JP2006199945A - Low water absorbable polyimide resin and process for its production - Google Patents

Low water absorbable polyimide resin and process for its production Download PDF

Info

Publication number
JP2006199945A
JP2006199945A JP2005367011A JP2005367011A JP2006199945A JP 2006199945 A JP2006199945 A JP 2006199945A JP 2005367011 A JP2005367011 A JP 2005367011A JP 2005367011 A JP2005367011 A JP 2005367011A JP 2006199945 A JP2006199945 A JP 2006199945A
Authority
JP
Japan
Prior art keywords
polyimide resin
film
polyimide
solvent
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005367011A
Other languages
Japanese (ja)
Inventor
Takashi Makinoshima
高史 牧野嶋
Hideta Kihara
秀太 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005367011A priority Critical patent/JP2006199945A/en
Publication of JP2006199945A publication Critical patent/JP2006199945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low water absorbable polyimide resin excellent in flexibility, heat resistance, transparency and dimensional stability, and suitable for a base plate material such as a flat panel display and a mobile phone, and optical uses such as an optical fiber, a light guide and an optical adhesive. <P>SOLUTION: The polyimide resin is obtained by a reaction of a compound selected from a group of 1,2,4,5-cyclohexanetetracarboxylic acid, its diacid anhydride and their reactive derivatives, and a compound selected from a diamine and a diisocyanate containing at least one phenylene and isopropylidene group. The polyimide resin is colorless, highly heat-resistant, highly transparent and low water-absorbable. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無色透明性の低吸収性ポリイミド樹脂およびその製造方法、該ポリイミド樹脂からなるフィルムの製造方法、および該ポリイミド樹脂を含有する封止材を提供する。   The present invention provides a colorless and transparent low-absorption polyimide resin and a method for producing the same, a method for producing a film comprising the polyimide resin, and a sealing material containing the polyimide resin.

一般に、ポリイミド樹脂は、芳香族テトラカルボン酸無水物と芳香族ジアミンとの縮合反応により得られたポリアミド酸を脱水閉環反応させて得られる耐熱性の樹脂である。分子鎖の剛直性、共鳴安定化、および強い化学結合により優れた熱分解抵抗性と酸化や加水分解などの化学変化に対する抵抗性を有し、機械的特性、電気的特性および柔軟性に優れているので、電気、電子、自動車および航空宇宙産業などの分野においてフィルム、コーティング剤、成形部品および絶縁材料として幅広く使用されている。   In general, a polyimide resin is a heat-resistant resin obtained by subjecting a polyamic acid obtained by a condensation reaction of an aromatic tetracarboxylic acid anhydride and an aromatic diamine to a dehydration ring-closing reaction. Excellent thermal decomposition resistance due to molecular chain rigidity, resonance stabilization, and strong chemical bonding, and resistance to chemical changes such as oxidation and hydrolysis, and excellent mechanical properties, electrical properties and flexibility Therefore, it is widely used as a film, coating agent, molded part and insulating material in fields such as electrical, electronic, automotive and aerospace industries.

しかし、一般に、芳香族ポリイミド樹脂フィルムは、分子内あるいは分子間電子移動錯体の形成に由来する可視光の吸収により、黄色あるいは褐色に着色しているため、フラットパネルディスプレーや携帯電話機器等の基板材料、光ファイバー、光導波路、光学用接着剤等の光学用途には適さなかった。このような光学用途においては、フレキシブル性、耐熱着色性および機械強度を併せ持つ透明高耐熱性樹脂の技術開発が急務となっている。   However, in general, aromatic polyimide resin films are colored yellow or brown due to absorption of visible light derived from the formation of intramolecular or intermolecular electron transfer complexes, so substrates for flat panel displays, mobile phone devices, etc. It was not suitable for optical applications such as materials, optical fibers, optical waveguides, and optical adhesives. In such an optical application, there is an urgent need for technical development of a transparent high heat resistant resin having both flexibility, heat resistant colorability and mechanical strength.

光学用プラスチックとして用いられてきたポリメタクリル酸メチルは、低複屈折性と無色透明性を有しているが、耐熱性が不足しているため、上記光学用途には使用出来なかった。また、ポリカーボネートは、比較的高いガラス転移温度を有しているが、上記光学用途に必要とされる耐熱着色性を満足できず、複屈折も大きいという欠点のため適応できなかった。   Polymethyl methacrylate, which has been used as an optical plastic, has low birefringence and colorless transparency, but cannot be used in the above optical applications because of insufficient heat resistance. Further, polycarbonate has a relatively high glass transition temperature, but cannot satisfy the heat-resistant coloring property required for the above optical use and cannot be adapted due to the disadvantage that the birefringence is large.

発光ダイオード(LED)、光センサ等の光電変換デバイスの封止材料には、無色透明性、易成形性、耐熱性が必要とされる。特に、LEDの封止材料としては、これらの性能に優れるエポキシ樹脂が広く用いられてきた(特許文献1参照)。近年、発光材料の開発が進んだことにより、LEDは高輝度化するとともに青色や紫外光等発光波長の短いものが普及してきた。これに伴い、封止材料はより高温度や高いエネルギーの光にさらされる。既存のエポキシ樹脂は耐熱性、耐光性が不足しており、着色(黄変)が生じるなど長期間の無色透明性の維持は困難であった。また、環境保持の観点からハンダの鉛フリー化が進んでいるが、これに伴いLEDの実装温度も上がる傾向にある。既存のエポキシ樹脂では耐熱性が不足するために、鉛フリー化が困難であるという問題があった。   A sealing material for a photoelectric conversion device such as a light emitting diode (LED) or an optical sensor requires colorless transparency, easy moldability, and heat resistance. In particular, epoxy resins having excellent performance have been widely used as LED sealing materials (see Patent Document 1). In recent years, as the development of light emitting materials has progressed, LEDs have become brighter, and those with short emission wavelengths such as blue and ultraviolet light have become widespread. Accordingly, the sealing material is exposed to light of higher temperature and higher energy. Existing epoxy resins have insufficient heat resistance and light resistance, and it has been difficult to maintain colorless transparency for a long period of time such as coloring (yellowing). Moreover, although lead-free soldering is progressing from the viewpoint of environmental preservation, the LED mounting temperature tends to increase accordingly. There is a problem that it is difficult to make lead-free because existing epoxy resins lack heat resistance.

これに対し、耐熱性、耐光性に優れる封止材料としてシリコーン系樹脂を用いる検討が行なわれている。しかしながら、シリコーン系樹脂は密着性が不充分で脆いという欠点があり、デバイスの信頼性の点で問題がある。さらにシリコーン系樹脂を封止材料に用いると、デバイスの実装時の高温環境下では、樹脂から発生する揮発成分に起因して電気接触不良が発生する場合がある。さらに、スネルの法則によるとLEDの光取り出し効率を上げるためには、発光波長域における封止材料の屈折率は高いことが好ましい。これに対し、既存のエポキシ樹脂やシリコーン系樹脂の屈折率は一般的に1.55未満であり、さらに高い屈折率を有する封止材料が求められている。 On the other hand, studies have been made to use a silicone resin as a sealing material having excellent heat resistance and light resistance. However, silicone resins have the drawback of insufficient adhesion and are brittle, and there is a problem in terms of device reliability. Further, when a silicone resin is used as a sealing material, an electrical contact failure may occur due to a volatile component generated from the resin under a high temperature environment when the device is mounted. Furthermore, according to Snell's law, in order to increase the light extraction efficiency of the LED, it is preferable that the refractive index of the sealing material in the emission wavelength region is high. On the other hand, the refractive index of the existing epoxy resin or silicone resin is generally less than 1.55, and a sealing material having a higher refractive index is demanded.

また、従来LEDデバイスの封止に用いられているエポキシ樹脂やシリコーン系樹脂は熱硬化性樹脂であるため、封止時の硬化に時間がかかり、製造時間が長くなるという問題があった。これに対し、熱可塑性樹脂を射出成形することによりLEDデバイスの封止を行なう方法が提案されている(特許文献2参照)。しかし、この方法ではLED実装時の高温環境下では封止樹脂が軟化し変形してしまうために、封止が不完全になるという問題があった。   Moreover, since the epoxy resin and silicone resin conventionally used for sealing of LED devices are thermosetting resins, there is a problem that it takes time to cure at the time of sealing and the manufacturing time becomes long. On the other hand, a method for sealing an LED device by injection molding a thermoplastic resin has been proposed (see Patent Document 2). However, this method has a problem that sealing is incomplete because the sealing resin is softened and deformed in a high temperature environment during LED mounting.

そのような問題を解決する材料として、無色透明性ポリイミド樹脂が提案されている。高い耐熱性と透明性を有するポリイミド樹脂として、パーフルオロアルキル基を有する繰り返し構造単位を含むフッ素化ポリイミド樹脂が報告されている(特許文献3および特許文献4参照)。フッ素化ポリイミド樹脂は、溶媒可溶性に乏しいので、保存安定性の悪いポリアミド酸をキャストして膜形成した後、350℃の高温で加熱イミド化してフィルムに成形している。フッ素を含むため、塗膜形成やイミド化の際の熱処理により黄色に着色しやすく、表面平滑性が不安定であり、膜厚の制御が難しいといった不具合がある。   As a material for solving such a problem, a colorless and transparent polyimide resin has been proposed. As a polyimide resin having high heat resistance and transparency, a fluorinated polyimide resin containing a repeating structural unit having a perfluoroalkyl group has been reported (see Patent Document 3 and Patent Document 4). Since the fluorinated polyimide resin is poor in solvent solubility, after forming a film by casting a polyamic acid having poor storage stability, the film is formed by heating imidization at a high temperature of 350 ° C. Since it contains fluorine, it tends to be colored yellow by heat treatment during coating film formation or imidization, surface smoothness is unstable, and film thickness control is difficult.

