JP2006206356A - Quartz glass preform for optical fiber and its manufacturing method - Google Patents

Quartz glass preform for optical fiber and its manufacturing method Download PDF

Info

Publication number
JP2006206356A
JP2006206356A JP2005018753A JP2005018753A JP2006206356A JP 2006206356 A JP2006206356 A JP 2006206356A JP 2005018753 A JP2005018753 A JP 2005018753A JP 2005018753 A JP2005018753 A JP 2005018753A JP 2006206356 A JP2006206356 A JP 2006206356A
Authority
JP
Japan
Prior art keywords
optical fiber
burner
deposition
quartz glass
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005018753A
Other languages
Japanese (ja)
Other versions
JP4614782B2 (en
Inventor
Hiroshi Machida
浩史 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005018753A priority Critical patent/JP4614782B2/en
Priority to PCT/JP2006/301024 priority patent/WO2006080294A1/en
Priority to TW095103017A priority patent/TW200628421A/en
Publication of JP2006206356A publication Critical patent/JP2006206356A/en
Application granted granted Critical
Publication of JP4614782B2 publication Critical patent/JP4614782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/52Linear array of like burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/66Relative motion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber preform and its manufacturing method by which an optical fiber preform is upsized and manufacturing cost is reduced by preventing the occurrence of rough skin-like fine projecting parts formed in the manufacturing process of a high density porous preform by an outside vapor deposition (OVD) method. <P>SOLUTION: In the formation of the porous preform by depositing glass fine particles on the circumferential surface of a glass rod for a core while moving back and forth a plurality of burners arranged along the circumferential surface of the glass rod for the core by the OVD method, the average deposition thickness T<SB>ave</SB>[mm R/trv] per one traverse of the burner is adjusted to ≥0.5 mm and the average bulk density is controlled to ≥0.6 g/cm<SP>3</SP>. It is preferable that the average deposition thickness T<SB>ave</SB>is controlled to 0.5-1.0 mm by controlling the traverse speed of the burner or the supply quantity of a raw material gas and a combustion gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、外付け法(OVD法)により安定して得られる大型の光ファイバ用石英ガラス母材(以下、単に光ファイバ母材と称する)及びその製造方法に関する。   The present invention relates to a large-sized quartz glass base material for optical fibers (hereinafter simply referred to as an optical fiber base material) that is stably obtained by an external method (OVD method) and a method for manufacturing the same.

近年の光ファイバ母材の需要の減少にともない、光ファイバ母材の製造工程では生産コストの低減が求められている。生産コストの低減方法には様々な方法が挙げられるが、その一つは作製する光ファイバ母材の大型化である。
光ファイバ母材の大型化の方法としては、多孔質母材の製造工程段階において、製造する多孔質母材の外径を大きくする方法が主流となってきている。
しかし、多孔質母材の外径を大きくした場合、次工程での脱水焼結設備の大型化が必要となり、新たな設備投資が必要となる。
With the recent decrease in demand for optical fiber preforms, reduction in production costs is required in the optical fiber preform manufacturing process. There are various methods for reducing the production cost, one of which is to increase the size of the optical fiber preform to be manufactured.
As a method for increasing the size of the optical fiber preform, a method of increasing the outer diameter of the porous preform to be manufactured has become the mainstream in the manufacturing process of the porous preform.
However, when the outer diameter of the porous base material is increased, it is necessary to increase the size of the dehydration and sintering equipment in the next process, and new equipment investment is required.

そこで、これに代わる方法として、多孔質母材の高密度化が挙げられる。この方法を用いると、作製する多孔質母材の外径を大きくすることなく、多孔質母材の堆積重量をさらに増加させることができ、結果的に脱水焼結して得られるガラス母材の大型化が可能となる。この方法を用いた場合、多孔質母材の外径には変化がないため、次工程で使用される脱水焼結設備の改造を必要としない利点がある。   Thus, an alternative method is to increase the density of the porous base material. By using this method, it is possible to further increase the weight of the porous base material without increasing the outer diameter of the porous base material to be produced. As a result, the glass base material obtained by dehydration sintering can be used. Larger size is possible. When this method is used, there is no change in the outer diameter of the porous base material. Therefore, there is an advantage that the dehydration and sintering equipment used in the next process does not need to be modified.

