JP2006217384A - Television camera system, controller, and camera - Google Patents

Television camera system, controller, and camera Download PDF

Info

Publication number
JP2006217384A
JP2006217384A JP2005029332A JP2005029332A JP2006217384A JP 2006217384 A JP2006217384 A JP 2006217384A JP 2005029332 A JP2005029332 A JP 2005029332A JP 2005029332 A JP2005029332 A JP 2005029332A JP 2006217384 A JP2006217384 A JP 2006217384A
Authority
JP
Japan
Prior art keywords
signal
synchronization signal
camera
cable
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005029332A
Other languages
Japanese (ja)
Other versions
JP4472547B2 (en
Inventor
Tadashi Otsuki
正 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005029332A priority Critical patent/JP4472547B2/en
Publication of JP2006217384A publication Critical patent/JP2006217384A/en
Application granted granted Critical
Publication of JP4472547B2 publication Critical patent/JP4472547B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To advance a phase according to the change in cable length to enable phase adjustment, without requiring advanced data communication. <P>SOLUTION: A controller generates an external synchronization signal and superimposes it on a cable to transmit it to a camera, and the camera generates a timing signal on the basis of the received external synchronization signal and generates a composite video signal on the basis of a video signal obtained by imaging, a vertical synchronization signal, and a horizontal synchronization signal and superimposes the composited video signal on the cable, to transmit it to the controller, and the controller generates a marker signal at a prescribed position of a video-blanking period to transmit it to the camera, and the camera calculates the amount of reciprocal transmission delay caused by actual cable length, on the basis of the received marker signal, the received external synchronization signal, and a reception position where the marker signal is received on assumption that the cable length is 0m, and makes the phase of the timing signal advance corresponding to this amount of reciprocal transmission delay. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、特に閉ループビデオシステムにおいて、ケーブル長に伴う位相遅延を自動で調整するテレビカメラシステム、このシステムに用いる制御装置およびカメラに関するものである。   The present invention relates to a television camera system that automatically adjusts a phase delay associated with a cable length, particularly in a closed-loop video system, and a control device and a camera used in the system.

周知のように、この種のテレビカメラシステムでは、制御装置で発生させた同期信号を、電源電圧と共に重畳し、同軸ケーブルなどのケーブルを介してカメラ側に送り、カメラ側では撮像して得た映像信号を、受信した同期信号に同期させて複合映像信号を生成し、その複合映像信号を上記同じケーブルを介して制御装置に送る。制御装置では、この受信した複合映像信号をケーブル上の信号から分離してモニタに出力し、再生映像を得るようにしている。このシステムを使用した監視装置などでは、制御装置とカメラの距離が遠隔となるため、両者を結ぶケーブルの長さが大となる。その結果、モニタに出力され映像信号の位置は、制御装置で発生させた同期信号に対する本来の位置よりもケーブル長の往復にかかる時間分の遅延を生じることになる。このことは、カラーバースト信号と映像信号の色副搬送波の位相関係のずれとなって現れ、色相の違いとなってモニタに現れ、色再現性に影響を及ぼす。
従来、このケーブル長に伴う位相遅延を調整するための技術として、カメラからマーカを重畳して制御装置側に送り、ケーブルによる伝送遅延時間を計測し、この計測結果を制御装置からカメラ側へコマンドとして送り、カメラ側において、このコマンドに応じて映像信号の位相を進めて同期信号に重畳する方法がある(例えば、特許文献1参照)。
As is well known, in this type of TV camera system, the synchronization signal generated by the control device is superposed together with the power supply voltage, sent to the camera side via a cable such as a coaxial cable, and imaged on the camera side. The composite video signal is generated by synchronizing the video signal with the received synchronization signal, and the composite video signal is sent to the control device via the same cable. The control device separates the received composite video signal from the signal on the cable and outputs it to the monitor to obtain a reproduced video. In a monitoring device using this system, since the distance between the control device and the camera is remote, the length of the cable connecting the two becomes large. As a result, the position of the video signal output to the monitor causes a delay corresponding to the time required for the cable length to reciprocate more than the original position with respect to the synchronization signal generated by the control device. This appears as a shift in the phase relationship between the color subcarriers of the color burst signal and the video signal, appears as a hue difference on the monitor, and affects color reproducibility.
Conventionally, as a technique for adjusting the phase delay due to this cable length, a marker is superimposed from the camera and sent to the control device side, the transmission delay time by the cable is measured, and the measurement result is sent from the control device to the camera side as a command. And the camera side advances the phase of the video signal in accordance with this command and superimposes it on the synchronization signal (see, for example, Patent Document 1).

特開平8−331548号公報(図1)JP-A-8-331548 (FIG. 1)

