JP2006220636A - 音波センサ - Google Patents

音波センサ Download PDF

Info

Publication number
JP2006220636A
JP2006220636A JP2005086787A JP2005086787A JP2006220636A JP 2006220636 A JP2006220636 A JP 2006220636A JP 2005086787 A JP2005086787 A JP 2005086787A JP 2005086787 A JP2005086787 A JP 2005086787A JP 2006220636 A JP2006220636 A JP 2006220636A
Authority
JP
Japan
Prior art keywords
wave
sound wave
receiving
sound
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005086787A
Other languages
English (en)
Inventor
Hiroshi Yamanaka
山中  浩
Yoshifumi Watabe
祥文 渡部
Yoshiaki Honda
由明 本多
Kosaku Kitada
耕作 北田
Hiroshi Kawada
裕志 河田
Michio Otsuka
倫生 大塚
Kazuo Sawada
和男 澤田
Hiromichi Goto
弘通 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005086787A priority Critical patent/JP2006220636A/ja
Priority to US11/572,588 priority patent/US8254209B2/en
Priority to CA2574028A priority patent/CA2574028C/en
Priority to TW094125375A priority patent/TWI273273B/zh
Priority to CN2005800252603A priority patent/CN1989418B/zh
Priority to KR1020077004442A priority patent/KR100915486B1/ko
Priority to PCT/JP2005/014164 priority patent/WO2006011650A2/en
Priority to EP05768674A priority patent/EP1774357A2/en
Publication of JP2006220636A publication Critical patent/JP2006220636A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0022Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element
    • G01L9/0025Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element with acoustic surface waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/524Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

【課題】従来のように送波素子および受波素子として圧電素子を用いた音波センサに比べて、送波素子から送波される音波における残響成分に起因した不感帯および受波素子から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができる音波センサを提供する。
【解決手段】音波を送波可能な送波素子10を有する送波装置1と、送波素子10から送波され物体Obで反射された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子30を有する受波装置3とを備え、物体Obまでの距離と物体Obの存在する方位とを検出する音波センサであって、送波素子10が、空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子は、音波の音圧を静電容量の変化に変換する静電容量型のマイクロホンからなる。
【選択図】 図1

