JP2006208052A - Distortion sensor for rubber article - Google Patents

Distortion sensor for rubber article Download PDF

Info

Publication number
JP2006208052A
JP2006208052A JP2005017216A JP2005017216A JP2006208052A JP 2006208052 A JP2006208052 A JP 2006208052A JP 2005017216 A JP2005017216 A JP 2005017216A JP 2005017216 A JP2005017216 A JP 2005017216A JP 2006208052 A JP2006208052 A JP 2006208052A
Authority
JP
Japan
Prior art keywords
strain
rubber
conductive particles
strain sensor
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005017216A
Other languages
Japanese (ja)
Inventor
Takeshi Yamaguchi
健 山口
Katsutaka Sato
克隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005017216A priority Critical patent/JP2006208052A/en
Publication of JP2006208052A publication Critical patent/JP2006208052A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distortion sensor for rubber articles capable of measuring distortions of rubber articles such as tires over a wide range of approximately a few hundred percent. <P>SOLUTION: The distortion sensor for rubber articles is made of a rubber composition containing electrically conductive particles and capable of measuring changes in electric resistance caused by distortions which occur with external loads and detecting the distortions. The distortion sensor for rubber articles can be satisfactorily used for tires. Carbon black is satisfactorily used as the electrically conductive particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はゴム物品用歪センサー(以下、単に「歪センサー」とも称する)に関し、詳しくは、外的負荷に伴いゴム物品に生ずる歪を検出するために用いられるゴム物品用歪センサーに関する。   The present invention relates to a strain sensor for rubber articles (hereinafter, also simply referred to as “strain sensor”), and more particularly to a strain sensor for rubber articles used to detect strain generated in a rubber article due to an external load.

タイヤにおける歪モニタリングの研究は、従来より行われており、例えば、電気容量を利用して歪を検出する技術として、タイヤ内部のスチールワイヤを電極とし、ワイヤ間の電気容量を測定することによりワイヤ間距離と歪とを関係付ける技術が知られている。   Research on strain monitoring in tires has been conducted conventionally. For example, as a technique for detecting strain using electric capacity, a steel wire inside the tire is used as an electrode, and the electric capacity between the wires is measured by measuring the electric capacity between the wires. A technique for relating the distance to the strain is known.

また、歪の計測に関する従来技術としては、例えば特許文献1に、導電性粒子をプラスチック、ゴムなどの高分子に分散させ、粒子の接触による粒子連鎖を形成し、系内に導電性回路を形成した系を用い、系が外力により伸張を受け、この結果系の電気抵抗が増加し、この増加分を測定することにより伸張歪みを計測するセンサーが記載されている。この文献に記載の歪みセンサーは、鉄骨構造物および鉄筋コンクリート構造物における歪みの計測を想定したものであり、主として20%未満の歪みを対象としている。
特許第3418561号公報
In addition, as a conventional technique related to strain measurement, for example, in Patent Document 1, conductive particles are dispersed in a polymer such as plastic or rubber, a particle chain is formed by contacting the particles, and a conductive circuit is formed in the system. A sensor is described in which the system is stretched by an external force, resulting in an increase in the electrical resistance of the system, and measuring the increased strain by measuring the increase. The strain sensor described in this document assumes the measurement of strain in steel structures and reinforced concrete structures, and is mainly intended for strains of less than 20%.
Japanese Patent No. 3418561

近年、自動車の安全性向上のために、タイヤの歪度合いを、特には数百%程度までの広範囲で予測できるセンサーに対する要請が高まってきている。また、タイヤのみならず、ゴム物品一般においても、耐久性予測の観点から、歪計測技術の実現は有効である。   In recent years, in order to improve the safety of automobiles, there has been a growing demand for sensors that can predict the degree of tire distortion over a wide range, particularly up to several hundred percent. In addition to tires, in general rubber articles, the realization of strain measurement technology is effective from the viewpoint of durability prediction.

そこで本発明の目的は、タイヤをはじめとするゴム物品の歪を、数百%程度までの広範囲で計測することが可能なゴム物品用歪センサーを提供することにある。   Accordingly, an object of the present invention is to provide a strain sensor for a rubber article that can measure the strain of a rubber article including a tire in a wide range up to about several hundred percent.

本発明者らは、鋭意検討した結果、下記構成とすることにより、上記課題を解決できることを見出して、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that the above-described problems can be solved by adopting the following configuration, and have completed the present invention.