従来のテレビカメラシステムは、以上のように構成されているが、制御装置側で測定された計測結果をカメラ側に送信するのに高度なデータ通信を必要としている。特に、位相調整前の状態においては、制御装置側で重畳した計測結果を含むコマンドが、カメラ側ではケーブルによる伝送遅延のため本来の位置に重畳されておらず、必ずしも正確なデータ通信が行われるとは限らないという問題がある。また、通信内容に誤りがあった場合、カメラ側で一度誤った進み位相量を設定してしまうと、自動的に修正が行われないという問題がある。さらに、図5に示すよう、電源重畳式でないカメラ2bを接続した場合、あるいは電源重畳式のカメラ2aでケーブルの途中から電源重畳がなされているような場合において、セレクタ20等によって接続先が切り替わると、ケーブル長も変化するため、起動時に設定した進み位相量のままだと、ケーブル長の変更に対応できず、位相がずれてしまうという問題がある。   The conventional television camera system is configured as described above, but requires advanced data communication in order to transmit the measurement result measured on the control device side to the camera side. In particular, in the state before phase adjustment, the command including the measurement result superimposed on the control device side is not superimposed on the original position on the camera side due to the transmission delay by the cable, and accurate data communication is always performed. There is a problem that is not always. In addition, when there is an error in the communication contents, there is a problem in that correction is not automatically performed once an incorrect advance phase amount is set on the camera side. Further, as shown in FIG. 5, when the camera 2b that is not a power superimposition type is connected, or when power is superimposed from the middle of the cable by the power superposition type camera 2a, the connection destination is switched by the selector 20 or the like. Since the cable length also changes, there is a problem that if the advance phase amount set at the time of starting is kept, the change in the cable length cannot be handled and the phase is shifted.

この発明は、上記問題点を解決するためになされたもので、高度なデータ通信を必要とせず、また、ケーブル長に変更に応じて進み位相量に位相調整することができるテレビカメラシステム、このシステムに用いる制御装置およびカメラを得ることを目的としている。   The present invention has been made to solve the above-described problems, and does not require advanced data communication, and a television camera system capable of adjusting the phase to the phase amount in accordance with the change in the cable length. It aims at obtaining the control apparatus and camera which are used for a system.

この発明に係るテレビカメラシステムは、制御装置で、垂直周期の外部同期信号を発生してケーブルに重畳してカメラに送信し、カメラで、ケーブルから外部同期信号を分離受信し、この受信外部同期信号に基づいて、垂直同期信号、水平同期信号、クロックからなるタイミング信号を生成し、撮像により得られた映像信号と垂直同期信号、水平同期信号を基に複合映像信号を生成して同じケーブルに重畳して制御装置に送信し、制御装置で、ケーブルから垂直同期信号、水平同期信号を分離受信し、この受信垂直同期信号、水平同期信号に基づいて映像ブランキング期間の特定の位置にマーカ信号を発生させてケーブルに重畳してカメラに送信し、カメラで、ケーブルからマーカ信号を分離受信し、この受信マーカ信号、受信外部同期信号およびケーブル長を0mと仮定した場合における送信複合映像信号上でのマーカ信号の受信位置に基づいて、実際のケーブル長によって発生する往復伝送遅延量を算出し、この往復伝送遅延量に基づいたパルス幅変調出力を生成し、生成されたパルス幅変調出力に応じてタイミング信号の位相を、往復伝送遅延量分だけ進ませるようにしたものである。   In the TV camera system according to the present invention, the control device generates an external synchronization signal having a vertical period and superimposes it on the cable and transmits it to the camera. The camera separates and receives the external synchronization signal from the cable. Based on the signal, a timing signal consisting of a vertical sync signal, horizontal sync signal, and clock is generated, and a composite video signal is generated based on the video signal obtained by imaging, the vertical sync signal, and the horizontal sync signal. The signal is superimposed and transmitted to the control device, and the control device separates and receives the vertical sync signal and horizontal sync signal from the cable. Based on the received vertical sync signal and horizontal sync signal, the marker signal is placed at a specific position in the video blanking period. Is generated, superimposed on the cable and transmitted to the camera, and the camera separates and receives the marker signal from the cable. The received marker signal and the received external synchronization signal Based on the reception position of the marker signal on the transmission composite video signal when the cable length is assumed to be 0 m, the round trip transmission delay amount generated by the actual cable length is calculated, and the pulse based on the round trip transmission delay amount is calculated. A width modulation output is generated, and the phase of the timing signal is advanced by the round-trip transmission delay amount according to the generated pulse width modulation output.

この発明によれば、制御装置側でマーカを発生させ、カメラ側で遅延時間を計測するようにしたので、高度なデータ通信を必要とせずに確実に進み位相量を得て、位相調整することができる効果がある。また、制御装置の動作中において、ケーブル長の変更に応じて進み位相量を随時更新することができ、異なる位置に設定した複数のカメラへの随時切り替えに対しても自動的に位相調整を行える効果がある。   According to this invention, since the marker is generated on the control device side and the delay time is measured on the camera side, it is possible to reliably obtain the phase amount and adjust the phase without the need for advanced data communication. There is an effect that can. In addition, during operation of the control device, the advance phase amount can be updated at any time according to the change in cable length, and phase adjustment can be automatically performed even when switching to multiple cameras set at different positions. effective.

実施の形態1.
図1はこの発明の実施の形態1によるテレビカメラシステムの構成を示すブロック図である。
図において、制御装置1とカメラ2が互いにケーブル3によって接続されている。制御装置1において、外部同期信号発生回路4は、カメラ2と同期を取るための垂直周期の繰り返しパルスからなる外部同期信号を発生する手段である。外部同期信号重畳回路5は、外部同期信号をケーブル3に重畳して出力する手段である。同期信号分離回路6は、ケーブル3を介してカメラ2から送信されてきた複合映像信号から垂直、水平同期信号を分離して取り出す手段である。マーカ発生回路7は、分離した同期信号に基づいてマーカ信号を発生する手段である。マーカ重畳回路8は、マーカ信号をケーブル3に重畳して出力する手段である。映像信号分離回路9は、カメラ2から送信された複合映像信号を取り出し、モニタや映像記録装置へ出力する手段である。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the configuration of a television camera system according to Embodiment 1 of the present invention.
In the figure, a control device 1 and a camera 2 are connected to each other by a cable 3. In the control device 1, the external synchronization signal generation circuit 4 is a means for generating an external synchronization signal composed of repetitive pulses of a vertical period for synchronizing with the camera 2. The external synchronization signal superimposing circuit 5 is means for superimposing the external synchronization signal on the cable 3 and outputting it. The synchronization signal separation circuit 6 is means for separating and extracting the vertical and horizontal synchronization signals from the composite video signal transmitted from the camera 2 via the cable 3. The marker generation circuit 7 is a means for generating a marker signal based on the separated synchronization signal. The marker superimposing circuit 8 is means for superimposing the marker signal on the cable 3 and outputting it. The video signal separation circuit 9 is means for taking out the composite video signal transmitted from the camera 2 and outputting it to a monitor or a video recording apparatus.

