the slurry tank for a long time and then sent to the distillation tower, the total generation amount of AAP can be greatly reduced to 0.52-0.33 = 0.19% bop generation amount. did it.

しかも、前記上記小径筒体を用いて、その要所にイオン交換水のシャワーを設けると、延べ60日間の運転に行っても、何ら致命的な問題が発生することはなかった。   In addition, when the above-mentioned small-diameter cylindrical body is used and a shower of ion-exchanged water is provided at the important point, no fatal problem has occurred even if the operation is performed for a total of 60 days.

なお、本実施形態では上記脱気筒部を図2に示した構造で説明したが、この脱気筒部の寸法や構造は、その基本を変更しないかぎり様々に変更が可能であるため、図示例に限らない。例えば、重合反応釜の容量が大きくなれば、それだけ小径筒部の全容積も大きくなる。そのため、脱気口や水溶液の導出口も大きくなり、水噴射口の数も多くなる。   In the present embodiment, the above-described de-cylinder unit has been described with the structure shown in FIG. 2, but the dimensions and structure of this de-cylinder unit can be variously changed without changing the basics thereof, and therefore, in the illustrated example. Not exclusively. For example, as the capacity of the polymerization reaction kettle increases, the total volume of the small-diameter cylindrical portion increases accordingly. Therefore, the deaeration port and the outlet for the aqueous solution are also increased, and the number of water injection ports is increased.

本発明のモノマー回収システムを備えたアクリルニトリル系ポリマーの重合工程の工程図である。It is process drawing of the superposition | polymerization process of the acrylonitrile-type polymer provided with the monomer collection | recovery system of this invention. 本発明のモノマー回収工程に適用される脱気筒部の一例を示す外観図である。It is an external view which shows an example of the cylinder removal part applied to the monomer collection | recovery process of this invention. 本発明の代表的な実施形態であるモノマー回収工程の工程図である。It is process drawing of the monomer collection | recovery process which is typical embodiment of this invention. AAPの発生量の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the generation amount of AAP.

符号の説明Explanation of symbols

1 アクリルニトリルの貯留タンク
1a コモノマー貯留タンク
1b 未反応モノマー回収タンク
2a〜2c 第1〜第3の計量ポンプ
3 モノマー調製タンク
4 モノマー供給タンク
5 重合反応釜
6 脱気筒部
7 蒸留塔
8 送液ポンプ
9 小径筒体
9a 重合体水溶液導出口
9b 蓋体
9c 脱気口
9d 重合体水溶液導入口
9e イオン交換水導入口
9f,9g 液面検出部
10 コンデンサー
11 デカンター
12 第2スラリータンク
13 第2フィルター
14 ペレタイザ
15 乾燥機
16 濾洗液タンク
17 モノマーストリップ塔
18 スラリータンク
LT 液面検出器
LIC 液面制御部
DESCRIPTION OF SYMBOLS 1 Acrylonitrile storage tank 1a Comonomer storage tank 1b Unreacted monomer recovery tanks 2a to 2c First to third metering pumps 3 Monomer preparation tank 4 Monomer supply tank 5 Polymerization reaction kettle 6 Decylinder unit 7 Distillation tower 8 Liquid feed pump 9 Small diameter cylindrical body 9a Polymer aqueous solution outlet 9b Lid 9c Deaeration port 9d Polymer aqueous solution inlet 9e Ion exchange water inlets 9f, 9g Liquid level detector 10 Capacitor 11 Decanter 12 Second slurry tank 13 Second filter 14 Pelletizer 15 Dryer 16 Filtrate tank 17 Monomer strip tower 18 Slurry tank LT Liquid level detector LIC Liquid level controller

Claims (9)

