JP2006203138A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2006203138A
JP2006203138A JP2005015945A JP2005015945A JP2006203138A JP 2006203138 A JP2006203138 A JP 2006203138A JP 2005015945 A JP2005015945 A JP 2005015945A JP 2005015945 A JP2005015945 A JP 2005015945A JP 2006203138 A JP2006203138 A JP 2006203138A
Authority
JP
Japan
Prior art keywords
cooling
cooling water
refrigerant
semiconductor element
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005015945A
Other languages
English (en)
Other versions
JP4600052B2 (ja
Inventor
Noriyuki Masuda
規行 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005015945A priority Critical patent/JP4600052B2/ja
Publication of JP2006203138A publication Critical patent/JP2006203138A/ja
Application granted granted Critical
Publication of JP4600052B2 publication Critical patent/JP4600052B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】 多数のパワー半導体素子を効果的に冷却することができる半導体装置を提供する。
【解決手段】 インバータ10,20の各々は、U,V,W各相アームの上下各アームにそれぞれ対応する6つの半導体モジュールが冷却体72〜84と交互に積層されて形成され、インバータ10,20は、半導体モジュールの積層方向に沿って並設される。インバータ10,20の両側には、冷却体72〜84に接続される冷却水路50,55がそれぞれ配設される。そして、インバータ10,20の間には、冷却体72〜84に接続される冷却水路60が配設され、冷却水路60は、インバータ10,20の間からインバータ10,20を冷却する。
【選択図】 図2

Description

この発明は、半導体装置に関し、特に、複数のパワー半導体素子が積層された半導体装置の冷却技術に関する。
特開平9−260585号公報(特許文献1)は、複数のパワー半導体素子が積層された半導体装置の構成を開示する。この半導体装置は、複数の両面冷却型の平型半導体素子と、複数の冷却体と、冷却水分配用ヘッダと、冷却水集合用ヘッダとを備える。
この半導体装置においては、両面冷却型の平型半導体素子と冷却体とが複数交互に積層される。そして、冷却水分配用ヘッダから各冷却体を介して冷却水集合ヘッダへ冷却水が流されることによって各平型半導体素子が両面から冷却される(特許文献1参照)。
このような積層型の半導体装置によれば、複数のパワー半導体素子が平面的に配設される場合に比べて、装置の小型化を図ることができる。
特開平9−260585号公報(第2図、第4図)
特開平9−260585号公報に開示されるような積層型の半導体装置においては、装置の小型化を図ることができる一方で、装置の集積度が高いために半導体装置内部に熱が蓄積されやすい。そこで、このような積層型の半導体装置においては、冷却水路を効率的に配設するなどして半導体素子を効果的に冷却することが重要である。
一方、近年、半導体装置としてのインバータを搭載したハイブリッド自動車(Hybrid Vehicle)が大きく注目されている。このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。また、このハイブリッド自動車においては、エンジンの始動を行ない、かつ、エンジンからの動力を用いて発電するモータジェネレータを備えるものが知られている。そして、ハイブリッド自動車においては、搭載される各装置の小型化が強く要求され、上記のような積層型のインバータ装置が用いられることが多い。
図8は、従来よりハイブリッド自動車に搭載されているインバータ装置の冷却構造を概略的に示すブロック図である。図8を参照して、このインバータ装置は、インバータ510,520と、冷却体542〜554と、冷却水路530,535とを備える。インバータ510は、駆動輪に連結されるモータを駆動するためのインバータである。インバータ520は、エンジンに連結されるモータジェネレータを駆動するためのインバータである。インバータ510,520の各々においては、U,V,W各相アームの上下各アームごとにモジュール化された6つの半導体モジュールが冷却体542〜554を介して積層される。そして、インバータ510,520は、冷却系統においてインバータ510が上流側となるように直列に配設され、各インバータ510,520における6つの半導体モジュールは、冷却系統において並設される。