カメラ2において、撮像部12は、映像を電気信号に変換するCCDやCMOSイメージセンサである。外部同期信号分離回路10は、制御装置1からケーブル3を介して送信されてきた外部同期信号を分離する手段である。タイミング信号発生回路11は、分離した受信外部同期信号に基づいて撮像部12を駆動するための垂直同期信号VD、水平同期信号HD、クロックCLK等からなるタイミング信号を発生する手段である。映像信号処理回路13は、撮像部12で変換された電気信号に所定の処理を行って映像信号を生成する手段である。複合映像信号生成回路14は、映像信号と同期信号を所定の位置関係で結合して複合映像信号を生成する手段である。複合映像信号重畳回路15は、複合映像信号をケーブル3に重畳し出力する手段である。マーカ分離回路16は、制御装置1から送信されてきたマーカ信号を分離して取り出す手段である。マイクロコンピュータ(以下、マイコンとする)17は、外部同期信号とマーカ信号の遅延時間を計測し、その遅延時間に応じてパルス幅変調したPWM(Pulse Width Modulation:パルス幅変調)出力を発生する手段である。ローパスフィルタ18は、マイコン17からのPWM出力を平滑化した制御電圧を生成する手段である。VCO(Voltage Controlled Oscillator:電圧制御発振器)19は、PWM出力を平滑化した制御電圧に応じてタイミング信号の周波数を変化させる手段である。   In the camera 2, the imaging unit 12 is a CCD or CMOS image sensor that converts an image into an electrical signal. The external synchronization signal separation circuit 10 is means for separating an external synchronization signal transmitted from the control device 1 via the cable 3. The timing signal generation circuit 11 is a means for generating a timing signal including a vertical synchronization signal VD, a horizontal synchronization signal HD, a clock CLK, and the like for driving the imaging unit 12 based on the separated received external synchronization signal. The video signal processing circuit 13 is means for generating a video signal by performing predetermined processing on the electrical signal converted by the imaging unit 12. The composite video signal generation circuit 14 is a means for generating a composite video signal by combining the video signal and the synchronization signal in a predetermined positional relationship. The composite video signal superimposing circuit 15 is means for superimposing the composite video signal on the cable 3 and outputting it. The marker separation circuit 16 is means for separating and extracting the marker signal transmitted from the control device 1. A microcomputer (hereinafter referred to as a microcomputer) 17 measures the delay time of the external synchronization signal and the marker signal, and generates a PWM (Pulse Width Modulation) output that is pulse width modulated according to the delay time. It is. The low pass filter 18 is a means for generating a control voltage obtained by smoothing the PWM output from the microcomputer 17. A VCO (Voltage Controlled Oscillator) 19 is means for changing the frequency of the timing signal in accordance with a control voltage obtained by smoothing the PWM output.

次に、動作について説明する。
図2は、位相調整前の制御装置1およびカメラ2が送受信する信号および内部信号を表すタイムチャートである。
まず、制御装置1において、外部同期信号発生回路4で発生させた垂直周期の外部同期信号EVDが、外部同期信号重畳回路5でケーブル3に重畳され、カメラ2側に送信される。送信されたこの外部同期信号EVDは、カメラ2の外部同期信号分離回路10にて外部同期信号EVD1として取り出される。このとき、外部同期信号EVD1は、ケーブル長に伴う伝送遅延により制御装置1で送信されたEVDよりも時間Td1だけ遅れている。タイミング信号発生回路11では、外部同期信号EVD1を基準に、撮像部12およびカメラ2内部を駆動するためのタイミング信号として、垂直同期信号VD、水平同期信号HD、クロックCLK等を発生する。撮像部12で得られた映像は、映像信号処理回路13で処理された後、複合映像信号生成回路14において同期信号と結合して複合映像信号Cに生成される。この複合映像信号Cは、複合映像信号重畳回路15でケーブル3に重畳され、制御装置1側に送信される。
Next, the operation will be described.
FIG. 2 is a time chart showing signals and internal signals transmitted and received by the control device 1 and the camera 2 before phase adjustment.
First, in the control device 1, the external synchronization signal EVD having a vertical period generated by the external synchronization signal generation circuit 4 is superimposed on the cable 3 by the external synchronization signal superimposing circuit 5 and transmitted to the camera 2 side. The transmitted external synchronization signal EVD is taken out as the external synchronization signal EVD1 by the external synchronization signal separation circuit 10 of the camera 2. At this time, the external synchronization signal EVD1 is delayed by a time Td1 from the EVD transmitted by the control device 1 due to a transmission delay accompanying the cable length. The timing signal generation circuit 11 generates a vertical synchronization signal VD, a horizontal synchronization signal HD, a clock CLK, and the like as timing signals for driving the imaging unit 12 and the camera 2 with reference to the external synchronization signal EVD1. The video obtained by the imaging unit 12 is processed by the video signal processing circuit 13 and then combined with the synchronization signal in the composite video signal generation circuit 14 to be generated into the composite video signal C. The composite video signal C is superimposed on the cable 3 by the composite video signal superimposing circuit 15 and transmitted to the control device 1 side.