1,2,4,5−シクロヘキサンテトラカルボン酸二無水物を用いて熱溶融可能なポリイミド樹脂を得る技術が開示されている(特許文献5参照)。その実施例1では、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物とジアミノジフェニルメタンと反応させてポリアミド酸を得、これを加熱してイミド化し、得られたポリイミドを加熱加圧成形して、ガラス転移温度304℃の透明で黄色のポリイミド樹脂フィルムを製造している。また、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物とジアミノジフェニルエーテルから調製したポリイミド樹脂溶液からガラス転移温度300℃以上で透明で着色の少ないフィルムが得られることが報告されている(特許文献6参照)。特許文献5記載の方法は、従来法と同様に高温のイミド化工程を含むので、着色防止性が不十分であり、また、両特許文献に記載のポリイミド樹脂フィルムは、吸水率が高く、吸湿寸法安定性に劣る欠点を有していた。   A technique for obtaining a heat-meltable polyimide resin using 1,2,4,5-cyclohexanetetracarboxylic dianhydride is disclosed (see Patent Document 5). In Example 1, 1,2,4,5-cyclohexanetetracarboxylic dianhydride and diaminodiphenylmethane are reacted to obtain polyamic acid, which is heated to imidize, and the resulting polyimide is heated and pressed. Thus, a transparent yellow polyimide resin film having a glass transition temperature of 304 ° C. is manufactured. It has also been reported that a transparent and less colored film can be obtained at a glass transition temperature of 300 ° C. or higher from a polyimide resin solution prepared from 1,2,4,5-cyclohexanetetracarboxylic dianhydride and diaminodiphenyl ether ( (See Patent Document 6). Since the method described in Patent Document 5 includes a high-temperature imidization step as in the conventional method, the anti-coloring property is insufficient, and the polyimide resin films described in both Patent Documents have high water absorption and moisture absorption. It had the disadvantage of poor dimensional stability.

特開2001−158816号公報JP 2001-158816 A 特開平4−248864号公報JP-A-4-248864 特開平8−143666号公報JP-A-8-143666 特開平8−225645号公報JP-A-8-225645 米国特許第3,639,343号明細書US Pat. No. 3,639,343 特開2003−168800号公報JP 2003-168800 A

本発明の目的は、上述の課題を解決し、フレキシブル性、耐熱性、透明性および寸法安定性に優れ、フラットパネルディスプレーや携帯電話機器等の基板材料、光ファイバー、光導波路、光学用接着剤等の光学用途に好適な低吸水性ポリイミド樹脂を提供することにある。
本発明の他の目的は、鉛フリーハンダを用いる実装を可能にし、かつ、高い光取り出し効率を得ることができる、LED、光センサ等の光電変換デバイスの封止材料として好適な、無色、透明、高耐熱性かつ高屈折率であり、高温での着色が少ない低吸水性ポリイミド樹脂を提供することにある。
本発明の他の目的は、上記ポリイミド樹脂からなるフィルムを製造する方法を提供することにある。
さらに、本発明の目的は、上記ポリイミド樹脂を含有する封止材を提供することにある。
The object of the present invention is to solve the above-mentioned problems, excellent in flexibility, heat resistance, transparency and dimensional stability, substrate materials such as flat panel displays and mobile phone devices, optical fibers, optical waveguides, optical adhesives, etc. Another object of the present invention is to provide a low water-absorbing polyimide resin suitable for optical use.
Another object of the present invention is colorless, transparent, suitable as a sealing material for photoelectric conversion devices such as LEDs and photosensors, which can be mounted using lead-free solder and can obtain high light extraction efficiency. Another object of the present invention is to provide a low water-absorbing polyimide resin that has high heat resistance and high refractive index and is less colored at high temperatures.
Another object of the present invention is to provide a method for producing a film comprising the above polyimide resin.
Furthermore, the objective of this invention is providing the sealing material containing the said polyimide resin.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、特定の脂環式テトラカルボン酸、脂環式テトラカルボン酸二無水物およびこれらの反応性誘導体から選ばれる化合物と、特定の構造を有するジアミンおよびジイソシアネートから選ばれる化合物とのイミド化反応により得られるポリイミド樹脂が高い耐熱性と透明性を維持しながら低吸水性を有することを見出し、本発明に至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained a compound selected from a specific alicyclic tetracarboxylic acid, alicyclic tetracarboxylic dianhydride, and a reactive derivative thereof, The present inventors have found that a polyimide resin obtained by an imidation reaction with a compound selected from a diamine having a specific structure and a diisocyanate has low water absorption while maintaining high heat resistance and transparency, and has led to the present invention.

すなわち、本発明は、下記式1:

Figure 2006199945

で表される1,2,4,5−シクロヘキサンテトラカルボン酸、下記式2:
Figure 2006199945

で表される1,2,4,5−シクロヘキサンテトラカルボン酸二無水物およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル含有化合物と、下記式3:
Figure 2006199945

(式中、Xは−NHまたは−N=C=Oであり、nは0〜4の整数、pは0または1であり、n+pは1〜5の整数である)で表される、少なくとも一つのフェニレン基とイソプロピリデン基を有する化合物から選ばれる少なくとも1種のイミノ形成化合物とを反応させる工程を含むポリイミド樹脂の製造方法を提供する。 That is, the present invention provides the following formula 1:
Figure 2006199945

1,2,4,5-cyclohexanetetracarboxylic acid represented by the following formula 2:
Figure 2006199945

And at least one acyl-containing compound selected from the group consisting of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and their reactive derivatives represented by the following formula 3:
Figure 2006199945

(Wherein, X is —NH 2 or —N═C═O, n is an integer of 0 to 4, p is 0 or 1, and n + p is an integer of 1 to 5). Provided is a method for producing a polyimide resin comprising a step of reacting at least one imino-forming compound selected from compounds having at least one phenylene group and isopropylidene group.

また、本発明は、上記製造方法によって得られた、下記式4:

Figure 2006199945
(式中、nおよびpは上記と同様である。)で示される繰り返し単位を含むポリイミド樹脂を提供する。
さらに、本発明は、上記の製造方法で得られたポリイミド樹脂を含む溶液からポリイミドフィルムを製造する方法、および上記ポリイミド樹脂を含む光電変換デバイス用封止材を提供する。 Further, the present invention provides the following formula 4 obtained by the above production method:
Figure 2006199945
(In the formula, n and p are the same as those described above).
Furthermore, this invention provides the method of manufacturing a polyimide film from the solution containing the polyimide resin obtained by said manufacturing method, and the sealing material for photoelectric conversion devices containing the said polyimide resin.

本発明のポリイミド樹脂は、下記式1:

Figure 2006199945

で表される1,2,4,5−シクロヘキサンテトラカルボン酸、下記式2:
Figure 2006199945

で表される1,2,4,5−シクロヘキサンテトラカルボン酸二無水物およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル含有化合物と、下記式3:
Figure 2006199945

(式中、Xは−NHまたは−N=C=Oであり、nは0〜4の整数、pは0または1であり、n+pは1〜5の整数である)で表される、少なくとも一つのフェニレン基とイソプロピリデン基を有する化合物から選ばれる少なくとも1種のイミノ形成化合物とを、有機極性溶媒中で反応させることにより製造される。 The polyimide resin of the present invention has the following formula 1:
Figure 2006199945

1,2,4,5-cyclohexanetetracarboxylic acid represented by the following formula 2:
Figure 2006199945

And at least one acyl-containing compound selected from the group consisting of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and their reactive derivatives represented by the following formula 3:
Figure 2006199945

(Wherein, X is —NH 2 or —N═C═O, n is an integer of 0 to 4, p is 0 or 1, and n + p is an integer of 1 to 5). It is produced by reacting at least one imino-forming compound selected from compounds having at least one phenylene group and isopropylidene group in an organic polar solvent.

前記アシル含有化合物としては、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸、1,2,4,5−シクロヘキサンテトラカルボン酸モノメチルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸ジメチルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸トリメチルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸テトラメチルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸モノエチルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸ジエチルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸トリエチルエステル、1,2,4,5−シクロヘキサンテトラカルボン酸テトラエチルエステルなどが挙げられ、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物が好ましい。これらは単独であるいは2種以上混合して用いることができる。   Examples of the acyl-containing compound include 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid monomethyl ester 1,2,4,5-cyclohexanetetracarboxylic acid dimethyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid trimethyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid tetramethyl ester, 1,2 , 4,5-cyclohexanetetracarboxylic acid monoethyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid diethyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid triethyl ester, 1,2,4,5 -Cyclohexanetetracarboxylic acid tetraethyl ester Gerare, 1,2,4,5-cyclohexane tetracarboxylic dianhydride is preferred. These can be used alone or in admixture of two or more.