冷却水路530は、ウォーターポンプ560に接続され、ウォーターポンプ560から供給される冷却水を冷却体542〜554へ供給する。冷却水路535は、ラジエータ570に接続され、冷却体542〜554から排出される冷却水をラジエータ570へ供給する。そして、ラジエータ570によって冷却された冷却水は、冷却水路556を介してウォーターポンプ560へ供給される。
このインバータ装置においては、インバータ510,520の各半導体モジュールは、冷却体542〜554によって両面から冷却されているものの、同一の冷却体によって冷却されるインバータ510,520の半導体モジュール間で熱干渉が発生し、インバータ510,520間に熱が蓄積されるという問題がある。そこで、このような熱干渉の発生を防止して効果的に半導体装置を冷却することが重要である。
また、冷却水路における圧力損失の影響により下流ほど冷却水路内の圧力は低下し、上流側の冷却体と下流側の冷却体とでは、一般に冷却性能に差異が発生する。そして、冷却性能に差異があると、冷却性能が低い冷却体を基準に冷却系を設計しなければならず、相対的に冷却性能が高い上流側の冷却体においては能力過剰となるので、全体として冷却効率は低下する。そこで、インバータ装置における冷却水の入力口から出力口までの冷却水路長をできる限り短くして各冷却体間の冷却性能のアンバランスを抑制し、全体として冷却効率を高めることが重要である。
上述した特開平9−260585号公報に開示された半導体装置は、半導体素子と冷却体とを積層することにより装置の小型化を図ることはできるが、上記のような半導体装置の冷却性に関する課題を解決することはできない。
そこで、この発明は、かかる課題を解決するためになされたものであり、その目的は、多数のパワー半導体素子を効果的に冷却することができる半導体装置を提供することである。
また、この発明の別の目的は、多数のパワー半導体素子を効率的に冷却することができる半導体装置を提供することである。
この発明によれば、半導体装置は、所定の方向に対して並設され、かつ、各々において半導体素子および冷却体が所定の方向に複数交互に積層される第1および第2の半導体素子群と、第1および第2の半導体素子群の両側にそれぞれ所定の方向に沿って配設され、かつ、第1の半導体素子群の各冷却体および第2の半導体素子群の各冷却体にそれぞれ接続される第1および第2の冷媒路と、第1および第2の半導体素子群の間に所定の方向に沿って配設され、かつ、第1および第2の半導体素子群の各冷却体に接続される第3の冷媒路とを備える。
この発明による半導体装置においては、第1および第2の半導体素子群における複数の半導体素子の各々は、冷却体によって両面から冷却される。また、第1および第2の半導体素子群は、第1および第2の冷媒路によって両側から冷却される。さらに、第1および第2の半導体素子群は、第3の冷媒路によって第1および第2の半導体素子群の間から冷却される。
したがって、この発明によれば、第1および第2の半導体素子群間で発生する熱干渉を防止することができ、第1および第2の半導体素子群における複数の半導体素子を効果的に冷却することができる。
好ましくは、第1から第3の冷媒路は、第1から第3の冷媒路に冷媒を供給する供給手段に対して並列に設けられる。
この半導体装置においては、冷媒の入力口と出力口との間に複数の冷媒路が直列接続される場合に比べて、冷媒の入力口から出力口までの冷媒路の経路長が短く、冷媒路における圧力損失が小さい。したがって、この発明によれば、第1および第2の半導体素子群における複数の半導体素子を効率的に冷却することができる。
好ましくは、半導体装置は、供給手段と第1から第3の冷媒路との間に配設され、かつ、第1から第3の冷媒路に供給する冷媒を貯留する貯留部をさらに備える。
この半導体装置においては、貯留部が設けられることによって第1から第3の冷媒路へ冷媒が安定供給される。したがって、この発明によれば、第1および第2の半導体素子群における複数の半導体素子間の冷却ばらつきを抑えることができ、その結果、複数の半導体素子を効率的に冷却することができる。
好ましくは、半導体装置は、第3の冷媒路と第1および第2の半導体素子群の各冷却体との接続部にそれぞれ配設される複数の逆止弁をさらに備え、第3の冷媒路は、第1および第2の半導体素子群の各冷却体からの冷媒を通流し、複数の逆止弁は、第3の冷媒路から複数の冷却体を介して第1および第2の冷媒路へ冷媒が流されるのを防止する。