カメラ2から送信された複合映像信号Cは、制御装置1では、複合映像信号C1として受信される。この複合映像信号C1は、ケーブル長に伴う伝送遅延により、カメラ2が送信した時点の複合映像信号Cよりも時間Td2だけ遅延している。つまり、外部同期信号EVDに対して複合映像信号C1は、Td1+Td2だけ遅れたことになる。同期信号分離回路6では、受信した複合映像信号C1から垂直、水平同期信号VD1、HD1を分離し、マーカ発生回路7に与える。マーカ発生回路7では、これら同期信号VD1、HD1に基づいて、映像ブランキング期間の特定の位置、例えば図2に示す10Hの位置に乗るようなマーカ信号Mを発生する。このマーカ信号Mは、マーカ重畳回路8によりケーブル3に重畳され、カメラ2側に送信される。制御装置1から送信されてきたマーカ信号Mは、カメラ2のマーカ分離回路16によりマーカ信号M1として取り出される。このマーカ信号M1は、ケーブル長に伴う伝送遅延により制御装置1が送信した時点のマーカ信号Mより時間Td3だけ遅れることになる。   The composite video signal C transmitted from the camera 2 is received by the control device 1 as the composite video signal C1. This composite video signal C1 is delayed by a time Td2 from the composite video signal C at the time of transmission by the camera 2 due to a transmission delay accompanying the cable length. That is, the composite video signal C1 is delayed by Td1 + Td2 with respect to the external synchronization signal EVD. The synchronization signal separation circuit 6 separates the vertical and horizontal synchronization signals VD 1 and HD 1 from the received composite video signal C 1 and applies them to the marker generation circuit 7. Based on the synchronization signals VD1 and HD1, the marker generation circuit 7 generates a marker signal M that rides at a specific position in the video blanking period, for example, the position 10H shown in FIG. The marker signal M is superimposed on the cable 3 by the marker superimposing circuit 8 and transmitted to the camera 2 side. The marker signal M transmitted from the control device 1 is taken out as the marker signal M1 by the marker separation circuit 16 of the camera 2. This marker signal M1 is delayed by a time Td3 from the marker signal M at the time of transmission by the control device 1 due to a transmission delay associated with the cable length.

これまで述べた遅延時間Td1,Td2,Td3の関係において、一定のケーブル長での伝送遅延は信号の方向に関係なく一定であるので、Td1=Td2=Td3となる。ここで、もしケーブル長が0mだったと仮定すると、ケーブル長に伴う伝送遅延はなくTd2=Td3=0となるので、カメラ2が受信するマーカ信号M1は複合映像信号Cの10Hの位置、図2のMexpの位置にある筈である。ここで、カメラ2が前に実際受信した外部同期信号EVD1とMexpとの時間差をTexpとしておく。そして、ケーブル長が0mより大きい場合は、ケーブル長に伴う伝送遅延がTd2=Td3>0となり、カメラ2が受信するマーカ信号M1は、Texpより往復による遅延量Td2+Td3だけ離れた位置となる。したがって、カメラ2が受信した外部同期信号EVD1からマーカ信号M1までの時間Tを計測し、TからTexpを減算すれば、次式のように、ケーブル長によって発生する往復伝送遅延量である時間Td2+Td3を求めることができる。
T−Texp=Td2+Td3(=往復伝送遅延量)
さらに、Td2+Td3=Td1+Td2でもある。したがって、図3に示すように、カメラ2が受信する外部同期信号EVD1に対して、カメラ2のタイミング信号(垂直同期信号VD、水平同期信号HD)の位相を往復伝送遅延量Td2+Td3分だけ進めてやれば、制御装置1において外部同期信号EVDと複合映像信号C1の位相が合い、制御装置1でのケーブル長に伴う位相遅延の影響をなくすことができる。
In the relationship between the delay times Td1, Td2 and Td3 described so far, the transmission delay with a constant cable length is constant regardless of the direction of the signal, so that Td1 = Td2 = Td3. Here, if the cable length is assumed to be 0 m, there is no transmission delay associated with the cable length and Td2 = Td3 = 0, so that the marker signal M1 received by the camera 2 is at the position 10H of the composite video signal C, FIG.筈 at the position of Mexp. Here, the time difference between the external synchronization signal EVD1 actually received by the camera 2 and Mexp is set as Texp. When the cable length is greater than 0 m, the transmission delay associated with the cable length is Td2 = Td3> 0, and the marker signal M1 received by the camera 2 is at a position away from Texp by a delay amount Td2 + Td3 due to reciprocation. Therefore, if the time T from the external synchronization signal EVD1 received by the camera 2 to the marker signal M1 is measured and Texp is subtracted from T, the time Td2 + Td3 which is the round-trip transmission delay amount generated by the cable length as shown in the following equation: Can be requested.
T-Texp = Td2 + Td3 (= round-trip transmission delay amount)
Further, Td2 + Td3 = Td1 + Td2. Therefore, as shown in FIG. 3, the phase of the timing signal (vertical synchronization signal VD, horizontal synchronization signal HD) of the camera 2 is advanced by the round-trip transmission delay amount Td2 + Td3 with respect to the external synchronization signal EVD1 received by the camera 2. By doing so, the phase of the external synchronization signal EVD and the composite video signal C1 are matched in the control device 1, and the influence of the phase delay accompanying the cable length in the control device 1 can be eliminated.

