JP2006207451A - 燃料ポンプ及びその燃料ポンプに備えられる吐出弁 - Google Patents

燃料ポンプ及びその燃料ポンプに備えられる吐出弁 Download PDF

Info

Publication number
JP2006207451A
JP2006207451A JP2005019807A JP2005019807A JP2006207451A JP 2006207451 A JP2006207451 A JP 2006207451A JP 2005019807 A JP2005019807 A JP 2005019807A JP 2005019807 A JP2005019807 A JP 2005019807A JP 2006207451 A JP2006207451 A JP 2006207451A
Authority
JP
Japan
Prior art keywords
fuel
pressure
valve
spring
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005019807A
Other languages
English (en)
Inventor
Shinya Furusawa
真也 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005019807A priority Critical patent/JP2006207451A/ja
Publication of JP2006207451A publication Critical patent/JP2006207451A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

【課題】 スプリングによってバルブ閉鎖方向の付勢力を得るチェック弁を備えた燃料ポンプに対し、ポンプ内燃料圧力のオーバシュートの抑制及び吐出燃料の逆流の防止を図る。
【解決手段】 高圧燃料ポンプ1のチェック弁40に備えられてバルブ体43を閉弁方向に付勢するコイルスプリング44を不等ピッチコイルスプリングにより構成する。これにより、吐出行程の初期時にはバネ定数の小さい部分が弾性変形し、バルブ体43が迅速に移動して加圧室22を開放して燃料圧力のオーバシュートを小さくする。その後、バネ定数の大きい部分が弾性変形し、バルブ体43のリフト量が抑えられ、吐出行程の完了と略同時にチェック弁40を閉鎖することができて、加圧室22内に向けての高圧燃料の逆流が回避できる。
【選択図】 図3