Description

本発明は、音波を利用して物体までの距離や物体の存在する方位などを検出する音波センサに関するものである。
従来から、この種の音波センサとして、例えば、超音波のような疎密波を送波素子を有する送波装置から媒質中へ間欠的に送波し物体による反射波を受波素子を有する受波装置により受波するまでの時間差に基づいて物体までの距離や物体の存在する方位を検出する反射波方式の音波センサ(例えば、特許文献1参照)や、超音波のような疎密波を送波装置から媒質中へ間欠的に送波し受波装置により受波するまでの時間差に基づいて受波装置から送波装置までの距離や受波装置に対して送波装置の存在する方位を検出する直接波方式の音波センサなどが知られている(例えば、特許文献2参照)。なお、超音波センサの応用装置としては、空気中で超音波を伝搬させるものとして、例えば、超音波液面計、車載用バックソナーなどが提供され、水中で超音波を伝搬させるものとして、例えば、ソナー、魚群探知機などが提供され、構造物中で超音波を伝搬させるものとして、例えば、超音波探傷装置、超音波CTなどが提供されている。
上記特許文献1に開示された音波センサは、送波素子から送波された音波を受波する受波装置が一平面上に配列された複数個の受波素子を有しており、音波の到来方向(物体の存在する方位)と隣り合う受波素子において音波が到達する時刻の時間差とが関連することを利用して所望の方位に存在する物体を検出できるように構成されている。
上述の音波センサは、空気中へ音波を送波可能な送波素子および受波した音波を電気信号である受波信号に変換する受波素子それぞれに、圧電素子が広く用いられている。ここにおいて、送波素子と受波素子との両方に圧電素子を用いた音波センサでは、一般的に、送波する音波の音圧および受波素子における音波の受波感度を高くする目的で、送波素子から送波する音波の周波数を送波素子および受波素子の共振周波数近傍の周波数に設定している。
特開2002−156451号公報 特開2003−279640号公報
ところで、上述の音波センサでは、送波素子から送波される音波に送波素子の共振による残響成分が含まれ、さらに、受波素子から出力される受波信号に受波素子の共振による残響成分が含まれる。
圧電素子は一般的に共振特性のQ値(機械的品質係数Qm)が100よりも大きな値であり、圧電素子からなる送波素子を間欠的に駆動した場合、送波素子から発生する音波は図20に示すような振動波形となり、共振特性のQ値が大きいほど、振動波形の振幅が最大となるまでの時間T1および残響振動が収束するまでの時間(残響時間)T2が長くなって、音波を送波してから受波するまでの時間が短くなる。したがって、例えば、物体までの距離を検出する音波センサでは、受波素子の近傍に位置する物体までの距離を検出することができなくなる。ここで、音波の音速c〔m/s〕は、温度をt〔℃〕とすれば、c=331.5+0.6tであるから、例えば、音速cが340〔m/s〕であり(この場合、音波は1msで34cmだけ進む)、残響時間T2が2msであるとすれば、受波素子からの距離が34cm以下の位置に存在する物体までの距離の測定が不可能となる。要するに、上述のように送波素子として圧電素子を用いた音波センサでは、送波素子から送波される音波における残響成分に起因した不感帯が長く、受波素子との間の距離が比較的近い物体までの距離を検出することができない。
また、上述のように送波素子および受波素子に圧電素子を用いた音波センサでは、当該音波センサとの間の距離の差が比較的小さい2つの物体が存在する場合、一方の物体により反射された音波が受波素子で受波されて受波信号が発生している間に、当該受波素子へ他方の物体により反射された音波が到達してしまうと2つの物体の識別が困難になる可能性がある。要するに、上述の音波センサでは、送波素子から送波される音波における残響成分および受波素子から出力される受波信号における残響成分に起因した不感帯が長く、検出範囲に複数の物体が存在し音波センサからの距離の差が比較的小さい場合に物体それぞれまでの距離を検出することが困難になる可能性があり、角度分解能を改善したいという要望がある。なお、音波センサに用いる送波素子および受波素子は共振特性のQ値が大きくなるほど角度分解能が悪化する。
本発明は上記事由に鑑みて為されたものであり、その目的は、従来のように送波素子および受波素子として圧電素子を用いた音波センサに比べて、送波素子から送波される音波における残響成分に起因した不感帯および受波素子から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができる音波センサを提供することにある。
請求項1の発明は、音波を送波可能な送波素子および送波素子を駆動する駆動回路を有する送波装置と、送波素子から送波され物体で反射された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子を有する受波装置とを備え、物体までの距離と物体の存在する方位との少なくとも一方を検出する音波センサであって、送波素子は、空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子は、音波の音圧を静電容量の変化に変換する静電容量型のマイクロホンからなることを特徴とする。
この発明によれば、送波素子が空気に熱衝撃を与えることにより音波を発生させる音波発生素子により構成されているので、送波素子の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さく、且つ、受波素子が音波の音圧を静電容量の変化に変換する静電容量型のマイクロホンにより構成されているので、受波素子の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さいから、従来のように送波素子および受波素子として圧電素子を用い物体までの距離と物体の存在する方位との少なくとも一方を検出する音波センサに比べて、送波素子から送波される音波における残響成分に起因した不感帯および受波素子から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができる。
請求項2の発明は、音波を送波可能な送波素子および送波素子を駆動する駆動回路を有する送波装置と、送波素子から送波され物体で反射された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子を有する受波装置とを備え、物体までの距離と物体の存在する方位との少なくとも一方を検出する音波センサであって、送波素子は、空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子は、共振特性のQ値が10以下であることを特徴とする。
この発明によれば、送波素子が空気に熱衝撃を与えることにより音波を発生させる音波発生素子により構成されているので、送波素子の共振特性のQ値を圧電素子の共振特性のQ値に比べて小さく、且つ、受波素子の共振特性のQ値が10以下なので、受波素子の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さいから、従来のように送波素子および受波素子として圧電素子を用い物体までの距離と物体の存在する方位との少なくとも一方を検出する音波センサに比べて、送波素子から送波される音波における残響成分に起因した不感帯および受波素子から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができる。
請求項3の発明は、音波を送波可能な送波素子および送波素子を駆動する駆動回路を有する送波装置と、送波素子から送波された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子を有する受波装置とを備え、受波装置から送波装置までの距離と受波装置に対して送波装置の存在する方位との少なくとも一方を検出する音波センサであって、送波素子は、空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子は、音波の音圧を静電容量の変化に変換する静電容量型のマイクロホンからなることを特徴とする。
この発明によれば、送波素子が空気に熱衝撃を与えることにより音波を発生させる音波発生素子により構成されているので、送波素子の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さく、且つ、受波素子が音波の音圧を静電容量の変化に変換する静電容量型のマイクロホンにより構成されているので、受波素子の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さいから、従来のように送波素子および受波素子として圧電素子を用い受波装置から送波装置までの距離と受波装置に対して送波装置の存在する方位との少なくとも一方を検出する音波センサに比べて、送波素子から送波される音波における残響成分に起因した不感帯および受波素子から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができる。
請求項4の発明は、音波を送波可能な送波素子および送波素子を駆動する駆動回路を有する送波装置と、送波素子から送波された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子を有する受波装置とを備え、受波装置から送波装置までの距離と受波装置に対して送波装置の存在する方位との少なくとも一方を検出する音波センサであって、送波素子は、空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子は、共振特性のQ値が10以下であることを特徴とする。
この発明によれば、送波素子が空気に熱衝撃を与えることにより音波を発生させる音波発生素子により構成されているので、送波素子の共振特性のQ値を圧電素子の共振特性のQ値に比べて小さく、且つ、受波素子の共振特性のQ値が10以下なので、受波素子の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さいから、従来のように送波素子および受波素子として圧電素子を用い受波装置から送波装置までの距離と受波装置に対して送波装置の存在する方位との少なくとも一方を検出する音波センサに比べて、送波素子から送波される音波における残響成分に起因した不感帯および受波素子から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができる。
請求項5の発明は、請求項1ないし請求項4の発明において、前記音波発生素子は、薄板状の発熱体を備え、発熱体への通電に伴う発熱体層の温度変化により空気に熱衝撃を与えることで音波を発生させることを特徴とする。
この発明によれば、前記送波素子から残響時間の短い音波を送波することができる。
請求項6の発明は、請求項5の発明において、前記音波発生素子は、ベース基板と、ベース基板の少なくとも一表面側に形成された前記発熱体である発熱体層と、ベース基板と発熱体層との間に介在する熱絶縁層とを備えることを特徴とする。