このため、光ファイバ母材の大型化を狙って、高密度多孔質母材の作製を行ったところ、次のような問題が発生した。
通常の多孔質母材の平均的な嵩密度は0.3〜0.5g/cm3程度である。これに対し嵩密度が0.6g/cm3以上の高密度の多孔質母材を作製しようとすると、堆積表面に微小な突起を生じ、脱水透明ガラス化後の光ファイバ母材の表面に凹凸となって残る。
For this reason, when a high-density porous preform was produced with the aim of increasing the size of the optical fiber preform, the following problems occurred.
The average bulk density of a normal porous base material is about 0.3 to 0.5 g / cm 3 . On the other hand, if an attempt is made to produce a high-density porous preform having a bulk density of 0.6 g / cm 3 or more, minute protrusions are formed on the deposition surface, and irregularities are formed on the surface of the optical fiber preform after dehydration and transparent vitrification. It will remain.

堆積表面に生じる微小突起は、堆積初期段階において高さ1mm程度の突起が堆積面全体にわたって均一に生じており、外見上、鮫肌のように観察される。さらに堆積を続けると、突起は成長を続け、堆積終了時には高さ3cm程度のイボ状の突起となって、堆積面全体に均一に分布する。このような多孔質母材の脱水透明ガラス化を行ったところ、光ファイバ母材の表面にイボ状の突起が原因と思われる凹凸が生じていた。   The minute protrusions generated on the deposition surface are uniformly projected over the entire deposition surface at a height of about 1 mm in the initial stage of deposition, and are visually observed as a skin. As deposition continues further, the projections continue to grow and become warped projections with a height of about 3 cm at the end of deposition, and are uniformly distributed over the entire deposition surface. When such a porous preform was dehydrated and transparently vitrified, irregularities thought to be caused by warped protrusions were formed on the surface of the optical fiber preform.

本発明は、外付け法(OVD法)による高密度多孔質母材の製造工程において生じる鮫肌状の微小突起の発生を防止することで、光ファイバ母材の大型化を実現し、製造コストの低減を可能とする、光ファイバ母材及びその製造方法を提供することを目的としている。   The present invention realizes an increase in the size of the optical fiber preform by preventing the occurrence of wrinkle-like microprojections generated in the manufacturing process of the high-density porous preform by the external attachment method (OVD method). An object of the present invention is to provide an optical fiber preform that can be reduced and a method for manufacturing the same.

本発明の光ファイバ母材の製造方法は、外付け法(OVD法)によりコア用ガラス棒の周面上に、これに沿って配置した複数のバーナを往復移動させてガラス微粒子を堆積させることにより多孔質母材を作製するに当り、バーナ1トラバース当りのガラス微粒子の平均堆積厚さTave[mm R/trv]が0.5mm以上で、平均嵩密度が0.6g/cm3以上となるように調整して高密度多孔質母材を作製することを特徴としている。
なお、平均堆積厚さTaveは、0.5〜1.0mmの範囲とするのが好ましく、バーナのトラバース速度を調整して、あるいは原料ガス及び燃焼ガスの供給量を調整することで、上記厚さ範囲に納めることができる。
このようにして本発明の光ファイバ母材が得られる。
The optical fiber preform manufacturing method of the present invention deposits glass particles by reciprocating a plurality of burners arranged along the peripheral surface of a core glass rod by an external method (OVD method). When producing a porous base material, the average deposition thickness T ave [mm R / trv] per glass burner traverse is 0.5 mm or more and the average bulk density is 0.6 g / cm 3 or more. It is characterized by preparing a high-density porous base material by adjusting to.
The average deposition thickness T ave is preferably in the range of 0.5 to 1.0 mm, and the thickness range is adjusted by adjusting the traverse speed of the burner or by adjusting the supply amount of the raw material gas and the combustion gas. Can be paid.
In this way, the optical fiber preform of the present invention is obtained.

本発明は、多孔質母材の平均嵩密度を0.6g/cm3以上とすることにより、堆積中の鮫肌状の微小突起の発生を防止することができ、光ファイバ母材の大型化が可能となり、製品のコストダウンを可能とする。 In the present invention, by setting the average bulk density of the porous base material to 0.6 g / cm 3 or more, it is possible to prevent the occurrence of crust-like microprotrusions during deposition, and the size of the optical fiber base material can be increased. Thus, the cost of the product can be reduced.