前記イミノ形成化合物としては、2,2−ビス(3−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、1,3−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(3−アミノ−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン、2,2−ビス[4−(3−アミノ−α,α−ジメチルベンジル)フェニル]プロパン、2,2−ビス[4−(4−アミノ−α,α−ジメチルベンジル)フェニル]プロパン、2,2−ビス(3−イソシアナトフェニル)プロパン、2,2−ビス(4−イソシアナトフェニル)プロパン、1,3−ビス(3−イソシアナト−α,α−ジメチルベンジル)ベンゼン、1,3−ビス(4−イソシアナト−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(3−イソシアナト−α,α−ジメチルベンジル)ベンゼン、1,4−ビス(4−イソシアナト−α,α−ジメチルベンジル)ベンゼン、2,2−ビス[4−(3−イソシアナト−α,α−ジメチルベンジル)フェニル]プロパン、2,2−ビス[4−(4−イソシアナト−α,α−ジメチルベンジル)フェニル]プロパン、m−α,α,α’,α’−テトラメチルキシリレンジアミン、m−α,α,α’,α’−テトラメチルキシリレンジイソシアネート、2,2−ビス−[4−(ジメチルアミノメチル)フェニル]プロパン、2,2−ビス−[4−(ジメチルイソシアナトメチル)フェニル]プロパンなどが挙げられ、ジアミン化合物(式3の2つのXが−NHである化合物)が好ましい。これらは単独あるいは2種以上混合して用いることができる。 Examples of the imino-forming compound include 2,2-bis (3-aminophenyl) propane, 2,2-bis (4-aminophenyl) propane, and 1,3-bis (3-amino-α, α-dimethylbenzyl). Benzene, 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (3-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4-amino-) α, α-dimethylbenzyl) benzene, 2,2-bis [4- (3-amino-α, α-dimethylbenzyl) phenyl] propane, 2,2-bis [4- (4-amino-α, α- Dimethylbenzyl) phenyl] propane, 2,2-bis (3-isocyanatophenyl) propane, 2,2-bis (4-isocyanatophenyl) propane, 1,3-bis (3-isocyanato-α, α-dimethyl Benji L) benzene, 1,3-bis (4-isocyanato-α, α-dimethylbenzyl) benzene, 1,4-bis (3-isocyanato-α, α-dimethylbenzyl) benzene, 1,4-bis (4- Isocyanato-α, α-dimethylbenzyl) benzene, 2,2-bis [4- (3-isocyanato-α, α-dimethylbenzyl) phenyl] propane, 2,2-bis [4- (4-isocyanato-α, α-dimethylbenzyl) phenyl] propane, m-α, α, α ′, α′-tetramethylxylylenediamine, m-α, α, α ′, α′-tetramethylxylylene diisocyanate, 2,2-bis -[4- (dimethylaminomethyl) phenyl] propane, 2,2-bis- [4- (dimethylisocyanatomethyl) phenyl] propane and the like, and diamine compounds (two X's of formula 3 Is a compound in which —NH 2 is preferred. These may be used alone or in combination of two or more.

前記イミノ形成化合物の他にも、ポリイミド樹脂の良好な低吸水性を損なわない範囲で他のジアミンを、各種物性、例えば耐熱性、熱膨張係数、誘電率、屈折率または複屈折などを制御するために、必要に応じてイミノ形成化合物の1〜49モル%併用することもできる。   In addition to the imino-forming compound, other diamines are controlled within a range that does not impair good low water absorption of the polyimide resin, and various physical properties such as heat resistance, thermal expansion coefficient, dielectric constant, refractive index, or birefringence are controlled. Therefore, 1 to 49 mol% of the imino forming compound can be used together as necessary.

併用できるジアミンは限定されるわけではないが、例えば、m−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、ビス[4−(3−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(3−アミノフェノキシ)フェニル]プロパン、ビス[4−(4−アミノフェノキシ)フェニル]プロパン、ビス(4−アミノシクロヘキシル)メタン、m−キシリレンジアミン、p−キシリレンジアミン、イソフォロンジアミンなどが挙げられる。   The diamine that can be used in combination is not limited. For example, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3, 3'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 1,3-bis (3-aminophenoxy ) Benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis ( 4-Aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) Enyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (4-aminophenoxy) phenyl] propane, bis (4-aminocyclohexyl) methane, m-xylylenediamine, p-xylylenediamine, isophoronediamine and the like Can be mentioned.

本発明の製造方法に用いる有機極性溶媒は特に限定されないが、非プロトン性有機極性溶媒であることが望ましい。例えば、γ−ブチロラクトン、N,N−ジメチルアセトアミド、N,N−ジメチルフォルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、p−クロロフェノール、m−クレゾール、テトラヒドロフランなどが挙げられる。上記の中でも特にγ−ブチロラクトンおよびN,N−ジメチルアセトアミドを用いることにより無色・透明性が向上する。これらの溶媒は単独あるいは2種以上混合して使用することができる。   Although the organic polar solvent used for the manufacturing method of this invention is not specifically limited, It is desirable that it is an aprotic organic polar solvent. Examples include γ-butyrolactone, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, p-chlorophenol, m-cresol, tetrahydrofuran and the like. Among these, colorlessness and transparency are improved by using γ-butyrolactone and N, N-dimethylacetamide. These solvents can be used alone or in admixture of two or more.

本発明のポリイミド樹脂の製造方法および得られたポリイミド樹脂の有機極性溶媒溶液を用いるポリイミドフィルムの製造方法について、以下に説明する。   The manufacturing method of the polyimide resin of this invention and the manufacturing method of the polyimide film using the organic polar solvent solution of the obtained polyimide resin are demonstrated below.

ポリイミド樹脂溶液の製造
少なくとも1種のイミノ形成化合物を有機極性溶媒に溶解する。有機極性溶媒100重量部に対してイミノ形成化合物を10〜30重量部溶解するのが好ましい。得られた溶液に、少なくとも1種のアシル含有化合物を−5℃〜室温付近で添加後、室温付近〜100℃の温度に30〜60分間保ってポリアミド酸溶液を製造する。
Preparation of polyimide resin solution At least one imino-forming compound is dissolved in an organic polar solvent. It is preferable to dissolve 10 to 30 parts by weight of the imino-forming compound with respect to 100 parts by weight of the organic polar solvent. At least one acyl-containing compound is added to the obtained solution at −5 ° C. to about room temperature, and then kept at a temperature of about room temperature to 100 ° C. for 30 to 60 minutes to produce a polyamic acid solution.

反応液中の1種以上のイミノ形成化合物と1種以上のアシル含有化合物の合計量は、反応液全量の20〜50重量%が好ましく、30〜40重量%がより好ましい。20重量%以上であると、適切な固有粘度のポリイミド樹脂が得られる。50重量%以下であると、ポリイミド樹脂の固有粘度が過剰に増大することを防ぐことができ、ポリイミド樹脂溶液の粘度が高くなり過ぎて、均一撹拌が困難になり、樹脂が焦げ付く問題を避けることができる。   The total amount of one or more imino-forming compounds and one or more acyl-containing compounds in the reaction solution is preferably 20 to 50% by weight, more preferably 30 to 40% by weight, based on the total amount of the reaction solution. When it is 20% by weight or more, a polyimide resin having an appropriate intrinsic viscosity can be obtained. If it is 50% by weight or less, the intrinsic viscosity of the polyimide resin can be prevented from excessively increasing, and the viscosity of the polyimide resin solution becomes too high, making it difficult to uniformly stir and avoiding the problem of the resin scorching. Can do.

ついで、必要に応じてイミド化触媒を添加し、加熱還流下、生成水を系外に留出しつつ脱水反応を生成水の留出がなくなるまで行い、ポリイミド樹脂溶液を得る。イミド化触媒は、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリ−n−ブチルアミン、ピリジン、β−ピコリンなどの3級アミン;亜燐酸、燐酸、塩酸、過塩素酸などの無機酸類;クロトン酸、安息香酸などの有機酸類から選択される。これらの中で、特に3級アミンを使用することが好ましい。イミド化触媒の添加量は、アシル含有化合物の1〜10モル%が好ましい。   Then, if necessary, an imidation catalyst is added, and while heating and refluxing, the dehydrated reaction is performed while distilling out the generated water out of the system until the distilling of the generated water ceases to obtain a polyimide resin solution. Imidation catalysts include tertiary amines such as trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, pyridine, and β-picoline; inorganic acids such as phosphorous acid, phosphoric acid, hydrochloric acid, perchloric acid; crotonic acid Selected from organic acids such as benzoic acid. Among these, it is particularly preferable to use a tertiary amine. The amount of the imidation catalyst added is preferably 1 to 10 mol% of the acyl-containing compound.

上記方法の代わりに、アシル含有化合物、イミノ形成化合物、有機極性溶媒および必要に応じてイミド化触媒を一括に仕込んだ後加熱を開始し、直ちに脱水イミド化を行うことも好ましい。   Instead of the above-described method, it is also preferable to start dehydration and imidization immediately after charging the acyl-containing compound, the imino-forming compound, the organic polar solvent and, if necessary, the imidization catalyst all at once.

イミノ形成化合物とアシル含有化合物とのモル比は、好ましくは0.95〜1.05、より好ましくは0.99〜1.01である。上記範囲内であると、適切な対数粘度(0.5〜2.0)の無色透明性ポリイミド樹脂が得られ、十分な強度のポリイミドフィルムが得られる。   The molar ratio between the imino-forming compound and the acyl-containing compound is preferably 0.95 to 1.05, more preferably 0.99 to 1.01. Within the above range, a colorless transparent polyimide resin having an appropriate logarithmic viscosity (0.5 to 2.0) is obtained, and a polyimide film having sufficient strength is obtained.

脱水イミド化の反応温度は好ましくは160〜200℃、より好ましくは170〜190℃、さらに好ましくは180〜190℃である。上記範囲内であると、高分子量化が十分に進行し、また、溶液粘度が著しく増加し樹脂が反応容器の壁面に焦げ付くなどの不具合を避けることができる。また、場合によってはトルエン、キシレンなどの共沸脱水剤を用いても良い。脱水イミド化時間は、イミノ形成化合物の反応性に依存するが、3〜12時間が好ましく、6〜8時間がより好ましい。   The reaction temperature of dehydration imidation is preferably 160 to 200 ° C, more preferably 170 to 190 ° C, and further preferably 180 to 190 ° C. Within the above range, high molecular weight can be sufficiently increased, and the viscosity of the solution can be remarkably increased so that problems such as the resin scorching on the wall surface of the reaction vessel can be avoided. In some cases, an azeotropic dehydrating agent such as toluene or xylene may be used. The dehydration imidation time depends on the reactivity of the imino forming compound, but is preferably 3 to 12 hours, more preferably 6 to 8 hours.