また好ましくは、半導体装置は、第1の冷媒路と第1の半導体素子群の各冷却体との接続部、および第2の冷媒路と第2の半導体素子群の各冷却体との接続部にそれぞれ配設される複数の逆止弁をさらに備え、第3の冷媒路は、第1および第2の半導体素子群の各冷却体へ冷媒を供給し、複数の逆止弁は、第1および第2の冷媒路から複数の冷却体を介して第3の冷媒路へ冷媒が流されるのを防止する。
上記の半導体装置においては、複数の逆止弁は、複数の冷却体に流された冷媒が複数の冷却体へ逆流するのを防止する。したがって、この発明によれば、冷媒の流れが安定化され、その結果、冷却のばらつきを抑制することができる。
好ましくは、複数の冷却体において冷媒が流される流路の面積は、所定の方向に沿って下流に配設される冷却体ほど大きい。
この半導体装置においては、所定の方向に沿って下流に配設される冷却体ほど冷媒流量が多くなるので、下流ほど大きくなる圧力損失による冷却効率の低下が補完され、上流側の冷却体と下流側の冷却体との冷却能力のバランスが図られる。したがって、この発明によれば、第1および第2の半導体素子群における複数の半導体素子の冷却ばらつきを抑えることができ、その結果、複数の半導体素子を効率的に冷却することができる。
以上のように、この発明によれば、積層された多数のパワー半導体素子を効果的かつ効率的に冷却することができる。また、複数のパワー半導体素子が積層されるので、半導体装置を小型化することができる。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態1]
図1は、この発明の実施の形態1による半導体装置の一例として示されるインバータ装置を含む負荷駆動装置の概略ブロック図である。図1を参照して、この負荷駆動装置1は、バッテリBと、コンデンサCと、インバータ10,20と、制御装置30と、電源ラインPLと、接地ラインSLとを含む。
この負荷駆動装置1は、たとえば、ハイブリッド自動車に搭載される。そして、モータジェネレータMG1は、エンジンによって駆動される発電機として動作し、かつ、エンジン始動を行ない得る電動機として動作するものとしてハイブリッド自動車に組み込まれ、モータジェネレータMG2は、ハイブリッド自動車の駆動輪を駆動する電動機としてハイブリッド自動車に組み込まれる。
この負荷駆動装置1によって駆動されるモータジェネレータMG1,MG2は、たとえば、3相交流同期電動機からなる。そして、モータジェネレータMG1は、エンジン出力を用いて3相交流電圧を発生し、その発生した3相交流電圧をインバータ10へ出力する。また、モータジェネレータMG1は、インバータ10から受ける3相交流電圧によって駆動力を発生し、エンジンの始動を行なう。モータジェネレータMG2は、インバータ20から受ける3相交流電圧によって車両の駆動トルクを発生する。また、モータジェネレータMG2は、車両の回生制動時、3相交流電圧を発生してインバータ20へ出力する。
バッテリBは、直流電源であって、たとえば、ニッケル水素やリチウムイオン等の二次電池からなる。バッテリBは、発生した直流電圧をインバータ10,20へ出力し、また、インバータ10,20から出力される直流電圧によって充電される。
インバータ10は、U相アーム12、V相アーム14およびW相アーム16を含む。U相アーム12、V相アーム14およびW相アーム16は、電源ラインPLと接地ラインSLとの間に並列に接続される。U相アーム12は、直列に接続されたパワートランジスタQ11,Q12からなり、V相アーム14は、直列に接続されたパワートランジスタQ13,Q14からなり、W相アーム16は、直列に接続されたパワートランジスタQ15,Q16からなる。各パワートランジスタQ11〜Q16は、たとえばIGBT(Insulated Gate Bipolar Transistor)からなる。各パワートランジスタQ11〜Q16のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD11〜D16がそれぞれ接続される。そして、各相アームにおける各パワートランジスタの接続点は、モータジェネレータMG1の各相コイルの中性点と反対側のコイル端にそれぞれ接続される。
このインバータ10は、制御装置30からの信号PWM1に基づいて、電源ラインPLから供給される直流電圧を3相交流電圧に変換してモータジェネレータMG1を駆動する。これにより、モータジェネレータMG1は、トルク指令値によって指定されたトルクを発生するように駆動される。また、インバータ10は、エンジンからの出力を受けてモータジェネレータMG1が発電した3相交流電圧を制御装置30からの信号PWM1に基づいて直流電圧に変換し、その変換した直流電圧を電源ラインPLへ出力する。
インバータ20は、U相アーム22、V相アーム24およびW相アーム26を含む。U相アーム22、V相アーム24およびW相アーム26は、電源ラインPLと接地ラインSLとの間に並列に接続される。U相アーム22は、直列に接続されたパワートランジスタQ21,Q22からなり、V相アーム24は、直列に接続されたパワートランジスタQ23,Q24からなり、W相アーム26は、直列に接続されたパワートランジスタQ25,Q26からなる。各パワートランジスタQ21〜Q26も、たとえばIGBTからなる。各パワートランジスタQ21〜Q26のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD21〜D26がそれぞれ接続される。そして、インバータ20においても、各相アームにおける各パワートランジスタの接続点は、モータジェネレータMG2の各相コイルの中性点と反対側のコイル端にそれぞれ接続される。
このインバータ20は、制御装置30からの信号PWM2に基づいて、電源ラインPLから供給される直流電圧を3相交流電圧に変換してモータジェネレータMG2を駆動する。これにより、モータジェネレータMG2は、トルク指令値によって指定されたトルクを発生するように駆動される。また、インバータ20は、車両の回生制動時、駆動軸からの回転力を受けてモータジェネレータMG2が発電した3相交流電圧を制御装置30からの信号PWM2に基づいて直流電圧に変換し、その変換した直流電圧を電源ラインPLへ出力する。
コンデンサCは、電源ラインPLと接地ラインSLとの間に接続され、電源ラインPLと接地ラインSLとの間の電圧変動を平滑化する。
制御装置30は、電源ラインPLと接地ラインSLとの間の電圧、ならびにモータジェネレータMG1のモータ電流およびトルク指令値に基づいて、モータジェネレータMG1を駆動するための信号PWM1を生成し、その生成した信号PWM1をインバータ10へ出力する。また、制御装置30は、電源ラインPLと接地ラインSLとの間の電圧、ならびにモータジェネレータMG2のモータ電流およびトルク指令値に基づいて、モータジェネレータMG2を駆動するための信号PWM2を生成し、その生成した信号PWM2をインバータ20へ出力する。
図2は、図1に示したインバータ装置の冷却構造を概略的に示すブロック図である。図2を参照して、インバータ装置は、インバータ10,20と、冷却体72〜84と、冷却水路50,55,60,122〜126と、冷却水タンク90と、ウォーターポンプ100と、ラジエータ110とを含む。
インバータ10においては、図1に示したU相アーム12の上アームおよび下アーム、V相アーム14の上アームおよび下アーム、ならびにW相アーム16の上アームおよび下アームごとにモジュール化され、合計6つの半導体モジュールが冷却体72〜84を介して積層される。また、インバータ20においても、図1に示したU相アーム22の上アームおよび下アーム、V相アーム24の上アームおよび下アーム、ならびにW相アーム26の上アームおよび下アームごとにモジュール化され、合計6つの半導体モジュールが冷却体72〜84を介して積層される。そして、インバータ10,20は、半導体モジュールの積層方向に沿って並設される。
冷却体72〜84は、インバータ10,20の各々における6つの半導体モジュールと交互に積層して配設され、冷却水路50,55,60と接続される。そして、冷却体72〜84は、冷却水路50,55から冷却水が供給されることによって、インバータ10,20の各々における6つの半導体モジュールを両面から冷却する。
冷却水路50は、半導体モジュールの積層方向に沿って、インバータ10を挟んでインバータ20の反対側に配設される。冷却水路50は、冷却体72〜84と接続され、冷却水タンク90から供給される冷却水を冷却体72〜84へ供給する。また、冷却水路50は、冷却水タンク90から供給される冷却水によってインバータ10を側面から冷却する。
冷却水路55は、半導体モジュールの積層方向に沿って、インバータ20を挟んでインバータ10の反対側に配設される。冷却水路55も、冷却体72〜84と接続され、冷却水タンク90から供給される冷却水を冷却体72〜84へ供給する。また、冷却水路55は、冷却水タンク90から供給される冷却水によってインバータ20を側面から冷却する。
冷却水路60は、半導体モジュールの積層方向に沿って、インバータ10とインバータ20との間に配設される。冷却水路60は、冷却体72〜84と接続され、冷却体72〜84から排出される冷却水を出側の冷却水路122へ供給する。また、冷却水路60は、冷却水タンク90から供給される冷却水によって、インバータ10とインバータ20との間からインバータ10,20を冷却する。
なお、冷却水路50,55の各々と出側の冷却水路122との接続部分の流路面積は、冷却水路60と冷却水路122との接続部分の流路面積よりも小さくなっており、これにより、冷却水路50,55から冷却体72〜84を介して冷却水路60への冷却水の流れが形成される。
また、冷却水路60と冷却体72〜84との各接続部には逆止弁が設けられ(図示せず)、冷却体72〜84から冷却水路60へ流された冷却水が冷却体72〜84へ逆流することが防止される。
冷却水タンク90は、ウォーターポンプ100から供給される冷却水を一時的に貯留し、その貯留した冷却水を冷却水路50,55,60へ供給する。この冷却水タンク90は、3つの冷却水路50,55,60へ冷却水を安定供給するために設けられる。
ウォーターポンプ100は、ラジエータ110からの冷却水に所定の吐出圧を付与して冷却水タンク90へ供給し、このインバータ装置における冷却水を循環させる。ラジエータ110は、インバータ10,20から受熱した冷却水を冷却する。
このインバータ装置においては、ウォーターポンプ100は、冷却水タンク90へ冷却水を供給し、冷却水タンク90は、冷却水路50,55,60へ冷却水を供給する。冷却水路50,55は、冷却水タンク90から供給される冷却水を出側の冷却水路122へ出力するとともに冷却体72〜84へ供給する。冷却水路60は、冷却水タンク90から供給される冷却水および冷却体72〜84からの冷却水を出側の冷却水路122へ出力する。
図3は、図2に示したA部の拡大図である。図3を参照して、冷却水路60と冷却体84との接続部には、逆止弁152,154が配設される。逆止弁152,154は、冷却体84から冷却水路60へは冷却水を流すことができるが、冷却水路60から冷却体84へは冷却水を流さない構造になっている。
なお、特に図示しないが、このような逆止弁は、冷却水路60と冷却体72〜84の各接続部に配設されている。
以上のように、この実施の形態1によれば、インバータ10,20の各々において半導体モジュールが積層されるので、インバータ装置を小型化することができる。そして、インバータ10とインバータ20との間に冷却水路60が配設され、インバータ10とインバータ20との間からインバータ10,20が冷却されるので、インバータ10とインバータ20との熱干渉を防止することができる。
また、ウォーターポンプ100に対して冷却水路50,55,60が並列に接続されるので、冷却水路が直列に接続される従来のインバータ装置に比べて冷却水路の経路長が短く、冷却水の圧力損失が小さい。したがって、上流側と下流側とで冷却性能のばらつきを抑えることができ、効率的な冷却が実現される。
さらに、冷却水路50,55,60の上流に冷却水タンク90を設けたので、冷却水路50,55,60へ冷却水が安定供給される。また、さらに、冷却水路60から冷却体72〜84へ冷却水が逆流するのを防止する逆止弁を設けたので、インバータ装置内での冷却水の流れが安定化される。したがって、これらの点からも、冷却性能のばらつきの発生を抑制でき、効率的な冷却を実現できる。
[実施の形態1の変形例]
図4は、実施の形態1の変形例によるインバータ装置の冷却構造を概略的に示すブロック図である。図4を参照して、このインバータ装置においては、冷却水路60と出側の冷却水路122との接続部分の流路面積は、冷却水路50,55の各々と冷却水路122との接続部分の流路面積よりも小さくなっており、これにより、冷却水路60から冷却体72〜84を介して冷却水路50,55への冷却水の流れが形成される。
また、図2に示した実施の形態1によるインバータ装置において冷却水路60と冷却体72〜84との各接続部に設けられていた逆止弁は、冷却水路50,55と冷却体72〜84との各接続部に設けられており、この逆止弁によって、冷却体72〜84から冷却水路50,55へ流された冷却水が冷却体72〜84へ逆流することが防止される。
なお、実施の形態1の変形例によるインバータ装置のその他の構造は、図2に示した実施の形態1によるインバータ装置の構造と同じである。
図5は、図4に示したB部の拡大図である。図5を参照して、冷却水路50と冷却体84との接続部には、逆止弁156が配設される。逆止弁156は、冷却体84から冷却水路50へは冷却水を流すことができるが、冷却水路50から冷却体84へは冷却水を流さない構造になっている。
なお、特に図示しないが、このような逆止弁は、冷却水路50,55と冷却体72〜84の各接続部に配設されている。
この実施の形態1の変形例によっても、上記の実施の形態1と同様の効果を得ることができる。
[実施の形態2]
図6は、実施の形態2によるインバータ装置の冷却構造を概略的に示すブロック図である。図6を参照して、この実施の形態2によるインバータ装置は、図2に示した実施の形態1によるインバータ装置の構造において、冷却体72〜84に代えて冷却体72A〜84Aを含む。冷却体72A〜84Aは、ウォーターポンプ100に対して下流に配設される冷却体ほど冷却水の流路面積が大きくなっている。
このような構造にした理由は、ウォーターポンプ100に対して下流に配設される冷却体ほど圧力損失の影響により冷却効率が低下するところ、この実施の形態2では、下流に配設される冷却体の流路面積を上流に配設される冷却体の流路面積よりも大きくすることによって、下流に配設される冷却体ほど冷却水の流量を多くし、上流側の冷却体と下流側の冷却体との冷却能力の均一化を図ったものである。
なお、上記においては、冷却水路50,55の各々と出側の冷却水路122との接続部分の流路面積を冷却水路60と冷却水路122との接続部分の流路面積よりも小さくするより、冷却水路50,55から冷却体72A〜84Aを介して冷却水路60への冷却水の流れを形成しているが、冷却水路60と冷却水路122との接続部分の流路面積を冷却水路50,55の各々と冷却水路122との接続部分の流路面積よりも小さくするより、冷却水路60から冷却体72A〜84Aを介して冷却水路50,55への冷却水の流れを形成してもよい。
以上のように、この実施の形態2によれば、下流側の冷却体ほど冷却水の流量を多くしたので、上流側の冷却体と圧力損失が発生する下流側の冷却体との冷却性能のばらつきをさらに抑制できる。したがって、さらに効率的な冷却を実現することができる。
[実施の形態3]
図7は、実施の形態3によるインバータ装置の冷却構造を概略的に示すブロック図である。図7を参照して、この実施の形態3によるインバータ装置は、図2に示した実施の形態1によるインバータ装置の構造において、冷却水タンク90を含まず、ウォーターポンプ100およびラジエータ110に代えてウォーターポンプ102〜106およびラジエータ112を含む。
ウォーターポンプ102は、ラジエータ112と冷却水路50との間に配設され、冷却水路162からの冷却水に所定の吐出圧を付与して冷却水路50へ供給する。ウォーターポンプ104は、ラジエータ112と冷却水路55との間に配設され、冷却水路164からの冷却水に所定の吐出圧を付与して冷却水路55へ供給する。ウォーターポンプ106は、ラジエータ112と冷却水路60との間に配設され、冷却水路166からの冷却水に所定の吐出圧を付与して冷却水路60へ供給する。
ウォーターポンプ102,104の吐出能力は、互いに同じであり、ウォーターポンプ106の吐出能力よりも大きい。これにより、ウォーターポンプ102〜106によって冷却水路50,55,60に安定して冷却水が供給されるとともに、冷却水路50,55から冷却体72〜84を介して冷却水路60への冷却水の流れが形成される。
なお、ウォーターポンプ106の吐出能力をウォーターポンプ102,104の吐出能力よりも大きくしてもよい。この場合は、冷却水路60から冷却体72〜84を介して冷却水路50,55への冷却水の流れが形成される。
以上のように、この実施の形態3によれば、冷却水路50,55,60のそれぞれに冷却水を供給するウォーターポンプ102,104,106を設けたので、より安定的に冷却水路50,55,60へ冷却水を供給することができる。また、ウォーターポンプ102,104,106に吐出能力差を設けることによって、冷却水路50,55,60および冷却体72〜84に流される冷却水を所望の流れに制御することができる。
なお、上記の実施の形態3において、ウォーターポンプのコストや騒音などを考慮して、ウォーターポンプ102,104を備えない構成、あるいは、ウォーターポンプ106を備えない構成としてもよい。すなわち、ウォーターポンプ102,104を備えない構成では、ウォーターポンプ106から冷却水路60および冷却体72〜84を介して冷却水路50,55へ冷却水が供給され、ウォーターポンプ106を備えない構成では、ウォーターポンプ102,104から冷却水路50,55および冷却体72〜84を介して冷却水路60へ冷却水が供給される。
また、上記の各実施の形態においては、半導体モジュールと冷却体とを複数交互に積層するものとしたが、冷却体も含めてモジュール化し、その半導体モジュールを複数積層してもよい。
なお、上記の各実施の形態において、インバータ10,20は、それぞれこの発明における「第1の半導体素子群」および「第2の半導体素子群」に対応し、冷却水路50,55,60は、それぞれこの発明における「第1の冷媒路」、「第2の冷媒路」および「第3の冷媒路」に対応する。また、冷却水タンク90は、この発明における「貯留部」に対応する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明の実施の形態1による半導体装置の一例として示されるインバータ装置を含む負荷駆動装置の概略ブロック図である。 図1に示すインバータ装置の冷却構造を概略的に示すブロック図である。 図2に示すA部の拡大図である。 実施の形態1の変形例によるインバータ装置の冷却構造を概略的に示すブロック図である。 図4に示すB部の拡大図である。 実施の形態2によるインバータ装置の冷却構造を概略的に示すブロック図である。 実施の形態3によるインバータ装置の冷却構造を概略的に示すブロック図である。 従来よりハイブリッド自動車に搭載されているインバータ装置の冷却構造を概略的に示すブロック図である。
符号の説明
1 負荷駆動装置、10,20 インバータ、12,22 U相アーム、14,24 V相アーム、16,26 W相アーム、30 制御装置、50,55,60,122〜126,162〜166 冷却水路、72〜84,72A〜84A 冷却体、90 冷却水タンク、100,102,104,106 ウォーターポンプ、110,112 ラジエータ、152,154,156 逆止弁、B バッテリ、C コンデンサ、MG1,MG2 モータジェネレータ、Q11〜Q16,Q21〜Q26 パワートランジスタ、D11〜D16,D21〜D26 ダイオード、PL 電源ライン、SL 接地ライン。

Claims (6)

  1. 所定の方向に対して並設され、各々において半導体素子および冷却体が前記所定の方向に複数交互に積層される第1および第2の半導体素子群と、
    前記第1および第2の半導体素子群の両側にそれぞれ前記所定の方向に沿って配設され、前記第1の半導体素子群の各冷却体および前記第2の半導体素子群の各冷却体にそれぞれ接続される第1および第2の冷媒路と、
    前記第1および第2の半導体素子群の間に前記所定の方向に沿って配設され、前記第1および第2の半導体素子群の各冷却体に接続される第3の冷媒路とを備える半導体装置。
  2. 前記第1から第3の冷媒路は、前記第1から前記第3の冷媒路に冷媒を供給する供給手段に対して並列に設けられる、請求項1に記載の半導体装置。
  3. 前記供給手段と前記第1から第3の冷媒路との間に配設され、前記第1から第3の冷媒路に供給する冷媒を貯留する貯留部をさらに備える、請求項2に記載の半導体装置。
  4. 前記第3の冷媒路と前記第1および第2の半導体素子群の各冷却体との接続部にそれぞれ配設される複数の逆止弁をさらに備え、
    前記第3の冷媒路は、前記第1および第2の半導体素子群の各冷却体からの冷媒を通流し、
    前記複数の逆止弁は、前記第3の冷媒路から複数の前記冷却体を介して前記第1および第2の冷媒路へ冷媒が流されるのを防止する、請求項1から請求項3のいずれか1項に記載の半導体装置。
  5. 前記第1の冷媒路と前記第1の半導体素子群の各冷却体との接続部、および前記第2の冷媒路と前記第2の半導体素子群の各冷却体との接続部にそれぞれ配設される複数の逆止弁をさらに備え、
    前記第3の冷媒路は、前記第1および第2の半導体素子群の各冷却体へ冷媒を供給し、
    前記複数の逆止弁は、前記第1および第2の冷媒路から複数の前記冷却体を介して前記第3の冷媒路へ冷媒が流されるのを防止する、請求項1から請求項3のいずれか1項に記載の半導体装置。
  6. 複数の前記冷却体において冷媒が流される流路の面積は、前記所定の方向に沿って下流に配設される冷却体ほど大きい、請求項1から請求項5のいずれか1項に記載の半導体装置。
JP2005015945A 2005-01-24 2005-01-24 半導体装置 Active JP4600052B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005015945A JP4600052B2 (ja) 2005-01-24 2005-01-24 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005015945A JP4600052B2 (ja) 2005-01-24 2005-01-24 半導体装置

Publications (2)

Publication Number Publication Date
JP2006203138A true JP2006203138A (ja) 2006-08-03
JP4600052B2 JP4600052B2 (ja) 2010-12-15

Family

ID=36960822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005015945A Active JP4600052B2 (ja) 2005-01-24 2005-01-24 半導体装置

Country Status (1)

Country Link
JP (1) JP4600052B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016073A (ja) * 2010-06-29 2012-01-19 Denso Corp 電力変換装置
US8789578B2 (en) 2005-10-28 2014-07-29 Toyota Jidosha Kabushiki Kaisha Cooling structure for electric device
KR101432378B1 (ko) * 2012-11-16 2014-08-20 삼성전기주식회사 전력 모듈용 방열 시스템
JP2015133421A (ja) * 2014-01-14 2015-07-23 トヨタ自動車株式会社 積層型冷却システム
JP2019004051A (ja) * 2017-06-15 2019-01-10 株式会社デンソー 積層型冷却装置
DE102022206428A1 (de) 2021-06-30 2023-01-05 Mitsubishi Heavy Industries, Ltd. Kühlvorrichtung
WO2023157367A1 (ja) * 2022-02-15 2023-08-24 三菱重工業株式会社 制御装置、制御システムおよび制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794797A (ja) * 1993-09-20 1995-04-07 Toyota Motor Corp 圧電素子アクチュエータ
JP2004214623A (ja) * 2002-12-16 2004-07-29 Denso Corp 冷媒冷却型両面冷却半導体装置
JP2004282001A (ja) * 2003-02-28 2004-10-07 Denso Corp 沸騰冷却装置
JP2005019454A (ja) * 2003-06-23 2005-01-20 Denso Corp 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794797A (ja) * 1993-09-20 1995-04-07 Toyota Motor Corp 圧電素子アクチュエータ
JP2004214623A (ja) * 2002-12-16 2004-07-29 Denso Corp 冷媒冷却型両面冷却半導体装置
JP2004282001A (ja) * 2003-02-28 2004-10-07 Denso Corp 沸騰冷却装置
JP2005019454A (ja) * 2003-06-23 2005-01-20 Denso Corp 電力変換装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789578B2 (en) 2005-10-28 2014-07-29 Toyota Jidosha Kabushiki Kaisha Cooling structure for electric device
JP2012016073A (ja) * 2010-06-29 2012-01-19 Denso Corp 電力変換装置
KR101432378B1 (ko) * 2012-11-16 2014-08-20 삼성전기주식회사 전력 모듈용 방열 시스템
JP2015133421A (ja) * 2014-01-14 2015-07-23 トヨタ自動車株式会社 積層型冷却システム
JP2019004051A (ja) * 2017-06-15 2019-01-10 株式会社デンソー 積層型冷却装置
DE102022206428A1 (de) 2021-06-30 2023-01-05 Mitsubishi Heavy Industries, Ltd. Kühlvorrichtung
WO2023157367A1 (ja) * 2022-02-15 2023-08-24 三菱重工業株式会社 制御装置、制御システムおよび制御方法

Also Published As

Publication number Publication date
JP4600052B2 (ja) 2010-12-15

Similar Documents

Publication Publication Date Title
JP5099431B2 (ja) インバータユニット
US8342276B2 (en) Cooling device and electric vehicle using cooling device
JP4529706B2 (ja) 半導体装置および負荷駆動装置
JP4819071B2 (ja) 電気車両及び車両用dc/dcコンバータの冷却方法
US20130003301A1 (en) Stacked cooler
JP4600052B2 (ja) 半導体装置
JP4382445B2 (ja) 電気機器の冷却構造
JP4670419B2 (ja) 冷却システムおよびハイブリッド自動車
JPWO2007064020A1 (ja) 電気自動車用dc−dcコンバータ
JP2008199850A (ja) 負荷駆動装置
US8912645B2 (en) Semiconductor element cooling structure
JP2005323455A (ja) 車両の駆動システム
WO2021205866A1 (ja) 車両用駆動装置
JP4997056B2 (ja) バスバー構造及びそれを用いた電力変換装置
JP7039978B2 (ja) 電力変換装置
JP4222193B2 (ja) 半導体装置
JP2007131235A (ja) ハイブリッド車両の駆動装置
JP2005333747A (ja) 冷却システムおよびインバータ一体型回転電機
JP2009040321A (ja) 車両用駆動装置の冷却構造および車両
JP2020114048A (ja) 電力変換ユニット
JP2016152637A (ja) 電力変換器
JP7091641B2 (ja) 電力変換装置
JP2022094029A (ja) 冷却器
JP2020150788A (ja) 電力変換ユニット
JP5699659B2 (ja) 半導体素子の冷却構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4600052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3