本発明の光ファイバ母材の製造方法は、外付け法(OVD法)によりコア用ガラス棒の周面に、これに沿って配置した複数のバーナを往復移動させてガラス微粒子を堆積させる際に、平均嵩密度が0.6g/cm3以上の高密度多孔質母材を作製するに当り、バーナ1トラバース当りのガラス微粒子の平均堆積厚さTave[mm R/trv]を0.5mm以上、好ましくは0.5〜1.0mmとするものである。
平均堆積厚さTave[mm R/trv]は、次式で求められる。
平均堆積厚さ=(多孔質母材外径−出発材外径)/(2×トラバース総数)
なお、トラバース総数とは、堆積開始から終了までにトラバースを行った総数のことである。
The manufacturing method of the optical fiber preform of the present invention is performed when the glass particles are deposited by reciprocating a plurality of burners arranged along the peripheral surface of the core glass rod by an external method (OVD method). In producing a high-density porous base material having an average bulk density of 0.6 g / cm 3 or more, the average deposition thickness T ave [mm R / trv] of glass particles per one burner traverse is preferably 0.5 mm or more. Is 0.5 to 1.0 mm.
The average deposition thickness T ave [mm R / trv] is obtained by the following equation.
Average deposition thickness = (porous matrix outer diameter-starting material outer diameter) / (2 x total number of traverses)
Note that the total number of traverses is the total number of traverses performed from the start to the end of deposition.

多孔質母材の堆積表面に微小突起が発生する原因は明確ではないが、以下のように考えられる。
外付け法(OVD法)により、コア用ガラス棒の周面にガラス微粒子を堆積させる火炎加水分解法は、コア用ガラス棒に平行に配置した1本もしくは複数本のバーナを往復移動させ、バーナより酸水素火炎及び原料ガスを噴射させて、生成したガラス微粒子を堆積面に付着させることにより行われる。
The cause of the occurrence of microprotrusions on the deposition surface of the porous base material is not clear, but is considered as follows.
In the flame hydrolysis method in which glass particles are deposited on the peripheral surface of the core glass rod by the external method (OVD method), one or more burners arranged in parallel to the core glass rod are reciprocally moved. Further, the oxyhydrogen flame and the raw material gas are injected to adhere the generated glass fine particles to the deposition surface.

この方法で堆積を行うと、バーナが1トラバース(1方向移動)した際に、ガラス微粒子が付着した堆積層には、局所的に密度差が発生し、表面に高密度層が、内部に低密度層が形成されていると推測され、多孔質母材の密度を決定しているのは、この内部の低密度層によるものと考えられる。
この局所的に形成された高密度層表面では、堆積したガラス微粒子が酸水素火炎により粒子成長を起こしていると考えられ、局所的な高密度層表面に非常に微細な突起が既に存在していると推測される。
When deposition is performed by this method, when the burner traverses one direction (moving in one direction), a density difference locally occurs in the deposited layer to which the glass fine particles have adhered, and the high-density layer on the surface has a low density inside. It is presumed that a density layer is formed, and the density of the porous base material is determined by this low density layer.
On the surface of the locally formed high-density layer, it is considered that the deposited glass particles are caused to grow by oxyhydrogen flame, and there are already very fine protrusions on the surface of the local high-density layer. It is estimated that

このことについて、図1を用いて説明する。
石英ガラス棒(ターゲット材)1の周面上にガラス微粒子(スート)を堆積すると、先ず、バーナ1トラバースで局所低密度層2が形成される。この局所低密度層2は密度が低いが、その表面には局所高密度層3が形成され、さらにその表面に極めて小さな微小突起4が存在すると考えられる。
バーナの1トラバース毎に局所低密度層2と、その表面に局所高密度層3及び微小突起4が形成されるが、この微小突起4は、その後に堆積される局所低密度層2で順次覆われ、最終表面に残った微小突起4は極めて小さい。なお、符号5は堆積用バーナであり、符号6はバーナ火炎である。
This will be described with reference to FIG.
When glass fine particles (soot) are deposited on the peripheral surface of the quartz glass rod (target material) 1, first, a local low density layer 2 is formed by a burner 1 traverse. Although this local low density layer 2 has a low density, it is considered that a local high density layer 3 is formed on the surface thereof, and there are very small projections 4 on the surface.
The local low density layer 2 is formed for each traverse of the burner, and the local high density layer 3 and the minute protrusions 4 are formed on the surface. The minute protrusions 4 are successively covered with the local low density layer 2 deposited thereafter. The microprotrusions 4 remaining on the final surface are extremely small. Reference numeral 5 denotes a deposition burner, and reference numeral 6 denotes a burner flame.

しかし、図2に示すように、多孔質母材の密度を高密度化していくと、バーナ1トラバース当りの堆積層における、局所低密度層2の密度も高くなっていくため、前のトラバースで表面に発生した微小突起4の履歴をなくすことが困難となり、結果的にトラバースを繰り返していくと、微小突起4が成長を始め、最終的に、鮫肌状の微小突起4へと、成長すると考えられる。
このような鮫肌状の微小突起を防止するには、鋭意研究の結果、バーナ1トラバース当りの堆積層の厚さを大きくしていくことで、解決できることを見い出した。
However, as shown in FIG. 2, as the density of the porous base material is increased, the density of the local low-density layer 2 in the deposited layer per one burner traverse also increases. It is difficult to eliminate the history of the microprotrusions 4 generated on the surface. As a result, when the traverse is repeated, the microprotrusions 4 begin to grow and eventually grow into the skin-like microprotrusions 4. It is done.
As a result of intensive studies, we have found that this problem can be solved by increasing the thickness of the deposited layer per burner traverse.

上記したように、鮫肌状の微小突起の発生原因としては、高密度化に伴なうバーナ1トラバース当りの堆積層での局所的な低密度部分が高密度化し、前のトラバースで発生した微小突起を覆い尽くせなくなったためと考えられる。そこで、堆積厚を大きくすることにより、バーナ1トラバース当りの堆積層における局所的な低密度部分の厚さを増大させ、前のトラバースで発生した微小突起を完全に覆い尽くした後、次のトラバースを迎えることができる。よって、前の微小突起の履歴を完全にキャンセルすることができ、結果として鮫肌状の微小突起の発生を防止することができる。   As described above, the cause of the occurrence of the ridge-like microprojections is that the local low-density portion in the deposited layer per traverse of the burner accompanying the increase in density becomes higher, and the minute generated in the previous traverse. This is probably because the protrusions could not be covered. Therefore, by increasing the deposition thickness, the thickness of the local low-density portion in the deposition layer per burner traverse is increased, and after covering the minute protrusions generated in the previous traverse completely, the next traverse is performed. Can be greeted. Therefore, the history of the previous microprojections can be completely canceled, and as a result, the occurrence of shark skin-like microprojections can be prevented.

また、高密度多孔質母材を作製するに当り、バーナ1トラバース当りのガラス微粒子の平均堆積厚さTave[mm R/trv]を1.0mm以上、好ましくは0.5〜1.0mmの範囲とするのがよい。平均堆積厚さTaveが0.5mm未満では、所定の厚さに達するのに時間が掛かりすぎる。また、1.0mmを超えて大きくすると、堆積層当りの内面と外面との間で局所的に密度差が大きくなりすぎ、製造中にクラックが発生しやすくなる。
以下、本発明を実施例及び比較例に基づいて、さらに詳細に説明するが、本発明はこれらに限定されず、様々な態様が可能である。
Further, when producing a high-density porous base material, the average deposition thickness T ave [mm R / trv] of glass particles per burner traverse is set to 1.0 mm or more, preferably 0.5 to 1.0 mm. Is good. When the average deposition thickness Tave is less than 0.5 mm, it takes too much time to reach the predetermined thickness. On the other hand, if it exceeds 1.0 mm, the density difference between the inner surface and the outer surface per deposited layer becomes too large, and cracks are likely to occur during production.
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to these, Various aspects are possible.

(実施例1)
図3に示す装置を用いて、OVD法により多孔質母材の製造を行った。
ターゲット材として、外径50mmφ、長さ3,000mmの石英ガラス棒7を把持具8に取り付けてモータ9で回転させつつ、堆積用バーナ10を石英ガラス棒7に沿ってトラバースさせ、石英ガラス棒7の周面にスート(ガラス微粒子)を堆積させることにより、多孔質母材11を製造した。符号12は、排気フードを示し、堆積用バーナ10と同期して左右に移動するように設けてある。
Example 1
A porous base material was manufactured by the OVD method using the apparatus shown in FIG.
As a target material, a quartz glass rod 7 having an outer diameter of 50 mmφ and a length of 3,000 mm is attached to a gripping tool 8 and rotated by a motor 9 while traversing the deposition burner 10 along the quartz glass rod 7. The porous base material 11 was manufactured by depositing soot (glass fine particles) on the peripheral surface of the substrate. Reference numeral 12 denotes an exhaust hood, which is provided to move to the left and right in synchronism with the deposition burner 10.

なお、堆積用バーナ10には同心5重管バーナを使用し、150mm間隔で4本配置した。各堆積用バーナ10に対するガスの供給条件は、堆積初期においては、中心管に原料ガス(SiCl4)を1Nl/min及び酸素を8Nl/min、第3管には水素を50 Nl/min、第5管には酸素を20 Nl/minそれぞれ供給し、堆積終了時においては、中心管に原料ガス(SiCl4)を10 Nl/min及び酸素を20 Nl/min、第3管には水素を200 Nl/min、第5管には酸素を60 Nl/minとなるように、供給をそれぞれスート体の外径の増加に伴ない調整した。また、堆積中の堆積用バーナ10のトラバース速度は90mm/minとした。 The deposition burner 10 was a concentric quintuple burner, and four were arranged at intervals of 150 mm. The gas supply conditions for each deposition burner 10 are as follows. At the initial stage of deposition, the source gas (SiCl 4 ) is 1 Nl / min and oxygen is 8 Nl / min in the central tube, and hydrogen is 50 Nl / min in the third tube. Oxygen was supplied to 5 pipes at 20 Nl / min, and at the end of deposition, source gas (SiCl 4 ) was 10 Nl / min and oxygen was 20 Nl / min to the central pipe, and hydrogen was 200 The supply was adjusted to increase the outer diameter of the soot body so that the Nl / min and the fifth pipe had oxygen of 60 Nl / min. The traversing speed of the deposition burner 10 during deposition was 90 mm / min.

このような条件で堆積を行ったところ、堆積終了まで微小突起の発生は無く、外径300mmφ、重量100kgで多孔質母材11の作製を終了した。
堆積後、バーナ1トラバース当りの平均堆積厚さ及び密度を求めたところ、平均堆積厚さTave[mm R/trv]は0.5mm で、嵩密度は0.6g/cm3であった。
When the deposition was performed under such conditions, there was no generation of minute protrusions until the deposition was completed, and the production of the porous base material 11 was completed with an outer diameter of 300 mmφ and a weight of 100 kg.
After deposition, the average deposition thickness and density per burner traverse were determined. The average deposition thickness T ave [mm R / trv] was 0.5 mm and the bulk density was 0.6 g / cm 3 .

(比較例1)
出発ターゲット材として、外径50mmφ、長さ3,000mmの石英ガラス棒7を使用し、堆積用バーナ10のトラバース速度を120mm/minとした以外は、実施例1と同様の装置及び堆積条件で多孔質母材11の製造を行ったところ、堆積途中から表面に鮫肌状の微小突起が発生し始め、堆積終了時の多孔質母材(外径300mmφ、重量100kg)には、イボ状の突起に成長した。
この多孔質母材11は、外径300mmφ、重量100kgであり、バーナ1トラバース当りの平均堆積厚さ及び密度を求めたところ、平均堆積厚さTave[mm R/trv]は0.3mm で、嵩密度は0.6g/cm3であった。
(Comparative Example 1)
As a starting target material, a quartz glass rod 7 having an outer diameter of 50 mmφ and a length of 3,000 mm was used, and the porous burner was the same as in Example 1 except that the traverse speed of the deposition burner 10 was 120 mm / min. When the base material 11 was manufactured, crust-like microprotrusions started to appear on the surface during the deposition, and the porous base material (outer diameter 300mmφ, weight 100kg) at the end of the deposition had warped projections. grown.
The porous base material 11 has an outer diameter of 300 mmφ and a weight of 100 kg. When the average deposition thickness and density per burner traverse were determined, the average deposition thickness T ave [mm R / trv] was 0.3 mm. The bulk density was 0.6 g / cm 3 .

(比較例2)
出発ターゲット材として、外径50mmφ、長さ3,000mmの石英ガラス棒7を使用し、堆積用バーナ10のトラバース速度を40mm/minとした以外は、実施例1と同様の装置及び堆積条件で多孔質母材11の製造を行ったところ、堆積終了後の冷却中に、堆積表面にクラックが発生した。
この多孔質母材11は、外径300mmφ、重量100kgであり、バーナ1トラバース当りの平均堆積厚さ及び密度を求めたところ、平均堆積厚さTave[mm R/trv]は1.1mm で、嵩密度は0.6g/cm3であった。
(Comparative Example 2)
As a starting target material, a quartz glass rod 7 having an outer diameter of 50 mmφ and a length of 3,000 mm was used, and the porous structure was the same as in Example 1 except that the traverse speed of the deposition burner 10 was 40 mm / min. When the base material 11 was manufactured, cracks occurred on the deposition surface during cooling after the deposition was completed.
The porous base material 11 has an outer diameter of 300 mmφ and a weight of 100 kg. When the average deposition thickness and density per burner traverse were determined, the average deposition thickness T ave [mm R / trv] was 1.1 mm. The bulk density was 0.6 g / cm 3 .

(比較例3)
図3に示す装置を使用し、OVD法により多孔質母材の製造を行った。この装置には、堆積用バーナ10として、同心5重管バーナが150mm間隔で4本配設されている。
出発ターゲット材として、外径50mmφ、長さ3,000mmの石英ガラス棒7を使用し、各堆積用バーナ10に対するガスの供給条件は、堆積初期においては、中心管に原料ガス(SiCl4)を1Nl/min及び酸素を8Nl/min、第3管には水素を50 Nl/min、第5管には酸素を20 Nl/minそれぞれ供給し、堆積終了時においては、中心管に原料ガス(SiCl4)を10 Nl/min及び酸素を18 Nl/min、第3管には水素を180 Nl/min、第5管には酸素を50 Nl/minとなるように、供給をそれぞれスート体の外径の増加に伴ない調整した。また、堆積中の堆積用バーナ10のトラバース速度は45mm/minとした。
(Comparative Example 3)
A porous base material was manufactured by the OVD method using the apparatus shown in FIG. In this apparatus, four concentric quintuple burners are disposed as deposition burners 10 at intervals of 150 mm.
A quartz glass rod 7 having an outer diameter of 50 mmφ and a length of 3,000 mm is used as a starting target material, and the gas supply condition to each deposition burner 10 is 1 Nl of a source gas (SiCl 4 ) in the central tube at the initial stage of deposition. / min and oxygen of 8 Nl / min, hydrogen is supplied to the third pipe at 50 Nl / min, oxygen is supplied to the fifth pipe at 20 Nl / min, and at the end of deposition, the source gas (SiCl 4 ) Is 10 Nl / min, oxygen is 18 Nl / min, hydrogen is 180 Nl / min for the 3rd pipe, and oxygen is 50 Nl / min for the 5th pipe. Adjusted with the increase of. The traverse speed of the deposition burner 10 during deposition was 45 mm / min.

このような条件で堆積を行ったところ、堆積終了まで微小突起の発生は無かった。得られた多孔質母材11は、外径300mmφ、重量85kgであり、バーナ1トラバース当りの平均堆積厚さ及び密度を求めたところ、平均堆積厚さTave[mm R/trv]は0.4mm で、嵩密度は0.4g/cm3であった。このものは嵩密度が小さいため、次工程の脱水焼結設備の関係で、予定した100kgまで堆積させることができなかった。 When deposition was performed under such conditions, no microprojections were generated until the deposition was completed. The obtained porous base material 11 has an outer diameter of 300 mmφ and a weight of 85 kg. When the average deposition thickness and density per traverse of the burner were determined, the average deposition thickness T ave [mm R / trv] was 0.4 mm. The bulk density was 0.4 g / cm 3 . Since this product has a low bulk density, it could not be deposited up to the planned 100 kg due to the dehydration and sintering equipment in the next step.

光ファイバ母材の生産コストの低減及び品質向上に寄与する。   Contributes to reducing the production cost and improving the quality of optical fiber preforms.

堆積層表面に形成される微小突起について説明する概略図である。It is the schematic explaining the microprotrusion formed in the deposition layer surface. 堆積層表面に形成される微小突起の成長について説明する概略図である。It is the schematic explaining the growth of the microprotrusion formed in the deposition layer surface. OVD法による光ファイバ母材の製造装置を示す概略図である。It is the schematic which shows the manufacturing apparatus of the optical fiber preform by OVD method.

符号の説明Explanation of symbols

1,7…石英ガラス棒(ターゲット材)、
2…局所低密度層、
3…局所高密度層、
4…微小突起、
5,10…堆積用バーナ、
6…バーナ火炎、
8…把持具、
9…モータ、
11…多孔質母材、
12…排気フード。
1,7 ... quartz glass rod (target material),
2 ... Local low density layer,
3 ... Local high density layer,
4 ... microprotrusions,
5,10 ... deposition burner,
6 ... Burner flame,
8 ... gripping tool,
9 ... motor,
11… Porous matrix,
12 ... Exhaust hood.

Claims (5)

外付け法(OVD法)によりコア用ガラス棒の周面上に、これに沿って配置した複数のバーナを往復移動させてガラス微粒子を堆積させることにより多孔質母材を作製するに当り、バーナ1トラバース当りのガラス微粒子の平均堆積厚さTave[mm R/trv]が0.5mm以上で、平均嵩密度が0.6g/cm3以上となるように調整して高密度多孔質母材を作製することを特徴とする光ファイバ用石英ガラス母材の製造方法。 When producing a porous matrix by depositing glass particles by reciprocating a plurality of burners arranged along the circumference of the core glass rod by the external method (OVD method), the burner A high-density porous base material is prepared by adjusting the average deposition thickness T ave [mm R / trv] of glass particles per traverse to 0.5 mm or more and the average bulk density to 0.6 g / cm 3 or more. A method for producing a silica glass preform for optical fibers. 前記平均堆積厚さTaveが、0.5〜1.0mmの範囲にある請求項1に記載の光ファイバ用石英ガラス母材の製造方法。 The average deposition thickness T ave is, the manufacturing method for an optical fiber of quartz glass preform according to claim 1 which is in the range of 0.5 to 1.0 mm. 前記平均堆積厚さTaveを、バーナのトラバース速度で調整する請求項1又は2に記載の光ファイバ用石英ガラス母材の製造方法。 The method for producing a quartz glass preform for an optical fiber according to claim 1 or 2, wherein the average deposition thickness Tave is adjusted by a traverse speed of a burner. 前記平均堆積厚さTaveを、原料ガス及び燃焼ガスの供給量で調整する請求項1乃至3のいずれかに記載の光ファイバ用石英ガラス母材の製造方法。 The method for producing a quartz glass preform for an optical fiber according to any one of claims 1 to 3, wherein the average deposition thickness Tave is adjusted by a supply amount of a raw material gas and a combustion gas. 請求項1乃至4のいずれかに記載の光ファイバ用石英ガラス母材の製造方法を用いて、製造されてなることを特徴とする光ファイバ用石英ガラス母材。
A quartz glass preform for an optical fiber manufactured by the method for producing a quartz glass preform for an optical fiber according to any one of claims 1 to 4.
JP2005018753A 2005-01-26 2005-01-26 Method for producing quartz glass preform for optical fiber Active JP4614782B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005018753A JP4614782B2 (en) 2005-01-26 2005-01-26 Method for producing quartz glass preform for optical fiber
PCT/JP2006/301024 WO2006080294A1 (en) 2005-01-26 2006-01-24 Quartz glass preform for optical fiber and process for producing the same
TW095103017A TW200628421A (en) 2005-01-26 2006-01-26 Optical fiber quartz glass base material and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018753A JP4614782B2 (en) 2005-01-26 2005-01-26 Method for producing quartz glass preform for optical fiber

Publications (2)

Publication Number Publication Date
JP2006206356A true JP2006206356A (en) 2006-08-10
JP4614782B2 JP4614782B2 (en) 2011-01-19

Family

ID=36740325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018753A Active JP4614782B2 (en) 2005-01-26 2005-01-26 Method for producing quartz glass preform for optical fiber

Country Status (3)

Country Link
JP (1) JP4614782B2 (en)
TW (1) TW200628421A (en)
WO (1) WO2006080294A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069023A (en) * 2006-09-13 2008-03-27 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber preform
JP2012006800A (en) * 2010-06-25 2012-01-12 Sumitomo Electric Ind Ltd Process for producing glass fine particle deposit
JP2014047131A (en) * 2012-09-04 2014-03-17 Sumitomo Electric Ind Ltd Porous glass material and method of producing glass base material
US9260338B2 (en) 2014-02-28 2016-02-16 Sumitomo Electric Industries, Ltd. Porous glass body and method for producing glass preform

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799666B2 (en) * 2011-08-25 2015-10-28 住友電気工業株式会社 Method for producing glass particulate deposit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170224A (en) * 1986-12-30 1988-07-14 Furukawa Electric Co Ltd:The Production of porous glass base material
JPH0616447A (en) * 1992-06-26 1994-01-25 Fujikura Ltd Production of optical fiber base material
JPH09124333A (en) * 1995-10-30 1997-05-13 Sumitomo Electric Ind Ltd Production of preform for optical fiber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000272930A (en) * 1999-03-26 2000-10-03 Mitsubishi Cable Ind Ltd Production of optical fiber preform
JP2003063830A (en) * 2001-06-13 2003-03-05 Sumitomo Electric Ind Ltd Method for manufacturing porous glass preform
JP2003040625A (en) * 2001-07-30 2003-02-13 Sumitomo Electric Ind Ltd Method for producing fine glass particle heap and fine glass particle heap

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170224A (en) * 1986-12-30 1988-07-14 Furukawa Electric Co Ltd:The Production of porous glass base material
JPH0616447A (en) * 1992-06-26 1994-01-25 Fujikura Ltd Production of optical fiber base material
JPH09124333A (en) * 1995-10-30 1997-05-13 Sumitomo Electric Ind Ltd Production of preform for optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069023A (en) * 2006-09-13 2008-03-27 Furukawa Electric Co Ltd:The Method of manufacturing optical fiber preform
JP4690979B2 (en) * 2006-09-13 2011-06-01 古河電気工業株式会社 Optical fiber preform manufacturing method
JP2012006800A (en) * 2010-06-25 2012-01-12 Sumitomo Electric Ind Ltd Process for producing glass fine particle deposit
JP2014047131A (en) * 2012-09-04 2014-03-17 Sumitomo Electric Ind Ltd Porous glass material and method of producing glass base material
US9260338B2 (en) 2014-02-28 2016-02-16 Sumitomo Electric Industries, Ltd. Porous glass body and method for producing glass preform

Also Published As

Publication number Publication date
WO2006080294A1 (en) 2006-08-03
JP4614782B2 (en) 2011-01-19
TW200628421A (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP3521681B2 (en) Manufacturing method of optical fiber preform
JP4614782B2 (en) Method for producing quartz glass preform for optical fiber
JP2006182624A (en) Method for manufacturing glass rod-like body
US8919153B2 (en) Manufacturing method for glass base material
JP2007210856A (en) Method for production of optical fiber preform
JP4495070B2 (en) Method for producing porous preform for optical fiber
JP3917022B2 (en) Method for producing porous preform for optical fiber
JP5485003B2 (en) Optical fiber preform manufacturing method
JP6784016B2 (en) Manufacturing method of base material for optical fiber
KR20020067992A (en) Method of forming soot preform
JP2006199526A (en) Method of manufacturing optical fiber preform
JPH08325029A (en) Production of porous glass preform for optical fiber
JP3003173B2 (en) Method for producing glass particle deposit
JP2005247636A (en) Method of manufacturing porous preform for optical fiber and glass preform
JP3381309B2 (en) Method for producing glass particle deposit
JP4140839B2 (en) Optical fiber preform manufacturing method
JPH11349345A (en) Production of porous preform
JP4398114B2 (en) Manufacturing method of glass base material for optical fiber with less unevenness
JP3654232B2 (en) Optical fiber preform manufacturing method
JP5907565B2 (en) Burner for manufacturing porous glass base material
JPH1121143A (en) Production of preform for optical fiber
JP3587032B2 (en) Manufacturing method of optical fiber preform
JPH0733469A (en) Production of preform for optical fiber
JPH0986948A (en) Production of porous glass base material for optical fiber
JPH1072230A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101019

R150 Certificate of patent or registration of utility model

Ref document number: 4614782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3