即ち、本発明のゴム物品用歪センサーは、導電性粒子を含有し、外的負荷に伴い生ずる歪により引き起こされる電気抵抗の変化を計測して、該歪を検出することが可能な歪検出用ゴム組成物からなることを特徴とするものである。   That is, the strain sensor for rubber articles of the present invention is for strain detection, which contains conductive particles, and can measure the change in electrical resistance caused by strain caused by an external load and detect the strain. It consists of a rubber composition.

前述したように、従来のタイヤにおける歪み計測技術は、内部に埋設されたワイヤを利用して電気抵抗を計測するものであり、ゴム自体の内部構造の変化からタイヤの歪度合いを予測する技術はこれまで存在しなかった。また、数百%程度の歪を対象として電気抵抗変化から歪を検出する歪センサーも存在しなかった。   As described above, the conventional strain measurement technology for tires measures electrical resistance using wires embedded inside, and the technology for predicting the strain level of tires from changes in the internal structure of the rubber itself. Never existed before. In addition, there is no strain sensor that detects strain from a change in electrical resistance with a strain of about several hundred percent as a target.

本発明のゴム物品用歪センサーは、タイヤ用として好適に用いることができる。また、前記導電性粒子としてはカーボンブラックが好適であり、前記導電性粒子の体積分率は、10%を超えて30%未満の範囲内とすることが好ましい。さらに、前記歪検出用ゴム組成物の体積抵抗率は、100〜106Ω・cmの範囲内とすることができる。本発明のゴム物品用歪センサーによれば、0.1〜500%の範囲内で前記歪を検出することが可能である。 The strain sensor for rubber articles of the present invention can be suitably used for tires. Moreover, carbon black is suitable as the conductive particles, and the volume fraction of the conductive particles is preferably in the range of more than 10% and less than 30%. Furthermore, the volume resistivity of the rubber composition for strain detection can be in the range of 10 0 to 10 6 Ω · cm. According to the strain sensor for rubber articles of the present invention, the strain can be detected within a range of 0.1 to 500%.

本発明によれば、上記構成としたことで、ゴムの歪度合いから電気抵抗変化を計測することにより、歪センサーに隣接するゴム物品の歪度合いを予測できるゴム物品用歪センサーを実現することが可能となった。本発明においては、導電性粒子の種類、量、ゴム種等を適宜変更することで、様々な感度の歪センサーを設計することができ、数百%程度までの広範囲の歪の計測が可能である。   According to the present invention, with the above configuration, it is possible to realize a strain sensor for a rubber article that can predict the degree of strain of a rubber article adjacent to the strain sensor by measuring a change in electrical resistance from the degree of strain of the rubber. It has become possible. In the present invention, it is possible to design strain sensors with various sensitivities by appropriately changing the type, amount, rubber type, etc. of conductive particles, and it is possible to measure a wide range of strains up to several hundred%. is there.

なお、前述したように、ワイヤを用いたタイヤの歪計測技術は公知であるが、この場合、ワイヤを電極として用いているため、測定可能な歪はワイヤ間の歪のみに制限される。これに対し本発明の歪センサーによれば、測定したい箇所に貼ることで様々な箇所の歪を測定することが可能であるというメリットがある。また、上記公知技術はタイヤベルト部の電気容量測定による歪センサーであり、タイヤベルト部のスチールワイヤ間のゴム物性(誘電率)に影響されるため、センサーの精度向上は困難である。これに対し本発明においては、ゴムの内部構造変化による電気抵抗測定による歪センサーであるため、ポリマーや導電性粒子の種類等を変えることによりセンサー精度の向上が可能である。   As described above, tire strain measurement technology using a wire is known, but in this case, since the wire is used as an electrode, the measurable strain is limited only to the strain between the wires. On the other hand, according to the strain sensor of the present invention, there is an advantage that it is possible to measure the strain at various places by pasting it on the place to be measured. Further, the above known technique is a strain sensor by measuring the electric capacity of the tire belt portion, and since it is affected by the rubber physical property (dielectric constant) between the steel wires of the tire belt portion, it is difficult to improve the accuracy of the sensor. On the other hand, in the present invention, since it is a strain sensor based on electrical resistance measurement based on a change in the internal structure of rubber, it is possible to improve sensor accuracy by changing the type of polymer or conductive particles.

以下、本発明の好適な実施の形態について詳細に説明する。
本発明のゴム物品用歪センサーは、導電性粒子を含有し、外的負荷に伴い生ずる歪により引き起こされる電気抵抗の変化を計測して、その歪を検出することが可能な歪検出用ゴム組成物(以下、単に「ゴム組成物」とも称する)からなる。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The strain sensor for rubber articles of the present invention contains a conductive particle, and measures a change in electrical resistance caused by strain caused by an external load, and can detect the strain. (Hereinafter, also simply referred to as “rubber composition”).