アクリルニトリル系ポリマーの水系懸濁重合工程で発生する未反応モノマー成分の回収方法であって、
重合工程で得られるポリマー/未反応モノマー/水の混合物を蒸留して未反応モノマー成分と水とをポリマーから気化分離させる未反応モノマー成分の気化分離工程と、気化した未反応モノマー成分と水とを凝縮させて未反応モノマー成分を回収する未反応モノマー成分回収工程とを含み、
前記重合工程で得られるポリマー/未反応モノマー/水の混合物を小内径の筒体を有する脱気筒部を介して脱気しつつ前記気化分離工程へと連続して導入することを含んでなることを特徴とするアクリルニトリル系未反応モノマー成分の回収方法。
A method for recovering unreacted monomer components generated in an aqueous suspension polymerization step of an acrylonitrile-based polymer,
A vaporization separation step of an unreacted monomer component in which a polymer / unreacted monomer / water mixture obtained in the polymerization step is distilled to vaporize and separate the unreacted monomer component and water from the polymer, and the vaporized unreacted monomer component and water And unreacted monomer component recovery step of recovering unreacted monomer component by condensing
Continuously introducing the polymer / unreacted monomer / water mixture obtained in the polymerization step into the vaporization separation step while degassing through a decylinder portion having a small-bore cylindrical body. A method for recovering an acrylonitrile-based unreacted monomer component.
前記脱気筒部の小径筒体は、内径が200〜500mm、高さが2000〜6000mm、容量が0.05〜1.2m3 に設定されてなる請求項1記載の回収方法。 The recovery method according to claim 1, wherein the small-diameter cylindrical body of the decylinder part has an inner diameter of 200 to 500 mm, a height of 2000 to 6000 mm, and a capacity of 0.05 to 1.2 m 3 . 所定量の前記ポリマー/未反応モノマー/水の混合物を前記筒体内部の混合物導出部に貯留しつつ前記気化分離工程へと連続して導入することを含んでなる請求項1又は2に記載の回収方法。   3. The method according to claim 1, further comprising continuously introducing a predetermined amount of the polymer / unreacted monomer / water mixture into the vapor separation step while storing the mixture in the mixture outlet portion inside the cylinder. Collection method. 前記脱気筒部の内壁面に向けて水を噴射することを含んでなる請求項1〜3のいずれかに記載の回収方法。   The recovery method according to any one of claims 1 to 3, further comprising spraying water toward an inner wall surface of the decylinder part. 水系懸濁重合方式により発生するアクリルニトリル系未反応モノマー成分の回収システムであって、
重合部と、同重合部に流路を介して連結された脱気筒部と、同脱気筒部に流路を介して連結され、ポリマー/未反応モノマー/水の混合物を蒸留して未反応モノマー成分と水とをポリマーから気化分離させる未反応モノマー成分の気化分離部と、同気化分離部にて気化分離された未反応モノマー成分と水とを凝縮させて未反応モノマー成分を回収する未反応モノマー成分回収部とを備えてなり、
前記脱気筒部の端部を上下方向の向きに配するとともに、少なくともその上端部には脱気口が、下端部には前記ポリマー/未反応モノマー/水の混合物の導出口が設けられてなる、
ことを特徴とするアクリルニトリル系未反応モノマー成分の回収システム。
A system for recovering acrylonitrile-based unreacted monomer components generated by an aqueous suspension polymerization method,
An unreacted monomer by distilling a polymer / unreacted monomer / water mixture; An unreacted monomer component that vaporizes and separates the component and water from the polymer, and an unreacted monomer component that recovers the unreacted monomer component by condensing the unreacted monomer component and water vaporized and separated in the vaporization and separation unit A monomer component recovery unit,
The end of the de-cylinder part is arranged in the vertical direction, and at least the upper end of the de-cylinder part is provided with a deaeration port, and the lower end is provided with an outlet for the polymer / unreacted monomer / water mixture ,
An acrylonitrile-based unreacted monomer component recovery system.
前記脱気筒部は、内径が200〜500mm、高さが2000〜6000mm、容量が0.05〜1.2m3 に設定された筒体を含んでなる請求項5記載の回収システム。 The recovery system according to claim 5, wherein the decylinder part includes a cylindrical body having an inner diameter of 200 to 500 mm, a height of 2000 to 6000 mm, and a capacity of 0.05 to 1.2 m 3 . ポリマー/未反応モノマー/水の混合物の導出口と前記気化分離部との間の流路に送液ポンプが配されてなる請求項5又は6記載の回収システム。   The recovery system according to claim 5 or 6, wherein a liquid feed pump is disposed in a flow path between the outlet of the polymer / unreacted monomer / water mixture and the vapor separation section. 前記脱気筒部の少なくとも上端部に、噴射口を同脱気筒部の内壁面に向けた水噴射口を有してなる請求項5又は6記載の回収システム。   The recovery system according to claim 5 or 6, wherein a water injection port having an injection port directed toward an inner wall surface of the decylinder unit is provided at least at an upper end portion of the decylinder unit. 前記脱気筒部が所定範囲の液面を検出する液面検出手段を有するとともに、同液面検出手段の検出値に基づき液面位置を前記範囲内となるように、前記送液ポンプの送液量を制御する液面制御部を有してなる請求項5〜8のいずれかに記載の回収システム。   The decylinder part has a liquid level detecting means for detecting a liquid level in a predetermined range, and the liquid feed of the liquid feed pump is set so that the liquid level position falls within the range based on the detection value of the liquid level detecting means. The recovery system according to any one of claims 5 to 8, further comprising a liquid level control unit for controlling the amount.
JP2005037188A 2005-02-15 2005-02-15 Method and system for recovering unreacted monomer components during polymerization of acrylonitrile monomers Active JP4886990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037188A JP4886990B2 (en) 2005-02-15 2005-02-15 Method and system for recovering unreacted monomer components during polymerization of acrylonitrile monomers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037188A JP4886990B2 (en) 2005-02-15 2005-02-15 Method and system for recovering unreacted monomer components during polymerization of acrylonitrile monomers