通常は、上記方法によりポリイミド樹脂溶液を製造するが、第3の製造方法として、ポリアミド酸溶液を製造し、これに無水酢酸などの脱水剤および公知の3級アミンを添加し、100〜120℃で3〜6時間イミド化を行い、メタノールなどのポリイミドに対する貧溶媒を添加してポリイミド樹脂を沈殿させ、ろ過・洗浄・乾燥によりポリイミド樹脂を固体として分離し、有機極性溶媒に溶解させてポリイミド樹脂溶液を得ることもできる。   Usually, a polyimide resin solution is produced by the above-mentioned method. As a third production method, a polyamic acid solution is produced, and a dehydrating agent such as acetic anhydride and a known tertiary amine are added thereto, and a temperature of 100 to 120 ° C. In 3 to 6 hours, imidization is performed, a poor solvent for polyimide such as methanol is added to precipitate the polyimide resin, the polyimide resin is separated as a solid by filtration, washing and drying, and dissolved in an organic polar solvent to obtain a polyimide resin. A solution can also be obtained.

ポリイミド樹脂を溶解する有機極性溶媒としては、γ−ブチロラクトン、N,N−ジメチルアセトアミド、N,N−ジメチルフォルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、ヘキサメチルホスホルアミド、p−クロロフェノール、m−クレゾール、テトラメチレンスルホン、プロピレンカーボネート等が挙げられる。これらの溶媒は2種以上混合して使用することもできる。さらに、樹脂の溶解度が低くならない範囲で、テトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソランなどの環状エーテル類およびシクロヘキサノン、シクロペンタノン等の環状ケトン類を併用することもできる。   Examples of the organic polar solvent for dissolving the polyimide resin include γ-butyrolactone, N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, hexamethylphosphoramide, p-chloro. Phenol, m-cresol, tetramethylene sulfone, propylene carbonate and the like can be mentioned. These solvents can be used in combination of two or more. Furthermore, cyclic ethers such as tetrahydrofuran, 1,4-dioxane and 1,3-dioxolane and cyclic ketones such as cyclohexanone and cyclopentanone can be used in combination as long as the solubility of the resin does not decrease.

上記各製造方法で得られたポリイミド樹脂は下記式4:

Figure 2006199945
(式中、nおよびpは上記と同様である。)で示される繰り返し単位を好ましくは
51モル%以上(100%を含む)有する。他の繰り返し単位は、上記した任意に使用されるジアミンに由来する。また、上記各製造方法で得られたポリイミド樹脂溶液中のポリイミド樹脂濃度は10〜50重量%であるのが好ましく、20〜30重量%であるのがより好ましい。 The polyimide resin obtained by each of the above production methods is represented by the following formula 4:
Figure 2006199945
(Wherein n and p are as defined above) preferably have 51 mol% or more (including 100%). Other repeating units are derived from the diamines used arbitrarily as described above. Moreover, it is preferable that the polyimide resin concentration in the polyimide resin solution obtained by each said manufacturing method is 10 to 50 weight%, and it is more preferable that it is 20 to 30 weight%.

ポリイミドフィルムの製造
上記方法により製造したポリイミド樹脂溶液を、離型性を付与したガラス基板あるいはステンレス製基板などにキャストして膜状とし、ホットプレート上あるいは乾燥炉中で、その膜が自己支持性を有するまで80〜120℃の温度で約30〜60分予備乾燥する。ついで、膜を基板から引き剥がし、両端部を固定した後、膜の収縮を制限しながら残留溶媒の突沸が起こらないように少なくとも使用溶媒の沸点か、好ましくは沸点よりも5〜10℃高い温度まで1時間かけて昇温し、該温度において真空乾燥し、ポリイミド樹脂フィルムを得る。
Manufacture of polyimide film The polyimide resin solution manufactured by the above method is cast on a glass substrate or stainless steel substrate to which release properties are imparted to form a film, and the film is self-supporting on a hot plate or in a drying furnace. Is pre-dried at a temperature of 80 to 120 ° C. for about 30 to 60 minutes. Next, after peeling off the film from the substrate and fixing both ends, at least the boiling point of the solvent used, preferably 5 to 10 ° C. higher than the boiling point so that the residual solvent does not bump while limiting the shrinkage of the film The temperature is raised over 1 hour and vacuum dried at the temperature to obtain a polyimide resin film.

真空乾燥を行う時間はフィルムの膜厚にも依存するが、例えば、150〜200μmのフレキシブルディスプレー用プラスチック基板用フィルムの場合、残留溶媒を1%未満にするには、5〜48時間が好ましく、より好ましくは8〜24時間である。   The time for performing vacuum drying depends on the film thickness of the film. For example, in the case of a film for a plastic substrate for flexible display having a thickness of 150 to 200 μm, 5 to 48 hours are preferable to reduce the residual solvent to less than 1%. More preferably, it is 8 to 24 hours.

ポリイミド樹脂溶液をガラス基板あるいはステンレス製の基板にキャストするには、公知の乾式ならびに乾湿式成形方法等のいかなる製膜方法を用いてもよい。例えば、ダイ押し出しによる流延法、アプリケーター、コーター等を用いる方法が挙げられる。また、ポリエチレンテレフタレートやポリエチレンナフタレートのような有機高分子のフィルム上にキャストすることもできる。   In order to cast the polyimide resin solution onto a glass substrate or a stainless steel substrate, any film forming method such as a known dry type or dry wet type method may be used. Examples thereof include a casting method using die extrusion, a method using an applicator, a coater, and the like. It can also be cast on an organic polymer film such as polyethylene terephthalate or polyethylene naphthalate.

ポリイミド樹脂フィルムの表面平滑性や、離型性などの特性を向上させることを目的に、製造の任意の段階で、各種界面活性剤や内部離型剤などを加えることができる。   Various surfactants and internal mold release agents can be added at any stage of production for the purpose of improving the properties such as surface smoothness and releasability of the polyimide resin film.

上記方法により得たポリイミド樹脂溶液を光電変換素子の上に塗布した後、有機溶媒を揮発させることにより、耐熱性に優れ、高い屈折率を有する樹脂封止部を形成し、優れた光電変換デバイスを得ることができる。また、LED用封止樹脂には発光波長を可視領域に変換する等の目的で蛍光材料等が混合される場合がある。本発明のポリイミド樹脂は各種蛍光材料と混合した場合に混合性、分散性、安定性に優れているので、LED用の封止材料として好ましい。さらに、樹脂封止部の表面に、発光方向の制御の目的で、任意の透明樹脂製のレンズを形成する事も可能である。この樹脂製レンズに導入される光は、樹脂封止部で低エネルギーの可視光に変換されているので、汎用エポキシ樹脂等のレンズでも充分な耐久性を示す。本発明のポリイミド樹脂はエポキシ樹脂等のレンズと良好な密着性を有するので、LEDの封止材料として特に好ましい。   After applying the polyimide resin solution obtained by the above method onto a photoelectric conversion element, the organic solvent is volatilized to form a resin-sealed portion having excellent heat resistance and a high refractive index, and an excellent photoelectric conversion device Can be obtained. In addition, a fluorescent material or the like may be mixed in the LED sealing resin for the purpose of converting the emission wavelength into the visible region. Since the polyimide resin of the present invention is excellent in mixing property, dispersibility, and stability when mixed with various fluorescent materials, it is preferable as a sealing material for LED. Furthermore, any transparent resin lens can be formed on the surface of the resin sealing portion for the purpose of controlling the light emission direction. Since the light introduced into the resin lens is converted into low energy visible light at the resin sealing portion, a lens such as a general-purpose epoxy resin exhibits sufficient durability. The polyimide resin of the present invention is particularly preferable as an LED sealing material because it has good adhesion to a lens such as an epoxy resin.

以下、実施例により本発明を具体的に説明する。但し、本発明はこれら実施例になんら制限されるものではない。
なお、実施例および比較例で得られたポリイミド樹脂、ポリイミドフィルムの物性は、以下に示す方法で測定した。
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to these examples.
In addition, the physical property of the polyimide resin and polyimide film obtained by the Example and the comparative example was measured by the method shown below.

(1)対数粘度
ポリイミド樹脂溶液の一部を無水メタノールに投入してポリイミド樹脂を析出させ、ろ過して未反応単量体から分離した。80℃で12時間真空乾燥して得られたポリイミド0.1gをN−メチル−2−ピロリドン20mLに溶解し、キャノン−フェンスケ粘度計を使用して30℃における対数粘度(μ)を下記式により求めた。
μ={ln(t/t)}/C
:溶媒の流下時間
:希薄高分子溶液の流下時間
C:0.5g/dL
(1) Logarithmic viscosity A part of the polyimide resin solution was put into anhydrous methanol to precipitate the polyimide resin, and filtered to separate from the unreacted monomer. 0.1 g of polyimide obtained by vacuum drying at 80 ° C. for 12 hours is dissolved in 20 mL of N-methyl-2-pyrrolidone, and the logarithmic viscosity (μ) at 30 ° C. is obtained by the following formula using a Canon-Fenske viscometer. Asked.
μ = {ln (t s / t 0)} / C
t 0 : Flowing time of solvent t s : Flowing time of dilute polymer solution C: 0.5 g / dL

(2)ガラス転移温度(Tg)
島津製作所(株)製DSC−40M型示差熱分析装置を用いて、ポリイミドフィルムを窒素雰囲気下において10℃/分で400℃まで昇温し、ガラス転移温度を測定した。
(2) Glass transition temperature (Tg)
Using a DSC-40M differential thermal analyzer manufactured by Shimadzu Corporation, the polyimide film was heated to 400 ° C. at 10 ° C./min in a nitrogen atmosphere, and the glass transition temperature was measured.