この発明によれば、前記送波素子から発生期間が短く且つ残響時間の短い音波を送波することができる。
請求項7の発明は、請求項1ないし請求項4の発明において、前記音波発生素子は、空気中で対向する一対の電極を有し、両電極間に所定電圧を印加して火花放電を生じさせることにより空気に熱衝撃を与えることで音波を発生させることを特徴とする。
この発明によれば、前記送波素子から発生期間が短く且つ残響時間の短い音波を送波することができる。
請求項8の発明は、請求項1ないし請求項7の発明において、前記受波装置が前記受波素子を複数個備えるとともに前記各受波素子が一平面上に配列され、前記各受波素子で音波を受波した時間の時間差と前記各受波素子の配置位置とに基づいて前記受波装置に対する音波の到来方向を求める方位検出手段を備えることを特徴とする。
この発明によれば、前記受波装置に対する音波の到来方向を求めることができる。
請求項9の発明は、請求項1ないし請求項8の発明において、前記送波素子は、共振特性のQ値が5以下であり、前記受波素子は、共振特性のQ値が5以下であることを特徴とする。
この発明によれば、従来のように共振特性のQ値が100以上の圧電素子を送波素子および受波素子に用いている場合に比べて、残響成分による不感帯を大幅に短縮できるとともに角度分解能を大幅に向上することができる。
請求項1,2の発明では、従来のように送波素子および受波素子として圧電素子を用い物体までの距離と物体の存在する方位との少なくとも一方を検出する音波センサに比べて、送波素子から送波される音波における残響成分に起因した不感帯および受波素子から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができるという効果がある。
請求項3,4の発明では、従来のように送波素子および受波素子として圧電素子を用い受波装置から送波装置までの距離と受波装置に対して送波装置の存在する方位との少なくとも一方を検出する音波センサに比べて、送波素子から送波される音波における残響成分に起因した不感帯および受波素子から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができるという効果がある。
(実施形態1)
本実施形態では、物体の3次元的な位置を求めるために物体までの距離と物体の存在する方位との両方を検出する音波センサについて例示する。
本実施形態の音波センサは、図1に示すように、音波(疎密波)を空気中に間欠的に送波する送波装置1と、物体Obによる反射波を受波する受波装置3と、受波装置3の出力を信号処理する信号処理回路5とを備え、送波装置1による音波の送波から受波装置3により反射波が受波されるまでの時間差に基づいて物体Obまでの距離および物体Obの存在する方位を求めるように構成されている。
送波装置1は、音波を送波可能な送波素子10と、送波素子10から音波が間欠的に送波されるように送波素子10を駆動する駆動回路20とを備えている。なお、駆動回路20は、送波素子10から音波を間欠的に送波するタイミングを制御するタイミング制御部を有している。
一方、受波装置3は、送波素子10から送波され物体Obで反射された音波を受波するとともに受波した音波を電気信号である受波信号に変換する複数の受波素子30を有している。本実施形態の音波センサでは、物体Obまでの距離だけでなく物体Obの存在する方位も測定できるように、10個の受波素子30を1枚の回路基板の一平面上に配列してある。具体的には、回路基板の1辺に沿った方向に5個の受波素子30を所定ピッチで配列するとともに、上記1辺に直交する方向に5個の受波素子30を所定ピッチで配列してある。なお、説明を簡単にするために、受波素子30が同一平面上において上記1辺に沿った方向のみに所定ピッチで配列されているとし、受波素子30が配列された面に対する音波の波面の角度がθである場合を想定すると、図2に示すように、音波の到来方向(すなわち、受波装置3に対して物体Obの存在する方位角)はθになり、音速をc、音波の波面が隣り合う受波素子30のうちの一方の受波素子30に到達する時刻における音波の波面と他方の受波素子30の中心との間の距離(遅延距離)をd、隣り合う受波素子30の中心間距離(上記所定ピッチ)をLとすれば、音波の波面が隣り合う受波素子30間に到達する時間差Δtは、Δt=d/c=L・sinθ/cになる。したがって、時間差Δtが分かれば、物体Obの存在する方位を演算することができる。ここにおいて、上記所定ピッチは、送波素子10から送波する音波の波長の0.5倍程度に設定することが望ましい。
信号処理回路5は、各受波素子30から出力された受波信号をそれぞれ増幅する複数のアンプ51aを有する信号増幅部51と、各アンプ51aにて増幅されたアナログの受波信号それぞれをディジタルの受波信号に変換して出力するA/D変換部52と、A/D変換部52の出力が格納されるメモリ53と、上記タイミング制御部から音波の送波タイミングを制御する制御信号に同期して出力されるタイミング信号を受けたときにA/D変換部52を所定の受波期間だけ作動させメモリ53に格納された受波信号のデータを用いて物体Obまでの距離を求める演算および物体Obの存在する方位を求める演算を行うマイクロコンピュータからなる演算部54とを備えている。
ここにおいて、演算部54は、上記タイミング信号を受けた時刻(つまり、送波素子10から音波を送波したタイミング)と、ディジタルの受波信号がメモリ53に格納された時刻(信号処理回路5内での遅れ時間を無視すれば、受波素子30により音波を受波したタイミング)との時間差(言い換えれば、送波装置1が音波を送波してから受波装置3が受波するまでの時間)に基づいて、物体Obまでの距離を演算する距離演算手段と、メモリ53に格納された各受波素子30の受波信号のデータを利用して物体Obの存在する方位(物体Obにより反射された音波の到来方向)を求める方位検出手段とを備えている。ここにおいて、方位検出手段は、各受波素子30で音波を受波した時間の時間差と各受波素子30の配置位置とに基づいて受波装置3に対する音波の到来方向を求める。
なお、本実施形態の音波センサは、最大測定距離を例えば5mとすれば、音波は空気中において最大で10mの距離を伝搬すればよいが、送波素子10から送波された音波は発散損失(距離減衰)や吸収損失や反射損失などの伝搬損失により減衰し、各受波素子30それぞれから出力される受波信号が100〜800μV程度の微小な電圧なので、各アンプ51aの増幅利得(電圧利得)を40dB〜60dBに設定することでS/N比の低下を防止している。また、上述のように最大測定距離を5mとすれば、音波が空気中で10mの距離を伝搬するのに要する時間は30ms程度であるから、上述の受波期間は30ms程度に設定すればよい。また、メモリ53には、受波期間における各受波素子30それぞれの受波信号が格納される、言い換えれば、メモリ53には、〔受波素子30の個数〕×〔各受波素子30からの受波信号のデータ数〕の数だけデータが格納されることになるので、例えば、受波素子30の個数を10個、受波期間を30ms、A/D変換部52のサンプリング周期を1μs(サンプリング周波数を1MHz)とした場合には、1データを16bitとして、(10〔個〕)×{(30×10−3)÷(1×10−6)×16}=4800000bit=600kbyteの容量が必要となるから、600kbyte以上の容量のSRAMなどを使用すればよい。
上述の方位検出手段は、メモリ53に格納された各受波素子30それぞれの受波信号をそれぞれ各受波素子30の配列パターン(配置位置)に応じた遅延時間で遅延させた受波信号を組にして出力する遅延手段と、遅延手段により遅延された受波信号の組を加算する加算器と、加算器の出力波形のピーク値と適宜の閾値との大小関係を比較し閾値を超えるピーク値が得られたときに遅延手段で設定されている遅延時間の組み合わせに対応する方向を物体Obの存在する方位(音波の到来方向)と判断する判断手段とを備えている。なお、演算部54の距離演算手段および方位検出手段は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現できる。
方位検出手段での処理について、図3(a)に示すように、検出範囲(対象領域)内に2つの物体Ob1,Ob2が存在し、受波装置3の各受波素子30へ2つの方位から音波が到来する場合について例示する。ただし、図3(a)では、説明を簡単にするために、受波装置3が4個の受波素子30を有し当該4個の受波素子30が同一平面上において1次元的に等間隔で配列されている場合を示してある。
図3の(b)は物体Ob2の存在する方位に対応する各受波素子30の遅延時間の組み合わせを示し(四角の横辺の長さが遅延時間の長さに対応している)、同図の(c)は(b)の遅延時間で遅延された受波素子30の受波信号の組を示し、同図の(d)は(c)の受波信号の組を加算した出力波形を示している。また、図3の(e)は物体Ob1の存在する方位に対応する各受波素子30の遅延時間の組み合わせを示し(四角の横辺の長さが遅延時間の長さに対応している)、同図の(f)は(e)の遅延時間で遅延された受波素子30の受波信号の組を示し、同図の(g)は(f)の受波信号の組みを加算した出力波形を示している。図3から分かるように、物体Ob1,Ob2の存在する方位によって遅延時間の組み合わせが相違しており、判断手段により各物体Ob1,Ob2それぞれの存在する方位を判断することができる。
ここで、送波素子10から送波される音波における残響時間が従来のように圧電素子よりなる送波素子から送波される音波と同様に長い場合には、上述の受波信号の組を加算した出力波形の発生期間が長くなり、物体Ob1、Ob2の識別が困難になる可能性がある。これに対して、本実施形態では、音源である送波素子10として、空気に熱衝撃を与えることにより音波を発生させる熱励起式の音波発生素子を用いることで、送波素子10の共振特性のQ値を圧電素子に比べて十分に小さくして残響時間が短い音波を送波するようにし、かつ、受波素子30として共振特性のQ値が圧電素子に比べて十分に小さく受波信号に含まれる残響成分の発生期間が短い静電容量型のマイクロホンを用いている。
送波素子10は、図4に示すように、単結晶のp形のシリコン基板からなるベース基板11の一表面(図4における上面)側に多孔質シリコン層からなる熱絶縁層(断熱層)12が形成され、熱絶縁層12上に金属薄膜からなる発熱体層13が形成され、ベース基板11の上記一表面側に発熱体層13と電気的に接続された一対のパッド14,14が形成された熱励起式の音波発生素子により構成してある。なお、ベース基板11の平面形状は長方形状であって、熱絶縁層12、発熱体層13それぞれの平面形状も長方形状に形成してある。なお、発熱体層13は、ベース基板11の少なくとも上記一表面側に形成されていればよい。