本発明においては、歪センサーを、導電性粒子を含有するゴム組成物からなるものとしたことで、歪センサーのゴム内において、粒子の接触による粒子連鎖の形成により導電性回路が形成されるため、外部からの力の作用によりゴムが歪んで内部構造が変化すると、電気抵抗も変化する。従って、この変化量を計測することにより歪と電気抵抗とを関連付けて、歪センサーに隣接するゴム物品の歪度合いを予測することが可能となる。   In the present invention, since the strain sensor is made of a rubber composition containing conductive particles, a conductive circuit is formed in the rubber of the strain sensor by forming a particle chain by contacting the particles. When the rubber is distorted by the action of external force and the internal structure changes, the electrical resistance also changes. Therefore, by measuring this amount of change, it is possible to correlate the strain with the electrical resistance and predict the strain level of the rubber article adjacent to the strain sensor.

より具体的には、導電性粒子を分散したゴムに外力を加えることにより導電性粒子はゴム内で均一に分散し、さらに、繰り返し歪を加えた場合、歪により電気抵抗値の減少が生ずる。即ち、サンプルを伸張させると、伸張に伴いサンプル内で形成されている導電性粒子のネットワーク(導電性回路)が破壊され、このため電気抵抗値は増加するが、その後、さらに引っ張り変形をサンプルに加えることで、導電性粒子の配向が起こり、これにより導電性回路が形成されて電気抵抗値が減少することになる。本発明におけるように大変形領域までの測定に対応可能な歪センサーを考えた場合、後者の挙動が支配的となるため、電気抵抗値の減少により歪の測定を行うことができるのである。本発明においては、この電気抵抗値と歪値との1対1の対応を利用して、歪センサーを設計している。   More specifically, by applying an external force to the rubber in which the conductive particles are dispersed, the conductive particles are uniformly dispersed in the rubber, and when repeated strain is applied, the electrical resistance value is reduced by the strain. That is, when the sample is stretched, the network of conductive particles (conducting circuit) formed in the sample is destroyed along with the stretching, so that the electric resistance value increases, but after that, tensile deformation is further applied to the sample. In addition, the orientation of the conductive particles occurs, whereby a conductive circuit is formed and the electric resistance value is reduced. When considering a strain sensor capable of measuring up to a large deformation region as in the present invention, the latter behavior becomes dominant, so that the strain can be measured by reducing the electric resistance value. In the present invention, the strain sensor is designed by utilizing the one-to-one correspondence between the electric resistance value and the strain value.

本発明の歪センサーに用いる歪検出用ゴム組成物は、少なくともゴム中に導電性粒子を含有する。ゴム種としては、特に制限されるものではなく、例えば、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、アクリロニトリル−ブタジエン共重合体ゴム(NBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、スチレンイソプレンゴム(SIR)、スチレンイソプレンブタジエンゴム(SIBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Hal−IIR)等を、用途により適宜選択して用いることが可能である。   The strain detecting rubber composition used in the strain sensor of the present invention contains at least conductive particles in the rubber. The rubber type is not particularly limited. For example, natural rubber (NR), styrene butadiene rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), butadiene rubber (BR), isoprene rubber (IR). Styrene isoprene rubber (SIR), styrene isoprene butadiene rubber (SIBR), butyl rubber (IIR), halogenated butyl rubber (Hal-IIR) and the like can be appropriately selected and used depending on the application.

また、導電性粒子についても特に制限はされないが、カーボンブラック、例えば、SAF、ISAF−HM、ISAF−LM、HAF−LS、HAF、HAF−HS、FEF、GPF、APF、SRF−LM、SRF−HM、MT等や、カーボンナノチューブなどを好適に挙げることができ、これらのうちから1種または2種以上を用途に応じて選択して用いることができる。また、導電性カーボンブラックやカーボンナノチューブを用いて歪センサーの精度を向上することが可能である。   The conductive particles are not particularly limited, but carbon black such as SAF, ISAF-HM, ISAF-LM, HAF-LS, HAF, HAF-HS, FEF, GPF, APF, SRF-LM, SRF- HM, MT and the like, carbon nanotubes and the like can be preferably mentioned, and one or more of these can be selected and used according to the application. In addition, the accuracy of the strain sensor can be improved by using conductive carbon black or carbon nanotubes.