(3)吸水率測定
約25μmの厚さのポリイミドフィルムを150℃で1時間乾燥した。デシケーター中に1時間保持した後の重量をW1とし、23℃の蒸留水に24時間浸漬し、表面の水滴を拭き取った後の重量をW2とし、下記式より算出した。
吸水率(%)=(W2−W1)÷W1×100
(3) Measurement of water absorption rate A polyimide film having a thickness of about 25 μm was dried at 150 ° C. for 1 hour. The weight after holding in a desiccator for 1 hour was defined as W1, and the weight after immersing in distilled water at 23 ° C. for 24 hours and wiping off the water droplets on the surface was defined as W2.
Water absorption rate (%) = (W2−W1) ÷ W1 × 100

(4)全光線透過率およびYI値
「JIS K7105透明度試験法」に準ずる無色性、透明性を評価する指標としてポリイミドフィルムの全光線透過率およびYI値を、日本電色工業株式会社製色差・濁度測定器COI−300Aを用いて測定した。
(4) Total light transmittance and YI value As an index for evaluating the colorlessness and transparency according to “JIS K7105 Transparency Test Method”, the total light transmittance and YI value of the polyimide film were used. It measured using turbidity measuring device COI-300A.

(5)屈折率
(株)アタゴ社製屈折率測定装置(DR−M2)を用い、589nmの干渉フィルターをセットし、23℃で屈折率を測定した。
(5) Refractive index Using a refractive index measuring apparatus (DR-M2) manufactured by Atago Co., Ltd., a 589 nm interference filter was set, and the refractive index was measured at 23 ° C.

(6)耐熱加速試験
150℃に保持した熱風乾燥機中に50×50mmの試験フィルムを入れ、400nmにおける光線透過率およびYI値の変化を追跡した。
(6) Heat resistance acceleration test A 50 × 50 mm test film was placed in a hot air dryer maintained at 150 ° C., and changes in light transmittance and YI value at 400 nm were followed.

参考例1〈1,2,4,5−シクロヘキサンテトラカルボン酸二無水物の合成〉
内容積5リットルのハステロイ製(HC22)オートクレーブに、ピロメリット酸552g、活性炭にRhを担持させた触媒(エヌ・イーケムキャット(株)製)200g、水1656gを仕込み、撹拌しながらオートクレーブ内を水素ガスで置換し、水素圧を5.0MPaとして60℃まで昇温した。水素圧を5.0MPaに保ちながら2時間反応させた。オートクレーブ内の水素ガスを窒素ガスで置換し、反応液をオートクレーブから抜き出した。この反応液を熱時濾過して触媒を分離した。ロータリーエバポレーターを用い、減圧下で濾過液から水を留去して濃縮し、結晶を析出させた。析出した結晶を室温で固液分離し、乾燥して1,2,4,5−シクロヘキサンテトラカルボン酸481g(収率85.0%)を得た。
Reference Example 1 <Synthesis of 1,2,4,5-cyclohexanetetracarboxylic dianhydride>
A 5 liter Hastelloy (HC22) autoclave is charged with 552 g of pyromellitic acid, 200 g of a catalyst with Rh supported on activated carbon (manufactured by NP Chemcat Co., Ltd.), and 1656 g of water. The gas was replaced with gas, and the temperature was raised to 60 ° C. with a hydrogen pressure of 5.0 MPa. The reaction was carried out for 2 hours while maintaining the hydrogen pressure at 5.0 MPa. The hydrogen gas in the autoclave was replaced with nitrogen gas, and the reaction solution was extracted from the autoclave. The reaction solution was filtered while hot to separate the catalyst. Using a rotary evaporator, water was distilled off from the filtrate under reduced pressure and concentrated to precipitate crystals. The precipitated crystals were separated into solid and liquid at room temperature and dried to obtain 481, g (yield: 85.0%) of 1,2,4,5-cyclohexanetetracarboxylic acid.

続いて、得られた1,2,4,5−シクロヘキサンテトラカルボン酸481gと無水酢酸4000gとを、5リットルのガラス製セパラブルフラスコに仕込み、撹拌しながら反フラスコ内を窒素ガスで置換した。窒素ガス雰囲気下に溶媒の還流温度まで昇温し、10分間溶媒を還流させた。撹拌しながら室温まで冷却し、結晶を析出させた。析出した結晶を固液分離し、乾燥して一次結晶を得た。さらに分離母液をロータリーエバポレーターにて減圧下に濃縮し、結晶を析出させた。この結晶を固液分離し、乾燥して二次結晶を得た。一次結晶、二次結晶を合わせて1,2,4,5−シクロヘキサンテトラカルボン酸二無水物375gが得られた(無水化の収率96.6%)。   Subsequently, 481 g of the obtained 1,2,4,5-cyclohexanetetracarboxylic acid and 4000 g of acetic anhydride were charged into a 5-liter separable flask made of glass, and the inside of the anti-flask was replaced with nitrogen gas while stirring. The temperature was raised to the reflux temperature of the solvent under a nitrogen gas atmosphere, and the solvent was refluxed for 10 minutes. While stirring, the mixture was cooled to room temperature to precipitate crystals. The precipitated crystals were separated into solid and liquid and dried to obtain primary crystals. Further, the separated mother liquor was concentrated under reduced pressure using a rotary evaporator to precipitate crystals. The crystals were separated into solid and liquid and dried to obtain secondary crystals. The primary crystal and the secondary crystal were combined to obtain 375 g of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (anhydrous yield of 96.6%).

実施例1
温度計、撹拌器、窒素導入管、分留器付き冷却管を備えた500mLの5つ口フラスコ中で、窒素雰囲気下、1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン(BisA−M、別称:4,4’−(m−フェニレンジイソプロピリデン)ジアニリン)34.58g(0.1モル)を溶媒(γ−ブチロラクトン68.65g及びN,N−ジメチルアセトアミド17.16g)に溶解した。得られた溶液を氷水バスを用いて5℃に冷却した。同温に保ちながら、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物22.62(0.1モル)およびイミド化触媒としてトリエチルアミン0.50g(0.005モル)を一括添加した。添加終了後、180℃に昇温し、随時留出液を留去させながら8時間還流させた。反応終了後、内温が100℃になるまで空冷した後、N,N−ジメチルアセトアミド143.6gを加えて希釈し、撹拌しながら冷却し、固形分濃度20重量%のポリイミド樹脂溶液を得た。このポリイミド樹脂溶液の重量は262.47g、また、留出液総重量は4.86gであった。ポリイミド樹脂溶液の一部を1Lのメタノールに注ぎいれてポリイミドを沈殿させた。濾別したポリイミドをメタノールで洗浄した後、100℃の真空乾燥機中で24時間乾燥して白色粉末を得た。この粉末のIRスペクトルを測定したところ、イミド基に特有の1702cm−1、1772cm−1の吸収が見られた。ポリイミドの対数粘度を測定したところ、0.94であった。
上記で得たポリイミド樹脂溶液を、1000μmのドクターブレードを用いて、プラスチック用離型剤(中京化成工業(株)製“ペリコート”)が均一に塗布されたステンレス基板上にキャストした。これをホットプレートで100℃、60分間保持し、溶媒を揮発させて自己支持性を有する無色透明な一次乾燥フィルムを得た。このフィルムをステンレス枠に固定し、200℃で8時間真空乾燥して残留溶媒を除去し、膜厚117μmの無色透明なポリイミドフィルムを得た。このフィルムの全光線透過率、YI値、吸水率およびガラス転移温度を測定した。結果を第1表に示した。
Example 1
1,3-bis (4-amino-α, α-dimethylbenzyl) benzene in a 500 mL five-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube with a fractionator under a nitrogen atmosphere (BisA-M, also known as 4,4 ′-(m-phenylenediisopropylidene) dianiline) 34.58 g (0.1 mol) was dissolved in solvents (68.65 g of γ-butyrolactone and 17.16 g of N, N-dimethylacetamide). ). The resulting solution was cooled to 5 ° C. using an ice water bath. While maintaining the same temperature, 22.62 (0.1 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 0.50 g (0.005 mol) of triethylamine as an imidization catalyst were added all at once. After completion of the addition, the temperature was raised to 180 ° C., and the mixture was refluxed for 8 hours while distilling off the distillate as needed. After completion of the reaction, the mixture was air-cooled until the internal temperature reached 100 ° C., diluted by adding 143.6 g of N, N-dimethylacetamide, and cooled with stirring to obtain a polyimide resin solution having a solid content concentration of 20% by weight. . The weight of this polyimide resin solution was 262.47 g, and the total weight of the distillate was 4.86 g. A part of the polyimide resin solution was poured into 1 L of methanol to precipitate the polyimide. The polyimide separated by filtration was washed with methanol, and then dried in a vacuum dryer at 100 ° C. for 24 hours to obtain a white powder. The IR spectrum of the powder was measured, 1702Cm -1 characteristic of imido group, absorption of 1772 cm -1 were observed. The logarithmic viscosity of the polyimide was measured and found to be 0.94.
The polyimide resin solution obtained above was cast on a stainless steel substrate uniformly coated with a mold release agent for plastic (“Pericoat” manufactured by Chukyo Chemical Co., Ltd.) using a 1000 μm doctor blade. This was kept on a hot plate at 100 ° C. for 60 minutes, and the solvent was volatilized to obtain a colorless and transparent primary dry film having self-supporting property. This film was fixed to a stainless steel frame and vacuum-dried at 200 ° C. for 8 hours to remove the residual solvent, thereby obtaining a colorless and transparent polyimide film having a film thickness of 117 μm. The total light transmittance, YI value, water absorption and glass transition temperature of this film were measured. The results are shown in Table 1.