上述の送波素子10では、発熱体層13の両端のパッド14,14間に通電して発熱体層13に急激な温度変化を生じさせると、発熱体層13に接触している空気に急激な温度変化(熱衝撃)が生じる(つまり、発熱体層13に接触している空気に熱衝撃が与えられる)。したがって、発熱体層13に接触している空気は、発熱体層13の温度上昇時には膨張し発熱体層13の温度下降時には収縮するから、発熱体層13への通電を適宜に制御することによって空気中を伝搬する音波を発生させることができる。要するに、送波素子10を構成する熱励起式の音波発生素子は、発熱体層13への通電に伴う発熱体層13の急激な温度変化を媒質の膨張収縮に変換することにより媒質を伝搬する音波を発生する。なお、本実施形態では、発熱体層13が薄板状の発熱体を構成している。ここに、熱励起式の音波発生素子は、少なくとも薄板状の発熱体を備えていればよく、例えば、アルミニウム製の薄板を発熱体として当該発熱体への通電に伴う発熱体の急激な温度変化による熱衝撃によって音波を発生させるものでもよい。
上述の送波素子10は、ベース基板11としてp形のシリコン基板を用いており、熱絶縁層12を多孔度が略60〜略70%の多孔質シリコン層により構成しているので、ベース基板11として用いるシリコン基板の一部をフッ化水素水溶液とエタノールとの混合液からなる電解液中で陽極酸化処理することにより熱絶縁層12となる多孔質シリコン層を形成することができる(ここで、陽極酸化処理により形成された多孔質シリコン層は、結晶粒径がナノメータオーダの微結晶シリコンからなるナノ結晶シリコンを多数含んでいる)。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなるので、熱絶縁層12の熱伝導度および熱容量をベース基板11の熱伝導度および熱容量に比べて小さくし、熱絶縁層12の熱伝導度と熱容量との積をベース基板11の熱伝導度と熱容量との積に比べて十分に小さくすることにより、発熱体層13の温度変化を空気に効率よく伝達することができ発熱体層13と空気との間で効率的な熱交換が起こり、かつ、ベース基板11が熱絶縁層12からの熱を効率良く受け取って熱絶縁層12の熱を逃がすことができて発熱体層13からの熱が熱絶縁層12に蓄積されるのを防止することができる。なお、熱伝導率が148W/(m・K)、熱容量が1.63×10J/(m・K)の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)であることが知られている。本実施形態では、上述のように熱絶縁層12を多孔度が略70%の多孔質シリコン層により構成してあり、熱絶縁層12の熱伝導率が0.12W/(m・K)、熱容量が0.5×10J/(m・K)となっている。
発熱体層13は、高融点金属の一種であるタングステンにより形成してあるが、発熱体層13の材料はタングステンに限らず、例えば、タンタル、モリブデン、イリジウム、アルミニウムなどを採用してもよい。また、上述の送波素子10では、ベース基板11の厚さを300〜700μm、熱絶縁層12の厚さを1〜10μm、発熱体層13の厚さを20〜100nm、各パッド14の厚さを0.5μmとしてあるが、これらの厚さは一例であって特に限定するものではない。また、ベース基板11の材料としてSiを採用しているが、ベース基板11の材料はSiに限らず、例えば、Ge,SiC,GaP,GaAs,InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよい。
上述のように送波素子10は、一対のパッド14,14を介した発熱体層13への通電に伴う発熱体層13の温度変化に伴って音波を発生するものであり、発熱体層13へ与える駆動電圧波形あるいは駆動電流波形からなる駆動入力波形を例えば周波数がf1の正弦波波形とした場合、理想的には、発熱体層13で生じる温度振動の周波数が駆動入力波形の周波数f1の2倍の周波数f2となり、駆動入力波形f1の略2倍の周波数の音波を発生させることができる。すなわち、上述の送波素子10は、平坦な周波数特性を有しており、発生させる音波の周波数を広範囲にわたって変化させることができる。また、上述の送波素子10では、例えば正弦波波形の半周期の孤立波を駆動入力波形として駆動回路20から一対のパッド14,14間へ与えることによって、残響の少ない略1周期の音波を発生させることができる。本実施形態では、略1周期の音波を発生させる場合、当該音波の1周期の時間を50kHz〜70kHz程度の超音波の1周期の時間に設定してあるが、この数値は特に限定するものではない。
また、上述の送波素子10では、一対のパッド14,14を介して発熱体層13へ与える駆動電圧の波形を図5(a)に示すようなガウス波形状の電圧波形とした場合、同図(b)に示すようなガウス波形状の音波を送波することができる。
ここにおいて、送波素子10から図5(b)に示すようなガウス波形状の音波(ここでは、当該音波の発生期間を50kHz〜70kHz程度の超音波の1周期の時間に設定してある)を送波させるには、駆動回路20として、例えば図6に示す回路を採用すればよい。図6に示す構成の駆動回路20は、直流電源Eの両端間にスイッチSWを介してコンデンサCが接続され、コンデンサCの両端間にサイリスタThとインダクタLと抵抗R1と保護用抵抗R2との直列回路が接続され、保護用抵抗R2の両端間に送波素子10を接続するように構成されている。また、駆動回路20は、上述のように送波素子10から音波を送波させるタイミングを制御する上述のタイミング制御部(図示せず)を有しており、タイミング制御部によってスイッチSWのオンオフが制御されるとともにサイリスタThへ制御信号を与えるタイミングが制御される。ここにおいて、駆動回路20では、スイッチSWのオン期間にコンデンサCが充電されるが、タイミング制御部は、コンデンサCの両端電圧を検出しており、コンデンサCの両端電圧が所定のしきい値を超えるとスイッチSWをオフさせてからサイリスタThのゲートへ制御信号を与える。すなわち、図6に示す構成の駆動回路20では、直流電源EからコンデンサCに電荷を蓄積し、コンデンサCの両端電圧が所定のしきい値を超えると、タイミング制御部からサイリスタThへ制御信号が与えられてサイリスタThがターンオンし、送波素子10のパッド14,14間に電圧が印加されて発熱体層13の温度変化に伴って音波が送波される。ここに、インダクタLのインダクタンスおよび抵抗R1の抵抗値を適宜設定することにより、図5(a)に示すようなガウス波形状の駆動電圧波形を送波素子10のパッド14,14間へ印加することができる。
また、上述の受波素子30を構成する静電容量型のマイクロホンは、マイクロマシンニング技術を利用して形成されており、例えば、図7に示すように、シリコン基板に厚み方向に貫通する窓孔31aを設けることで形成された矩形枠状のフレーム31と、フレーム31の一表面側においてフレーム31の対向する2つの辺に跨る形で配置されるカンチレバー型の受圧部32とを備えている。ここにおいて、フレーム31の一表面側には熱酸化膜35と熱酸化膜35を覆うシリコン酸化膜36とシリコン酸化膜36を覆うシリコン窒化膜37とが形成されており、受圧部32の一端部がシリコン窒化膜37とを介してフレーム31に支持され、他端部が上記シリコン基板の厚み方向においてシリコン窒化膜37に対向している。また、シリコン窒化膜37における受圧部32の他端部との対向面に金属薄膜(例えば、クロム膜など)からなる固定電極33aが形成され、受圧部32の他端部におけるシリコン窒化膜37との対向面とは反対側に金属薄膜(例えば、クロム膜など)からなる可動電極33bが形成されている。なお、フレーム31の他表面にはシリコン窒化膜38が形成されている。また、受圧部32は、上記各シリコン窒化膜37,38とは別工程で形成されるシリコン窒化膜により構成されている。
図7に示した構成の静電容量型のマイクロホンからなる受波素子30では、固定電極33aと可動電極33bとを電極とするコンデンサが形成されるから、受圧部32が音波の圧力を受けることにより固定電極33aと可動電極33bとの間の距離が変化し、固定電極33aと可動電極33bとの間の静電容量が変化する。したがって、固定電極33aおよび可動電極33bに設けたパッド(図示せず)間に直流バイアス電圧を印加しておけば、パッドの間には音波の音圧に応じて微小な電圧変化が生じるから、音波を電気信号に変化することができる。
なお、受波素子30として用いる静電容量型のマイクロホンの構造は図7の構造に特に限定するものではなく、例えば、シリコン基板などをマイクロマシンニング技術などにより加工して形成され、音波を受けるダイヤフラム部からなる可動電極と、ダイヤフラム部に対向する背板部からなる固定電極との間に、音波を受けていない状態でのダイヤフラム部と背板部とのギャップ長を規定するスペーサ部が介在し、背板部に複数の排気孔が貫設された構造を有するものでもよい。
ところで、図4に示した熱励起式の音波発生素子からなる送波素子10は共振特性のQ値が1程度であり、図7に示した静電容量型のマイクロホンからなる受波素子30の共振特性のQ値は3〜4程度であり、圧電素子に比べてQ値が十分に小さく、従来のように送波素子および受波素子に圧電素子を用いている場合に比べて、角度分解能を改善することができる。共振特性のQ値と角度分解能との関係を図8に示す。図8から分かるように、上述の送波素子10の角度分解能は5°程度、上述の受波素子30の角度分解能は9〜10°程度である。
以上説明したように、本実施形態の音波センサは、送波素子10が空気に熱衝撃を与えることにより音波を発生させる音波発生素子により構成されているので、送波素子10の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さく、従来のように送波素子として圧電素子を用いている場合に比べて、送波する音波の残響時間を短くできる。言い換えれば、送波素子10から送波する音波に含まれる残響成分の発生期間を従来に比べて短くできる。また、受波素子30が音波の音圧を静電容量の変化に変換する静電容量型のマイクロホンにより構成されているので、受波素子の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さく、従来のように受波素子として圧電素子を用いている場合に比べて、受波信号における残響時間を短くできる。言い換えれば、受波素子30の受波信号に含まれる残響成分の発生期間を従来に比べて短くできる。
しかして、本実施形態の音波センサでは、従来のように送波素子および受波素子として圧電素子を用い物体までの距離と物体の存在する方位とを検出する音波センサに比べて、送波素子10から送波される音波における残響成分に起因した不感帯および受波素子30から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができる。
なお、送波素子10および受波素子30それぞれの共振特性のQ値はいずれも10以下が望ましく、いずれも5以下がより望ましい。また、本実施形態の音波センサは、物体Obまでの距離と物体Obの存在する方位との両方を検出するように構成されているが、物体Obまでの距離と物体Obの存在する方位とのいずれか一方のみを検出するように構成してもよい。