本発明においては、導電性粒子の種類(粒径、ストラクチャー)やゴム種を変えることにより、様々な電気抵抗値を備える歪検出用ゴム組成物を作製することができるが、好ましくは、ゴム組成物の体積抵抗率を100〜106Ω・cmの範囲内とする。この範囲内の体積抵抗率を有するゴム組成物であると、絶縁状態である純ゴムと導体である金属との中間の体積抵抗率を取ることになるため、歪センサーとして利用するのに特に好適である。 In the present invention, a strain detecting rubber composition having various electric resistance values can be produced by changing the type (particle size, structure) of the conductive particles and the type of rubber. Preferably, the rubber composition The volume resistivity of the object is in the range of 10 0 to 10 6 Ω · cm. A rubber composition having a volume resistivity in this range is particularly suitable for use as a strain sensor because it takes an intermediate volume resistivity between pure rubber that is in an insulating state and a metal that is a conductor. It is.

また、導電性粒子の濃度(充填量)を選択することにより、種々の感度を有する歪センサーの設計が可能である。かかる導電性粒子の充填量については用途により選択可能であるが、特に導電性粒子としてカーボンブラックを用いる場合には、その充填量が、体積分率で10%を超えて30%未満の範囲となるようにすることが好ましい。カーボンブラックの充填量が体積分率で10%以下であると、ほぼ絶縁状態となり歪センサーとして利用できなくなる。一方、体積分率が30%以上であると、大変形の歪をかけることができず、大変形時まで計測可能なセンサーとして利用できない。なお、他の導電性粒子を用いる場合はこの限りではない。また、導電性粒子としてカーボンナノファイバー(CNF)や導電性カーボンブラックを用いると、配向の効果が顕著に現れるため、センサーの感度を向上させることができる。   In addition, by selecting the concentration (filling amount) of the conductive particles, it is possible to design a strain sensor having various sensitivities. The filling amount of the conductive particles can be selected depending on the application. Particularly when carbon black is used as the conductive particles, the filling amount is in the range of more than 10% and less than 30% in volume fraction. It is preferable to do so. When the filling amount of carbon black is 10% or less in volume fraction, the carbon black is almost insulated and cannot be used as a strain sensor. On the other hand, if the volume fraction is 30% or more, large deformation cannot be applied, and the sensor cannot be used as a sensor that can measure until large deformation. This is not the case when other conductive particles are used. In addition, when carbon nanofiber (CNF) or conductive carbon black is used as the conductive particles, the effect of orientation appears remarkably, so that the sensitivity of the sensor can be improved.

本発明に係るゴム組成物には、上記導電性粒子の他、通常ゴム工業において使用される配合剤を、本発明の目的を害しない範囲内で適宜選択して使用することができ、例えば、プロセスオイル、老化防止剤、加硫促進剤、ステアリン酸や亜鉛華等の加硫促進助剤、硫黄などの加硫剤などを必要に応じて適宜配合することができる。これらは、市販品を好適に使用可能である。   In the rubber composition according to the present invention, in addition to the above conductive particles, a compounding agent usually used in the rubber industry can be appropriately selected and used within a range not impairing the object of the present invention. Process oils, antioxidants, vulcanization accelerators, vulcanization accelerators such as stearic acid and zinc white, and vulcanizing agents such as sulfur can be appropriately blended as necessary. These can use a commercial item suitably.

本発明のゴム物品用歪センサーは、かかるゴム組成物の配合成分を、混練り、熱入れ、押出、加硫等することにより得ることができる。   The strain sensor for rubber articles of the present invention can be obtained by kneading, heating, extruding, vulcanizing, etc., the components of the rubber composition.

混練りの条件としては、特に制限はなく、混練り装置への投入体積、ローターの回転速度、ラム圧等、混練り温度、混練り時間、混練り装置の種類等の諸条件について、目的に応じて適宜選択することができる。混練り装置としては、例えば、通常ゴム組成物の混練りに用いられるバンバリーミキサー、インターミックス、ニーダー等が挙げられる。   The kneading conditions are not particularly limited, and various conditions such as the input volume to the kneading apparatus, the rotational speed of the rotor, the ram pressure, the kneading temperature, the kneading time, the type of the kneading apparatus, etc. It can be appropriately selected depending on the case. Examples of the kneading apparatus include a Banbury mixer, an intermix, a kneader and the like that are usually used for kneading a rubber composition.

熱入れの条件としては、特に制限はなく、熱入れ温度、熱入れ時間、熱入れ装置等の諸条件について目的に応じて適宜選択することができる。熱入れ装置としては、例えば、通常ゴム組成物の熱入れに用いるロール機等が挙げられる。   The heating conditions are not particularly limited, and various conditions such as the heating temperature, the heating time, and the heating apparatus can be appropriately selected according to the purpose. As a heating apparatus, the roll machine etc. which are normally used for the heating of a rubber composition are mentioned, for example.