Publications (3)

Publication Number Publication Date
JP2006225414A true JP2006225414A (en) 2006-08-31
JP2006225414A5 JP2006225414A5 (en) 2008-03-06
JP4886990B2 JP4886990B2 (en) 2012-02-29

Family

ID=36987070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037188A Active JP4886990B2 (en) 2005-02-15 2005-02-15 Method and system for recovering unreacted monomer components during polymerization of acrylonitrile monomers

Country Status (1)

Country Link
JP (1) JP4886990B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112439310A (en) * 2019-09-05 2021-03-05 中石油吉林化工工程有限公司 Method for supplementing water for acrylonitrile device quench tower

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292528A (en) * 2002-04-04 2003-10-15 Mitsubishi Rayon Co Ltd Method for recovering unreacted monomer component at polymerization of acrylonitrile-based monomer and polymerization system
JP2004091608A (en) * 2002-08-30 2004-03-25 Toray Ind Inc Monomer removing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292528A (en) * 2002-04-04 2003-10-15 Mitsubishi Rayon Co Ltd Method for recovering unreacted monomer component at polymerization of acrylonitrile-based monomer and polymerization system
JP2004091608A (en) * 2002-08-30 2004-03-25 Toray Ind Inc Monomer removing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112439310A (en) * 2019-09-05 2021-03-05 中石油吉林化工工程有限公司 Method for supplementing water for acrylonitrile device quench tower
CN112439310B (en) * 2019-09-05 2023-08-11 中石油吉林化工工程有限公司 Water supplementing method for acrylonitrile device quench tower

Also Published As

Publication number Publication date
JP4886990B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
KR101668132B1 (en) Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
JP5562035B2 (en) Production of acetone cyanohydrin by distillation and process for producing methacrylate esters and subsequent products
GB2173203A (en) Polymerization of unsaturated monomers
JPH07224109A (en) Method for removing residual monomer and residual monomer-removing column therefor
JP4886990B2 (en) Method and system for recovering unreacted monomer components during polymerization of acrylonitrile monomers
JP4806213B2 (en) Separation of acrylonitrile polymer in aqueous suspension polymerization process and separation method of polymer by continuous rotary filter equipped with filter cloth
CN103145890A (en) Method for drying wet polymer
JPS6133601B2 (en)
EP1095685B1 (en) Distillation apparatus and distilling method
JP3978797B2 (en) Residual monomer removal method and apparatus
CN1243028C (en) Method and apparatus for continuous polymerization of polymer
JP3768167B2 (en) Recovery method and polymerization system of unreacted monomer components during polymerization of acrylonitrile monomers
KR840000470B1 (en) Ultrafiltration of vinyl resin latices and resue of permeate in emulsion polymerization
EP1195370B1 (en) Process for producing polyfluoroalkyl ester and process for producing fluorinated acrylic copolymer from the ester
JP4787512B2 (en) Continuous drying method and dryer for acrylonitrile polymer
RU2380351C2 (en) Method of producing acrylic acid derivative
US20200197906A1 (en) Acetoacetoxy or acetoacetamide functional polymeric beads
JP4363940B2 (en) Method for removing vinyl chloride monomer from vinyl chloride resin slurry
JP2000226417A (en) Preparation of copolymer
US3965079A (en) Separation and recovery of products obtained in catalytic processes of preparing acrylonitrile polymers or copolymers
JPH01258702A (en) Recovery of solvent from liquid mixture consisting of monomeric impregnating agent and washing solvent
JPH09136907A (en) Double pipe reflux condenser and manufacture of vinyl chloride using the same
CN114147052B (en) High-boiling-point substance metal ion adsorption renewable system and process
JPH0113897B2 (en)
DE2521401C3 (en) Process for the continuous removal of monomeric impurities from aqueous dispersions of homo- and copolymers of vinyl chloride

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4886990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250