(実施形態2)
本実施形態の音波センサの基本構成は実施形態1と略同じであって、図9に示すように、送波装置1を構成する送波素子10および駆動回路20の構成が相違し、他の構成は実施形態1と同じなので図示および説明を省略する。
本実施形態における送波素子10は、熱衝撃により音波を発生する音波発生素子であって、空気中で対向する一対の電極19,19を有し(両電極19,19間にはエアギャップが形成されている)、両電極19,19間に所定電圧を印加して火花放電を生じさせることにより空気に熱衝撃を与えることで音波を発生させる。この送波素子10における共振特性のQ値は2程度である。したがって、本実施形態の送波素子10でも、送波素子10から発生期間が短く且つ残響時間の短い音波を送波することができる。
送波素子10を駆動する駆動回路20は、直流電源E1の両端間に充電用スイッチSW1を介してコンデンサC1が接続され、コンデンサC1の両端間に放電用スイッチSW2を介して送波素子10を接続するように構成されている。また、駆動回路20は、実施形態1と同様に送波素子10から音波を送波させるタイミングを制御するタイミング制御部(図示せず)を有しており、タイミング制御部によって各スイッチSW1,SW2のオンオフが制御される。ここにおいて、駆動回路20では、充電用スイッチSW1と放電用スイッチSW2とを同時にオンさせることはなく、充電用スイッチSW1のオン期間にコンデンサC1が充電されるが、タイミング制御部は、コンデンサC1の両端電圧を検出しており、コンデンサC1の両端電圧が所定のしきい値(例えば、送波素子10の両電極19,19間に火花放電が発生する火花電圧)を超えると充電用スイッチSW1をオフさせてから放電用スイッチSW2をオンさせる制御信号を放電用スイッチSW2へ与える。すなわち、図9に示す構成の駆動回路20では、直流電源E1からコンデンサC1に電荷を蓄積し、コンデンサC1の両端電圧が所定のしきい値を超えると、タイミング制御部から放電用スイッチSW2へ制御信号が与えられて放電用スイッチSW2がオンし、送波素子10の両電極19,19間に火花電圧以上の電圧が印加されて火花放電を生じる。この電極19、19間の火花放電により両電極19,19周囲の空気に熱衝撃が与えられて空気が膨張収縮することで音波を発生する。なお、火花放電は、両電極19が対向する方向に直交する平面上においては無指向に音波を発生することができる。また、火花放電によって生じる音波は比較的広帯域の周波数成分を含んでいる。
(実施形態3)
本実施形態の音波センサの基本構成は実施形態1と略同じであって、送波装置1を構成する送波素子10および駆動回路20の構成が相違し、他の構成は実施形態1と同じなので図示および説明を省略する。
本実施形態における送波装置1では、送波素子10としての音波発生素子が、空気に比べて低熱容量且つ低熱伝導性の被加熱体を備え、駆動回路20が被加熱体へレーザを照射して被加熱体を加熱することにより、被加熱体に接している空気に熱衝撃を与えて音波を発生させる。しかして、本実施形態においても、送波素子10から発生期間が短く且つ残響時間の短い音波を送波することができる。
(実施形態4)
本実施形態では、音波センサを利用した位置検出システムとして、図10(a)に示すように、位置検出対象の物体Obが建物内で床面100上を移動する移動体(例えば、ショッピングカートなど)であり、音波を送波可能な音源である送波素子10および送波素子10を間欠的に駆動する駆動回路20を有する送波装置1を備えた送波側ユニットAを物体Obの上面に搭載する一方で、送波装置1から間欠的に送波された音波を受波する複数の受波素子30を有する受波装置3(図11参照)を備えた受波側ユニットBを施工面である天井面200の定位置に設置し、送波装置1に対する物体Obの相対位置を送波装置1の相対位置として求め、物体Obの移動状況(物体Obの動き)を追跡する動線計測を行う動線計測システムを例示する。ここにおいて、送波素子10は、実施形態1にて説明した熱励起式の音波発生素子により構成されており、駆動回路20の回路構成も実施形態1と同様であるが、送波素子10および駆動回路20として実施形態2や実施形態3の構成を採用してもよい。
送波側ユニットAは、図11に示すように、上述の送波素子10および送波素子10を駆動する駆動回路20の他に、光もしくは電波からなるトリガ信号を発信するトリガ信号発信器63と、トリガ信号発信器63を駆動する駆動回路64と、固有の識別情報信号を発信する識別情報信号発信器65と、識別情報信号発信器65を駆動する駆動回路66と、各駆動回路20,64,66を制御する制御部67とを備えている。ここにおいて、送波装置1からの音波の送波開始タイミング、トリガ信号発信器63からのトリガ信号の送信開始タイミング、識別情報信号発信器65からの識別情報信号の送信タイミングは、制御部67により制御される。なお、制御部67は、マイクロコンピュータを主構成とし、制御部67の上述の機能はマイクロコンピュータに適宜のプログラムを搭載することにより実現される。
一方、受波側ユニットBには、上述の受波装置3と、トリガ信号発信器63から送信されたトリガ信号を受信したときにトリガ受信信号を出力するトリガ信号受信器73と、識別情報信号発信器65から送信された識別情報信号を受信する識別情報信号受信器75と、受波装置3から出力される受波信号とトリガ信号受信器73から出力されるトリガ受信信号とに基づいて受波装置3に対する送波装置1の相対位置(送波装置1の存在する方位および送波装置1までの距離)を求めて出力する位置演算部72と、トリガ信号受信器73からのトリガ受信信号を受けた時刻(以下、トリガ受信時刻と称す)を出力するタイマ76と、位置演算部72から出力される演算結果(送波装置1の存在する方位および送波装置1までの距離)をタイマ76から出力されたトリガ受信時刻と対応付けて時系列的に記憶するメモリ74とを備えている。メモリ74に格納されているトリガ受信時刻、トリガ受信時刻毎の送波装置1の存在する方位および送波装置1までの距離(要するに、各送波装置1それぞれの時系列的な相対位置の変化に関するデータ)は制御部77により出力部78のデータ転送形式のデータ列に変換され出力部78を通して外部のコンピュータなどの管理装置へ出力される。出力部78としては、例えば、TIA/EIA−232−EやUSBなどのようなシリアル転送方式のインタフェースや、SCSIなどのようなパラレル転送方式のインタフェースなどを採用することができる。なお、制御部77の機能はマイクロコンピュータに適宜のプログラムを搭載することにより実現される。
トリガ信号発信器63は、トリガ信号として光を採用する場合には、例えば、発光ダイオードを用いればよく、トリガ信号として電波を採用する場合には、例えば、電波発信器を用いればよい。ここにおいて、光や電波は音波に対して十分に高速なので、送波側ユニットAから受波側ユニットBまでの音波の到達時間のレンジでは、光や電波の到達時間はゼロとみなすことができる。
識別情報信号発信器65としては、識別情報信号として光を採用する場合には、例えば、発光ダイオードを用いればよく、識別情報信号として電波を採用する場合には、例えば、電波発信器を用いればよく、識別情報信号として音波を採用する場合には、例えば、熱励起式の音波発生素子を用いればよい。
受波側ユニットBの受波装置3は、図10(b)に示すように、送波素子10から送波された音波を受波するとともに受波した音波を電気信号である受波信号に変換する複数個(図示例では、4個であるが、個数は特に限定するものではない)の受波素子30が同一基板39上で2次元的に配列されている。ここにおいて、受波素子30の中心間距離(配列ピッチ)Lは送波素子10から発生させる音波の波長程度(例えば、音波の波長の0.5〜5倍程度)に設定することが望ましく、音波の波長の0.5倍よりも小さいと音波が隣り合う受波素子30それぞれへ到達する時間の時間差が小さくなり、当該時間差の検出が困難となる。受波素子30としては、例えば、実施形態1において説明した静電容量型のマイクロホンを用いればよい。なお、静電容量型のマイクロホンでは、圧電素子に比べて共振特性のQ値が十分に小さく、受波周波数の範囲を広くとることが可能になる。
トリガ信号受信器73は、トリガ信号発信器63から送信するトリガ信号として光を採用する場合には、例えば、フォトダイオードを用いればよく、トリガ信号として電波を採用する場合には、例えば、電波受信アンテナを用いればよい。要するに、トリガ信号受信器73は、トリガ信号を受信してトリガ信号を電気信号(トリガ受信信号)に変換して出力できるものであればよい。
識別情報信号受信器75は、識別情報信号発信器65から送信する識別情報信号として光を採用する場合には、例えば、フォトダイオードを用いればよく、識別情報信号として電波を採用する場合には、例えば、電波受信アンテナを用いればよく、識別情報信号として音波を採用する場合には、例えば、静電容量型のマイクロホンを用いればよい。要するに、識別情報信号受信器75は、識別情報信号を受信して識別情報信号を電気信号からなる識別情報に変換して出力できるものであればよい。
位置演算部72は、受波装置3の各受波素子30で音波を受波した時間の時間差と各受波素子30の配置位置とに基づいて受波装置3に対して送波装置1の存在する方位を示す方位角θ(音波の到来方向)を求める機能を有している。
以下、位置演算部72について説明するが、説明を簡単にするために、受波装置3の受波素子30が図12に示すように同一平面上において1次元的に等間隔で配列されている例について説明する。受波素子30が配列された面に対する音波の波面の角度がθである場合を想定すると、音波の到来方向(すなわち、受波装置3に対して送波装置1の存在する方位角)はθになり、音速をc、音波の波面が隣り合う受波素子30のうちの一方の受波素子30に到達する時刻における音波の波面と他方の受波素子30の中心との間の距離(遅延距離)をd、隣り合う受波素子30の中心間距離をLとすれば、音波の波面が隣り合う受波素子30間に到達する時間差Δt(図13参照)は、Δt=d/c=L・sinθ/cになる。