押出しの条件としては、特に制限はなく、押出し時間、押出し速度、押出し装置、押出し温度等の諸条件について目的に応じて適宜選択することができる。   Extrusion conditions are not particularly limited, and various conditions such as extrusion time, extrusion speed, extrusion apparatus, and extrusion temperature can be appropriately selected according to the purpose.

加硫を行う装置、方式、条件等については、特に制限はなく、目的に応じて適宜選択することができる。加硫温度は、通常、100〜190℃程度である。   There is no restriction | limiting in particular about the apparatus, system, conditions, etc. which perform a vulcanization | cure, According to the objective, it can select suitably. The vulcanization temperature is usually about 100 to 190 ° C.

本発明のゴム物品用歪センサーによれば、上記のように適宜ゴム配合を調整することで、0〜数百%までの歪、より具体的には、0.1〜500%の範囲内の歪の計測を行うことが可能である。本発明のゴム物品用歪センサーは、ゴム物品全般に適用することが可能であるが、特に、タイヤ用として好適に用いることができる。なお、本発明の歪センサーの具体的な使用方法としては、例えば、タイヤ用として用いる場合には、タイヤ内面に、合成ゴム系やシリコーン系等の接着剤を用いて歪センサーを貼り付けて、貼り付け箇所の歪を連続的に計測すればよい。   According to the strain sensor for rubber articles of the present invention, by appropriately adjusting the rubber compounding as described above, the strain is 0 to several hundred percent, more specifically, within the range of 0.1 to 500%. It is possible to measure strain. Although the strain sensor for rubber articles of the present invention can be applied to rubber articles in general, it can be suitably used particularly for tires. In addition, as a specific method of using the strain sensor of the present invention, for example, when used for tires, the strain sensor is attached to the tire inner surface using an adhesive such as a synthetic rubber or silicone, What is necessary is just to measure the distortion of a sticking location continuously.

以下、本発明を、実施例を用いてより詳細に説明する。
(導電性粒子の種類および配合量と抵抗値との関係)
下記の表1中に示すゴム配合において、充填剤の種類および配合量(体積分率VCB)を変えてゴム組成物を調製し、それぞれ歪センサーサンプルを作製して、体積抵抗率を測定した。測定は、具体的には、図1に示すようにして行った。即ち、まず、チャック部1によりサンプル10を挟持して、伸張させた状態で停止させ、その後、両端チャック1間に電流を流して、ブラス製のクリップ2でサンプル10を挟み、電圧の測定を行った。測定は、伸張比にかかわらず一定箇所で行い、得られた電圧値から、オームの法則に従い、各サンプルの電気抵抗値を求めた。その結果を、図2に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Relationship between type and amount of conductive particles and resistance)
In the rubber blending shown in Table 1 below, rubber compositions were prepared by changing the type and blending amount (volume fraction V CB ) of the filler, and each strain sensor sample was prepared and the volume resistivity was measured. . Specifically, the measurement was performed as shown in FIG. That is, first, the sample 10 is clamped by the chuck 1 and stopped in an extended state, and then a current is passed between the chucks 1 at both ends, and the sample 10 is clamped by the brass clip 2 to measure the voltage. went. The measurement was performed at a constant location regardless of the stretch ratio, and the electric resistance value of each sample was obtained from the obtained voltage value according to Ohm's law. The result is shown in FIG.

Figure 2006208052
*1)SMR CV60
*2)HPPD:ヘキシルフェニル p−フェニレンジアミン(N−(1,3−ジメチルブチル)−N’−フェニレンジアミン)、6C
*3)CBS:大内新興化学(株)製 商品名ノクセラーCZ、N−シクロへキシル−2−ベンゾチアジルスルフェンアミド
Figure 2006208052
* 1) SMR CV60
* 2) HPPD: hexylphenyl p-phenylenediamine (N- (1,3-dimethylbutyl) -N′-phenylenediamine), 6C
* 3) CBS: Ouchi Shinsei Chemical Co., Ltd. Product name Noxeller CZ, N-cyclohexyl-2-benzothiazylsulfenamide

図2に示すように、導電性粒子の種類を変えることにより、体積分率VCBに対する体積抵抗率は変化している。従って、導電性粒子の種類により、歪センサーとして利用可能な体積抵抗率(100〜106Ω・cm)を実現するために必要な導電性粒子の配合量は異なることがわかる。 As shown in FIG. 2, the volume resistivity with respect to the volume fraction V CB is changed by changing the kind of the conductive particles. Therefore, it can be seen that the blending amount of the conductive particles required to realize the volume resistivity (10 0 to 10 6 Ω · cm) that can be used as a strain sensor differs depending on the type of the conductive particles.