図4はマイコン17で上記遅延計算処理を行うフローチャートを示す。
マイコン17が起動すると、まず、外部同期がロックされたかを確認する(ステップST1)。外部同期がロックされたことを確認した後、外部同期信号EVD1の入力を待つ(ステップST2)。外部同期信号EVD1の入力を確認すると、次にマーカ信号M1が入力されるのを待つ(ステップST3)。その際、マーカ信号M1が入力されない間はCountをアップしていく(ステップST4)。マーカ信号M1が入力されるとCount値を基に外部同期信号EVD1からマーカ信号M1までの時間Tを割り出し、上記往復伝送遅延量T−Texpによって、進み位相量を計算する(ステップST5)。そして、その進み位相量に基づいてパルス幅変調を行ってPWM出力を生成する(ステップST6)。
FIG. 4 shows a flowchart for performing the delay calculation process by the microcomputer 17.
When the microcomputer 17 is activated, first, it is confirmed whether external synchronization is locked (step ST1). After confirming that the external synchronization is locked, it waits for the input of the external synchronization signal EVD1 (step ST2). When the input of the external synchronization signal EVD1 is confirmed, it waits for the next input of the marker signal M1 (step ST3). At this time, Count is increased while the marker signal M1 is not input (step ST4). When the marker signal M1 is input, the time T from the external synchronization signal EVD1 to the marker signal M1 is calculated based on the Count value, and the advance phase amount is calculated from the round-trip transmission delay amount T-Texp (step ST5). Then, pulse width modulation is performed based on the lead phase amount to generate a PWM output (step ST6).

マイコン17からのPWM出力は、ローパスフィルタ18で平滑化され、上記進み位相量を表した制御電圧としてVOC19に与えられる。VOC19では、この制御電圧に応じてタイミング信号発生回路11のクロックCLKの位相を変化させ、それを基に垂直、水平同期信号VD、HDを生成する。このようにして得られたタイミング信号CKL、VD、HDで撮像部12を動作させ、得られた映像信号と垂直、水平同期信号VD、HDから複合映像信号生成回路14で複合映像信号Cを生成すれば、ケーブル3を介してこれを受信する制御装置1では、外部同期信号EDVに対して位相遅れの無い複合映像信号C1信号を得ることができる。   The PWM output from the microcomputer 17 is smoothed by the low-pass filter 18 and applied to the VOC 19 as a control voltage representing the advance phase amount. The VOC 19 changes the phase of the clock CLK of the timing signal generation circuit 11 according to this control voltage, and generates vertical and horizontal synchronization signals VD and HD based on the change. The imaging unit 12 is operated with the timing signals CKL, VD, and HD thus obtained, and a composite video signal C is generated by the composite video signal generation circuit 14 from the obtained video signal and the vertical and horizontal synchronization signals VD and HD. Then, in the control device 1 that receives this via the cable 3, it is possible to obtain the composite video signal C1 signal having no phase delay with respect to the external synchronization signal EDV.

また、図5に示すように、電源重畳式でないカメラ2bを接続する場合、あるいは電源重畳式のカメラ2aであっても、ケーブルの途中から電源重畳装置21により電源重畳がなされているようなケースがあり、一度位相調整した後にセレクタ20等によって接続先を切り替えると、ケーブル長が変化し位相がずれてしまう。しかし、この発明の構成では、マイコン17により常に往復伝送遅延量T−Texp=0とするためのPWM出力を得るので、一度位相調整した後においても、接続されるカメラのケーブル長の変更に対しても、速やかに位相調整の更新を行うことができる。   Further, as shown in FIG. 5, when a camera 2b that is not a power superimposition type is connected, or even in the case of the power superimposition type camera 2a, the power superimposition device 21 performs power superimposition from the middle of the cable. If the connection destination is switched by the selector 20 or the like after the phase adjustment once, the cable length changes and the phase shifts. However, in the configuration of the present invention, the microcomputer 17 always obtains the PWM output for setting the round-trip transmission delay amount T-Texp = 0, so that even after the phase is adjusted once, the cable length of the camera to be connected is changed. Even in this case, the phase adjustment can be promptly updated.