図13(a)〜(c)は送波素子10を構成する熱励起式の超音波発生素子の発熱体層13へ正弦波波形の半周期の波形の駆動電圧を与えたときの図12の各受波素子30それぞれの受波信号を示しており、図13(a)が図12の一番上の受波素子30の受波信号、図13(b)が図12の真ん中の受波素子30の受波信号、図13(c)が図12の一番下の受波素子30の受波信号を示している。ここにおいて、位置演算部72は、受波装置3の各受波素子30で音波を受波した時間の時間差と各受波素子30の配置位置とに基づいて受波装置3に対して送波装置1の存在する方位(音波の到来方向)を求める方位検出手段を有する信号処理部72cを備えている。信号処理部72cは、受波装置3の各受波素子30から出力された電気信号である受波信号をそれぞれ各受波素子30の配列パターンに応じた遅延時間で遅延させた受波信号を組にして出力する遅延手段と、遅延手段により遅延された受波信号の組を加算する加算器と、加算器の出力波形のピーク値と適宜の閾値との大小関係を比較し閾値を超えるピーク値が得られたときに遅延手段で設定されている遅延時間に対応する方向を送波装置1の存在する方位(音波の到来方向)と判断する判断手段とを備えているので、受波装置3に対して送波装置1の存在する方位(音波の到来方向)を検出することができる。ここで、位置演算部72は、上述の信号処理部72cの他に、受波装置3の各受波素子30から出力されるアナログの受波信号をディジタルの受波信号に変換して出力するA/D変換部72aと、トリガ信号受信器73からのトリガ受信信号が入力された時点から所定の受波期間だけA/D変換部72aの出力が格納されるデータ格納部72bとを備えており、上述の信号処理部72cは、データ格納部72bにトリガ受信信号が入力されたときに受波期間を設定し、受波期間にのみA/D変換部72aを作動させ、受波期間にデータ格納部72bに格納された受波信号のデータを用いて送波装置1の存在する方位を求める。なお、信号処理部72cはマイクロコンピュータなどにより構成される。また、データ格納部72bには、〔受波素子30の個数〕×〔各受波素子30からの受波信号のデータ数〕の数だけデータが格納されることになる。
ところで、本実施形態では、送波装置1における送波素子10として上述の熱励起式の超音波発生素子を用いているので、図14に示すように、受波装置3の各受波素子30へ2つの方位から音波が到来する場合に方位角がθの方位から到来する音波の方が方位角θの方位から到来する音波に比べて先に到達するとすれば、図15(a)〜(c)に示すように各受波素子30それぞれから出力される2つの受波信号が重なりにくく、各送波装置1それぞれの存在する方位角(音波の到来方向)θ,θを求めることができる。ここで、図15は、(a)が図14の一番上の受波素子30の2つの受波信号、(b)が図14の真ん中の受波素子30の2つの受波信号、(c)が図14の一番下の受波素子30の2つの受波信号を示しており、(a)〜(c)それぞれにおける左側の受波信号がθの方位から到来した音波に対応し、右側の受波信号がθの方位から到来した音波に対応している。なお、θの方位からの音波の波面が隣り合う受波素子30のうちの一方の受波素子30に到達する時刻における音波の波面と他方の受波素子30の中心との間の距離(遅延距離)をd(図14参照)とすれば、音波の波面が隣り合う受波素子30間に到達する時間差Δt(図15参照)は、Δt=d/c=L・sinθ/cになり、θの方位からの音波の波面が隣り合う受波素子30のうちの一方の受波素子30に到達する時刻における音波の波面と他方の受波素子30の中心との間の距離(遅延距離)をd(図14参照)とすれば、音波の波面が隣り合う受波素子30間に到達する時間差Δt(図15参照)は、Δt=d/c=L・sinθ/cになる。
また、位置演算部72の信号処理部72cは、トリガ信号受信器73によりトリガ信号を受信した時刻と受波素子30により音波を受波した時刻との関係から受波装置3と送波装置1との距離を求める距離演算手段を備えている。ここにおいて、上述のようにトリガ信号として光もしくは電波のように音波に比べて十分に高速な信号を採用していることにより、送波側ユニットAから受波側ユニットBまでのトリガ信号の到達時間は送波側ユニットAから受波側ユニットBまでの到達時間に比べて十分に短く(無視できる程度に短く)、トリガ信号の到達時間をゼロとみなすことができるので、距離演算手段では、図16(a)〜(c)に示すようにデータ格納部72bを介してトリガ受信信号STを受信した時刻と当該トリガ信号STの受信後に最初に受波素子30からの受波信号SPを受信した時刻との時間差Tと、音速とによって受波装置3と送波装置1との間の距離を求めるようにしてある。なお、信号処理部72cの距離演算手段は、当該信号処理部72cを構成するマイクロコンピュータに適宜のプログラムを搭載することにより実現される。
以上説明した本実施形態の位置検出システムでは、1つの受波側ユニットBを施工面である天井面200に設置することで1つの受波装置3を配置することにより当該受波装置3を中心とした検知エリア内に存在する物体Obに搭載された送波装置1の存在する方位を求めることができるので、複数の超音波受信機(受波装置)を天井面200において離間して配置する場合に比べて、施工が容易になるとともに受波装置3の配置設計が容易になる。
また、本実施形態の位置検出システムにおける音波センサは、送波装置1と、送波装置1の送波素子10から送波された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子30を有する受波装置3とを備え、受波装置3から送波装置1までの距離と受波装置3に対して送波装置1の存在する方位との両方を検出するものであり、送波素子10が空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子30が音波の音圧を静電容量の変化に変換する静電容量型のマイクロホンからなるので、送波素子10の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さく、且つ、受波素子30の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さいから、従来のように送波素子および受波素子として圧電素子を用い受波装置から送波装置までの距離と受波装置に対して送波装置の存在する方位とを検出する音波センサに比べて、送波素子10から送波される音波における残響成分に起因した不感帯および受波素子30から出力される受波信号における残響成分に起因した不感帯を短くすることができるとともに、角度分解能を向上させることができる。なお、位置検出システムへの利用を考えずに、単に音波センサを構成するだけであれば、受波装置3から送波装置1までの距離と受波装置3に対して送波装置1の存在する方位とのいずれか一方のみを検出するようにしてもよい。
ところで、本実施形態の位置検出システムを適用する建物の床面100が平坦であって床面100から天井面200までの高さが一定であり、かつ、物体Obの大きさが一定(つまり、床面100から物体Obの上面までの高さが一定)であれば、天井面200に平行な面であって受波装置3を含む平面と、天井面200に平行な面であって送波装置1を含む平面との間の距離は床面100上の物体Obの位置によらず一定距離となるので、当該一定距離をあらかじめ既知の距離情報(高さ情報)として距離演算手段に記憶させておくことにより、距離演算手段では、当該距離情報と送波装置1の存在する方位とから受波装置3と送波装置1との間の距離を求めることができる。これに対して、信号処理部72cの距離演算手段が上述のようにトリガ信号受信器73によりトリガ信号を受信した時刻と受波素子30により音波を受波した時刻との関係から受波装置3と送波装置1との距離を求めることにより、図17に示すように建物の床面100に段差100bが存在するような場合でも、受波側ユニットBの受波装置3と送波側ユニットAの送波装置1との間の距離を精度良く求めることができ、受波装置3に対する送波装置1の相対位置を精度良く求めることができる。
また、上述の制御部77は、識別情報信号受信部75から出力されメモリ74に記憶された識別情報に基づいて各送波装置1を個別に特定する音源特定手段を備えており、受波装置3により音波を検出可能な検知エリア内に複数の送波装置1が存在する場合であっても、受波装置1に対する各送波装置1それぞれの相対位置を求めることができる。ここにおいて、例えば、物体Obが4つ存在する場合には、各物体Obそれぞれに搭載する送波側ユニットAそれぞれの識別情報信号発信器65から送信する識別情報信号を図18(a)〜(d)に示すように異なるパルス列からなる識別情報信号としておくことにより、メモリ74には識別情報と位置演算部72の信号処理部72cの演算結果とが対応付けて格納される。したがって、制御部77では、位置演算部72により得られた送波装置1の存在する方位(音波の到来方向)および受波装置3と送波装置1との間の距離がどの送波側ユニットAからのものか識別することができる。なお、識別情報信号として光もしくは電波を採用し、受波装置3により音波を検出可能な検知エリア内に1つの送波側ユニットAが存在する場合を想定すると、受波側ユニットBの識別情報信号受信器75から出力される識別情報と、各受波素子30それぞれから出力される受波信号との関係は図19(a)〜(c)に示すようになるので、識別情報信号発信器65を上述のトリガ信号発信器63に兼用する(識別情報信号をトリガ信号として兼用する)こともでき、この場合には上述の音源特定手段を位置演算部72に設けてもよい。ここで、図19(a)は図12の一番上の受波素子30の受波信号、図19(b)は図12の真ん中の受波素子30の受波信号、図19(c)は図12の一番下の受波素子30の受波信号を示している。
なお、上述の位置検出システムでは、送波側ユニットAにトリガ信号発信器63を設けるとともに受波側ユニットBにトリガ信号受信器73を設けてあるが、トリガ信号発信器63を受波側ユニットBに設けるとともにトリガ信号受信器73を送波側ユニットAに設けて、制御部67がトリガ信号受信器73の出力に基づいて送波素子10から音波が送波されるように駆動回路20を制御するようにし、位置演算部72における信号処理部72cの距離演算手段が、トリガ信号発信器63からトリガ信号が発信された時刻と受波素子30により音波を受波した時刻との関係から送波装置1までの距離を求めるようにしてもよい。ここにおいて、制御部67は、トリガ信号受信器73から出力されたトリガ受信信号が入力されたときに直ちに駆動回路20を制御するようにしてもよいし、所定時間後に駆動回路20を制御するようにしてもよい。
また、上述の位置検出システムでは、移動体からなる物体Obに送波装置1を搭載し、天井面200のような固定面に受波装置3を配置しているが、固定面に送波装置1を配置し、移動体からなる物体Obに受波装置3を配置するようにしてもよい。
実施形態1を示す概略構成図である。 同上の動作説明図である。 同上の動作説明図である。 同上における送波素子の概略断面図である。 同上における送波素子の動作説明図である。 同上における送波素子の駆動回路の一例を示す回路図である。 同上における受波素子を示し、(a)は一部破断した概略斜視図、(b)は概略断面図である。 共振特性のQ値と角度分解能との関係説明図である。 実施形態2における送波装置の回路図である。 実施形態4を示し、(a)は位置検出システムの概略構成図、(b)は受波装置の概略斜視図である。 同上のブロック図である。 同上の動作説明図である。 同上の動作説明図である。 同上の動作説明図である。 同上の動作説明図である。 同上の動作説明図である。 同上の動作説明図である。 同上の動作説明図である。 同上の動作説明図である。 圧電素子の動作説明図である。
符号の説明
1 送波装置
3 受波装置
5 信号処理回路
10 送波素子
20 駆動回路
30 受波素子