実施例2
1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン34.58g(0.1モル)のかわりに1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン(BisA−P)27.66g(0.08モル)およびm−フェニレンジアミン(MPD)2.16g(0.02モル)を用い、還流時間を6時間に変更した以外は実施例1と同様にして242.33gのポリイミド樹脂溶液を得た。実施例1と同様にして白色粉末を得、この粉末のIRスペクトルを測定したところ、イミド基に特有の1704cm−1、1770cm−1の吸収が見られた。ポリイミドの対数粘度を測定したところ、1.01であった。
上記で製造したポリイミド樹脂溶液を用い、実施例1と同様にして膜厚122μmのポリイミドフィルムを得た。このフィルムの全光線透過率、YI値、吸水率およびガラス転移温度を測定した。結果を第1表に示した。
Example 2
1,4-bis (4-amino-α, α-dimethylbenzyl) benzene (BisA) instead of 34.58 g (0.1 mol) of 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene -P) 242 in the same manner as in Example 1 except that 27.66 g (0.08 mol) and m-phenylenediamine (MPD) 2.16 g (0.02 mol) were used and the reflux time was changed to 6 hours. .33 g of polyimide resin solution was obtained. To give a white powder in the same manner as in Example 1, the IR spectrum of the powder was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed. It was 1.01 when the logarithmic viscosity of the polyimide was measured.
Using the polyimide resin solution produced above, a polyimide film having a thickness of 122 μm was obtained in the same manner as in Example 1. The total light transmittance, YI value, water absorption and glass transition temperature of this film were measured. The results are shown in Table 1.

実施例3
1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン34.58g(0.1モル)のかわりに1,4−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン(BisA−P)27.66g(0.08モル)および4,4’−ビス(4−アミノフェノキシ)ビフェニル(BAPB)7.38g(0.02モル)を用い、還流時間を6時間に変更した以外は実施例1と同様にして264.16gのポリイミド樹脂溶液を得た。実施例1と同様にして白色粉末を得、この粉末のIRスペクトルを測定したところ、イミド基に特有の1704cm−1、1770cm−1の吸収が見られた。ポリイミドの対数粘度を測定したところ、0.87であった。
上記で製造したポリイミド樹脂溶液を用い、実施例1と同様にして膜厚112μmの無色透明なポリイミドフィルムを得た。このフィルムの全光線透過率、YI値、吸水率およびガラス転移温度を測定した。結果を第1表に示した。
Example 3
Instead of 34.58 g (0.1 mol) of 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 1,4-bis (4-amino-α, α-dimethylbenzyl) benzene (BisA -P) 27.66 g (0.08 mol) and 4,4'-bis (4-aminophenoxy) biphenyl (BAPB) 7.38 g (0.02 mol) were used, except that the reflux time was changed to 6 hours. Was the same as in Example 1 to obtain 264.16 g of a polyimide resin solution. To give a white powder in the same manner as in Example 1, the IR spectrum of the powder was measured, 1704 cm -1 characteristic of imido group, absorption of 1770 cm -1 were observed. It was 0.87 when the logarithmic viscosity of the polyimide was measured.
Using the polyimide resin solution produced above, a colorless and transparent polyimide film having a thickness of 112 μm was obtained in the same manner as in Example 1. The total light transmittance, YI value, water absorption, and glass transition temperature of this film were measured. The results are shown in Table 1.

実施例4
1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン34.58g(0.1モル)のかわりにm−α,α,α’,α’−テトラメチルキシリレンジイソシアネート(m−TMDI)24.52g(0.1モル)を用いた以外は実施例1と同様にして214.16gのポリイミド樹脂溶液を得た。実施例1と同様にして白色粉末を得、この粉末のIRスペクトルを測定したところ、イミド基に特有の1698cm−1、1776cm−1の吸収が見られた。ポリイミドの対数粘度を測定したところ、0.72であった。
上記で製造したポリイミド樹脂溶液を用い、実施例1と同様にして膜厚112μmの無色透明なポリイミドフィルムを得た。このフィルムの全光線透過率、YI値、吸水率およびガラス転移温度を測定した。結果を第1表に示した。
Example 4
Instead of 34.58 g (0.1 mol) of 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, m-α, α, α ′, α′-tetramethylxylylene diisocyanate (m- TMDI) 24.52 g (0.1 mol) was used in the same manner as in Example 1 to obtain 214.16 g of a polyimide resin solution. To give a white powder in the same manner as in Example 1, the IR spectrum of the powder was measured, 1698 cm -1 characteristic of imido group, absorption of 1776 cm -1 were observed. The logarithmic viscosity of the polyimide was measured and found to be 0.72.
Using the polyimide resin solution produced above, a colorless and transparent polyimide film having a thickness of 112 μm was obtained in the same manner as in Example 1. The total light transmittance, YI value, water absorption and glass transition temperature of this film were measured. The results are shown in Table 1.

比較例1
1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン34.58g(0.1モル)のかわりにビス(4−アミノフェニル)メタン(DDM)19.83g(0.1モル)を用い、還流時間を6時間に変更した以外は実施例1と同様にして210.50gのポリイミド樹脂溶液を得た。実施例1と同様にして白色粉末を得、この粉末のIRスペクトルを測定したところ、イミド基に特有の1700cm−1、1768cm−1の吸収が見られた。ポリイミドの対数粘度を測定したところ、1.04であった。
上記で製造したポリイミド樹脂溶液を用い、実施例1と同様にして膜厚108μmの無色透明なポリイミドフィルムを得た。このフィルムの全光線透過率、YI値およびガラス転移温度を測定した。結果を第1表に示した。
Comparative Example 1
19.83 g (0.1 mol) of bis (4-aminophenyl) methane (DDM) instead of 34.58 g (0.1 mol) of 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene 210.50 g of polyimide resin solution was obtained in the same manner as in Example 1 except that the reflux time was changed to 6 hours. To give a white powder in the same manner as in Example 1, the IR spectrum of the powder was measured, 1700 cm -1 characteristic of imido group, absorption of 1768 cm -1 were observed. The logarithmic viscosity of the polyimide was measured and found to be 1.04.
Using the polyimide resin solution produced above, a colorless and transparent polyimide film having a thickness of 108 μm was obtained in the same manner as in Example 1. The total light transmittance, YI value and glass transition temperature of this film were measured. The results are shown in Table 1.

比較例2
1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン34.58g(0.1モル)のかわりにビス(4−アミノフェニル)メタン10.11g(0.05モル)およびm−フェニレンジアミン(MPD)5.42g(0.05モル)を用い、還流時間を6時間に変更した以外は実施例1と同様にして210.50gのポリイミド樹脂溶液を得た。実施例1と同様にして白色粉末を得、この粉末のIRスペクトルを測定したところ、イミド基に特有の1701cm−1、1769cm−1の吸収が見られた。ポリイミドの対数粘度を測定したところ、0.67であった。
上記で製造したポリイミド樹脂溶液を用い、実施例1と同様にして膜厚106μmの無色透明なポリイミドフィルムを得た。このフィルムの全光線透過率、YI値およびガラス転移温度を測定した。結果を第1表に示した。
Comparative Example 2
Instead of 34.58 g (0.1 mol) of 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 10.11 g (0.05 mol) of bis (4-aminophenyl) methane and m- 210.50 g of a polyimide resin solution was obtained in the same manner as in Example 1 except that 5.42 g (0.05 mol) of phenylenediamine (MPD) was used and the reflux time was changed to 6 hours. To give a white powder in the same manner as in Example 1, the IR spectrum of the powder was measured, 1701Cm -1 characteristic of imido group, absorption of 1769cm -1 were observed. It was 0.67 when the logarithmic viscosity of the polyimide was measured.
Using the polyimide resin solution produced above, a colorless and transparent polyimide film having a thickness of 106 μm was obtained in the same manner as in Example 1. The total light transmittance, YI value and glass transition temperature of this film were measured. The results are shown in Table 1.

比較例3
1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン34.58g(0.1モル)のかわりにビス(4−アミノフェニル)エーテル(オキシジアニリン、ODA)20.10g(0.1モル)を用い、還流時間を3時間に変更した以外は実施例1と同様にして205.05gのポリイミド樹脂溶液を得た。実施例1と同様にして白色粉末を得、この粉末のIRスペクトルを測定したところ、イミド基に特有の1691cm−1、1764cm−1の吸収が見られた。ポリイミドの対数粘度を測定したところ、1.21であった。
上記で製造したポリイミド樹脂溶液を用い、実施例1と同様にして膜厚115μmの無色透明なポリイミドフィルムを得た。このフィルムの全光線透過率、YI値およびガラス転移温度を測定した。結果を第1表に示した。
Comparative Example 3
Instead of 34.58 g (0.1 mol) of 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 20.10 g of bis (4-aminophenyl) ether (oxydianiline, ODA) (0 0.1 mol), and 205.05 g of a polyimide resin solution was obtained in the same manner as in Example 1 except that the reflux time was changed to 3 hours. To give a white powder in the same manner as in Example 1, the IR spectrum of the powder was measured, 1691Cm -1 characteristic of imido group, absorption of 1764cm -1 were observed. The logarithmic viscosity of the polyimide was measured and found to be 1.21.
Using the polyimide resin solution produced above, a colorless and transparent polyimide film having a film thickness of 115 μm was obtained in the same manner as in Example 1. The total light transmittance, YI value and glass transition temperature of this film were measured. The results are shown in Table 1.