以上のように、実施の形態1によれば、制御装置1で、垂直周期の外部同期信号EVDを発生してケーブル3に重畳してカメラ2に送信し、カメラ2で、ケーブル3から外部同期信号を分離受信し、この受信外部同期信号EVD1に基づいて、クロックCLK、垂直同期信号VD、水平同期信号HDからなるタイミング信号を生成し、撮像により得られた映像信号と垂直同期信号VD、水平同期信号HDを基に複合映像信号を生成して同じケーブル3に重畳して制御装置1に送信し、これに対し、制御装置1で、ケーブル3から垂直同期信号VD、水平同期信号HDを分離受信し、この受信同期信号に基づいて映像ブランキング期間の特定の位置にマーカ信号Mを発生させてケーブル3に重畳してカメラ2に送信し、カメラ2で、ケーブル3からマーカ信号を分離受信し、この受信マーカ信号M1、受信外部同期信号EVD1およびケーブル長を0mと仮定した場合における送信複合映像信号上でのマーカ信号Mの受信位置Mexpに基づいて、実際のケーブル長によって発生する往復伝送遅延量を算出し、この往復伝送遅延量に基づいたパルス幅変調出力を生成し、生成されたパルス幅変調出力に応じてタイミング信号の位相を、往復伝送遅延量分だけ進ませるようにしている。したがって、高度なデータ通信を必要とせずに確実に進み位相量を得て、往復伝送遅延を解消する位相調整を行うことができる。また、制御装置の動作中において、ケーブル長の変更に応じて進み位相量を随時更新することができ、異なる位置に設定した複数のカメラへの随時切り替えに対しても自動的に位相調整を行うことができる。そのため、監視カメラシステムにおいて複数台接続されたカメラの同期合わせに利用することも可能である。   As described above, according to the first embodiment, the control device 1 generates the external synchronization signal EVD having a vertical cycle and superimposes it on the cable 3 and transmits it to the camera 2. A signal is separated and received, and a timing signal including a clock CLK, a vertical synchronization signal VD, and a horizontal synchronization signal HD is generated based on the received external synchronization signal EVD1, and a video signal obtained by imaging and a vertical synchronization signal VD, horizontal A composite video signal is generated based on the synchronization signal HD and is superimposed on the same cable 3 and transmitted to the control device 1. On the other hand, the control device 1 separates the vertical synchronization signal VD and the horizontal synchronization signal HD from the cable 3. Based on this reception synchronization signal, a marker signal M is generated at a specific position in the video blanking period, superimposed on the cable 3 and transmitted to the camera 2. The received marker signal M1, the received external synchronization signal EVD1, and the reception position Mexp of the marker signal M on the transmission composite video signal when the cable length is assumed to be 0 m. Calculates the round-trip transmission delay amount generated by the length, generates a pulse width modulation output based on the round-trip transmission delay amount, and changes the timing signal phase by the round-trip transmission delay amount according to the generated pulse width modulation output. I try to advance. Therefore, it is possible to perform the phase adjustment that reliably obtains the advance phase amount and eliminates the round trip transmission delay without requiring advanced data communication. Also, during operation of the control device, the advance phase amount can be updated at any time according to the change in cable length, and phase adjustment is automatically performed even when switching to multiple cameras set at different positions. be able to. Therefore, it can also be used for synchronization of a plurality of cameras connected in the surveillance camera system.

この発明の実施の形態1によるテレビカメラシステムの構成を示すブロック図である。It is a block diagram which shows the structure of the television camera system by Embodiment 1 of this invention. この発明の実施の形態1に係る位相調整前の制御装置およびカメラの送受信する信号および内部信号を表すタイムチャートである。It is a time chart showing the signal which transmits / receives the control apparatus before phase adjustment which concerns on Embodiment 1 of this invention, and a camera, and an internal signal. この発明の実施の形態1に係る位相調整後の制御装置およびカメラの送受信する信号および内部信号を表すタイムチャートである。It is a time chart showing the signal and internal signal which the control apparatus after phase adjustment and camera which concern on Embodiment 1 of this invention transmit / receive. この発明の実施の形態1に係るマイコンの遅延計算処理の手順を示すフローチャート図である。It is a flowchart figure which shows the procedure of the delay calculation process of the microcomputer which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るテレビカメラシステムの他の構成例を示すブロック図である。It is a block diagram which shows the other structural example of the television camera system which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 制御装置、2,2a,2b カメラ、3 ケーブル、4 外部同期信号発生回路、5 外部同期信号重畳回路、6 同期信号分離回路、7 マーカ発生回路、8 マーカ重畳回路、9 映像信号分離回路、10 外部同期信号分離回路、11 タイミング信号発生回路、12 撮像部、13 映像信号処理回路、14 複合映像信号生成回路、15 複合映像信号重畳回路、16 マーカ分離回路、17 マイコン、18 ローパスフィルタ、19 VCO(電圧制御発振器)、20 セレクタ、21 電源重畳装置。
DESCRIPTION OF SYMBOLS 1 Controller, 2, 2a, 2b Camera, 3 Cable, 4 External synchronization signal generation circuit, 5 External synchronization signal superimposition circuit, 6 Synchronization signal separation circuit, 7 Marker generation circuit, 8 Marker superposition circuit, 9 Video signal separation circuit, DESCRIPTION OF SYMBOLS 10 External synchronizing signal separation circuit, 11 Timing signal generation circuit, 12 Imaging part, 13 Video signal processing circuit, 14 Composite video signal generation circuit, 15 Composite video signal superimposition circuit, 16 Marker separation circuit, 17 Microcomputer, 18 Low-pass filter, 19 VCO (voltage controlled oscillator), 20 selector, 21 power superimposing device.

Claims (5)