Claims (9)

  1. 音波を送波可能な送波素子および送波素子を駆動する駆動回路を有する送波装置と、送波素子から送波され物体で反射された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子を有する受波装置とを備え、物体までの距離と物体の存在する方位との少なくとも一方を検出する音波センサであって、送波素子は、空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子は、音波の音圧を静電容量の変化に変換する静電容量型のマイクロホンからなることを特徴とする音波センサ。
  2. 音波を送波可能な送波素子および送波素子を駆動する駆動回路を有する送波装置と、送波素子から送波され物体で反射された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子を有する受波装置とを備え、物体までの距離と物体の存在する方位との少なくとも一方を検出する音波センサであって、送波素子は、空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子は、共振特性のQ値が10以下であることを特徴とする音波センサ。
  3. 音波を送波可能な送波素子および送波素子を駆動する駆動回路を有する送波装置と、送波素子から送波された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子を有する受波装置とを備え、受波装置から送波装置までの距離と受波装置に対して送波装置の存在する方位との少なくとも一方を検出する音波センサであって、送波素子は、空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子は、音波の音圧を静電容量の変化に変換する静電容量型のマイクロホンからなることを特徴とする音波センサ。
  4. 音波を送波可能な送波素子および送波素子を駆動する駆動回路を有する送波装置と、送波素子から送波された音波を受波するとともに受波した音波を電気信号である受波信号に変換する受波素子を有する受波装置とを備え、受波装置から送波装置までの距離と受波装置に対して送波装置の存在する方位との少なくとも一方を検出する音波センサであって、送波素子は、空気に熱衝撃を与えることにより音波を発生させる音波発生素子からなり、受波素子は、共振特性のQ値が10以下であることを特徴とする音波センサ。
  5. 前記音波発生素子は、薄板状の発熱体を備え、発熱体への通電に伴う発熱体層の温度変化により空気に熱衝撃を与えることで音波を発生させることを特徴とする請求項1ないし請求項4のいずれかに記載の音波センサ。
  6. 前記音波発生素子は、ベース基板と、ベース基板の少なくとも一表面側に形成された前記発熱体である発熱体層と、ベース基板と発熱体層との間に介在する熱絶縁層とを備えることを特徴とする請求項5記載の音波センサ。
  7. 前記音波発生素子は、空気中で対向する一対の電極を有し、両電極間に所定電圧を印加して火花放電を生じさせることにより空気に熱衝撃を与えることで音波を発生させることを特徴とする請求項1ないし請求項4のいずれかに記載の音波センサ。
  8. 前記受波装置が前記受波素子を複数個備えるとともに前記各受波素子が一平面上に配列され、前記各受波素子で音波を受波した時間の時間差と前記各受波素子の配置位置とに基づいて前記受波装置に対する音波の到来方向を求める方位検出手段を備えることを特徴とする請求項1ないし請求項7のいずれかに記載の音波センサ。
  9. 前記送波素子は、共振特性のQ値が5以下であり、前記受波素子は、共振特性のQ値が5以下であることを特徴とする請求項1ないし請求項8のいずれかに記載の音波センサ。
JP2005086787A 2004-07-27 2005-03-24 音波センサ Pending JP2006220636A (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005086787A JP2006220636A (ja) 2004-07-27 2005-03-24 音波センサ
US11/572,588 US8254209B2 (en) 2004-07-27 2005-07-27 Acoustic wave sensor
CA2574028A CA2574028C (en) 2004-07-27 2005-07-27 Acoustic wave sensor
TW094125375A TWI273273B (en) 2004-07-27 2005-07-27 Acoustic wave sensor
CN2005800252603A CN1989418B (zh) 2004-07-27 2005-07-27 声波探测器
KR1020077004442A KR100915486B1 (ko) 2004-07-27 2005-07-27 음파 감지기
PCT/JP2005/014164 WO2006011650A2 (en) 2004-07-27 2005-07-27 Acoustic wave sensor
EP05768674A EP1774357A2 (en) 2004-07-27 2005-07-27 Acoustic wave sensor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004219331 2004-07-27
JP2004219330 2004-07-27
JP2005005640 2005-01-12
JP2005005639 2005-01-12
JP2005086787A JP2006220636A (ja) 2004-07-27 2005-03-24 音波センサ