(実施例1,2)
次に、下記の表2に示すゴム配合のゴム組成物を調製し、それぞれ歪センサーサンプルを作製して、0,20,50,100%伸張時の体積抵抗率および破断時伸びEbを夫々測定した。その結果を、下記の表2中に併せて示す。
(Examples 1 and 2)
Next, rubber compositions containing rubber shown in Table 2 below were prepared, strain sensor samples were prepared, and volume resistivity at 0, 20, 50, and 100% elongation and elongation at break Eb were measured. did. The results are also shown in Table 2 below.

Figure 2006208052
*4)HAF:N330
Figure 2006208052
* 4) HAF: N330

上記表2中に示すように、カーボンブラックの体積分率VCBが10%を超えて30%未満である実施例1,2のサンプルは、歪の増加に伴い電気抵抗が一義的に減少しており、かつ、破断時伸びEbが大きいことから、歪センサーとして有効であることが確かめられた。また、ここでは示さないが、カーボンブラックの体積分率VCBが10%以下であると、絶縁状態となって歪みセンサーには適さず、また、体積分率が30%以上であると、破断時伸びEbが小さすぎて、大変形時の歪センサーとしての機能が失われることも確認された。 As shown in Table 2 above, in the samples of Examples 1 and 2 in which the volume fraction V CB of the carbon black is more than 10% and less than 30%, the electric resistance is unambiguously reduced as the strain increases. In addition, since the elongation at break Eb was large, it was confirmed that it was effective as a strain sensor. Although not shown here, if the volume fraction V CB of carbon black is 10% or less, it becomes insulative and unsuitable for a strain sensor, and if the volume fraction is 30% or more, it breaks. It was also confirmed that the function as a strain sensor at the time of large deformation was lost because the time elongation Eb was too small.

電気抵抗値の測定方法を示す概略説明図である。It is a schematic explanatory drawing which shows the measuring method of an electrical resistance value. 導電性粒子の種類および配合量と体積抵抗率との関係を示すグラフである。It is a graph which shows the relationship between the kind and compounding quantity of electroconductive particle, and volume resistivity.

符号の説明Explanation of symbols

1 チャック部
2 クリップ
10 サンプル
1 Chuck part 2 Clip 10 Sample

Claims (6)

導電性粒子を含有し、外的負荷に伴い生ずる歪により引き起こされる電気抵抗の変化を計測して、該歪を検出することが可能な歪検出用ゴム組成物からなることを特徴とするゴム物品用歪センサー。   A rubber article comprising a rubber composition for strain detection which contains conductive particles and which can detect the strain by measuring a change in electrical resistance caused by the strain caused by an external load. Strain sensor. タイヤ用に用いられる請求項1記載のゴム物品用歪センサー。   The strain sensor for rubber articles according to claim 1, which is used for tires. 前記導電性粒子がカーボンブラックである請求項1または2記載のゴム物品用歪センサー。   The strain sensor for rubber articles according to claim 1 or 2, wherein the conductive particles are carbon black. 前記導電性粒子の体積分率が、10%を超えて30%未満の範囲内である請求項1〜3のうちいずれか一項記載のゴム物品用歪センサー。   The strain sensor for rubber articles according to any one of claims 1 to 3, wherein a volume fraction of the conductive particles is in a range of more than 10% and less than 30%. 前記歪検出用ゴム組成物の体積抵抗率が100〜106Ω・cmの範囲内である請求項1〜4のうちいずれか一項記載のゴム物品用歪センサー。 The strain sensor for rubber articles according to any one of claims 1 to 4, wherein a volume resistivity of the rubber composition for strain detection is in a range of 10 0 to 10 6 Ω · cm. 前記歪の検出範囲が0.1〜500%の範囲内である請求項1〜5のうちいずれか一項記載のゴム物品用歪センサー。   The strain sensor for rubber articles according to any one of claims 1 to 5, wherein a detection range of the strain is in a range of 0.1 to 500%.
JP2005017216A 2005-01-25 2005-01-25 Distortion sensor for rubber article Pending JP2006208052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017216A JP2006208052A (en) 2005-01-25 2005-01-25 Distortion sensor for rubber article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005017216A JP2006208052A (en) 2005-01-25 2005-01-25 Distortion sensor for rubber article

Publications (1)

Publication Number Publication Date
JP2006208052A true JP2006208052A (en) 2006-08-10

Family

ID=36965096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017216A Pending JP2006208052A (en) 2005-01-25 2005-01-25 Distortion sensor for rubber article

Country Status (1)

Country Link
JP (1) JP2006208052A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037906A (en) * 2006-08-02 2008-02-21 Shinshu Univ Rubber material and strain sensor by using the same
JP2008249621A (en) * 2007-03-30 2008-10-16 Yokohama Rubber Co Ltd:The Deformation behavior measuring method for tire reinforcement layer
JP2008249567A (en) * 2007-03-30 2008-10-16 Yokohama Rubber Co Ltd:The Deformation measuring method for pneumatic tire
WO2023079858A1 (en) * 2021-11-05 2023-05-11 株式会社ブリヂストン Conductive rubber composition for sensing

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558504A (en) * 1978-10-25 1980-05-01 Japan Synthetic Rubber Co Ltd Pressureesensitive resistor
JPS62281304A (en) * 1986-05-29 1987-12-07 三ツ星ベルト株式会社 Strain-sensitive conductive rubber material
JPS63242704A (en) * 1987-03-30 1988-10-07 Nec Home Electronics Ltd Tire lateral force sensor
JPH01113601A (en) * 1987-10-28 1989-05-02 Kyowa Electron Instr Co Ltd High temperature strain gage and structure for attachment
JPH07201510A (en) * 1993-12-28 1995-08-04 Toshiba Silicone Co Ltd Elastic resistor
JPH08327309A (en) * 1995-03-27 1996-12-13 Yokohama Rubber Co Ltd:The Strain-measuring apparatus
JPH095014A (en) * 1995-06-19 1997-01-10 Hirano Denshi:Kk Bend sensor
JPH10141910A (en) * 1996-11-15 1998-05-29 Yokohama Rubber Co Ltd:The Strain measuring instrument
JPH1130571A (en) * 1997-07-11 1999-02-02 Shimizu Corp Soundness judging device for structure
JPH11100512A (en) * 1997-09-26 1999-04-13 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition
JPH11241903A (en) * 1997-12-26 1999-09-07 Toyoaki Kimura Strain sensor by conductive particle-polymer system
JP2000275018A (en) * 1999-03-24 2000-10-06 Mitsubishi Heavy Ind Ltd Method and apparatus for measuring deformation
JP2001184964A (en) * 1999-12-27 2001-07-06 Shin Etsu Polymer Co Ltd Rubber contact member
JP2002087032A (en) * 2000-09-13 2002-03-26 Bridgestone Corp Hydroplaning detecting method, hydroplaning detecting device and vehicle control system
JP2002309090A (en) * 2001-04-10 2002-10-23 Shin Etsu Chem Co Ltd Semiconductive silicone rubber composition
JP2003176418A (en) * 2002-10-07 2003-06-24 Alps Electric Co Ltd Electrically conductive resin composition
JP2004331009A (en) * 2003-05-12 2004-11-25 Toyota Motor Corp Tire state quantity detecting method and tire state quantity detecting device
JP2004331011A (en) * 2003-05-12 2004-11-25 Toyota Motor Corp Wheel information processor and the wheel information processing method
JP2005523192A (en) * 2002-03-28 2005-08-04 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ Method and system for monitoring tires during vehicle travel
JP2005337819A (en) * 2004-05-25 2005-12-08 Japan Fine Ceramics Center Strain sensor, its manufacturing method, and strain detection method