Description

本発明は、例えば筒内直噴型エンジン等の内燃機関に適用され、燃料噴射弁(インジェクタ)に向けて高圧燃料を供給するための燃料ポンプ及びその燃料ポンプの吐出部分に備えられる吐出弁に係る。特に、本発明は、ポンプ内燃料圧力のオーバシュートの抑制及び燃料の逆流防止を図るための対策に関する。
従来より、例えば筒内直噴型エンジンのようにインジェクタへ供給する燃料に高い圧力が要求されるエンジンにあっては、燃料タンクから送られてきた燃料を高圧燃料ポンプで加圧してインジェクタに向けて供給するようになっている。
具体的に、この種のエンジンにおける燃料供給系の構成としては、下記の特許文献1にも開示されているように、燃料タンクから燃料を送り出すフィードポンプ、このフィードポンプによって送り出された燃料を加圧する高圧燃料ポンプを備えている。そして、この高圧燃料ポンプによって加圧された燃料を、複数のインジェクタが接続されたデリバリパイプに貯留するようになっている。これにより、インジェクタの開弁動作に伴って、デリバリパイプに貯留されている高圧燃料が、その開弁されたインジェクタから燃焼室に向けて噴射されることになる。
また、この種のエンジンの燃料供給系に備えられる上記高圧燃料ポンプは、下記の特許文献2にも開示されているように、シリンダ内で往復移動するプランジャと、そのプランジャ及びシリンダによって区画形成される加圧室と、この加圧室の吐出側に配設された吐出弁(チェック弁)とを備えている。そして、シリンダ内でのプランジャの往復移動により加圧室の容積が変化し、この容積の拡大時に加圧室に燃料が吸入される一方、この容積の縮小時の所定タイミングで吐出弁が開放してデリバリパイプに向けて高圧燃料が圧送されるようになっている。
具体的には、この高圧燃料ポンプには加圧室の内外を連通・遮断する電磁スピル弁が設けられており、燃料圧送行程では、シリンダ内でのプランジャの移動により加圧室が縮小していく。そして、この加圧行程中において電磁スピル弁が開弁されている間は、加圧室から燃料が流出(フィードポンプ側へ流出)するため、デリバリパイプに向けての燃料圧送は行われない。これに対し、この加圧行程中に電磁スピル弁が閉弁されると、この加圧室内の圧力(燃料圧力)が上昇していき、この圧力による力が、吐出弁の弁体(以下、バルブ体という)を閉鎖方向に付勢しているコイルスプリングの付勢力とデリバリパイプ内の燃料圧力とを足し合わせた合力を上回ると吐出弁が開動作を開始し、電磁スピル弁の閉弁期間中にデリバリパイプに向けての燃料圧送が行われる。このように、加圧行程中における電磁スピル弁の閉弁期間を制御することによって、高圧燃料ポンプからデリバリパイプへの燃料圧送量が調整されるようになっている。
特開2000−110685号公報 特開2003−65185号公報
ところで、上述したように高圧燃料ポンプにあっては、吐出弁のバルブ体をコイルスプリングによって閉鎖方向に付勢しているため、加圧室内の圧力がコイルスプリングの付勢力とデリバリパイプ内の燃料圧力とを足し合わせた合力を上回ったとしても、バルブ体の慣性力や圧損の作用により、瞬時(加圧室内の圧力がコイルスプリングの付勢力を上回る
のと同時)に吐出弁が所定開度まで開放されるといったことはない。つまり、加圧室内の圧力がコイルスプリングの付勢力とデリバリパイプ内の燃料圧力とを足し合わせた合力を上回った後、僅かな遅れをもって吐出弁の開放動作が開始されたり、徐々に吐出弁が開放されていくといった状況になる。
図6は、この際の加圧室内の燃料圧力(燃圧)とバルブ体の移動量(吐出弁の開度)との関係を示している。上述した如くバルブ体に慣性力や圧損があるために、加圧室内の圧力が所定圧に達したとしても瞬時に吐出弁が所定開度まで開放することはなく、僅かな遅れをもってまたは徐々に開放動作が行われることになる。また、この加圧室内の圧力が所定圧に達した以降であっても吐出弁の開度が未だ小さい状況では、バルブ体とバルブシートとの間に圧力損失が生じており、加圧室内の圧力が瞬時に開放されるといったことはない。その結果、図6に示すように、一時的に加圧室内の燃料圧力がオーバシュートしてしまうことになる(図6における点A参照)。特に、エンジンの高速回転域にあっては、それに伴うプランジャの高速往復移動にバルブ体が追従できなくなり、上記燃料圧力のオーバシュートは顕著に現れる。また、大排気量エンジンに適用される高圧燃料ポンプにあっては、ポンプ容積を可能な限り小さくしながらも単位時間当たりの燃料吐出量を大きく確保する必要があることから、昇圧カーブ(吐出期間初期時の燃圧の立ち上がり)が急峻になるように設計されており、これによってもオーバシュートは顕著に現れることになる。
このように加圧室内の燃料圧力がオーバシュートしてしまうため、これまでの高圧燃料ポンプには以下の課題があった。つまり、上記プランジャを往復動させるための駆動力を与えているカムとプランジャ底部との接触力が著しく高くなって摩擦損失や潤滑不良が生じてしまう可能性があった。また、高圧燃料ポンプの各シール部分のシール性能もオーバシュート圧力に耐え得るように高くしておく必要があった。つまり、これまでの高圧燃料ポンプでは、設計燃料圧力P(例えば上記13MPa)よりも大幅に高い燃料圧力に耐え得るように設計しておく(オーバスペックで設計しておく)必要があり、高圧燃料ポンプの大型化、重量及び部品点数の増大、製造コストの高騰を招くものとなっていた。
この課題を解決するための手法として、上記コイルスプリングの付勢力を予め低く設定しておく(バネ定数の小さいものを採用する)ことで加圧室内圧力のオーバシュートを回避することが考えられる。ところが、これでは、バルブ体のリフト量が増大することに繋がるため、吐出行程の完了後、迅速な閉弁動作が行われず、高圧燃料が加圧室内に向けて逆流(吹き戻し)してしまう可能性があり、高圧燃料ポンプの吐出効率を低下させてしまい好ましくない。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、スプリングによってバルブ閉鎖方向の付勢力を得る吐出弁を備えた燃料ポンプに対し、ポンプ内燃料圧力のオーバシュートの抑制及び吐出燃料の逆流の防止を図ることにある。
上記の目的を達成するために講じられた本発明の解決手段は、燃料を加圧する加圧室と、この加圧室の吐出側に配設され且つスプリングによって閉弁方向への付勢力が与えられた弁体を有する吐出弁とを備え、加圧室内の圧力が所定圧力以上に達した場合に上記スプリングの付勢力に抗して弁体が移動して加圧室から燃料が圧送される構成とされた燃料ポンプを前提とする。この燃料ポンプに対し、上記スプリングを、閉鎖位置にある弁体が開放方向に移動する移動初期における弁体に対する付勢力が、弁体が開放方向に所定量以上移動した際における弁体に対する付勢力よりも小さくなるように互いにバネ定数の異なる部分を備えた構成としている。
この特定事項により、燃料ポンプの燃料吐出時に、加圧室内の圧力が所定圧力以上に達
すると、スプリングの付勢力に抗して弁体が移動して加圧室から燃料が圧送されることになる。この吐出動作の際、加圧室から弁体に作用する燃料圧力によって、先ず、スプリングのうちバネ定数の小さい部分が弾性変形することになる。このため、加圧室内の圧力が所定圧力に達するのと同時に弁体はスプリングの付勢力(比較的低い付勢力)に抗して迅速に移動して加圧室を開放する。このようにして吐出弁の開度が瞬時に大きく得られるため、加圧室内の燃料圧力がオーバシュートすることが少ない。その後、この弁体の移動に伴い、スプリングのうちバネ定数の大きい部分が弾性変形することになる。この場合には、弁体は比較的大きな反力を受け、弁体の移動量(リフト量)は抑えられることになって、吐出行程の完了後には迅速な閉弁動作が行われる。このため、吐出行程の完了と略同時に吐出弁を閉鎖することができ、加圧室内に向けての高圧燃料の逆流(吹き戻し)が確実に回避される。
上記機能を発揮するためのスプリングの具体構成として、不等ピッチまたは多段ピッチのコイルスプリングにより構成されていることが掲げられる。これにより、比較的容易に、上記機能を発揮するスプリングを作製することができ、上記効果を得るための構成を簡単な製作作業で且つ低コストで実現することができる。
また、上記燃料ポンプが内燃機関の燃料供給系に適用された場合の形態として具体的には、燃料タンクから燃料を送り出すフィードポンプが燃料ポンプの吸入側に接続される一方、複数の燃料噴射弁が接続された蓄圧容器が燃料ポンプの吐出側に接続される。そして、フィードポンプから供給された燃料を、燃料ポンプが上記燃料噴射弁の噴射圧力まで昇圧させて蓄圧容器に圧送する構成としている。これは、特に、筒内直噴型内燃機関等のように燃料噴射弁(インジェクタ)へ供給する燃料に高い圧力が要求されるものに適用された形態であり、上述した如く高圧燃料の逆流が回避されていることにより蓄圧容器の燃料圧力が良好に維持されることになる。
尚、上記各解決手段に係る燃料ポンプに備えられる吐出弁も本発明の技術的思想の範疇である。つまり、スプリングからの付勢力によってバルブシートに押圧されて加圧室を閉鎖する弁体を備え、加圧室内の圧力が所定圧力以上に達した場合に上記スプリングの付勢力に抗して弁体が移動して加圧室を開放するようになっている一方、上記スプリングが、不等ピッチまたは多段ピッチのコイルスプリングにより構成されて、バルブシートに押圧された閉鎖位置にある弁体が開放方向に移動する移動初期における弁体に対する付勢力が、弁体が開放方向に所定量以上移動した際における弁体に対する付勢力よりも小さくなるように構成された吐出弁である。
本発明では、燃料ポンプの吐出弁に備えられて弁体を閉弁方向に付勢するスプリングに、互いにバネ定数の異なる部分を備えさせたことにより、吐出行程の初期時にはバネ定数の小さい部分が弾性変形して弁体が迅速に移動し加圧室を開放して燃料圧力のオーバシュートを小さくできる。このため、燃料圧力のオーバシュートを考慮して設計燃料圧力よりも大幅に高い燃料圧力に耐え得るように燃料ポンプを設計しておく必要がなくなり、燃料ポンプの小型化、重量の軽減、部品点数の削減、製造コストの低廉化を図ることができる。また、吐出行程の後期には、スプリングのうちバネ定数の大きい部分が弾性変形することになるため、弁体のリフト量が抑えられて吐出行程の完了と略同時に吐出弁を閉鎖することができ、加圧室内に向けての高圧燃料の逆流を回避することができて燃料ポンプの吐出効率を高く維持することができる。
以下、本発明の実施の形態を図面に基づいて説明する。本実施形態では、自動車に搭載された筒内直噴型多気筒(例えば4気筒)ガソリンエンジンに使用される高圧燃料ポンプ
に本発明を適用した場合について説明する。
−燃料供給装置100−
高圧燃料ポンプの具体構成について説明する前に、この高圧燃料ポンプが適用される燃料供給装置100の概略構成について説明する。図1は本実施形態における燃料供給装置100の構造を模式的に示す図である。この図1に示すように、燃料供給装置100は、燃料タンク101から燃料を送り出すフィードポンプ102と、そのフィードポンプ102によって送り出された燃料を加圧して各気筒(4気筒)の燃料噴射弁4,4,…に向けて吐出する高圧燃料ポンプ1とを備えている。
上記高圧燃料ポンプ1の概略構成としては(具体構成については、後で図3及び図4を用いて説明する)、シリンダ21、プランジャ23、加圧室22及び電磁スピル弁30を備えている。プランジャ23は、エンジンの排気カムシャフト110に取り付けられた駆動カム111の回転によって駆動され、シリンダ21内を往復移動する。このプランジャ23の往復移動により加圧室22の容積が拡大または縮小する。本実施形態では、排気カムシャフト110の回転軸回りに180°の角度間隔をもって2つのカム山(カムノーズ)112,112が駆動カム111に形成されている。そして、このカムノーズ112,112によってプランジャ23が押し上げられて、このプランジャ23がシリンダ21内で移動するようになっている。尚、本実施形態に係るエンジンは4気筒型であるため、エンジンの1サイクル中、つまりクランクシャフトが2回転する間に、気筒毎に設けられた燃料噴射弁4から各1回ずつ、合計4回の燃料噴射が行われることになる。また、このエンジンでは、クランクシャフトが2回転する度に排気カムシャフト110は1回転する。よって、燃料噴射弁4からの燃料噴射は4回ずつ、高圧燃料ポンプ1からの吐出動作は2回ずつ、エンジンの1サイクル毎に行われるようになっている。
上記加圧室22はプランジャ23及びシリンダ21によって区画されている。この加圧室22は、低圧燃料配管104を介してフィードポンプ102に連通しており、また、高圧燃料配管105を介してデリバリパイプ(蓄圧容器)106内に連通している。
このデリバリパイプ106には、上記燃料噴射弁4,4,…が接続されていると共に、デリバリパイプ106内の燃料圧力(実燃圧)を検出する燃圧センサ161が配設されている。また、このデリバリパイプ106には、リリーフバルブ171を介してリターン配管172が接続されている。このリリーフバルブ171は、デリバリパイプ106内の燃料圧力が所定圧(例えば13MPa)を越えたときに開弁する。この開弁により、デリバリパイプ106に蓄えられた燃料の一部をリターン配管172を介して燃料タンク101に戻すようになっている。これにより、デリバリパイプ106内の燃料圧力の過上昇が防止される。また、上記リターン配管172と高圧燃料ポンプ1とは、余剰燃料戻し配管108(図1では破線で示している)によって接続されており、プランジャ23とシリンダ21との間隙から漏出した燃料がオイルシール2Aの上部の燃料収容室2Bに蓄積され、その後、この燃料収容室2Bに接続された上記余剰燃料戻し配管108に戻される。
尚、低圧燃料配管104には、フィルタ141及びプレッシャレギュレータ142が設けられている。このプレッシャレギュレータ142は、低圧燃料配管104内の燃料圧力が所定圧(例えば0.4MPa)を越えたときに低圧燃料配管104内の燃料を燃料タンク101に戻すことによって、この低圧燃料配管104内の燃料圧力を所定圧以下に維持している。また、低圧燃料配管104には、パルセーションダンパ107が備えられており、このパルセーションダンパ107によって高圧燃料ポンプ1の作動時における低圧燃料配管104内の燃圧脈動が抑制されるようになっている。また、高圧燃料配管105には、高圧燃料ポンプ1から吐出された燃料が逆流することを阻止するための逆止弁151が設けられている。
上記高圧燃料ポンプ1には、低圧燃料配管104と加圧室22との間を連通または遮断するための上記電磁スピル弁30が設けられている。この電磁スピル弁30は、電磁ソレノイド31を備えており、その電磁ソレノイド31への通電を制御することにより開閉動作する。電磁スピル弁30は、電磁ソレノイド31への通電が停止されているときにはコイルスプリング37の弾性力によって開弁する。以下、この電磁スピル弁30の開閉動作について図2を参照しながら説明する。
先ず、電磁ソレノイド31に対する通電が停止された状態のときには、電磁スピル弁30がコイルスプリング37の弾性力によって開弁し、低圧燃料配管104と加圧室22とが連通した状態になる。この状態において、加圧室22の容積が増大する方向にプランジャ23が移動するとき(吸入行程)には、フィードポンプ102から送り出された燃料が低圧燃料配管104を経て加圧室22内に吸入される。
一方、加圧室22の容積が収縮する方向にプランジャ23が移動するとき(加圧行程)において、電磁ソレノイド31への通電により電磁スピル弁30がコイルスプリング37の弾性力に抗して閉弁すると、低圧燃料配管104と加圧室22との間が遮断され、加圧室22内の燃料圧力が所定値に達した時点でチェック弁40が開放して、高圧の燃料が高圧燃料配管105を通じてデリバリパイプ106に向けて吐出される。
そして、高圧燃料ポンプ1における燃料吐出量の調整は、電磁スピル弁30の閉弁開始時期を制御し、加圧行程での電磁スピル弁30の閉弁期間を調整することによって行われる。即ち、電磁スピル弁30の閉弁開始時期を早めて閉弁期間を長くすると燃料吐出量が増加し、電磁スピル弁30の閉弁開始時期を遅らせて閉弁期間を短くすると燃料吐出量が減少するようになる。このように、高圧燃料ポンプ1の燃料吐出量を調整することにより、デリバリパイプ106内の燃料圧力が制御される。
ここで、高圧燃料ポンプ1の燃料吐出量(電磁スピル弁30の閉弁開始時期)を制御するための制御量であるポンプデューティDTについて説明する。
このポンプデューティDTは、0〜100%という値の間で変化する値であって、電磁スピル弁30の閉弁期間に対応する排気カムシャフト110の駆動カム111のカム角度に関係した値である。
具体的には、駆動カム111のカム角度に関して、図2に示すように、電磁スピル弁30の最大閉弁期間に対応したカム角度(最大カム角度)をθ0とし、その最大閉弁期間の目標燃圧に対応するカム角度(目標カム角度)をθとすると、ポンプデューティDTは、最大カム角度θ0に対する目標カム角度θの割合(DT=θ/θ0)で表される。従って、ポンプデューティDTは、目標とする電磁スピル弁30の閉弁期間(閉弁開始時期)が最大閉弁期間に近づくほど100%に近い値となり、目標とする閉弁期間が「0」に近づくほど0%に近い値となる。
そして、ポンプデューティDTが100%に近づくほど、ポンプデューティDTに基づいて調整される電磁スピル弁30の閉弁開始時期は早められ、電磁スピル弁30の閉弁期間は長くなる。その結果、高圧燃料ポンプ1の燃料吐出量が増加して実燃圧が上昇するようになる。また、ポンプデューティDTが0%に近づくほど、ポンプデューティDTに基づいて調整される電磁スピル弁30の閉弁開始時期は遅らされ、電磁スピル弁30の閉弁期間は短くなる。その結果、高圧燃料ポンプ1の燃料吐出量が減少して実燃圧が低下するようになる。尚、上記ポンプデューティDTの算出手順の詳細についてはここでは説明を省略する。
−高圧燃料ポンプ1の具体構成−
次に、上記高圧燃料ポンプ1の具体構成について図3及び図4を用いて説明する。図3は高圧燃料ポンプ1の縦断面図であり、図4はこの高圧燃料ポンプ1の吐出側に備えられたチェック弁(吐出弁)40の一部を示す断面図である。
これら図に示すように、本実施形態の高圧燃料ポンプ1は、ハウジング10内にポンプ部20、上記電磁スピル弁30及びチェック弁40を備えた構成となっている。
上記ポンプ部20は、シリンダ21、加圧室22、プランジャ23、リフタ24及びリフタガイド25を備えている。シリンダ21はハウジング10の中央部に形成され、その先端側(図3における上端側)に加圧室22が形成される。プランジャ23は円柱状であって、シリンダ21内にその軸線方向の摺動が可能に挿入支持されている。リフタ24は有底円筒状に形成されており、その底板部にプランジャ23の基端部が接続されている。リフタガイド25はハウジング10の下端に取り付けられた円筒状の部材であって、その内部にリフタ24が軸線方向へ摺動可能に収納されている。
上記プランジャ23の基端部にはリテーナ26が係合されている。そして、リフタガイド25の上部に嵌め込まれているスプリングシート部材25aの下面とリテーナ26との間にコイルスプリング27が圧縮状態で配置されており、このコイルスプリング27により、プランジャ23に対して下方への付勢力が付与されていると共に、リフタ24が駆動カム111に向けて付勢されている。
上記電磁スピル弁30は加圧室22に対向して配設され、上記電磁ソレノイド31、ボビン32、コア33、アーマチャ34、ポペット弁35及びシート体36を備えている。電磁ソレノイド31はボビン32にリング状に巻装されたコイルで成り、コア33はボビン32の中心貫通孔に嵌合固定されている。アーマチャ34はポペット弁35の一端に固定された状態で、その一部がコア33と同軸上でボビン32の中心貫通孔に進入可能に配置されている。コア33及びアーマチャ34の各対向面には凹部がそれぞれ形成されており、それらの凹部間にはコイルスプリング37が圧縮状態で収容されている。そして、このコイルスプリング37により、アーマチャ34が加圧室22側に向かって付勢されている。
上記ポペット弁35はシート体36内の貫通孔に摺動可能に貫通され、その下端部には円板状の弁体35aが形成されている。そして、電磁ソレノイド31の非通電時には、コイルスプリング37の付勢力により、弁体35aがシート体36のシート部36aから離間されて、電磁スピル弁30は開弁状態となる。一方、図示しない電子制御装置から端子38を介して電磁ソレノイド31に通電されると、コア33、アーマチャ34及び電磁スピル弁30全体を支持する支持部材39により磁気回路が形成され、コイルスプリング37の付勢力に抗して、アーマチャ34がコア33側に移動する。これにより、ポペット弁35が加圧室22と反対側に移動し、その弁体35aがシート体36のシート部36aに当接して、電磁スピル弁30は閉弁状態となる(図3に示す状態)。
一方、電磁スピル弁30が開弁状態にあるときには、シート体36に形成された複数の供給通路36bと加圧室22との間で燃料が流通可能となっている。
上記供給通路36bと連通するように、ハウジング10には低圧燃料通路11が形成されている。そして、電磁スピル弁30の開弁状態で、プランジャ23が下降するとき、図示しないフィードポンプの作動により、燃料タンク101から汲み上げられた低圧燃料が、フィルタ141、プレッシャレギュレータ142、低圧燃料通路11及び供給通路36
bを経て加圧室22に吸入されるようになっている。
上記シリンダ21の先端側に形成された加圧室22は、シリンダ21の内周面よりも大径に形成されている。そして、プランジャ23は電磁スピル弁30の閉タイミング前に加圧室22に進入し、電磁スピル弁30が閉弁した後にプランジャ23が上死点に到達するようになっている。そして、プランジャ23の先端部が加圧室22内に進入した状態で、加圧室22の内周面とプランジャ23の外周面との間に隙間が形成されるようになっている。ハウジング10には高圧燃料通路12が形成されており、加圧室22がこの高圧燃料通路12を介してチェック弁40に連通するようになっている。
上記チェック弁40は、高圧燃料通路12に接続されたケーシング41と、そのケーシング41内に配置されたシート体42及びスプリングベース体45と、シート体42に接離可能に対向するバルブ体(弁体)43と、このバルブ体43をシート体42に対する当接位置に向かって付勢するコイルスプリング44とを備えている。また、このチェック弁40は上記高圧燃料配管105に接続されている。そして、加圧室22内から高圧燃料通路12を介して圧送される燃料の圧力が所定値を超えたとき、バルブ体43がコイルスプリング44の付勢力に抗してシート体42から離間する位置に移動される。これにより、チェック弁40が開弁状態になって、高圧燃料通路12から圧送される高圧燃料が高圧燃料配管105を経てデリバリパイプ106に供給されるようになっている。
以下、このチェック弁40の内部構造について詳述する。図4は、このチェック弁40の内部に備えられている上記シート体42、バルブ体43、コイルスプリング44、スプリングベース体45を示す断面図である。この図4に示すように、シート体42は、中央部に軸線方向(図4における左右方向)に沿って延びる燃料通路42aを備えており、その燃料吐出側の端部は先細り形状に形成されたテーパ部42bを備えている。このテーパ部42bにより、バルブ体43が燃料通路42a内の燃料に臨む面積を大きく確保して燃料通路42aの内圧が上昇した際にその圧力がバルブ体43の広範囲に作用するようにしている。
上記スプリングベース体45は、シート体42の先端部分に取り付けられた略円筒形状の部材であって、このシート体42との間でスプリング収容空間45aを形成している。また、このスプリングベース体45の先端部分(燃料吐出側部分)には、軸心に向かってフランジ状に形成されたスプリング座45bが一体形成されている。これにより、上記コイルスプリング44は、このスプリング座45bとバルブ体43との間に圧縮状態で収容されて、バルブ体43に対してシート体42のテーパ部42bに向かう方向への付勢力(図中の矢印F参照)を与えている。また、このスプリングベース体45の外周面の複数箇所には開口45cが形成されており、上記バルブ体43がシート体42から離れて燃料が吐出される際に、この開口45cの形成部分が燃料流路となるようにしている(この際の燃料の流れを図中矢印Oで示している)。
そして、本実施形態の特徴とするところは、上記コイルスプリング44の形状にある。図4に示すように、このコイルスプリング44は不等ピッチコイルスプリングにより構成されている。つまり、コイルピッチの比較的大きな低バネ定数領域(図中の領域I)と、コイルピッチの比較的小さな高バネ定数領域(図中の領域II)とが連続して形成されている。また、上記スプリング収容空間45aにおけるコイルスプリング44の収容状態としては、上記低バネ定数領域Iがバルブ体43に当接し、高バネ定数領域IIがスプリング座45bに当接するようになっている。
このようにコイルスプリング44が不等ピッチコイルスプリングにより構成されていることにより、加圧室22内から高圧燃料通路12及び燃料通路42aを介して圧送される
燃料の圧力が所定値(例えば13MPa)を超えて、バルブ体43がコイルスプリング44の付勢力に抗してシート体42から離間する際には、先ず、低バネ定数領域Iが迅速に弾性変形してバルブ体43は迅速に(レスポンス良く)移動してシート体42から離れて高圧燃料を高圧燃料配管105に向けて送り出す。そして、バルブ体43の移動量がある程度大きくなると、次に、高バネ定数領域IIが弾性変形し、バルブ体43の移動が抑制され、そのリフト量が所定量以下に抑えられることになる。このようにして、バルブ体43のリフト量が抑えられることにより、吐出行程の完了後には迅速な閉弁動作が行われ、この吐出行程の完了と略同時にバルブ体43はシート体42に着座して燃料通路42aが閉鎖され、高圧燃料の加圧室22に向けての逆流(吹き戻し)が回避される。
図5は、本実施形態に係る高圧燃料ポンプ1の加圧室22内の燃料圧力(燃圧)とバルブ体43の移動量(吐出弁の開度)との関係を示している。この図5からも判るように、本形態によれば、加圧室22内の燃料圧力がデリバリパイプ106に必要な圧力P(例えば13MPa)に達すると、瞬時にバルブ体43が移動してチェック弁40を所定開度まで(燃料圧力が大幅にオーバシュートしない開度まで)開放される。このため、駆動カム111とリフタ24の底部との接触力が著しく高くなることがなくなり、摩擦損失や潤滑不良が生じることを回避できる。また、高圧燃料ポンプ1の各シール部分のシール性能も必要以上に高くしておく必要がない。このように、従来では、燃料圧力のオーバシュートを考慮し、設計燃料圧力P(例えば上記13MPa)よりも大幅に高い燃料圧力に耐え得るように高圧燃料ポンプを設計しておく必要があったが、本実施形態では、その必要がなく、高圧燃料ポンプの小型化、重量の軽減、部品点数の削減、製造コストの低廉化を図ることができる。
また、上述した如く、吐出行程の完了と略同時にバルブ体43はシート体42に着座して燃料通路42aが閉鎖され、高圧燃料の加圧室22に向けての逆流(吹き戻し)が回避されるため、高圧燃料ポンプ1の吐出効率の向上を図ることができる。
−変形例−
次に、本発明に係る高圧燃料ポンプ1のチェック弁40に備えられたコイルスプリング44についての複数の変形例について説明する。以下の変形例は、コイルスプリング44の構成が上述した実施形態のものと異なっている。従って、以下の説明では上記実施形態との相違点についてのみ説明する。
−第1変形例−
図7はチェック弁40に備えられたコイルスプリング44についての第1の変形例を示す図4相当図である。上述した実施形態ではコイルスプリング44を不等ピッチコイルスプリングにより構成していたが、本変形例に係るコイルスプリング44は、コイルピッチは全体に亘って一定である一方、外径寸法が異なる領域を備えた構成となっている。つまり、外径寸法の比較的大きな低バネ定数領域(図中の領域I)と、外径寸法の比較的小さな高バネ定数領域(図中の領域II)とを備えた形状となっている。また、スプリング収容空間45aにおけるコイルスプリング44の収容状態としては、上記低バネ定数領域Iがバルブ体43に当接し、高バネ定数領域IIがスプリング座45bに当接するようになっている。
このような形状のコイルスプリング44を採用することによっても、上述した実施形態と同様に、吐出行程においてバルブ体43がコイルスプリング44の付勢力に抗してシート体42から離間する際には、バルブ体43が迅速に移動してシート体42から離れて高圧燃料を高圧燃料配管105に向けて送り出す。一方、バルブ体43の移動量がある程度大きくなると、高バネ定数領域IIが弾性変形し、バルブ体43の移動が抑制され、そのリフト量が所定量以下に抑えられる。これにより、上述した実施形態と同様の効果を奏する
ことができる。
−第2変形例−
図8はチェック弁40に備えられたコイルスプリング44についての第2の変形例を示す図4相当図である。本変形例に係るコイルスプリング44は、コイルピッチは全体に亘って一定である一方、外径寸法が軸線方向に沿って次第に変化する構成となっている。つまり、一端側の外径寸法の大きな低バネ定数部分から他端側の外径寸法の小さな高バネ定数部分に向かってバネ定数が次第に変化していく構成となっている。また、スプリング収容空間45aにおけるコイルスプリング44の収容状態としては、最も外径寸法の大きな端部(図中左端部)がバルブ体43に当接し、最も外径寸法の小さな端部(図中右端部)がスプリング座45bに当接するようになっている。このような形状のコイルスプリング44を採用することによっても、上述した実施形態と同様の効果を奏することができる。
−第3変形例−
図9はチェック弁40に備えられたコイルスプリング44についての第3の変形例を示す図4相当図である。本変形例に係るコイルスプリング44は、アウタスプリング44Aとインナスプリング44Bとの2個のコイルスプリングを備えたスプリングユニットとして構成されている。
上記アウタスプリング44Aは、その全体に亘ってコイルピッチが比較的大きく且つ一定とされて低いバネ定数を有している。一方、インナスプリング44Bは、外径寸法が上記アウタスプリング44Aよりも小さく設定され、また、その全体に亘ってコイルピッチが比較的小さく(アウタスプリング44Aのコイルピッチよりも小さく)且つ一定とされて上記アウタスプリング44Aよりも高いバネ定数を有している。そして、上記アウタスプリング44Aは、一端がバルブ体43に、他端がスプリングベース体45のスプリング座45bにそれぞれ当接されて圧縮された状態でスプリング収容空間45aに収容されている。一方、上記インナスプリング44Bは、一端がスプリングベース体45のスプリング座45bに当接されている一方、他端はバルブ体43に当接されることなく、このバルブ体43との間に所定間隔を存した状態でアウタスプリング44Aの内側に配置されている。尚、このインナスプリング44Bとバルブ体43との間隔は、バルブ体43の移動ストロークよりも小さく設定されている。
このため、吐出行程においてバルブ体43がコイルスプリング44の付勢力に抗してシート体42から離間する際、その移動初期時はバネ定数の低いアウタスプリング44Aの変形を伴う移動が行われ、バルブ体43が迅速に移動してシート体42から離れて高圧燃料を高圧燃料配管105に向けて送り出す。そして、バルブ体43の移動量がある程度大きくなると、バルブ体43がインナスプリング44Bに当接し、バネ定数の高いインナスプリング44Bの変形を伴う移動が行われて、バルブ体43の移動が抑制され、そのリフト量が所定量以下に抑えられる。これにより、本変形例においても上述した実施形態と同様の効果を奏することができる。
−その他の実施形態−
上述した実施形態及び変形例では、本発明を自動車に搭載された筒内直噴型4気筒ガソリンエンジンに適用した場合について説明した。本発明はこれに限らず、例えば筒内直噴型6気筒ガソリンエンジンなど他の任意の気筒数のガソリンエンジンに適用可能である。また、ガソリンエンジンに限らず、ディーゼルエンジン等の他の内燃機関にも本発明は適用可能である。更には、本発明が適用可能なエンジンは、自動車用のエンジンに限るものでもない。
また、上記実施形態及び変形例における高圧燃料ポンプ1では、排気カムシャフト11
0に取り付けられた駆動カム111の回転によってプランジャ23が駆動される構成としたが、吸気カムシャフトに取り付けられた駆動カムの回転によってプランジャ23が駆動される構成としてもよい。
また、バルブ体43を閉弁方向に付勢するコイルスプリング44の形状及び構成も、上述した実施形態及び変形例に限るものではなく、バネ定数の異なる部分を備えた構成であればよい。
実施形態に係る燃料供給装置の構造を模式的に示す図である。 電磁スピル弁の開閉動作を説明するための図である。 高圧燃料ポンプを示す縦断面図である。 チェック弁の内部構成を示す縦断面図である。 実施形態に係る高圧燃料ポンプにおける加圧室内の燃料圧力とバルブ体の移動量との関係を示す図である。 従来の高圧燃料ポンプにおける加圧室内の燃料圧力とバルブ体の移動量との関係を示す図である。 第1の変形例における図4相当図である。 第2の変形例における図4相当図である。 第3の変形例における図4相当図である。
符号の説明
1 高圧燃料ポンプ
22 加圧室
40 チェック弁(吐出弁)
42 シート体(バルブシート)
43 バルブ体(弁体)
44 コイルスプリング
102 フィードポンプ
106 デリバリパイプ(蓄圧容器)

Claims (4)

  1. 燃料を加圧する加圧室と、この加圧室の吐出側に配設され且つスプリングによって閉弁方向への付勢力が与えられた弁体を有する吐出弁とを備え、加圧室内の圧力が所定圧力以上に達した場合に上記スプリングの付勢力に抗して弁体が移動して加圧室から燃料が圧送される構成とされた燃料ポンプにおいて、
    上記スプリングは、閉鎖位置にある弁体が開放方向に移動する移動初期における弁体に対する付勢力が、弁体が開放方向に所定量以上移動した際における弁体に対する付勢力よりも小さくなるように互いにバネ定数の異なる部分を備えた構成となっていることを特徴とする燃料ポンプ。
  2. 上記請求項1記載の燃料ポンプにおいて、
    スプリングは、不等ピッチまたは多段ピッチのコイルスプリングにより構成されていることを特徴とする燃料ポンプ。
  3. 上記請求項1または2記載の燃料ポンプにおいて、
    燃料タンクから燃料を送り出すフィードポンプが吸入側に接続されている一方、複数の燃料噴射弁が接続された蓄圧容器が吐出側に接続されており、フィードポンプから供給された燃料を上記燃料噴射弁の噴射圧力まで昇圧させて蓄圧容器に圧送する構成となっていることを特徴とする燃料ポンプ。
  4. 上記請求項1、2または3記載の燃料ポンプに備えられる吐出弁であって、
    スプリングからの付勢力によってバルブシートに押圧されて加圧室を閉鎖する弁体を備え、加圧室内の圧力が所定圧力以上に達した場合に上記スプリングの付勢力に抗して弁体が移動して加圧室を開放するようになっている一方、
    上記スプリングが、不等ピッチまたは多段ピッチのコイルスプリングにより構成されて、バルブシートに押圧された閉鎖位置にある弁体が開放方向に移動する移動初期における弁体に対する付勢力が、弁体が開放方向に所定量以上移動した際における弁体に対する付勢力よりも小さくなるように構成されていることを特徴とする吐出弁。
JP2005019807A 2005-01-27 2005-01-27 燃料ポンプ及びその燃料ポンプに備えられる吐出弁 Pending JP2006207451A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019807A JP2006207451A (ja) 2005-01-27 2005-01-27 燃料ポンプ及びその燃料ポンプに備えられる吐出弁

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019807A JP2006207451A (ja) 2005-01-27 2005-01-27 燃料ポンプ及びその燃料ポンプに備えられる吐出弁

Publications (1)

Publication Number Publication Date
JP2006207451A true JP2006207451A (ja) 2006-08-10

Family

ID=36964587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019807A Pending JP2006207451A (ja) 2005-01-27 2005-01-27 燃料ポンプ及びその燃料ポンプに備えられる吐出弁

Country Status (1)

Country Link
JP (1) JP2006207451A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275697A (ja) * 2008-04-16 2009-11-26 Denso Corp 燃料噴射システム用調量弁
JP2010112381A (ja) * 2008-11-07 2010-05-20 Delphi Technologies Inc 燃料ポンプのためのバルブアセンブリ
JP2011080391A (ja) * 2009-10-06 2011-04-21 Hitachi Automotive Systems Ltd 高圧燃料供給ポンプの吐出弁機構
CN102325987A (zh) * 2009-02-20 2012-01-18 日立汽车***株式会社 高压燃料供给泵及用于该泵的排出阀单元
JP2012533706A (ja) * 2009-07-20 2012-12-27 デルファイ・テクノロジーズ・ホールディング・エス.アー.エール.エル. ポンプアッセンブリ
JP2013253526A (ja) * 2012-06-06 2013-12-19 Nippon Soken Inc 高圧ポンプ
JP2014148980A (ja) * 2014-05-28 2014-08-21 Hitachi Automotive Systems Ltd 高圧燃料供給ポンプ
US8911218B2 (en) 2007-08-08 2014-12-16 Toyota Jidosha Kabushiki Kaisha Fuel pump
CN104775957A (zh) * 2009-02-20 2015-07-15 日立汽车***株式会社 高压燃料供给泵及用于该泵的排出阀单元
US20160069313A1 (en) * 2014-09-08 2016-03-10 MAGNETI MARELLI S.p.A. Fuel pump for a direct injection system
KR20160034325A (ko) * 2013-08-02 2016-03-29 로베르트 보쉬 게엠베하 배출 밸브를 구비한 고압 연료 펌프
WO2016121446A1 (ja) * 2015-01-26 2016-08-04 日立オートモティブシステムズ株式会社 弁機構及びこれを備えた高圧燃料供給ポンプ
US9828958B2 (en) 2011-03-08 2017-11-28 Hitachi Automotive Systems, Ltd. High-pressure fuel supply pump

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8911218B2 (en) 2007-08-08 2014-12-16 Toyota Jidosha Kabushiki Kaisha Fuel pump
JP2009275697A (ja) * 2008-04-16 2009-11-26 Denso Corp 燃料噴射システム用調量弁
US8763636B2 (en) 2008-11-07 2014-07-01 Delphi International Operations Luxembourg S.A.R.L. Valve assembly for fuel pump
JP2010112381A (ja) * 2008-11-07 2010-05-20 Delphi Technologies Inc 燃料ポンプのためのバルブアセンブリ
JP5180365B2 (ja) * 2009-02-20 2013-04-10 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ及びそれに用いる吐出弁ユニット
CN102325987A (zh) * 2009-02-20 2012-01-18 日立汽车***株式会社 高压燃料供给泵及用于该泵的排出阀单元
US8740579B2 (en) 2009-02-20 2014-06-03 Hitachi Automotive Systems, Ltd. High-pressure fuel supply pump and discharge valve unit used therein
CN104775957B (zh) * 2009-02-20 2017-10-17 日立汽车***株式会社 高压燃料供给泵及用于该泵的排出阀单元
CN104775957A (zh) * 2009-02-20 2015-07-15 日立汽车***株式会社 高压燃料供给泵及用于该泵的排出阀单元
JP2012533706A (ja) * 2009-07-20 2012-12-27 デルファイ・テクノロジーズ・ホールディング・エス.アー.エール.エル. ポンプアッセンブリ
US9518546B2 (en) 2009-07-20 2016-12-13 Delphi International Operations Luxembourg S.A.R.L. Pump assembly
JP2011080391A (ja) * 2009-10-06 2011-04-21 Hitachi Automotive Systems Ltd 高圧燃料供給ポンプの吐出弁機構
US10788004B2 (en) 2011-03-08 2020-09-29 Hitachi Automotive Systems, Ltd. High-pressure fuel supply pump
US9828958B2 (en) 2011-03-08 2017-11-28 Hitachi Automotive Systems, Ltd. High-pressure fuel supply pump
JP2013253526A (ja) * 2012-06-06 2013-12-19 Nippon Soken Inc 高圧ポンプ
KR102179022B1 (ko) * 2013-08-02 2020-11-16 로베르트 보쉬 게엠베하 배출 밸브를 구비한 고압 연료 펌프
KR20160034325A (ko) * 2013-08-02 2016-03-29 로베르트 보쉬 게엠베하 배출 밸브를 구비한 고압 연료 펌프
JP2014148980A (ja) * 2014-05-28 2014-08-21 Hitachi Automotive Systems Ltd 高圧燃料供給ポンプ
US20160069313A1 (en) * 2014-09-08 2016-03-10 MAGNETI MARELLI S.p.A. Fuel pump for a direct injection system
US9822751B2 (en) * 2014-09-08 2017-11-21 MAGNETI MARELLI S.p.A. Fuel pump for a direct injection system
CN105464867B (zh) * 2014-09-08 2019-05-07 马涅蒂-马瑞利公司 用于直喷***的燃料泵
CN105464867A (zh) * 2014-09-08 2016-04-06 马涅蒂-马瑞利公司 用于直喷***的燃料泵
CN107208591A (zh) * 2015-01-26 2017-09-26 日立汽车***株式会社 阀机构和具有其的高压燃料供给泵
JPWO2016121446A1 (ja) * 2015-01-26 2017-08-03 日立オートモティブシステムズ株式会社 弁機構及びこれを備えた高圧燃料供給ポンプ
EP3252300A4 (en) * 2015-01-26 2018-08-08 Hitachi Automotive Systems, Ltd. Valve mechanism and high-pressure fuel supply pump provided with same
CN107208591B (zh) * 2015-01-26 2019-11-05 日立汽车***株式会社 阀机构和具有其的高压燃料供给泵
WO2016121446A1 (ja) * 2015-01-26 2016-08-04 日立オートモティブシステムズ株式会社 弁機構及びこれを備えた高圧燃料供給ポンプ

Similar Documents

Publication Publication Date Title
JP2006207451A (ja) 燃料ポンプ及びその燃料ポンプに備えられる吐出弁
JP4353288B2 (ja) 燃料ポンプ
US10851767B2 (en) Pump for supplying high-pressure fuel
JP6633195B2 (ja) 高圧燃料供給ポンプ
JP5176947B2 (ja) 高圧ポンプ
WO2021054006A1 (ja) 電磁吸入弁及び高圧燃料供給ポンプ
WO2018092538A1 (ja) 高圧燃料供給ポンプ
JP2009236041A (ja) 燃料ポンプのローラリフタ構造
CN110832188A (zh) 高压燃料泵
JP2010071266A (ja) 高圧燃料供給装置
US12006901B2 (en) Fuel pump
JP7178504B2 (ja) 燃料ポンプ
JP5029477B2 (ja) ローラリフタ構造
JP2009103008A (ja) 燃料ポンプ
JP7139265B2 (ja) 高圧燃料供給ポンプ及びリリーフ弁機構
JP2008291764A (ja) 高圧燃料ポンプ
JP4241611B2 (ja) 燃料噴射ポンプ用弁装置
JP7518980B2 (ja) 燃料ポンプ
JP2007332842A (ja) 燃料供給システム及びその燃料供給システムに備えられた燃料フィルタ
US20240159208A1 (en) Electromagnetic Valve Mechanism and Fuel Pump
JP7385750B2 (ja) 燃料ポンプ
JP7397729B2 (ja) 燃料ポンプ
JP7482313B2 (ja) 燃料ポンプ
CN112243474B (zh) 电磁阀和高压燃料供给泵
JP2007009750A (ja) 燃料ポンプのシール構造及びそのシール構造を備えた燃料ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929