制御装置で、垂直周期の外部同期信号を発生してケーブルに重畳してカメラに送信し、
前記カメラで、前記ケーブルから外部同期信号を分離受信し、この受信外部同期信号に基づいて、垂直同期信号、水平同期信号、クロックからなるタイミング信号を生成し、撮像により得られた映像信号と前記垂直同期信号、水平同期信号を基に複合映像信号を生成して同じ前記ケーブルに重畳して前記制御装置に送信し、
前記制御装置で、前記ケーブルから垂直同期信号、水平同期信号を分離受信し、この受信垂直同期信号、水平同期信号に基づいて映像ブランキング期間の特定の位置にマーカ信号を発生させて前記ケーブルに重畳して前記カメラに送信し、
前記カメラで、前記ケーブルからマーカ信号を分離受信し、この受信マーカ信号、前記受信外部同期信号およびケーブル長を0mと仮定した場合における前記送信複合映像信号上でのマーカ信号の受信位置に基づいて、実際のケーブル長によって発生する往復伝送遅延量を算出し、この往復伝送遅延量に基づいたパルス幅変調出力を生成し、生成されたパルス幅変調出力に応じて前記タイミング信号の位相を、前記往復伝送遅延量分だけ進ませることを特徴とするテレビカメラシステム。
In the control device, generate an external synchronization signal with a vertical period, superimpose it on the cable, and send it to the camera.
The camera separates and receives the external synchronization signal from the cable, generates a timing signal including a vertical synchronization signal, a horizontal synchronization signal, and a clock based on the received external synchronization signal, and the video signal obtained by imaging and the A composite video signal is generated based on a vertical synchronization signal and a horizontal synchronization signal, and is superimposed on the same cable and transmitted to the control device,
The control device separates and receives a vertical synchronization signal and a horizontal synchronization signal from the cable, and generates a marker signal at a specific position in a video blanking period based on the received vertical synchronization signal and the horizontal synchronization signal. Superimposed and sent to the camera,
Based on the reception position of the marker signal on the transmission composite video signal when the camera receives the marker signal separately from the cable and assumes the received marker signal, the received external synchronization signal, and the cable length is 0 m. Calculating a round trip transmission delay amount generated by an actual cable length, generating a pulse width modulation output based on the round trip transmission delay amount, and changing the phase of the timing signal according to the generated pulse width modulation output, A TV camera system characterized by advancing by the round-trip transmission delay amount.
カメラが備えたマイクロコンピュータにより、ケーブルからマーカ信号を分離受信し、受信外部同期信号と当該受信マーカ信号の時間差Tを計測し、ケーブル長を0mと仮定した場合におけるマーカ信号について、前記カメラが前に送信した複合映像信号上での受信位置を算出し、前記受信外部同期信号と前記マーカ信号の受信位置との時間差Texpを算出し、両時間差から実際のケーブル長によって発生する往復伝送遅延量T−Texpを算出し、この往復伝送遅延量に基づいたパルス幅変調出力を生成し出力することを特徴とする請求項1記載のテレビカメラシステム。   The camera has a microcomputer that separates and receives the marker signal from the cable, measures the time difference T between the received external synchronization signal and the received marker signal, and the camera uses the marker signal when the cable length is assumed to be 0 m. The reception position on the composite video signal transmitted to the receiver is calculated, the time difference Texp between the reception external synchronization signal and the reception position of the marker signal is calculated, and the round-trip transmission delay amount T generated by the actual cable length from both time differences The television camera system according to claim 1, wherein -Texp is calculated, and a pulse width modulation output based on the round-trip transmission delay amount is generated and output. セレクタにより切り替えて、複数のカメラがそれぞれの長さのケーブルを介して制御装置に接続されることを特徴とする請求項1または請求項2記載のテレビカメラシステム。   The television camera system according to claim 1 or 2, wherein the plurality of cameras are connected to the control device via cables having respective lengths by switching with a selector. 垂直周期の外部同期信号を発生してケーブルに重畳してカメラに送信し、
前記カメラ側において分離受信した受信外部同期信号に基づいて生成されたタイミング信号と撮像により得られた映像信号を基に生成して、同じケーブルに重畳して送られてきた複合映像信号から垂直同期信号、水平同期信号を分離受信し、
この受信垂直同期信号、水平同期信号に基づいて、映像ブランキング期間の特定の位置にマーカ信号を発生させて前記ケーブルに重畳して前記カメラに送信し、
前記カメラで分離受信した受信マーカ信号を用いて算出された実際のケーブル長で発生する往復伝送遅延量により位相を進ませたタイミング信号を用いて生成した複合映像信号を、前記ケーブルから分離受信してモニタや映像記録装置に出力することを特徴とする制御装置。
Generates an external synchronization signal with a vertical period, superimposes it on the cable, and sends it to the camera.
Vertical synchronization from the composite video signal that is generated based on the timing signal generated based on the received external synchronization signal separated and received on the camera side and the video signal obtained by imaging and superimposed on the same cable Separate signal and horizontal sync signal,
Based on this received vertical synchronization signal, horizontal synchronization signal, generate a marker signal at a specific position in the video blanking period and transmit it to the camera superimposed on the cable,
A composite video signal generated using a timing signal whose phase is advanced by a round-trip transmission delay amount generated by an actual cable length calculated using a reception marker signal separated and received by the camera is separately received from the cable. Output to a monitor or video recording device.
制御装置側からケーブルに重畳して送信された垂直周期の外部同期信号を分離受信し、この受信外部同期信号に基づいて、垂直同期信号、水平同期信号、クロックからなるタイミング信号を生成し、
撮像により得られた映像信号と前記垂直同期信号、水平同期信号を基に複合映像信号を生成して同じ前記ケーブルに重畳して前記制御装置に送信し、
前記制御装置側で前記複合映像信号から分離受信した受信垂直同期信号、水平同期信号に基づいて映像ブランキング期間の特定の位置に発生されて前記ケーブルに重畳して送られてきたマーカ信号を分離受信し、
この受信マーカ信号、前記受信外部同期信号およびケーブル長を0mと仮定した場合における前記送信複合映像信号上でのマーカ信号の受信位置に基づいて、実際のケーブル長によって発生する往復伝送遅延量を算出し、
この往復伝送遅延量に基づいてパルス幅変調出力を生成し、
生成されたパルス幅変調出力に応じて前記タイミング信号の位相を、前記往復伝送遅延量分だけ進ませるようにしたことを特徴とするカメラ。
Separately receiving the external synchronization signal of the vertical cycle transmitted superimposed on the cable from the control device side, based on this received external synchronization signal, generate a timing signal consisting of a vertical synchronization signal, a horizontal synchronization signal, a clock,
A composite video signal is generated based on the video signal obtained by imaging, the vertical synchronization signal, and the horizontal synchronization signal, and transmitted to the control device by being superimposed on the same cable,
The marker signal generated at a specific position in the video blanking period based on the received vertical synchronizing signal and horizontal synchronizing signal separated from the composite video signal on the control device side and separated and sent to the cable is separated. Receive
Based on the received marker signal, the received external synchronization signal, and the reception position of the marker signal on the transmission composite video signal when the cable length is assumed to be 0 m, the round-trip transmission delay amount generated by the actual cable length is calculated. And
Generate a pulse width modulation output based on this round-trip transmission delay amount,
A camera characterized in that the phase of the timing signal is advanced by the round-trip transmission delay amount in accordance with the generated pulse width modulation output.
JP2005029332A 2005-02-04 2005-02-04 TV camera system, control device and camera Expired - Fee Related JP4472547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029332A JP4472547B2 (en) 2005-02-04 2005-02-04 TV camera system, control device and camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029332A JP4472547B2 (en) 2005-02-04 2005-02-04 TV camera system, control device and camera