比較例4
1,3−ビス(4−アミノ−α,α−ジメチルベンジル)ベンゼン34.58g(0.1モル)のかわりにビス[4−(4−アミノフェノキシ)フェニル]スルホン(BAPS)43.25g(0.1モル)を用い、還流時間を6時間に変更した以外は実施例1と同様にして311.92gのポリイミド樹脂溶液を得た。実施例1と同様にして白色粉末を得、この粉末のIRスペクトルを測定したところ、イミド基に特有の1704cm−1、1772cm−1の吸収が見られた。ポリイミドの対数粘度を測定したところ、0.90であった。
上記で製造したポリイミド樹脂溶液を用い、実施例1と同様にして膜厚116μmの無色透明なポリイミドフィルムを得た。このフィルムの全光線透過率、YI値およびガラス転移温度を測定した。結果を第1表に示した。
Comparative Example 4
Instead of 34.58 g (0.1 mol) of 1,3-bis (4-amino-α, α-dimethylbenzyl) benzene, 43.25 g of bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS) ( 0.1 mol), and 31.92 g of a polyimide resin solution was obtained in the same manner as in Example 1 except that the reflux time was changed to 6 hours. To give a white powder in the same manner as in Example 1, the IR spectrum of the powder was measured, 1704 cm -1 characteristic of imido group, absorption of 1772 cm -1 were observed. The logarithmic viscosity of the polyimide was measured and found to be 0.90.
Using the polyimide resin solution produced above, a colorless and transparent polyimide film having a thickness of 116 μm was obtained in the same manner as in Example 1. The total light transmittance, YI value and glass transition temperature of this film were measured. The results are shown in Table 1.

Figure 2006199945
Figure 2006199945

実施例5
実施例2と同様にして得たポリイミド樹脂粉末を1,3−ジオキソラン(沸点78℃)に溶解し、固形分濃度20重量%のポリイミド樹脂溶液を調整した。この溶液を、2000μmのドクターブレードを用いて、プラスチック用離型剤が均一に塗布されたガラス基板上にキャストした。次にこの基板をホットプレート上で60℃に1時間、さらに90℃に1時間保持して溶媒を揮発させた後、熱風乾燥機内で150℃で3時間乾燥した。冷却後基板上に形成されたフィルムを剥がし、無色透明な乾燥ポリイミドフィルムを得た。このフィルムの膜厚、屈折率、耐熱加速試験の結果を第2表に示した。
Example 5
A polyimide resin powder obtained in the same manner as in Example 2 was dissolved in 1,3-dioxolane (boiling point 78 ° C.) to prepare a polyimide resin solution having a solid concentration of 20% by weight. This solution was cast on a glass substrate on which a plastic release agent was uniformly applied using a 2000 μm doctor blade. Next, the substrate was kept on a hot plate at 60 ° C. for 1 hour and further at 90 ° C. for 1 hour to volatilize the solvent, and then dried at 150 ° C. for 3 hours in a hot air dryer. After cooling, the film formed on the substrate was peeled off to obtain a colorless and transparent dry polyimide film. Table 2 shows the film thickness, refractive index, and heat acceleration test results of this film.

比較例5
ビスフェノールA型液状エポキシ樹脂(ジャパンエポキシレジン(株)、エピコート828US、エポキシ当量190)38g、メチルヘキサヒドロ無水フタル酸(新日本理化(株)、リカシッドMH−700G、1.0当量)32.8gおよび硬化促進剤として2−エチル−4−メチルイミダゾール0.35gを100mlビーカーに量り取り、撹拌棒で良く混合してエポキシ樹脂混合液を調製した。縦×横×高さの寸法が60×60×10mmのシリコン製樹脂型にエポキシ樹脂混合液3gを流し込んだ。樹脂型をガラス基板上に載せて熱風乾燥機中に水平に設置し、90℃で1時間、120℃で3時間、更に150℃で3時間硬化反応を行った。冷却後、樹脂型から無色透明なシート状硬化物を得た。このシート状硬化物の厚さ、屈折率、耐熱加速試験の結果を第2表に示した。
Comparative Example 5
38 g of bisphenol A type liquid epoxy resin (Japan Epoxy Resin Co., Ltd., Epicoat 828US, epoxy equivalent 190), methylhexahydrophthalic anhydride (Shin Nihon Rika Co., Ltd., Ricacid MH-700G, 1.0 equivalent) 32.8 g Then, 0.35 g of 2-ethyl-4-methylimidazole as a curing accelerator was weighed into a 100 ml beaker and mixed well with a stir bar to prepare an epoxy resin mixture. 3 g of the epoxy resin mixture was poured into a silicon resin mold having dimensions of length × width × height of 60 × 60 × 10 mm. The resin mold was placed on a glass substrate and placed horizontally in a hot air dryer, and a curing reaction was performed at 90 ° C. for 1 hour, 120 ° C. for 3 hours, and further at 150 ° C. for 3 hours. After cooling, a colorless and transparent sheet-like cured product was obtained from the resin mold. Table 2 shows the thickness, refractive index, and thermal acceleration test results of the cured sheet.

Figure 2006199945
Figure 2006199945

実施例1〜4と比較例1〜4との比較から明らかなように、本発明によるポリイミド樹脂は、高耐熱性、高透明性および低吸水性なので、フラットパネルディスプレーや携帯電話機器等の基板材料、光ファイバー、光導波路、光学用接着剤等の光学用途に好適である。さらに実施例5と比較例5との比較から明らかなように、本発明のポリイミドフィルムは、高温暴露時の光線透過率の低下およびYI値の上昇が小さく、高い屈折率を有しているので、発光ダイオード(LED)、光センサ等の光電変換デバイスの封止材料として好適である。   As is clear from the comparison between Examples 1 to 4 and Comparative Examples 1 to 4, the polyimide resin according to the present invention has high heat resistance, high transparency, and low water absorption, so that it is a substrate for flat panel displays, mobile phone devices and the like. It is suitable for optical applications such as materials, optical fibers, optical waveguides, and optical adhesives. Furthermore, as is clear from the comparison between Example 5 and Comparative Example 5, the polyimide film of the present invention has a high refractive index because the decrease in light transmittance and the increase in YI value during exposure to high temperatures are small. It is suitable as a sealing material for photoelectric conversion devices such as light emitting diodes (LEDs) and optical sensors.

Claims (8)

下記式1:
Figure 2006199945

で表される1,2,4,5−シクロヘキサンテトラカルボン酸、下記式2:
Figure 2006199945

で表される1,2,4,5−シクロヘキサンテトラカルボン酸二無水物およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル含有化合物と、下記式3:
Figure 2006199945

(式中、Xは−NHまたは−N=C=Oであり、nは0〜4の整数、pは0または1であり、n+pは1〜5の整数である)で表される、少なくとも一つのフェニレン基とイソプロピリデン基を有する化合物から選ばれる少なくとも1種のイミノ形成化合物とを反応させる工程を含むポリイミド樹脂の製造方法。
Formula 1:
Figure 2006199945

1,2,4,5-cyclohexanetetracarboxylic acid represented by the following formula 2:
Figure 2006199945

And at least one acyl-containing compound selected from the group consisting of 1,2,4,5-cyclohexanetetracarboxylic dianhydride and their reactive derivatives represented by the following formula 3:
Figure 2006199945

(Wherein, X is —NH 2 or —N═C═O, n is an integer of 0 to 4, p is 0 or 1, and n + p is an integer of 1 to 5). A method for producing a polyimide resin, comprising a step of reacting at least one imino-forming compound selected from compounds having at least one phenylene group and an isopropylidene group.
該反応を有機極性溶媒溶液中、イミド化触媒の存在下で加熱下に行い、ポリイミド樹脂溶液を得る請求項1記載のポリイミド樹脂の製造法。 The method for producing a polyimide resin according to claim 1, wherein the reaction is carried out in an organic polar solvent solution under heating in the presence of an imidization catalyst to obtain a polyimide resin solution. 該イミド化触媒が第3級アミンである請求項2記載のポリイミド樹脂の製造法。 The method for producing a polyimide resin according to claim 2, wherein the imidization catalyst is a tertiary amine. 該加熱を、160〜200℃で3〜12時間行う請求項2または3記載のポリイミド樹脂の製造法。 The method for producing a polyimide resin according to claim 2 or 3, wherein the heating is performed at 160 to 200 ° C for 3 to 12 hours. 下記式4:
Figure 2006199945
(式中、nおよびpは上記と同様である。)で示される繰り返し単位を含むポリイミド樹脂。
Following formula 4:
Figure 2006199945
(Wherein n and p are as defined above), a polyimide resin containing a repeating unit.
請求項2記載のポリイミド樹脂溶液または請求項5記載のポリイミド樹脂の有機極性溶媒溶液を基板上にキャストし、得られたキャストフィルムから溶媒を蒸発除去する工程を含むポリイミドフィルムの製造方法。 A method for producing a polyimide film, comprising: casting the polyimide resin solution according to claim 2 or an organic polar solvent solution of the polyimide resin according to claim 5 onto a substrate, and evaporating and removing the solvent from the obtained cast film. 該キャストフィルムから溶媒を80〜120℃で蒸発除去して自己支持性フィルムを得た後、該自己支持性フィルムを溶媒の沸点〜溶媒の沸点+10℃の温度で真空乾燥してさらに溶媒を除去する請求項6記載のポリイミドフィルムの製造方法。 After removing the solvent from the cast film by evaporating at 80 to 120 ° C. to obtain a self-supporting film, the self-supporting film is vacuum dried at a temperature of the boiling point of the solvent to the boiling point of the solvent + 10 ° C. to further remove the solvent. The manufacturing method of the polyimide film of Claim 6. 請求項5記載のポリイミド樹脂を含む光電変換デバイス用封止材。 The sealing material for photoelectric conversion devices containing the polyimide resin of Claim 5.
JP2005367011A 2004-12-24 2005-12-20 Low water absorbable polyimide resin and process for its production Pending JP2006199945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005367011A JP2006199945A (en) 2004-12-24 2005-12-20 Low water absorbable polyimide resin and process for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004372949 2004-12-24
JP2005367011A JP2006199945A (en) 2004-12-24 2005-12-20 Low water absorbable polyimide resin and process for its production

Publications (1)

Publication Number Publication Date
JP2006199945A true JP2006199945A (en) 2006-08-03

Family

ID=36958221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005367011A Pending JP2006199945A (en) 2004-12-24 2005-12-20 Low water absorbable polyimide resin and process for its production

Country Status (1)

Country Link
JP (1) JP2006199945A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149772A1 (en) * 2007-06-08 2008-12-11 Mitsui Mining & Smelting Co., Ltd. Laminated film for electronic component mounting, film carrier tape for electronic component mounting, and semiconductor device
JP2009019105A (en) * 2007-07-11 2009-01-29 Nitto Denko Corp Resin for optical semiconductor element encapsulation containing polyimide
KR20120033867A (en) * 2010-09-30 2012-04-09 코오롱인더스트리 주식회사 Polyimide resin and film, alignment layer, substrate for display
US8259280B2 (en) 2008-07-29 2012-09-04 Hitachi Displays, Ltd. Image display device and manufacturing method thereof
JP2012251080A (en) * 2011-06-03 2012-12-20 Mitsui Chemicals Inc Novel polyimide and its use
JP2017025204A (en) * 2015-07-22 2017-02-02 住友化学株式会社 Polyimide film, and method for producing polyimide film
US9575213B2 (en) 2011-10-14 2017-02-21 Jsr Corporation Optical filter, and solid-state image pickup device and camera module using the optical filter
US9606275B2 (en) 2013-10-17 2017-03-28 Jsr Corporation Optical filter, solid-state image pickup device and camera module
KR20190039180A (en) 2016-08-10 2019-04-10 다이니폰 인사츠 가부시키가이샤 Polyimide film, laminate and surface material for display
US10473836B2 (en) 2015-07-28 2019-11-12 Jsr Corporation Optical filter and ambient light sensor including optical filter
US11163098B2 (en) 2016-06-08 2021-11-02 Jsr Corporation Optical filter and optical sensor device
JP7463964B2 (en) 2018-08-24 2024-04-09 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish and polyimide film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639343A (en) * 1969-02-11 1972-02-01 Du Pont Polyimides and copolyimides from aromatic diamines and alicyclic dianhydrides
JPH01303413A (en) * 1988-06-01 1989-12-07 Sharp Corp Liquid crystal display device
JPH06136120A (en) * 1992-10-27 1994-05-17 Japan Synthetic Rubber Co Ltd Production of soluble polyimide
JP2002003715A (en) * 2000-06-26 2002-01-09 Kanegafuchi Chem Ind Co Ltd Composition, photosensitive composition and cover lay film using the same
JP2003155342A (en) * 2001-11-19 2003-05-27 Nippon Steel Chem Co Ltd Polyimide copolymer having alicyclic structure
JP2003168800A (en) * 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc Thin film transistor substrate
JP2004211064A (en) * 2002-12-16 2004-07-29 Ube Ind Ltd Composition for polyimide siloxane insulating membrane, insulating membrane and method of forming insulating membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639343A (en) * 1969-02-11 1972-02-01 Du Pont Polyimides and copolyimides from aromatic diamines and alicyclic dianhydrides
JPH01303413A (en) * 1988-06-01 1989-12-07 Sharp Corp Liquid crystal display device
JPH06136120A (en) * 1992-10-27 1994-05-17 Japan Synthetic Rubber Co Ltd Production of soluble polyimide
JP2002003715A (en) * 2000-06-26 2002-01-09 Kanegafuchi Chem Ind Co Ltd Composition, photosensitive composition and cover lay film using the same
JP2003155342A (en) * 2001-11-19 2003-05-27 Nippon Steel Chem Co Ltd Polyimide copolymer having alicyclic structure
JP2003168800A (en) * 2001-11-30 2003-06-13 Mitsubishi Gas Chem Co Inc Thin film transistor substrate
JP2004211064A (en) * 2002-12-16 2004-07-29 Ube Ind Ltd Composition for polyimide siloxane insulating membrane, insulating membrane and method of forming insulating membrane

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149772A1 (en) * 2007-06-08 2008-12-11 Mitsui Mining & Smelting Co., Ltd. Laminated film for electronic component mounting, film carrier tape for electronic component mounting, and semiconductor device
JP2009019105A (en) * 2007-07-11 2009-01-29 Nitto Denko Corp Resin for optical semiconductor element encapsulation containing polyimide
US8259280B2 (en) 2008-07-29 2012-09-04 Hitachi Displays, Ltd. Image display device and manufacturing method thereof
KR20120033867A (en) * 2010-09-30 2012-04-09 코오롱인더스트리 주식회사 Polyimide resin and film, alignment layer, substrate for display
KR101593239B1 (en) 2010-09-30 2016-02-12 코오롱인더스트리 주식회사 Polyimide resin and film, alignment layer, substrate for display
JP2012251080A (en) * 2011-06-03 2012-12-20 Mitsui Chemicals Inc Novel polyimide and its use
US9791596B2 (en) 2011-10-14 2017-10-17 Jsr Corporation Optical filter, and solid-state image pickup device and camera module using the optical filter
US9791606B2 (en) 2011-10-14 2017-10-17 Jsr Corporation Optical filter, and solid-state image pickup device and camera module using the optical filter
US9575213B2 (en) 2011-10-14 2017-02-21 Jsr Corporation Optical filter, and solid-state image pickup device and camera module using the optical filter
US9606275B2 (en) 2013-10-17 2017-03-28 Jsr Corporation Optical filter, solid-state image pickup device and camera module
JP2017025204A (en) * 2015-07-22 2017-02-02 住友化学株式会社 Polyimide film, and method for producing polyimide film
US10473836B2 (en) 2015-07-28 2019-11-12 Jsr Corporation Optical filter and ambient light sensor including optical filter
US11226442B2 (en) 2015-07-28 2022-01-18 Jsr Corporation Optical filter and ambient light sensor including optical filter
US11163098B2 (en) 2016-06-08 2021-11-02 Jsr Corporation Optical filter and optical sensor device
KR20190039180A (en) 2016-08-10 2019-04-10 다이니폰 인사츠 가부시키가이샤 Polyimide film, laminate and surface material for display
US11566108B2 (en) 2016-08-10 2023-01-31 Dai Nippon Printing Co., Ltd. Polyimide film, laminate and surface material for display
JP7463964B2 (en) 2018-08-24 2024-04-09 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish and polyimide film

Similar Documents

Publication Publication Date Title
KR101247856B1 (en) Low water-absorptive polyimide resin and method for producing same
JP2006199945A (en) Low water absorbable polyimide resin and process for its production
JP5845911B2 (en) Polyimide precursor aqueous solution composition and method for producing polyimide precursor aqueous solution composition
CN110606949B (en) Colorless transparent polyimide film containing fluorine and Cardo structure and preparation method thereof
KR20160095910A (en) Poly(imide-amide)copolymer, article contatining poly(imide-amide)copolymer, and display device including same
KR20160096565A (en) Preparation method of polyimide using water as a dispersion medium
CN112194792A (en) High-strength low-thermal-expansion transparent polyimide and preparation method thereof
JP7367699B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP2006037079A (en) Colorless transparent polyimide composite film and its production method
JP4699321B2 (en) Ester group-containing polyimide, precursor thereof, and production method thereof
JP2003155342A (en) Polyimide copolymer having alicyclic structure
WO2009116500A1 (en) Polyimide material, polyimide film, method for producing the polyimide material and method for producing the polyimide film
JP2024028411A (en) Polyamic acid composition and transparent polyimide film using the same
JP2009263654A (en) Polyimide, polyimide film, and methods for producing the same
JP5768348B2 (en) Thermal base generator, polymer precursor composition, and article using the composition
JP2010116476A (en) Polyimide material, polyimide film and method for producing the same
KR20200092628A (en) Preparing method of polyamide-based (co)polymer, and polyamide-based (co)polymer resin composition, polymer film using the same
JP2519228B2 (en) Colorless and transparent polyimide molding and method for producing the same
JP2003041189A (en) Varnish and cross-linkable polyimide
JP2010235859A (en) Polyimide material, film and composition, and method for producing the same
WO2021210641A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
JP6638744B2 (en) Polyimide precursor composition, method for producing polyimide, polyimide, polyimide film, and substrate
TW202030226A (en) Polyimide precursor, polyimide, polyimide resin film, and flexible device
JP2010150379A (en) Polyimide-based material, film and composition, and method for producing the same
JP6765093B2 (en) Polyimide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101