Publications (1)

Publication Number Publication Date
JP2006220636A true JP2006220636A (ja) 2006-08-24

Family

ID=35044523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086787A Pending JP2006220636A (ja) 2004-07-27 2005-03-24 音波センサ

Country Status (8)

Country Link
US (1) US8254209B2 (ja)
EP (1) EP1774357A2 (ja)
JP (1) JP2006220636A (ja)
KR (1) KR100915486B1 (ja)
CN (1) CN1989418B (ja)
CA (1) CA2574028C (ja)
TW (1) TWI273273B (ja)
WO (1) WO2006011650A2 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7772600B2 (en) * 2006-03-28 2010-08-10 Seoul Opto Device Co., Ltd. Light emitting device having zener diode therein and method of fabricating the same
WO2008010269A1 (fr) * 2006-07-19 2008-01-24 Panasonic Electric Works Co., Ltd. système pour détecter la position d'un objet mobile
JP4936199B2 (ja) * 2006-07-19 2012-05-23 パナソニック株式会社 移動体の位置検出システム
EP2056087A4 (en) * 2006-10-02 2011-11-30 Panasonic Elec Works Co Ltd PRESSURE SENSOR
DE602007007581D1 (de) 2007-04-17 2010-08-19 Harman Becker Automotive Sys Akustische Lokalisierung eines Sprechers
TWI404967B (zh) * 2007-10-19 2013-08-11 Chi Mei Comm Systems Inc 聲源定位系統及方法
US8656781B2 (en) * 2010-10-18 2014-02-25 Ford Global Technologies, Llc Method and system for compensation of ultrasonic sensor
US9417696B2 (en) * 2011-01-27 2016-08-16 Blackberry Limited Portable electronic device and method therefor
TWI452322B (zh) * 2012-08-17 2014-09-11 Au Optronics Corp 使用聲波測量物體空間位置的方法及系統
CN103197283B (zh) * 2013-04-23 2015-07-08 上海交通大学 一种基于电模拟耦合结构的声源定位装置
JP6253787B2 (ja) * 2013-09-24 2017-12-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 介入ツールの音響3dトラッキング
TWI526021B (zh) * 2014-01-03 2016-03-11 緯創資通股份有限公司 伺服器管理系統及伺服器管理方法
JP6384018B2 (ja) 2014-03-25 2018-09-05 日本無線株式会社 車載用レーダ装置
CN106535774B (zh) 2014-07-16 2020-08-25 皇家飞利浦有限公司 在针对介入流程的3d成像工作流中的智能实时工具和解剖结构可视化
KR101658463B1 (ko) * 2014-10-27 2016-09-22 국방과학연구소 수중 과도 신호 탐지 및 추적 장치
EP3156854A1 (fr) * 2015-10-13 2017-04-19 The Swatch Group Research and Development Ltd. Montre-bracelet mecanique a laquelle est associee une fonction electronique
US10677541B2 (en) * 2015-12-15 2020-06-09 Technion Research & Development Foundation Limited Acoustic resonance excited heat exchange
US9838803B1 (en) 2016-09-23 2017-12-05 The United States Of America As Represented By The Secretary Of The Navy Carbon nanotube underwater acoustic thermophone
JP6784236B2 (ja) * 2017-07-10 2020-11-11 株式会社Soken 超音波式の物体検出装置
JP6874647B2 (ja) * 2017-11-07 2021-05-19 株式会社デンソー 送受信制御装置
DE102019100642A1 (de) 2018-01-16 2019-07-18 Aisin Seiki Kabushiki Kaisha Positionserfassungssystem und Verarbeitungsvorrichtung
DE112019002536T5 (de) * 2018-05-18 2021-02-11 Knowles Electronics, Llc Systeme und verfahren zur rauschunterdrückung in mikrofonen
US10852276B2 (en) * 2018-10-22 2020-12-01 Hitachi, Ltd. Holistic sensing method and system
CN109471114A (zh) * 2018-11-06 2019-03-15 哈尔滨工程大学 一种基于幅度法的多波束声呐海底地形测量质量实时评估方法
CN109688494B (zh) * 2019-01-04 2021-07-02 南京粒子声学科技有限公司 声学传感器及其制造方法
US11353567B2 (en) * 2019-02-22 2022-06-07 Semiconductor Components Industries, Llc Ultrasonic sensor having edge-based echo detection
EP3805777A1 (de) * 2019-10-10 2021-04-14 Toposens GmbH Vorrichtungen und verfahren zur 3d-positionsbestimmung
CN111060874B (zh) * 2019-12-10 2021-10-29 深圳市优必选科技股份有限公司 一种声源定位方法、装置、存储介质及终端设备
CN115136028A (zh) * 2020-01-27 2022-09-30 惠普发展公司,有限责任合伙企业 检测视野
CN112945362A (zh) * 2021-01-29 2021-06-11 长安大学 一种轴重、车速动态感知装置及测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220600A (ja) * 1985-03-26 1986-09-30 Nec Corp 超音波センサ
JPS62149299A (ja) * 1985-12-24 1987-07-03 Agency Of Ind Science & Technol アレイ型超音波トランスデユ−サ
JP2004180262A (ja) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd 3次元センサ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3782177A (en) * 1972-04-20 1974-01-01 Nasa Method and apparatus for non-destructive testing
JPH03140100A (ja) 1989-10-26 1991-06-14 Fuji Xerox Co Ltd 電気音響変換方法及びその為の装置
JP3140100B2 (ja) * 1991-08-29 2001-03-05 パイオニア株式会社 ナビゲーション装置
US5903518A (en) * 1998-02-23 1999-05-11 The United States Of America As Represented By The Secretary Of The Army Multiple plasma channel high output variable electro-acoustic pulse source
JP3705926B2 (ja) * 1998-04-23 2005-10-12 独立行政法人科学技術振興機構 圧力波発生装置
US6304179B1 (en) * 1999-02-27 2001-10-16 Congress Financial Corporation Ultrasonic occupant position sensing system
US6493288B2 (en) * 1999-12-17 2002-12-10 The Board Of Trustees Of The Leland Stanford Junior University Wide frequency band micromachined capacitive microphone/hydrophone and method
JP2002156451A (ja) * 2000-11-20 2002-05-31 Osaka Prefecture 音波センサ及び遅延回路を備えた半導体装置及び視覚障害者用杖及び3次元計測方法
JP2002186097A (ja) * 2000-12-15 2002-06-28 Pioneer Electronic Corp スピーカ
JP4132905B2 (ja) * 2002-03-22 2008-08-13 株式会社アイオイ・システム 移動体の位置検出システム及び方法
KR100685684B1 (ko) * 2003-02-28 2007-02-26 노우코우다이 티엘오 가부시키가이샤 열 여기음파 발생장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220600A (ja) * 1985-03-26 1986-09-30 Nec Corp 超音波センサ
JPS62149299A (ja) * 1985-12-24 1987-07-03 Agency Of Ind Science & Technol アレイ型超音波トランスデユ−サ
JP2004180262A (ja) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd 3次元センサ

Also Published As

Publication number Publication date
KR20070046887A (ko) 2007-05-03
TW200612110A (en) 2006-04-16
CA2574028C (en) 2013-01-08
CN1989418A (zh) 2007-06-27
CN1989418B (zh) 2010-05-05
KR100915486B1 (ko) 2009-09-03
WO2006011650A2 (en) 2006-02-02
US8254209B2 (en) 2012-08-28
TWI273273B (en) 2007-02-11
US20080291784A1 (en) 2008-11-27
WO2006011650A3 (en) 2006-03-23
EP1774357A2 (en) 2007-04-18
CA2574028A1 (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP2006220636A (ja) 音波センサ
JP2007000121A (ja) 小動物威嚇装置
JP4100416B2 (ja) 位置検出システム
JP2008107251A (ja) 位置検出システム
JP4569584B2 (ja) 動線計測システム
JP5513706B2 (ja) 位置検出システム
JP4042769B2 (ja) 位置検出システム
JP4100415B2 (ja) 位置検出システム
JP2006220637A (ja) センサ装置
JP3979423B2 (ja) 位置検出システム
JP4569585B2 (ja) 動線計測システム
JP2006319789A (ja) 車両用障害物検知センサ
JP5390745B2 (ja) 方位検出システム
JP4569564B2 (ja) 動線計測システム
JP2006220638A (ja) センサ装置
JP4569565B2 (ja) 動線計測システム
JP4089710B2 (ja) 位置検出システム
JP4042770B2 (ja) 位置検出システム
JP4569587B2 (ja) 動線計測システム
JP4089709B2 (ja) 位置検出システム
JP4682802B2 (ja) センサ装置およびそれを用いた自走ロボット
JP4710855B2 (ja) 動線計測システム
JP4569586B2 (ja) 動線計測システム
JP2007218927A (ja) 位置検出システム
JP2012154726A (ja) 湿度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110602

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111