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558504A (en) * 1978-10-25 1980-05-01 Japan Synthetic Rubber Co Ltd Pressureesensitive resistor
JPS62281304A (en) * 1986-05-29 1987-12-07 三ツ星ベルト株式会社 Strain-sensitive conductive rubber material
JPS63242704A (en) * 1987-03-30 1988-10-07 Nec Home Electronics Ltd Tire lateral force sensor
JPH01113601A (en) * 1987-10-28 1989-05-02 Kyowa Electron Instr Co Ltd High temperature strain gage and structure for attachment
JPH07201510A (en) * 1993-12-28 1995-08-04 Toshiba Silicone Co Ltd Elastic resistor
JPH08327309A (en) * 1995-03-27 1996-12-13 Yokohama Rubber Co Ltd:The Strain-measuring apparatus
JPH095014A (en) * 1995-06-19 1997-01-10 Hirano Denshi:Kk Bend sensor
JPH10141910A (en) * 1996-11-15 1998-05-29 Yokohama Rubber Co Ltd:The Strain measuring instrument
JPH1130571A (en) * 1997-07-11 1999-02-02 Shimizu Corp Soundness judging device for structure
JPH11100512A (en) * 1997-09-26 1999-04-13 Yokohama Rubber Co Ltd:The Thermoplastic elastomer composition
JPH11241903A (en) * 1997-12-26 1999-09-07 Toyoaki Kimura Strain sensor by conductive particle-polymer system
JP2000275018A (en) * 1999-03-24 2000-10-06 Mitsubishi Heavy Ind Ltd Method and apparatus for measuring deformation
JP2001184964A (en) * 1999-12-27 2001-07-06 Shin Etsu Polymer Co Ltd Rubber contact member
JP2002087032A (en) * 2000-09-13 2002-03-26 Bridgestone Corp Hydroplaning detecting method, hydroplaning detecting device and vehicle control system
JP2002309090A (en) * 2001-04-10 2002-10-23 Shin Etsu Chem Co Ltd Semiconductive silicone rubber composition
JP2005523192A (en) * 2002-03-28 2005-08-04 ピレリ・プネウマティチ・ソチエタ・ペル・アツィオーニ Method and system for monitoring tires during vehicle travel
JP2003176418A (en) * 2002-10-07 2003-06-24 Alps Electric Co Ltd Electrically conductive resin composition
JP2004331009A (en) * 2003-05-12 2004-11-25 Toyota Motor Corp Tire state quantity detecting method and tire state quantity detecting device
JP2004331011A (en) * 2003-05-12 2004-11-25 Toyota Motor Corp Wheel information processor and the wheel information processing method
JP2005337819A (en) * 2004-05-25 2005-12-08 Japan Fine Ceramics Center Strain sensor, its manufacturing method, and strain detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037906A (en) * 2006-08-02 2008-02-21 Shinshu Univ Rubber material and strain sensor by using the same
JP2008249621A (en) * 2007-03-30 2008-10-16 Yokohama Rubber Co Ltd:The Deformation behavior measuring method for tire reinforcement layer
JP2008249567A (en) * 2007-03-30 2008-10-16 Yokohama Rubber Co Ltd:The Deformation measuring method for pneumatic tire
WO2023079858A1 (en) * 2021-11-05 2023-05-11 株式会社ブリヂストン Conductive rubber composition for sensing

Similar Documents

Publication Publication Date Title
Narongthong et al. An efficient highly flexible strain sensor: Enhanced electrical conductivity, piezoresistivity and flexibility of a strongly piezoresistive composite based on conductive carbon black and an ionic liquid
Selvan et al. Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications
Mahmoud et al. Butadiene acrylonitrile rubber loaded fast extrusion furnace black as a compressive strain and pressure sensors
US20100139413A1 (en) Strain sensor and corresponding sensor arrangement
Costa et al. Effect of carbon nanotube type and functionalization on the electrical, thermal, mechanical and electromechanical properties of carbon nanotube/styrene–butadiene–styrene composites for large strain sensor applications
Costa et al. Extruded thermoplastic elastomers styrene–butadiene–styrene/carbon nanotubes composites for strain sensor applications
Narongthong et al. Ionic liquid enabled electrical-strain tuning capability of carbon black based conductive polymer composites for small-strain sensors and stretchable conductors
US7563393B2 (en) Crosslinked elastomer body for sensor, and production method therefor
Costa et al. Mechanical vs. electrical hysteresis of carbon nanotube/styrene–butadiene–styrene composites and their influence in the electromechanical response
JP2007230261A (en) Rubber-covered rfid module and pneumatic tire burying it
JP5792764B2 (en) Rubber composition for tire and pneumatic tire
Park et al. Effect of carbon nanotubes with different lengths on mechanical and electrical properties of silica-filled styrene butadiene rubber compounds
Le et al. Formation and stability of carbon nanotube network in natural rubber: Effect of non-rubber components
JP2006208052A (en) Distortion sensor for rubber article
Bhagavatheswaran et al. High-performance elastomeric strain sensors based on nanostructured carbon fillers for potential tire applications
JP2006208051A (en) Distortion sensor for rubber article
Deniz et al. Prevulcanized natural rubber and carbon black: High-deformation piezoresistive composites
JP2014156667A (en) Steel cord - rubber composite
KR102548830B1 (en) Tire electrode and mobile defect position insepction device including the same
Krajči et al. Relationship between conductivity and stress–strain curve of electroconductive composite with SBR or polycaprolactone matrices
JP5085298B2 (en) Conductive composite particles, elastomer composites, and deformation sensors
JP2009102630A (en) Rubber composition
JP2014218556A (en) Rubber composition for tire and pneumatic tire
JP2006117784A (en) Cushion solid tire
KR102337448B1 (en) Tire composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A131 Notification of reasons for refusal

Effective date: 20100319

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102