Publications (2)

Publication Number Publication Date
JP2006217384A true JP2006217384A (en) 2006-08-17
JP4472547B2 JP4472547B2 (en) 2010-06-02

Family

ID=36980203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029332A Expired - Fee Related JP4472547B2 (en) 2005-02-04 2005-02-04 TV camera system, control device and camera

Country Status (1)

Country Link
JP (1) JP4472547B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107840A (en) * 2012-11-29 2014-06-09 Casio Comput Co Ltd Imaging apparatus, imaging method and program
US8982219B2 (en) 2010-04-09 2015-03-17 Sony Corporation Receiving device and camera system
WO2017145224A1 (en) * 2016-02-22 2017-08-31 オリンパス株式会社 Image receiving terminal, image communication system, image reception method, and program
WO2021014728A1 (en) * 2019-07-23 2021-01-28 Mediaedge株式会社 Camera video transfer device
CN113497892A (en) * 2020-03-19 2021-10-12 株式会社理光 Image pickup apparatus, distance measuring method, storage medium, and computer apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163702B2 (en) * 2010-06-16 2013-03-13 セイコーエプソン株式会社 Imaging apparatus and timing control circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982219B2 (en) 2010-04-09 2015-03-17 Sony Corporation Receiving device and camera system
JP2014107840A (en) * 2012-11-29 2014-06-09 Casio Comput Co Ltd Imaging apparatus, imaging method and program
WO2017145224A1 (en) * 2016-02-22 2017-08-31 オリンパス株式会社 Image receiving terminal, image communication system, image reception method, and program
JPWO2017145224A1 (en) * 2016-02-22 2018-12-13 オリンパス株式会社 Image receiving terminal, image communication system, image receiving method, and program
US10587783B2 (en) 2016-02-22 2020-03-10 Olympus Corporation Image reception terminal, image communication system, image reception method, and recording medium
WO2021014728A1 (en) * 2019-07-23 2021-01-28 Mediaedge株式会社 Camera video transfer device
US11665424B2 (en) 2019-07-23 2023-05-30 Mediaedge Corporation Camera-captured images transfer device
CN113497892A (en) * 2020-03-19 2021-10-12 株式会社理光 Image pickup apparatus, distance measuring method, storage medium, and computer apparatus
CN113497892B (en) * 2020-03-19 2023-09-29 株式会社理光 Imaging device, distance measuring method, storage medium, and computer device

Also Published As

Publication number Publication date
JP4472547B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP4472547B2 (en) TV camera system, control device and camera
JP5697743B2 (en) Video transmission device, video transmission method, video reception device, and video reception method
EP2537453B1 (en) Electronic endoscopic apparatus
US20120323073A1 (en) Electronic endoscopic apparatus
JP4731229B2 (en) Digital camera
JP2011234341A (en) Receiving apparatus and camera system
US20100110291A1 (en) Wireless image transferring apparatus, wireless image receiving apparatus and wireless image transmitting apparatus, and wireless image transferring method, wireless image receiving method and wireless image transmitting method
US9992446B2 (en) Image transmission system and image transmission method
JP2011135294A (en) Camera system, and camera control method
JP5139374B2 (en) Television camera device control system
JP5551824B2 (en) Imaging device
RU2542343C2 (en) Camera system, method of adjusting signal delay value and programme
KR100639522B1 (en) External synchronization system using composite synchronization signal, and camera system using the same
JP2009147831A (en) Image transmission device and wireless image reception device
JP6689910B2 (en) Coaxial cable based image correction apparatus and method for high quality camera and system thereof
JP2006180293A (en) Head separation type single panel type color camera device
JP4738251B2 (en) Synchronous automatic adjustment device
JP5289376B2 (en) Video signal transmission device
JP3310027B2 (en) Imaging device
JP2001339631A (en) Video camera and video camera system
JP2015149761A (en) Encoded signal transmission device
JP2004032112A (en) Video image radio transmission system, transmitting device and receiving device, as well as video image radio transmission method
JP2015154387A (en) Television camera device
JPH0576006A (en) Cctv monitoring system
JP2001292336A (en) Camera control unit and camera system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees