JP2006207052A - Raised fabric and textile product - Google Patents

Raised fabric and textile product Download PDF

Info

Publication number
JP2006207052A
JP2006207052A JP2005018028A JP2005018028A JP2006207052A JP 2006207052 A JP2006207052 A JP 2006207052A JP 2005018028 A JP2005018028 A JP 2005018028A JP 2005018028 A JP2005018028 A JP 2005018028A JP 2006207052 A JP2006207052 A JP 2006207052A
Authority
JP
Japan
Prior art keywords
napped
fabric
raised
fiber
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005018028A
Other languages
Japanese (ja)
Inventor
Satoshi Yasui
聡 安井
Takashi Yamaguchi
尊志 山口
Masato Yoshimoto
正人 吉本
Shigeru Morioka
茂 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2005018028A priority Critical patent/JP2006207052A/en
Publication of JP2006207052A publication Critical patent/JP2006207052A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raised fabric that include crimped fiber in raised parts where the crimping rate of the crimping fibers reversibly decreases when moistened, thereby the height of the raise becomes large, resultantly humidity and wetness can be reduced, when the raised parts are used inside the clothes, and provide textile products produced by using the raised fabric. <P>SOLUTION: The raised fabric is constructed with cut pile and/or loop pile and crimped fiber A that can lower the crimping rate when moistened is included in the raised part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、捲縮繊維を立毛部に含む立毛布帛であって、湿潤時に捲縮繊維の捲縮率が可逆的に低下することにより立毛高さが大きくなり、その結果、立毛部が衣服の内側に位置するように使用すると、発汗時にムレ感や濡れ感を低減させることが可能な立毛布帛および該立毛布帛を用いてなる繊維製品に関するものである。   The present invention provides a napped fabric that includes a crimped fiber in the napped portion, and the napped height is increased by reversibly reducing the crimp rate of the crimped fiber when wet. The present invention relates to a napped fabric that can reduce the feeling of stuffiness and wetness when sweating when used so as to be located inside, and a textile product using the napped fabric.

従来、合成繊維や天然繊維などからなる立毛布帛が巾広い用途で使用されている。例えば、立毛布帛は保温性に優れることから、衣料用としてはコートやジャケットのようなアウター衣料、フリースやトレーナーといったミドラー衣料、シャツや肌着といったインナー衣料などに広く使用されている。また、毛布などの寝具、椅子やソファーの表皮材、カーペット、カーシートといった寝装寝具やインテリア用品にも幅広く使用されている。さらには、立毛布帛は吸水性にも優れることから、スウェットやジャージといったスポーツ衣料やおしめや介護用シーツといった医療・衛生用途にも広く使用されている。   Conventionally, a napped fabric made of synthetic fiber or natural fiber has been used for a wide range of purposes. For example, napped fabrics are widely used for clothing, such as outer clothing such as coats and jackets, midler clothing such as fleece and trainers, and inner clothing such as shirts and underwear. It is also widely used in bedding such as blankets, bedding and interior items such as chairs and sofas, carpets, and car seats. Furthermore, since the napped fabric is excellent in water absorption, it is also widely used for medical / hygiene applications such as sports clothing such as sweat and jersey, diapers and nursing sheets.

しかしながら、これらの立毛布帛は、湿度や水分が変化しても立毛高さが常に一定で、湿度や水分を感じて毛足長さが変化するといった動物の毛のような性質を有するものではなかった。   However, these raised fabrics do not have animal-like properties such that the raised hair height is always constant even when the humidity and moisture change, and the length of the hair foot changes by sensing the humidity and moisture. It was.

他方、特許文献1では、ポリエステルとポリアミドの異質ポリマーを貼りあわせたサイドバイサイド型複合繊維を用いた通気性自己調節織編物が提案されている。また、本発明者らは、特願2004−256628号において、ポリエステル成分とポリアミド成分とが接合された複合繊維であって、性能のよい通気性自己調節織編物を得ることが可能な複合繊維を提案している。
特開2003−41462号公報
On the other hand, Patent Document 1 proposes a breathable self-regulating woven or knitted fabric using a side-by-side type composite fiber in which different polymers of polyester and polyamide are bonded together. In addition, in the Japanese Patent Application No. 2004-256628, the present inventors are a composite fiber in which a polyester component and a polyamide component are joined, and a composite fiber capable of obtaining a breathable self-regulating woven or knitted fabric with good performance. is suggesting.
JP 2003-41462 A

本発明は上記の背景に鑑みなされたものであり、その目的は、捲縮繊維を立毛部に含む立毛布帛であって、湿潤時に捲縮繊維の捲縮率が可逆的に低下することにより立毛高さが大きくなり、その結果、立毛部が衣服の内側に位置するように立毛布帛を使用すると、発汗時にムレ感や濡れ感を低減させることが可能な立毛布帛および該立毛布帛を用いてなる繊維製品を提供することにある。   The present invention has been made in view of the above-described background, and an object of the present invention is a napped fabric including a crimped fiber in a napped portion, and the napped fiber is formed by reversibly reducing the crimp rate of the crimped fiber when wet. As a result, when the raised fabric is used so that the raised portions are located inside the clothes, the raised fabric that can reduce the feeling of stuffiness and wetness when sweating and the raised fabric are used. To provide textile products.

本発明者らは上記の課題を達成するため鋭意検討した結果、湿潤により捲縮率が低下する捲縮繊維を立毛部に配すことにより、所望の立毛布帛および繊維製品が得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that desired napped fabrics and fiber products can be obtained by arranging the crimped fibers whose crimp rate is reduced by wetting in the napped portions. The present invention has been completed by further intensive studies.

かくして、本発明によれば「カットパイルおよび/またはループパイルからなる立毛部と地組織部とで構成される立毛布帛であって、前記立毛部に、湿潤時に捲縮率が低下する捲縮繊維Aが含まれることを特徴とする立毛布帛。」が提供される。
ここで、前記の捲縮繊維Aにおいて、乾燥時の捲縮率DC(%)と湿潤時の捲縮率HC(%)との差DC−HCが0.5%以上であることが好ましい。
Thus, according to the present invention, “a raised fabric comprising a raised portion and a ground tissue portion made of a cut pile and / or a loop pile, wherein the crimped fiber has a reduced crimp rate when wet. A raised fabric characterized in that A is included. "
Here, in the above-described crimped fiber A, it is preferable that the difference DC-HC between the crimp ratio DC (%) when dried and the crimp ratio HC (%) when wet is 0.5% or more.

ただし、乾燥時の捲縮率DC(%)と湿潤時の捲縮率HC(%)は、以下の方法により算出するものとする。すなわち、枠周:1.125mの巻き返し枠を用いて荷重:49/50mN×9×トータルテックス(0.1g×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛を作り、該小綛を捩じり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後更に初荷重をかけたまま160℃の乾熱中に入れ5分間処理する。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルデシテックス(0.2g×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定する。更にこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙にて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。次いで、以上の測定数値から下記の計算式にて、乾燥時の捲縮率(DC)と湿潤時の捲縮率(HC)を算出する。
乾燥時の捲縮率DC(%)={(L0−L1)/L0}×100
湿潤時の捲縮率HC(%)={(L0’−L1’)/L0’}×100
However, the crimping ratio DC (%) at the time of drying and the crimping ratio HC (%) at the time of wetness are calculated by the following methods. That is, using a rewind frame with a frame circumference of 1.125 m, load: 49/50 mN × 9 × total tex (0.1 g × total denier) and rewind at a constant speed. Made and twisted into a double ring shape with a twist of 49/2500 mN x 20 x 9 x total tex (2 mg x 20 x total denier) and placed in boiling water for 30 minutes Then, after the boiling water treatment, it is dried in a dryer at 100 ° C. for 30 minutes, and is then placed in a dry heat of 160 ° C. for 5 minutes with an initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand in an environment of temperature 20 ° C. and humidity 65% RH for 24 hours or more, and then the initial load and 98/50 mN × 20 × 9 × total decitex (0.2 g × 20 × Apply a heavy load of total denier), measure the heel length: L0, immediately remove only the heavy load, and measure the heel length: L1 after 1 minute of dewetting. Furthermore, after the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, it was taken out, and after lightly wiping off the water with a filter paper, the initial load and the heavy load were applied, and the heel length: L0 ′ was measured. Immediately remove only the heavy load and measure the heel length L1 ′ after 1 minute of dewetting. Next, the crimp rate at the time of drying (DC) and the crimp rate at the time of wetness (HC) are calculated from the above measured numerical values by the following formula.
Crimp rate during drying DC (%) = {(L0−L1) / L0} × 100
Crimp rate HC (%) when wet = {(L0′−L1 ′) / L0 ′} × 100

また、前記の捲縮繊維Aが、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維であって、潜在捲縮性能が発現してなる捲縮構造を有する捲縮繊維であることが好ましい。その際、ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエチレンテレフタレートからなることが好ましい。また、前記の捲縮繊維Aが、無撚糸または300T/m以下の撚りが施された甘撚り糸であることが好ましい。   Further, the crimped fiber A is a composite fiber in which a polyester component and a polyamide component are joined in a side-by-side manner, and is a crimped fiber having a crimped structure in which latent crimping performance is expressed. preferable. In that case, it is preferable that a polyester component consists of a modified polyethylene terephthalate copolymerized with 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid. Moreover, it is preferable that the said crimped fiber A is a non-twisted yarn or a sweet twisted yarn with a twist of 300 T / m or less.

本発明の立毛布帛において、地組織部がポリエステル繊維からなることが好ましい。また、下記式で算出する立毛高さ変化率が5%以上であることが好ましい。
立毛高さ変化率(%)=((LW−LD)/LD)×100
In the raised fabric of the present invention, it is preferable that the ground tissue portion is made of polyester fibers. Moreover, it is preferable that the nap height change rate calculated by the following formula is 5% or more.
Napped height change rate (%) = ((LW−LD) / LD) × 100

ただし、LDとは、立毛布帛を温度20℃、湿度65%RH環境下に24時間放置した後の状態で測定した立毛高さであり、一方LWとは、立毛部表面に水を1cc滴下した後、1分経過後の最大立毛高さである。
さらに、湿潤時における立毛布帛の通気性が、乾燥時よりも10%以上高くなることが好ましい。
However, LD is the napped height measured in a state where the napped fabric is left in a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, while LW is 1 cc of water dropped on the napped surface. The maximum napped height after 1 minute has elapsed.
Furthermore, it is preferable that the air permeability of the napped fabric when wet is 10% or more higher than when dry.

次に、本発明によれば、前記の立毛布帛を用いてなる、アウター用衣料、スポーツ用衣料、インナー用衣料、おしめや介護用シーツ等の医療・衛生用品、寝装寝具、椅子やソファー等の表皮材、カーペット、カーシート地、インテリア用品からなる群より選択される繊維製品が提供される。   Next, according to the present invention, outer clothing, sports clothing, inner clothing, medical and hygiene products such as diapers and nursing sheets, bedding, chairs, sofas, etc., using the above-mentioned raised fabric A textile product selected from the group consisting of a skin material, a carpet, a car seat, and an interior product is provided.

本発明によれば、湿潤時に捲縮繊維の捲縮率が可逆的に低下することにより立毛高さが大きくなり、その結果、立毛部が衣服の内側に位置するように立毛布帛を使用すると、発汗時にムレ感や濡れ感を低減させることが可能な立毛布帛および該立毛布帛を用いてなる繊維製品が得られる。   According to the present invention, the napped height is increased by reversibly reducing the crimp rate of the crimped fibers when wet, and as a result, when the napped fabric is used such that the napped portion is located inside the garment, A raised fabric capable of reducing the feeling of stuffiness and wetness during sweating and a fiber product using the raised fabric are obtained.

以下、本発明の実施の形態について詳細に説明する。
本発明の立毛布帛は有機繊維糸条からなる編織組織を有する地組織部と、立毛部とからなるものであって、前記立毛部は、前記地組織部に編みこまれ、または織りこまれ、前記地組織部から、その少なくとも1面側に伸び出ている複数の立毛糸(カットパイルおよび/またはループパイル)からなるものである。そして、前記立毛部には、湿潤時に捲縮率が低下する捲縮繊維Aからなる立毛糸が含まれる。
Hereinafter, embodiments of the present invention will be described in detail.
The napped fabric of the present invention comprises a ground tissue part having a knitted fabric composed of organic fiber yarns, and a napped part, and the napped part is knitted or woven into the ground tissue part, It consists of a plurality of napped yarns (cut pile and / or loop pile) extending from the ground tissue portion to at least one surface side thereof. The napped portion includes napped yarns made of crimped fibers A that have a reduced crimp rate when wet.

前記の捲縮繊維Aとしては、乾燥時の捲縮率DCが1.5〜13%、湿潤時の捲縮率HCが0.5〜7%、乾燥時の捲縮率DCと湿潤時の捲縮率HCとの差DC−HCが0.5%以上(より好ましくは1〜5%)であることが好ましい。前記捲縮率DCが1.5%よりも小さいと、捲縮発現力が弱すぎ、湿潤時の捲縮変化も非常に小さくなるため、所望とする、湿潤時に捲縮繊維の捲縮率が可逆的に低下することにより立毛高さが大きくなる立毛糸が得られないおそれがある。逆に、前記捲縮率DCが13%よりも大きいと、捲縮発現力が強すぎ、湿潤時に捲縮が変化し難いため、立毛高さの変化量が小さくなるおそれがある。同時に、捲縮発現力が強すぎると、捲縮繊維が後記のような複合繊維である場合、複合繊維を形成する成分間での界面剥離が起こりやすくなるおそれもある。   As the crimped fiber A, the crimp rate DC during drying is 1.5 to 13%, the crimp rate HC when wet is 0.5 to 7%, the crimp rate DC during drying and the crimp rate DC when wet The difference DC-HC from the crimp rate HC is preferably 0.5% or more (more preferably 1 to 5%). If the crimp ratio DC is less than 1.5%, the crimp developing ability is too weak, and the crimp change when wet is very small. Therefore, the crimp ratio of the crimp fiber when wet is desired. There is a possibility that a napped yarn whose napped height increases due to reversible reduction cannot be obtained. On the other hand, if the crimp ratio DC is greater than 13%, the crimp expression is too strong, and the crimp does not easily change when wet, and therefore the amount of change in napped height may be small. At the same time, if the crimp expression is too strong, when the crimped fiber is a composite fiber as described later, interfacial peeling between components forming the composite fiber may easily occur.

ここで、前記乾燥時の捲縮率DC(%)と湿潤時の捲縮率HC(%)は、以下の方法により算出するものとする。すなわち、枠周:1.125mの巻き返し枠を用いて荷重:49/50mN×9×トータルテックス(0.1g×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛を作り、該小綛を捩じり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後更に初荷重をかけたまま160℃の乾熱中に入れ5分間処理する。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルデシテックス(0.2g×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定する。更にこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙にて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。次いで、以上の測定数値から下記の計算式にて、乾燥時の捲縮率(DC)と湿潤時の捲縮率(HC)を算出する。
乾燥時の捲縮率DC(%)={(L0−L1)/L0}×100
湿潤時の捲縮率HC(%)={(L0’−L1’)/L0’}×100
Here, the crimp ratio DC (%) at the time of drying and the crimp ratio HC (%) at the time of wetness are calculated by the following methods. That is, using a rewind frame with a frame circumference of 1.125 m, load: 49/50 mN × 9 × total tex (0.1 g × total denier) and rewind at a constant speed. Made and twisted into a double ring shape with a twist of 49/2500 mN x 20 x 9 x total tex (2 mg x 20 x total denier) and placed in boiling water for 30 minutes Then, after the boiling water treatment, it is dried in a dryer at 100 ° C. for 30 minutes, and is then placed in a dry heat of 160 ° C. for 5 minutes with an initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand in an environment of temperature 20 ° C. and humidity 65% RH for 24 hours or more, and then the initial load and 98/50 mN × 20 × 9 × total decitex (0.2 g × 20 × Apply a heavy load of total denier), measure the heel length: L0, immediately remove only the heavy load, and measure the heel length: L1 after 1 minute of dewetting. Furthermore, after the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, it was taken out, and after lightly wiping off the water with a filter paper, the initial load and the heavy load were applied, and the heel length: L0 ′ was measured. Immediately remove only the heavy load and measure the heel length L1 ′ after 1 minute of dewetting. Next, the crimp rate at the time of drying (DC) and the crimp rate at the time of wetness (HC) are calculated from the above measured numerical values by the following formula.
Crimp rate during drying DC (%) = {(L0−L1) / L0} × 100
Crimp rate HC (%) when wet = {(L0′−L1 ′) / L0 ′} × 100

かかる捲縮繊維Aとしては、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維であって、潜在捲縮性能が発現してなる捲縮構造を有する捲縮繊維であることが好ましい。   The crimped fiber A is preferably a composite fiber in which a polyester component and a polyamide component are joined in a side-by-side manner, and is a crimped fiber having a crimped structure in which latent crimping performance is expressed.

ここで、ポリエステル成分としては、他方のポリアミド成分との接着性の点で、スルホン酸のアルカリまたはアルカリ土類金属、ホスホニウム塩を有し、かつエステル形成能を有する官能基を1個以上もつ化合物が共重合された、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレート等の変性ポリエステルが好ましく例示される。なかでも、汎用性およびポリマーコストの点で、前記化合物が共重合された、変性ポリエチレンテレフタレートが特に好ましい。その際、共重合成分としては、5−ナトリウムスルホイソフタル酸およびそのエステル誘導体、5−ホスホニウムイソフタル酸およびそのエステル誘導体、p−ヒドロキシベンゼンスルホン酸ナトリウムなどがあげられる。なかでも、5−ナトリウムスルホイソフタル酸が好ましい。共重合量としては、2.0〜4.5モル%の範囲が好ましい。該共重合量が2.0モル%よりも小さいと、優れた捲縮性能が得られるものの、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じるおそれがある。逆に、該共重合量が4.5モル%よりも大きいと、延伸熱処理の際、ポリエステル成分の結晶化が進みにくくなるため、延伸熱処理温度を上げる必要があり、その結果、糸切れが多発するおそれがある。   Here, as the polyester component, a compound having one or more functional groups having an alkali or alkaline earth metal or phosphonium salt of sulfonic acid and having an ester forming ability in terms of adhesiveness to the other polyamide component. Preferred examples thereof include modified polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate. Among these, modified polyethylene terephthalate obtained by copolymerizing the above compound is particularly preferable from the viewpoint of versatility and polymer cost. In this case, examples of the copolymer component include 5-sodium sulfoisophthalic acid and ester derivatives thereof, 5-phosphonium isophthalic acid and ester derivatives thereof, and sodium p-hydroxybenzenesulfonate. Of these, 5-sodium sulfoisophthalic acid is preferable. As a copolymerization amount, the range of 2.0-4.5 mol% is preferable. When the copolymerization amount is less than 2.0 mol%, although excellent crimping performance can be obtained, there is a possibility that peeling occurs at the bonding interface between the polyamide component and the polyester component. On the other hand, if the copolymerization amount is greater than 4.5 mol%, the crystallization of the polyester component becomes difficult to proceed during the stretching heat treatment, and thus it is necessary to raise the stretching heat treatment temperature. There is a risk.

一方のポリアミド成分としては、主鎖中にアミド結合を有するものであれば特に限定されるものではなく、例えば、ナイロン−4、ナイロン−6、ナイロン−66、ナイロン−46、ナイロン−12などがあげられる。なかでも、汎用性、ポリマーコスト、製糸安定性の点で、ナイロン−6およびナイロン−66が好適である。   One polyamide component is not particularly limited as long as it has an amide bond in the main chain, and examples thereof include nylon-4, nylon-6, nylon-66, nylon-46, nylon-12, and the like. can give. Among these, nylon-6 and nylon-66 are preferable in terms of versatility, polymer cost, and yarn production stability.

なお、前記ポリエステル成分およびポリアミド成分には、公知の添加剤、例えば、顔料、顔料、艶消し剤、防汚剤、蛍光増白剤、難燃剤、安定剤、帯電防止剤、耐光剤、紫外線吸収剤等が含まれていてもよい。   The polyester component and the polyamide component include known additives such as pigments, pigments, matting agents, antifouling agents, fluorescent whitening agents, flame retardants, stabilizers, antistatic agents, light-resistant agents, and ultraviolet absorption agents. An agent or the like may be included.

前記のサイドバイサイド型に接合された複合繊維は、任意の断面形状および複合形態をとることができる。図1は、本発明で使用されるサイドバイサイド型に接合された複合繊維の拡大横断面図を例示したものである。通常は(イ)、(ロ)のような横断面を有する複合繊維が用いられるが、(ハ)のような偏心芯鞘型であってもよい。さらには、三角形や四角形、その断面内に中空部を有するものであってもよい。なかでも、図1の(イ)のように、丸型であることが好ましい。両成分の複合比は任意に選定することができるが、通常、ポリエステル成分とポリアミド成分の重量比で30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   The composite fiber joined to the side-by-side type can take any cross-sectional shape and composite form. FIG. 1 illustrates an enlarged cross-sectional view of a composite fiber bonded to a side-by-side type used in the present invention. Usually, a composite fiber having a cross section like (A) or (B) is used, but an eccentric core-sheath type like (C) may be used. Furthermore, you may have a hollow part in the triangle, the square, and the cross section. Of these, a round shape is preferable as shown in FIG. Although the composite ratio of both components can be selected arbitrarily, it is usually in the range of 30:70 to 70:30 (more preferably 40:60 to 60:40) by weight ratio of the polyester component and the polyamide component. It is preferable.

前記複合繊維の単糸繊度、単糸数(フィラメント数)としては特に限定されないが、単糸繊度1〜10dtex(より好ましくは2〜5dtex)、単糸数10〜200本(より好ましくは20〜100本)の範囲内であることが好ましい。   The single yarn fineness and the number of single yarns (number of filaments) of the composite fiber are not particularly limited, but the single yarn fineness is 1 to 10 dtex (more preferably 2 to 5 dtex), and the number of single yarns is 10 to 200 (more preferably 20 to 100). ) Is preferable.

また、捲縮構造としては、ポリアミド成分が捲縮の内側に位置し、ポリエステル成分が捲縮の外側に位置していることが好ましい。かかる捲縮構造を有する複合繊維は、後記の製造方法により容易に得ることができる。複合繊維がこのような捲縮構造を有していると、湿潤時に、内側のポリアミド成分が膨潤、伸張し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が低下する(複合繊維の見かけの長さが長くなる。)。一方、乾燥時には、内側のポリアミド成分が収縮し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が増大する(複合繊維の見かけの長さが短くなる。)。   As the crimped structure, it is preferable that the polyamide component is located inside the crimp and the polyester component is located outside the crimp. The composite fiber having such a crimped structure can be easily obtained by the production method described later. When the composite fiber has such a crimped structure, the inner polyamide component swells and stretches when wet, and the outer polyester component hardly changes in length, so that the crimp rate decreases ( The apparent length of the composite fiber is increased.) On the other hand, at the time of drying, the inner polyamide component shrinks and the outer polyester component hardly changes in length, so that the crimp rate increases (the apparent length of the composite fiber becomes shorter).

本発明の立毛布帛において、立毛部には前記の捲縮繊維Aが立毛糸として含まれている。その際、捲縮繊維Aが立毛部の全重量に対して30重量%以上(より好ましくは50重量%以上、特に好ましくは100重量%)含まれることが好ましい。捲縮繊維Aの含有量が30重量%よりも小さいと、所望の立毛布帛がえられないおそれがある。   In the raised fabric of the present invention, the above-mentioned crimped fiber A is included as a raised yarn in the raised portion. At that time, it is preferable that the crimped fiber A is contained in an amount of 30% by weight or more (more preferably 50% by weight or more, particularly preferably 100% by weight) with respect to the total weight of the napped portion. If the content of the crimped fiber A is less than 30% by weight, a desired napped fabric may not be obtained.

前記の複合繊維は、湿潤時に、容易に捲縮が低下し立毛高さが大きくなる上で、無撚糸、または300T/m以下の撚りが施された甘撚り糸であることが好ましい。特に、無撚糸であることが好ましい。強撚糸のように、強い撚りが付与されていると、湿潤時に捲縮が低下しにくく好ましくない。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が施されていてもさしつかえない。   The above-mentioned composite fiber is preferably a non-twisted yarn or a sweet twisted yarn subjected to twisting of 300 T / m or less in order to easily reduce crimp and increase the napped height when wet. In particular, non-twisted yarn is preferable. When a strong twist is imparted like a strong twisted yarn, it is not preferred that crimps are difficult to decrease when wet. It should be noted that interlaced air processing and / or normal false twist crimping may be performed so that the number of entanglements is about 20 to 60 pieces / m.

また、立毛部が前記捲縮繊維A以外に他の繊維が含まれる場合、かかる他の繊維としては特に限定されず、ポリエチレンタレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリエチレン、ポリプロピレン等のポリオレフィン、アクリル、パラ型もしくはメタ型アラミド、およびそれらの変性合成繊維、さらには、天然繊維、再生繊維、半合成繊維など衣料に適した繊維であれば自由に選択できる。なかでも、湿潤時の寸法安定性や、前記複合繊維との相性(混繊性、交編・交織性、染色性)の点で、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレートや、これらに前記共重合成分が共重合された変性ポリエステルからなるポリエステル繊維が好適である。また、かかる他の繊維の単糸繊度、単糸数(フィラメント数)としては特に限定されないが、織編物の吸湿性を高め、吸湿時に通気性を性能よく向上させる上で、単糸繊度0.1〜5dtex(より好ましくは0.5〜2dtex)、単糸数20〜200本(より好ましくは30〜100本)の範囲内であることが好ましい。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が他の繊維に施されていてもさしつかえない。   When the napped portion includes other fibers in addition to the crimped fibers A, the other fibers are not particularly limited, and polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, nylon 6, Polyamides such as nylon 66, polyolefins such as polyethylene and polypropylene, acrylics, para-type or meta-type aramids, and modified synthetic fibers thereof, as well as natural fibers, regenerated fibers, semi-synthetic fibers and the like suitable for clothing You can choose freely. Among these, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and the above-mentioned in terms of dimensional stability when wet and compatibility with the above-mentioned composite fiber (mixing property, knit / woven fabric, dyeability) A polyester fiber made of a modified polyester in which a copolymer component is copolymerized is preferable. Further, the single yarn fineness and the number of single yarns (number of filaments) of such other fibers are not particularly limited. However, in order to increase the hygroscopicity of the woven or knitted fabric and improve the air permeability at the time of moisture absorption, the single yarn fineness is 0.1. It is preferable to be within a range of ˜5 dtex (more preferably 0.5 to 2 dtex) and a single yarn number of 20 to 200 (more preferably 30 to 100). It should be noted that interlaced air processing and / or normal false twist crimping may be applied to other fibers so that the number of entanglements is about 20 to 60 pieces / m.

本発明の立毛布帛において、地組織部を構成する繊維としては特に限定されず、ポリエチレンタレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリエチレン、ポリプロピレン等のポリオレフィン、アクリル、パラ型もしくはメタ型アラミド、およびそれらの変性合成繊維、さらには、天然繊維、再生繊維、半合成繊維など衣料に適した繊維であれば自由に選択できる。なかでも、湿潤時の寸法安定性の点で、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレートや、これらに前記共重合成分が共重合された変性ポリエステルからなるポリエステル繊維が好適である。また、かかる繊維の単糸繊度、単糸数(フィラメント数)としては特に限定されないが、単糸繊度0.1〜5dtex(より好ましくは0.5〜2dtex)、単糸数20〜200本(より好ましくは30〜100本)の範囲内であることが好ましい。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が他の繊維に施されていてもさしつかえない。   In the raised fabric of the present invention, the fibers constituting the ground tissue portion are not particularly limited, and polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyamides such as nylon 6 and nylon 66, polyethylene, polypropylene and the like Polyolefin, acrylic, para-type or meta-type aramid, and modified synthetic fibers thereof, as well as fibers suitable for clothing such as natural fibers, regenerated fibers, and semi-synthetic fibers can be freely selected. Among these, from the viewpoint of dimensional stability when wet, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and polyester fibers made of a modified polyester obtained by copolymerizing the above-mentioned copolymer components with these are preferable. Further, the single yarn fineness and the number of single yarns (number of filaments) of the fiber are not particularly limited, but the single yarn fineness is 0.1 to 5 dtex (more preferably 0.5 to 2 dtex), and the number of single yarns 20 to 200 (more preferably). Is preferably in the range of 30 to 100). It should be noted that interlaced air processing and / or normal false twist crimping may be applied to other fibers so that the number of entanglements is about 20 to 60 pieces / m.

また、本発明の繊維製品は、前記の立毛布帛を用いてなる、アウター用衣料、スポーツ用衣料、インナー用衣料、おしめや介護用シーツ等の医療・衛生用品、寝装寝具、椅子やソファー等の表皮材、カーペット、カーシート地、インテリア用品などの繊維製品である。   Further, the textile product of the present invention comprises the above-mentioned raised fabric, outer clothing, sports clothing, inner clothing, medical / hygiene products such as diapers and nursing sheets, bedding, chairs, sofas, etc. Textile products such as skin materials, carpets, car seats and interior goods.

本発明の立毛布帛は、例えば下記の製造方法によって容易に得ることができる。
まず、固有粘度が0.30〜0.43(オルソクロロフェノールを溶媒として35℃で測定)の、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルと、固有粘度が1.0〜1.4(m−クレゾールを溶媒として30℃で測定)のポリアミドとを用いてサイドバイサイド型に溶融複合紡糸する。その際、ポリエステル成分の固有粘度が0.43以下であることが特に重要である。ポリエステル成分の固有粘度が0.43よりも大きいと、ポリエステル成分の粘度が増大するため、複合繊維の物性がポリエステル単独糸に近くなり、本発明が目的とする立毛布帛が得られないおそれがある。逆に、ポリエステル成分の固有粘度が0.30よりも小さいと、溶融粘度が小さくなりすぎて製糸性が低下するとともに毛羽発生が多くなり、品質および生産性が低下するおそれがある。
The raised fabric of the present invention can be easily obtained, for example, by the following production method.
First, a modified polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized; Using a polyamide having an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent), melt composite spinning is performed in a side-by-side manner. At that time, it is particularly important that the intrinsic viscosity of the polyester component is 0.43 or less. If the intrinsic viscosity of the polyester component is larger than 0.43, the viscosity of the polyester component increases, so that the physical properties of the composite fiber are close to those of a single polyester yarn, and the napped fabric intended by the present invention may not be obtained. . On the other hand, if the intrinsic viscosity of the polyester component is less than 0.30, the melt viscosity becomes too small and the yarn-making property is lowered and the generation of fluff is increased, which may reduce the quality and productivity.

溶融紡糸の際に用いる紡糸口金としては、特開2000−144518号公報の図1のような、高粘度側と低粘度側の吐出孔を分離し、かつ高粘度側吐出線速度を小さくした(吐出断面積を大きくした)紡糸口金が好適である。そして、高粘度側吐出孔に溶融ポリエステルを通過させ、低粘度側吐出孔に溶融ポリアミドを通過させ冷却固化させることが好ましい。その際、ポリエステル成分とポリアミド成分との重量比は、30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   As the spinneret used for melt spinning, as shown in FIG. 1 of JP-A-2000-144518, the high-viscosity side and low-viscosity side discharge holes are separated and the high-viscosity side discharge linear velocity is reduced ( A spinneret having a large discharge cross-sectional area is preferred. Then, it is preferable that the molten polyester is passed through the high viscosity side discharge holes and the molten polyamide is passed through the low viscosity side discharge holes to be cooled and solidified. In that case, it is preferable that the weight ratio of a polyester component and a polyamide component exists in the range of 30: 70-70: 30 (more preferably 40: 60-60: 40).

また、溶融複合紡糸した後、一旦巻き取った後に延伸する別延方式を採用してもよいし、一旦巻き取らずに延伸熱処理を行う直延方式を採用してもよい。その際、紡糸・延伸条件としては、通常の条件でよい。例えば、直延方式の場合、1000〜3500m/分程度で紡糸した後、連続して100〜150℃の温度で延伸し巻き取る。延伸倍率は最終時に得られる複合繊維の切断伸度が10〜60%(好ましくは20〜45%)、切断強度が3.0〜4.7cN/dtex程度となるよう、適宜選定すればよい。   Further, after the melt composite spinning, a separate stretching method in which the film is once wound and then stretched may be employed, or a direct stretching method in which a stretching heat treatment is performed without winding once may be employed. At that time, the spinning and drawing conditions may be normal conditions. For example, in the case of the direct extension method, after spinning at about 1000 to 3500 m / min, the film is continuously drawn and wound at a temperature of 100 to 150 ° C. The draw ratio may be appropriately selected so that the cut elongation of the composite fiber obtained at the end is 10 to 60% (preferably 20 to 45%) and the cut strength is about 3.0 to 4.7 cN / dtex.

次いで、かかる複合繊維糸条と必要に応じて他の繊維とを立毛部用糸条とし、地組織用繊維糸条とともに用いて、編織組織を有する地組織部と、ループパイル部とで構成されるパイル布帛を製編織した後、必要に応じループパイルの先端部をカットする。その際、立毛布帛の編織組織に制限はなく、例えば経パイル織物、緯パイル織物、シンカーパイル編物、ラッセルパイル編物、トリコットパイル編物などのループパイルをカットして得られたカットパイル布帛である。   Next, such a composite fiber yarn and other fibers as necessary are used as a napped portion yarn, and used together with the ground fabric fiber yarn, and is composed of a ground tissue portion having a knitted fabric structure and a loop pile portion. After the pile fabric is knitted and woven, the tip of the loop pile is cut as necessary. In that case, there is no restriction | limiting in the knitted fabric structure of a napped fabric, For example, it is a cut pile fabric obtained by cutting loop piles, such as a warp pile fabric, a weft pile fabric, a sinker pile knitted fabric, a Russell pile knitted fabric, a tricot pile knitted fabric.

次いで、該布帛を染色加工などの熱処理を施すことにより、前記複合繊維の捲縮を発現させる。
ここで、前記染色加工の温度としては100〜140℃(より好ましくは110〜135℃)、時間としてはトップ温度のキープ時間が5〜40分の範囲内であることが好ましい。かかる条件で、織編物に染色加工を施すことにより、前記複合繊維は、ポリエステル成分とポリアミド成分との熱収縮差により捲縮を発現する。その際、ポリエステル成分とポリアミド成分として、前述のポリマーを選定することにより、ポリアミド成分が捲縮の内側に位置する捲縮構造となる。
Next, the fabric is subjected to a heat treatment such as a dyeing process to develop crimps of the composite fiber.
Here, the temperature of the dyeing process is preferably 100 to 140 ° C. (more preferably 110 to 135 ° C.), and the time is preferably a top temperature keeping time within a range of 5 to 40 minutes. By applying a dyeing process to the woven or knitted fabric under such conditions, the composite fiber develops crimp due to a difference in thermal shrinkage between the polyester component and the polyamide component. At that time, by selecting the above-mentioned polymer as the polyester component and the polyamide component, a crimped structure is obtained in which the polyamide component is located inside the crimp.

染色加工が施された織編物には、通常、乾熱ファイナルセットが施される。その際、乾熱ファイナルセットの温度としては120〜200℃(より好ましくは140〜180℃)、時間としては1〜3分の範囲内であることが好ましい。かかる、乾熱ファイナルセットの温度が120℃よりも低いと、染色加工時に発生したシワが残り易く、また、仕上がり製品の寸法安定性が悪くなるおそれがある。逆に、該乾熱ファイナルセットの温度が200℃よりも高いと、染色加工の際に発現した複合繊維の捲縮が低下したり、繊維が硬化し生地の風合いが硬くなるおそれがある。   A dry heat final set is usually applied to the woven or knitted fabric subjected to the dyeing process. At that time, the temperature of the dry heat final set is preferably 120 to 200 ° C. (more preferably 140 to 180 ° C.), and the time is preferably within a range of 1 to 3 minutes. When the temperature of the dry heat final set is lower than 120 ° C., wrinkles generated during the dyeing process are likely to remain, and the dimensional stability of the finished product may be deteriorated. On the other hand, if the temperature of the dry heat final set is higher than 200 ° C., the crimp of the composite fiber developed during the dyeing process may be reduced, or the fiber may be cured and the texture of the fabric may be hardened.

また、本発明の立毛布帛に吸水加工を施すことが好ましく、これにより汗の拡散速度を上げベトツキ感を抑制すると共に、捲縮繊維Aの捲縮変化速度を上げ、立毛高さ変化の応答性が速くなり好ましい。   Further, it is preferable that the napped fabric of the present invention is subjected to a water absorption process, thereby increasing the sweat diffusion rate and suppressing the stickiness, and increasing the crimp change rate of the crimped fiber A, thereby responding to changes in napped height. Is faster and preferable.

吸水加工を施す方法は特に限定しないが、例えば染色時に染液に吸汗加工剤を混合する浴中加工法やファイナルセット前に織編物を吸汗加工液中にディッピングしマングルで絞った後、連続的にファイナルセットを行う方法、またはグラビヤコーティング法、スクリーンプリント法といった塗布による加工方法等が挙げられる。   There is no particular limitation on the method of performing water absorption processing, but for example, a processing method in a bath in which a sweat absorbing agent is mixed with the dyeing solution during dyeing, or after woven or knitted fabric is dipped into the sweat absorbing processing solution and squeezed with a mangle before final setting And a final setting method, or a processing method by coating such as a gravure coating method or a screen printing method.

かくして得られた立毛布帛において、立毛部に含まれる捲縮繊維Aの捲縮率が、湿潤時に可逆的に低下するため、捲縮繊維Aからなる立毛糸の立毛高さが大きくなる。   In the napped fabric thus obtained, the crimped rate of the crimped fiber A contained in the napped portion is reversibly lowered when wet, so that the napped height of the napped yarn made of the crimped fiber A is increased.

ここで、下記式で算出する立毛高さ変化率が5%以上(より好ましくは50〜100%)であることが好ましい。
立毛高さ変化率(%)=((LW−LD)/LD)×100
Here, it is preferable that the nap height change rate calculated by the following formula is 5% or more (more preferably 50 to 100%).
Napped height change rate (%) = ((LW−LD) / LD) × 100

ただし、LDとは、立毛布帛を温度20℃、湿度65%RH環境下に24時間放置した後の状態で測定した立毛高さであり、一方LWとは、立毛部表面に水を1cc滴下した後、1分経過後の最大立毛高さである。   However, LD is the napped height measured in a state where the napped fabric is left in a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, while LW is 1 cc of water dropped on the napped surface. The maximum napped height after 1 minute has elapsed.

このように、湿潤時に捲縮繊維Aの捲縮率が低下し、捲縮繊維Aからなる立毛糸の立毛高さが大きくなることにより、立毛布帛の通気性は湿潤時に向上する。かかる通気性の変化量としては、湿潤時における立毛布帛の通気性が、乾燥時よりも10%以上(より好ましくは15〜50%)高くなることが好ましい。   As described above, the crimp rate of the crimped fiber A is lowered when wet, and the raised height of the raised yarn made of the crimped fiber A is increased, so that the air permeability of the raised fabric is improved when wet. As the amount of change in air permeability, it is preferable that the air permeability of the napped fabric when wet is 10% or more (more preferably 15 to 50%) higher than when dry.

なお、本発明の立毛布帛には、撥水加工、起毛加工、紫外線遮蔽あるいは抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射剤、マイナスイオン発生剤、吸水剤等の機能を付与する各種加工を付加適用してもよい。   The raised fabric of the present invention is provided with functions such as water-repellent finishing, raising, ultraviolet shielding or antibacterial agent, deodorant, insect repellent, phosphorescent agent, retroreflective agent, negative ion generator, water absorbing agent and the like. Various processing may be additionally applied.

以下、実施例をあげて本発明を詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、実施例中の各物性は下記の方法により測定したものである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by these. In addition, each physical property in an Example is measured with the following method.

<ポリエステルの固有粘度>オルソクロロフェノールを溶媒として使用し温度35℃で測定した。
<ポリアミドの固有粘度>m−クレゾールを溶媒として使用し温度30℃で測定した。
<破断強度、破断伸度>繊維試料を、雰囲気温度25℃、湿度60%RHの恒温恒湿に保たれた部屋に一昼夜放置した後、サンプル長さ100mmで(株)島津製作所製引張試験機テンシロンにセットし、200mm/minの速度で伸張し、破断時の強度(cN/dtex)、伸度(%)を測定した。なお、n数5でその平均値を求めた。
<沸水収縮率>JIS L 1013−1998、7.15で規定される方法により、沸水収縮率(熱水収縮率)(%)を測定した。なお、n数3でその平均値を求めた。
<Intrinsic Viscosity of Polyester> Measured at a temperature of 35 ° C. using orthochlorophenol as a solvent.
<Intrinsic viscosity of polyamide> The viscosity was measured at 30 ° C. using m-cresol as a solvent.
<Breaking strength, breaking elongation> After leaving the fiber sample in a room maintained at a constant temperature and humidity of 25 ° C. and a humidity of 60% RH for a day and night, a tensile tester manufactured by Shimadzu Corporation with a sample length of 100 mm It was set on Tensilon, stretched at a speed of 200 mm / min, and the strength at break (cN / dtex) and elongation (%) were measured. In addition, the average value was calculated | required by n number 5.
<Boiling water shrinkage rate> The boiling water shrinkage rate (hot water shrinkage rate) (%) was measured by the method defined in JIS L 1013-1998, 7.15. In addition, the average value was calculated | required by n number 3.

<複合繊維の捲縮率>枠周:1.125mの巻き返し枠を用いて、荷重:49/50mN×9×トータルテックス(0.1gf×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛をつくり、該小綛をねじり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後さらに初荷重をかけたまま160℃の乾熱中に入れ5分間処理した。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルテックス(0.2gf×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定した。さらにこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙(大きさ30cm×30cm)にて0.69mN/cm(70mgf/cm)の圧力を5秒間かけて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、湿潤時の捲縮率HC(%)、乾燥時と湿潤時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5で平均値を求めた。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100
湿潤時の捲縮率HC(%)=(L0’−L1’)/L0’)×100
<Crimping rate of composite fiber> Frame circumference: Using a rewind frame of 1.125 m, the load was 49/50 mN × 9 × total tex (0.1 gf × total denier) and wound at a constant speed. : Make 10 gavel and twist it into a double ring shape and put it in boiling water with initial load of 49 / 2500mN x 20 x 9 x total tex (2mg x 20 x total denier) It was treated for 30 minutes, and after the boiling water treatment, it was dried in a dryer at 100 ° C. for 30 minutes, and then further placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × A heavy load of (total denier) was applied, the heel length: L0 was measured, only the heavy load was immediately removed, and the heel length: L1 after 1 minute of dewetting was measured. Further, the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, and then taken out. The filter paper (size 30 cm × 30 cm) was applied with a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) for 5 seconds. After lightly wiping off the water, an initial load and a heavy load are applied, and the heel length: L0 ′ is measured. Only the heavy load is removed immediately, and the heel length: L1 ′ after 1 minute of dewetting is measured. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) ( %) Was calculated. In addition, the number of n was 5, and the average value was obtained.
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100

<立毛高さの変化率>
布帛を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該布帛から、10cm×10cmの小片を裁断する(n数=5)。続いて、上記織編物をパイルもしくは立毛面が上になるように平らな板の上に静かに置き、立毛面に圧力0.07g/cmの荷重をかけ、ミツトヨ社製デジマチックハイトゲージ(HDS−HC)を用いて、織編物の厚みTDを計測する。
さらに、この小片に水1ccを滴下し、1分経過後に当該滴下部に前記と同様に圧力0.07g/cmの荷重下にて厚みTWを計測する。
その後、上記の小片を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、光学顕微鏡にて立毛布帛の断面写真を撮影し、写真から地組織部の厚みTDを計測する。さらに、この小片に水1ccを滴下し、1分経過後に当該滴下部を、上記と同様に光学顕微鏡にて立毛布帛の断面写真を撮影し、写真から地組織部の厚みTWを計測する。そして、以上の測定数値から下記の計算式にて、立毛高さ変化率を算出する。
立毛高さ変化率(%)=((LW−LD)/LD)×100
乾燥時の立毛高さ(LD)=TD−TD
湿潤時の立毛高さ(LW)=TW−TW
<Change rate of napped height>
The fabric is left in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, and then a 10 cm × 10 cm piece is cut from the fabric (n number = 5). Subsequently, the woven or knitted fabric is gently placed on a flat plate with the pile or raised surface facing upward, a pressure of 0.07 g / cm 2 is applied to the raised surface, and a Digimatic Height Gauge (HDS) manufactured by Mitutoyo Corporation is applied. -HC) is used to measure the thickness TD of the woven or knitted fabric.
Further, 1 cc of water is dropped onto this small piece, and after one minute has elapsed, the thickness TW is measured at the dropping portion under a load of pressure 0.07 g / cm 2 as described above.
Thereafter, the piece temperature 20 ° C., after standing for 24 hours in an atmosphere of RH 65% humidity, taking a photograph of a cross section of raised fabric with an optical microscope to measure the thickness TD G of the ground structure portion from the photographic. Further, water was added dropwise 1cc in this piece, the dropping portion after a lapse of 1 minute, a cross-sectional photograph of the raised fabric taken in the same manner as above optical microscope to measure the thickness TW G of the ground structure portion from the photographic. And the nap height change rate is calculated from the above measured numerical values by the following formula.
Napped height change rate (%) = ((LW−LD) / LD) × 100
Napped height during drying (LD) = TD-TD G
Napped height when wet (LW) = TW-TW G

<通気性>
JIS L 1096−1998、6.27.1、A法(フラジール形通気性試験機法)により温度20℃、湿度65%RHに24時間以上放置し調湿した編地と、水中に浸漬後、水中から引き上げろ紙にて490N/m(50kgf/m)の圧力で1分間加重し繊維間に存在する水分を取り除いた後、それぞれ通気性を測定(n数=5)し、次式により通気性変化率を算出した。
通気性変化率(%)=(AP−AP)/AP×100
ただし、APは温度20℃、湿度65%RHにおける通気性、AP:湿潤状態の通気性である。
<Breathability>
JIS L 1096-1998, 6.27.1, a knitted fabric that has been conditioned for 24 hours or more at a temperature of 20 ° C. and a humidity of 65% RH by method A (Fragile-type air permeability tester method), and after being immersed in water, After pulling out from water with a filter paper and applying a pressure of 490 N / m 2 (50 kgf / m 2 ) for 1 minute to remove the water present between the fibers, the air permeability was measured (n number = 5). The air permeability change rate was calculated.
Permeability change rate (%) = (AP W −AP D ) / AP D × 100
However, AP D is air permeability at a temperature of 20 ° C. and a humidity of 65% RH, and AP W is air permeability in a wet state.

[実施例1]
固有粘度〔η〕が1.3のナイロンー6と固有粘度〔η〕が0.39で2.6モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとを夫々260℃、290℃にて溶融し、特開2000−144518号公報記載の複合紡糸口金を用い、それぞれ12.7g/分の吐出量にて押し出しだしサイドバイサイド型複合繊維を形成させ、冷却固化・油剤を付与したあと、糸状を速度1000m/分、温度60℃のローラーにて予熱し,ついで、速度3050m/分 、温度150℃に加熱されたローラー間で延伸熱処理を行い巻き取り84dtex24filの複合繊維を得た。得られた複合繊維は乾燥時の捲縮率DC=3.3%、吸水時の捲縮率HC=1.6%、乾燥時と吸水時の捲縮差DC−HC=1.7%と良好な捲縮変化性能を有していた。
[Example 1]
Nylon-6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 2.6 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.39, respectively at 260 ° C. Melted at 290 ° C., extruded using a composite spinneret described in JP 2000-144518 A, at a discharge rate of 12.7 g / min to form side-by-side type composite fibers, and cooled, solidified and oiled. Then, the filament was preheated with a roller having a speed of 1000 m / min and a temperature of 60 ° C., and then subjected to a drawing heat treatment between rollers heated to a speed of 3050 m / min and a temperature of 150 ° C. to obtain a 84 dtex 24 fil composite fiber. The obtained composite fiber has a crimp ratio DC = 3.3% at the time of drying, a crimp ratio HC = 1.6% at the time of water absorption, and a crimp difference DC-HC = 1.7% at the time of drying and water absorption. It had good crimp change performance.

24ゲージ丸編シンカーパイル機を用いて(シンカー高さ3.2mm)、地組織部が上記複合繊維およびポリエステル捲縮加工糸84dtex72fil(捲縮率20%)で構成され、パイル部が上記複合繊維のみで構成されるパイル編地(立毛布帛)を編成した。得られた編地はコース数47コース/2.54cm、ウェール数28ウェール/2.54cmであった。   Using a 24-gauge circular knitting sinker pile machine (sinker height 3.2 mm), the ground structure portion is composed of the above composite fiber and polyester crimped yarn 84 dtex 72 fil (crimp rate 20%), and the pile portion is the above composite fiber. A pile knitted fabric (standing fabric) composed only of knitted fabric was knitted. The obtained knitted fabric was 47 courses / 2.54 cm in number of courses and 28 wales / 2.54 cm in number of wales.

次いで、この編地を160℃で1分間乾熱セットを行った後、130℃の染色温度にて染色加工を行い、その際、吸汗加工剤(ポリエチレンテレフタレート−ポリエチレングリコール共重合体)と同浴処理を行うことにより、該編地に吸水性を付与した。その後、該編地を160℃にてフィイナルセットした。
得られた立毛布帛の評価結果は表1に示す通りで、湿潤により毛長が67%向上し、且つ通気性が26%向上し満足なものであった。
Next, this knitted fabric was dry-heat set at 160 ° C. for 1 minute, and then dyed at a dyeing temperature of 130 ° C., in which case the same bath as the sweat absorbing agent (polyethylene terephthalate-polyethylene glycol copolymer) By performing the treatment, water absorbability was imparted to the knitted fabric. Thereafter, the knitted fabric was finally set at 160 ° C.
The evaluation results of the obtained napped fabric were as shown in Table 1. The hair length was improved by 67% and the air permeability was improved by 26%, which was satisfactory.

[比較例1]
実施例1で用いた複合繊維の代わりに、実施例1で用いたポリエステル捲縮加工糸84dtex72filをパイル糸として用いる以外は実施例1と同じ方法により得られた編地の評価結果は表1に示す通りで、湿潤時も毛長および通気性は変化せず、満足なものが得られなかった。
[Comparative Example 1]
Table 1 shows the evaluation results of the knitted fabric obtained by the same method as in Example 1 except that the polyester crimped yarn 84dtex72fil used in Example 1 is used as a pile yarn instead of the composite fiber used in Example 1. As shown, the hair length and air permeability did not change even when wet, and a satisfactory product was not obtained.

Figure 2006207052
Figure 2006207052

本発明によれば、捲縮繊維を立毛部に含む立毛布帛であって、湿潤時に捲縮繊維の捲縮率が可逆的に低下することにより立毛高さが大きくなり、その結果、立毛部が衣服の内側に位置するように立毛布帛を使用すると、発汗時にムレ感や濡れ感を低減させることが可能な立毛布帛および該立毛布帛を用いてなる繊維製品が得られ、その工業的価値は極めて大である。   According to the present invention, there is a raised fabric containing crimped fibers in the raised portions, and the height of the raised fibers is increased by reversibly reducing the crimp rate of the crimped fibers when wet. When the raised fabric is used so as to be located inside the garment, a raised fabric capable of reducing the feeling of stuffiness and wetness when sweating and a textile product using the raised fabric are obtained, and its industrial value is extremely high. It ’s big.

本発明で用いられる複合繊維の単糸横断面形状を例示した模式図である。It is the schematic diagram which illustrated the single yarn cross-sectional shape of the composite fiber used by this invention. 乾燥時の立毛高さLDと、湿潤時の立毛高さLWとを説明するための模式図である。It is a schematic diagram for demonstrating napping height LD at the time of drying, and napping height LW at the time of moisture.

符号の説明Explanation of symbols

P:ポリエステル成分
N:ポリアミド成分
1:地組織部
2:立毛部
P: Polyester component N: Polyamide component 1: Ground tissue part 2: Napped part

Claims (9)

カットパイルおよび/またはループパイルからなる立毛部と地組織部とで構成される立毛布帛であって、前記立毛部に、湿潤時に捲縮率が低下する捲縮繊維Aが含まれることを特徴とする立毛布帛。   A raised fabric comprising a raised portion made of a cut pile and / or a loop pile and a ground tissue portion, wherein the raised portion contains a crimped fiber A having a reduced crimp rate when wet. Napping fabric. 前記の捲縮繊維Aにおいて、乾燥時の捲縮率DC(%)と湿潤時の捲縮率HC(%)との差DC−HCが0.5%以上である、請求項1に記載の立毛布帛。
ただし、乾燥時の捲縮率DC(%)と湿潤時の捲縮率HC(%)は、以下の方法により算出するものとする。すなわち、枠周:1.125mの巻き返し枠を用いて荷重:49/50mN×9×トータルテックス(0.1g×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛を作り、該小綛を捩じり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後更に初荷重をかけたまま160℃の乾熱中に入れ5分間処理する。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルデシテックス(0.2g×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定する。更にこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙にて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。次いで、以上の測定数値から下記の計算式にて、乾燥時の捲縮率(DC)と湿潤時の捲縮率(HC)を算出する。
乾燥時の捲縮率DC(%)={(L0−L1)/L0}×100
湿潤時の捲縮率HC(%)={(L0’−L1’)/L0’}×100
2. The crimped fiber A according to claim 1, wherein a difference DC-HC between a crimping rate DC (%) at the time of drying and a crimping rate HC (%) at the time of wetness is 0.5% or more. Standing fabric.
However, the crimping ratio DC (%) at the time of drying and the crimping ratio HC (%) at the time of wetness are calculated by the following methods. That is, using a rewind frame with a frame circumference of 1.125 m, load: 49/50 mN × 9 × total tex (0.1 g × total denier) and rewind at a constant speed. Made and twisted into a double ring shape with a twist of 49/2500 mN x 20 x 9 x total tex (2 mg x 20 x total denier) and placed in boiling water for 30 minutes Then, after the boiling water treatment, it is dried in a dryer at 100 ° C. for 30 minutes, and is then placed in a dry heat of 160 ° C. for 5 minutes with an initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand in an environment of temperature 20 ° C. and humidity 65% RH for 24 hours or more, and then the initial load and 98/50 mN × 20 × 9 × total decitex (0.2 g × 20 × Apply a heavy load of total denier), measure the heel length: L0, immediately remove only the heavy load, and measure the heel length: L1 after 1 minute of dewetting. Furthermore, after the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, it was taken out, and after lightly wiping off the water with a filter paper, the initial load and the heavy load were applied, and the heel length: L0 ′ was measured. Immediately remove only the heavy load and measure the heel length L1 ′ after 1 minute of dewetting. Next, the crimp rate at the time of drying (DC) and the crimp rate at the time of wetness (HC) are calculated from the above measured numerical values by the following formula.
Crimp rate during drying DC (%) = {(L0−L1) / L0} × 100
Crimp rate HC (%) when wet = {(L0′−L1 ′) / L0 ′} × 100
前記の捲縮繊維Aが、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維であって、潜在捲縮性能が発現してなる捲縮構造を有する捲縮繊維である、請求項1または請求項2に記載の立毛布帛。   The crimped fiber A is a composite fiber in which a polyester component and a polyamide component are bonded in a side-by-side manner, and is a crimped fiber having a crimped structure in which latent crimping performance is expressed. Or the raised fabric of Claim 2. ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエチレンテレフタレートからなる、請求項3に記載の立毛布帛。   The raised fabric according to claim 3, wherein the polyester component is a modified polyethylene terephthalate copolymerized with 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid. 前記の捲縮繊維Aが、無撚糸または300T/m以下の撚りが施された甘撚り糸である、請求項1〜4のいずれかに記載の立毛布帛。   The raised fabric according to any one of claims 1 to 4, wherein the crimped fiber A is a non-twisted yarn or a sweet-twisted yarn to which a twist of 300 T / m or less is applied. 地組織部がポリエステル繊維からなる、請求項1〜5のいずれかに記載の立毛布帛。   The raised fabric according to any one of claims 1 to 5, wherein the ground tissue portion is made of polyester fiber. 下記式で算出する立毛高さ変化率が5%以上である、請求項1〜5のいずれかに記載の立毛布帛。
立毛高さ変化率(%)=((LW−LD)/LD)×100
ただし、LDとは、立毛布帛を温度20℃、湿度65%RH環境下に24時間放置した後の状態で測定した立毛高さであり、一方LWとは、立毛部表面に水を1cc滴下した後、1分経過後の最大立毛高さである。
The napped fabric according to any one of claims 1 to 5, wherein the nap height change rate calculated by the following formula is 5% or more.
Napped height change rate (%) = ((LW−LD) / LD) × 100
However, LD is the napped height measured in a state where the napped fabric is left in a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, while LW is 1 cc of water dropped on the napped surface. The maximum napped height after 1 minute has elapsed.
湿潤時における立毛布帛の通気性が、乾燥時よりも10%以上高くなる、請求項1〜7のいずれかに記載の立毛布帛。   The raised fabric according to any one of claims 1 to 7, wherein air permeability of the raised fabric when wet is 10% or more higher than when dried. 請求項1〜8のいずれかに記載の立毛布帛を用いてなる、アウター用衣料、スポーツ用衣料、インナー用衣料、おしめや介護用シーツ等の医療・衛生用品、寝装寝具、椅子やソファー等の表皮材、カーペット、カーシート地、インテリア用品からなる群より選択される繊維製品。   Outer garments, sports garments, inner garments, medical and hygiene products such as diapers and nursing sheets, bedding, chairs, sofas, etc., comprising the raised fabric according to any one of claims 1 to 8. Textile products selected from the group consisting of skin materials, carpets, car seats and interior goods.
JP2005018028A 2005-01-26 2005-01-26 Raised fabric and textile product Pending JP2006207052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018028A JP2006207052A (en) 2005-01-26 2005-01-26 Raised fabric and textile product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018028A JP2006207052A (en) 2005-01-26 2005-01-26 Raised fabric and textile product

Publications (1)

Publication Number Publication Date
JP2006207052A true JP2006207052A (en) 2006-08-10

Family

ID=36964214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018028A Pending JP2006207052A (en) 2005-01-26 2005-01-26 Raised fabric and textile product

Country Status (1)

Country Link
JP (1) JP2006207052A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057099A (en) * 2006-08-29 2008-03-13 Mmi-Ipco Llc Temperature responsive smart textile
JP2009228140A (en) * 2008-03-19 2009-10-08 Teijin Fibers Ltd Napped fabric and fiber product
US8389100B2 (en) 2006-08-29 2013-03-05 Mmi-Ipco, Llc Temperature responsive smart textile
CN105401318A (en) * 2014-09-12 2016-03-16 常熟神花针织有限公司 Manufacturing method for weft knitting super-soft knitted fabric
JP2019017714A (en) * 2017-07-18 2019-02-07 パイロットインキ株式会社 Doll or animal figured toy and production method of the same
CN111093411A (en) * 2017-10-18 2020-05-01 耐克创新有限合伙公司 Humidity indicating garment
JP2020180851A (en) * 2019-04-25 2020-11-05 株式会社瑠光 Evaluation method for sheepskin bedding, pressure thickness measurement method for sheepskin bedding, and pressure thickness measurement apparatus for sheepskin bedding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252756A (en) * 1984-05-30 1985-12-13 帝人株式会社 Light permeation quantity variable knitted fabric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252756A (en) * 1984-05-30 1985-12-13 帝人株式会社 Light permeation quantity variable knitted fabric

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057099A (en) * 2006-08-29 2008-03-13 Mmi-Ipco Llc Temperature responsive smart textile
US8389100B2 (en) 2006-08-29 2013-03-05 Mmi-Ipco, Llc Temperature responsive smart textile
EP1895035B1 (en) * 2006-08-29 2023-11-22 Mmi-Ipco, Llc Temperature responsive smart textile
JP2009228140A (en) * 2008-03-19 2009-10-08 Teijin Fibers Ltd Napped fabric and fiber product
CN105401318A (en) * 2014-09-12 2016-03-16 常熟神花针织有限公司 Manufacturing method for weft knitting super-soft knitted fabric
JP2019017714A (en) * 2017-07-18 2019-02-07 パイロットインキ株式会社 Doll or animal figured toy and production method of the same
CN111093411A (en) * 2017-10-18 2020-05-01 耐克创新有限合伙公司 Humidity indicating garment
CN111093411B (en) * 2017-10-18 2022-06-03 耐克创新有限合伙公司 Humidity indicating garment
JP2020180851A (en) * 2019-04-25 2020-11-05 株式会社瑠光 Evaluation method for sheepskin bedding, pressure thickness measurement method for sheepskin bedding, and pressure thickness measurement apparatus for sheepskin bedding

Similar Documents

Publication Publication Date Title
JP6577589B2 (en) Fabrics and textile products
KR101220720B1 (en) Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
WO2006035968A1 (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
JP6775526B2 (en) Hook-and-loop fasteners and textile products
JP2003041462A (en) Woven/knitted fabric with air self-regulating permeability function
JP2006118062A (en) Woven/knitted fabric reducing its porosity when wetted, and method for producing the same, and related textile product
JP4414851B2 (en) Woven knitted fabrics and textile products that improve air permeability when wet
JP2006207053A (en) Three-layer structure woven or knitted fabric and textile product
JP2006207052A (en) Raised fabric and textile product
KR101681361B1 (en) Multilayered fabric and textile product
JP2006264309A (en) Multilayer structure varying in three-dimentional structure by absorbing water and textile product
JP2009024272A (en) Knitted fabric and fibrous product excellent in cool feeling
JP5881284B2 (en) Fabrics and textile products
JP2008297657A (en) Quilting cloth, bedding and down jacket
JPWO2015182088A1 (en) Polyamide fiber, fiber structure using the same, and clothing
JP4567500B2 (en) Fabrics and textiles whose structure is three-dimensionally changed by water absorption
JP2009167565A (en) Stretchable knitted fabric, method for producing the same, and textile product
JP5216970B2 (en) Polyester knitted fabric, production method thereof and textile product
JP4466132B2 (en) Absorbent stretch knitted fabric
JP5495286B2 (en) Method for producing hair knitted fabric, hair knitted fabric and textile product
JP4414854B2 (en) Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture
JP5996915B2 (en) Shoes and shoes
JP5456115B2 (en) Woven knitted fabric with unevenness caused by wetting, manufacturing method thereof, and textile product
JP2006207065A (en) Garment exerting ventilation effect when wetted
JP2010059570A (en) Woven fabric and textile product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713