JP4082389B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4082389B2
JP4082389B2 JP2004173515A JP2004173515A JP4082389B2 JP 4082389 B2 JP4082389 B2 JP 4082389B2 JP 2004173515 A JP2004173515 A JP 2004173515A JP 2004173515 A JP2004173515 A JP 2004173515A JP 4082389 B2 JP4082389 B2 JP 4082389B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
hot water
radiator
throttle device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004173515A
Other languages
Japanese (ja)
Other versions
JP2005351557A (en
Inventor
和生 中谷
典穂 岡座
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004173515A priority Critical patent/JP4082389B2/en
Priority to CN2005100652186A priority patent/CN1707197B/en
Publication of JP2005351557A publication Critical patent/JP2005351557A/en
Application granted granted Critical
Publication of JP4082389B2 publication Critical patent/JP4082389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明はヒートポンプ湯装置に関するものである。   The present invention relates to a heat pump hot water apparatus.

従来、この種のヒートポンプ給湯装置は、図4に示すものがある。図4は従来のヒートポンプ給湯機のサイクル構成図である。図4において、圧縮機1、給湯用熱交換器2、絞り装置3、蒸発器4からなる冷媒循環回路と、貯湯槽5、循環ポンプ6、前記給湯用熱交換器2、補助加熱器19を接続した給湯回路からなり、前記圧縮機1より吐出された高温高圧の過熱ガス冷媒は前記給湯用熱交換器2に流入し、ここで前記循環ポンプ6から送られてきた給湯水を加熱する。   Conventionally, this type of heat pump water heater is shown in FIG. FIG. 4 is a cycle configuration diagram of a conventional heat pump water heater. In FIG. 4, a refrigerant circulation circuit comprising a compressor 1, a hot water supply heat exchanger 2, an expansion device 3, and an evaporator 4, a hot water tank 5, a circulation pump 6, the hot water supply heat exchanger 2, and an auxiliary heater 19 are provided. The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 1 flows into the hot water supply heat exchanger 2 and heats the hot water supplied from the circulation pump 6.

そして、凝縮液化した冷媒は前記絞り装置3で減圧され、前記蒸発器4に流入し、ここで大気熱を吸熱して蒸発ガス化し、前記圧縮機1にもどる。一方、前記給湯用熱交換器2で加熱された湯は前記貯湯槽5の上部に流入し、上から次第に貯湯されていく。そして、前記給湯用熱交換器2の入口水温が設定値に達すると水温検知器20が検知し、前記圧縮機1によるヒートポンプ運転を停止して、前記補助加熱器19の単独運転に切り換えるものである(例えば、特許文献1参照)。
特開昭60−164157号公報
The condensed and liquefied refrigerant is decompressed by the expansion device 3 and flows into the evaporator 4, where it absorbs atmospheric heat to evaporate and returns to the compressor 1. On the other hand, the hot water heated by the hot water supply heat exchanger 2 flows into the upper part of the hot water storage tank 5 and is gradually stored from above. When the inlet water temperature of the hot water supply heat exchanger 2 reaches a set value, the water temperature detector 20 detects it, stops the heat pump operation by the compressor 1, and switches to the independent operation of the auxiliary heater 19. Yes (see, for example, Patent Document 1).
JP 60-164157 A

しかしながら、上記のような従来の構成では、沸き上げ運転時間の経過とともに貯湯槽5内の湯と水の接する部分で湯水混合層が生じ、その層は次第に拡大していく。これは、高温湯と低温水の熱伝導および対流により発生するものであり、高温湯から低温水へ伝熱されその境界部分で高温湯は温度低下し、逆に低温水は温度上昇する。従って、沸き上げ運転完了近くになると、前記給湯用熱交換器2に流入する水温は高くなるため、前記圧縮
機1の吐出圧力が上昇して、前記圧縮機1の耐久性が課題となる。
However, in the conventional configuration as described above, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 5 is in contact with water as the boiling operation time elapses, and the layer gradually expands. This occurs due to heat conduction and convection in high temperature hot water and low temperature water. Heat is transferred from the high temperature hot water to the low temperature water, and the temperature of the high temperature hot water decreases at the boundary portion, while the temperature of the low temperature water increases. Accordingly, when the boiling operation is nearly completed, the temperature of the water flowing into the hot water supply heat exchanger 2 becomes high, so that the discharge pressure of the compressor 1 rises and the durability of the compressor 1 becomes a problem.

そのため、前記給湯用熱交換器に流入する水温が低い状態で運転を停止していたため、前記貯湯槽5の下部が低温の水の状態で運転を停止することになり、前記貯湯槽5の湯容量を有効に利用できず、そのため、貯湯熱量は減少していた。また、貯湯熱量を増加するため、ヒートポンプ運転を停止した後、補助加熱器19の単独運転で貯湯熱量を増加する場合には、電気ヒータで加熱するため、消費電力が大きくなり、効率が悪くなっていた。   Therefore, since the operation was stopped in a state where the temperature of the water flowing into the hot water supply heat exchanger was low, the operation was stopped with the lower part of the hot water tank 5 being in a state of low temperature water, and the hot water in the hot water tank 5 was The capacity could not be used effectively, so the amount of hot water stored was decreasing. In addition, in order to increase the amount of stored hot water, after stopping the heat pump operation, when the amount of stored hot water is increased by the independent operation of the auxiliary heater 19, heating is performed by an electric heater, so that power consumption increases and efficiency decreases. It was.

さらにまた、外気温度が高い場合、給湯水温を高く維持するためには、前記圧縮機1の吐出温度を高く維持する必要があるが、外気温度が高いため、蒸発温度が上昇し、前記圧縮機1の圧縮比が小さくなって吐出温度が上昇しないため、高温の給湯水温を得ることができなかった。また、この場合、従来は、絞り装置の開度を小さくして、冷媒を流れにくくし、圧縮機の吐出圧力を上昇、吸入圧力を低下させて圧縮比を大きくして吐出温度を上昇させていたので、効率の悪い運転となっていた。   Furthermore, when the outside air temperature is high, in order to keep the hot water supply water temperature high, it is necessary to keep the discharge temperature of the compressor 1 high. However, since the outside air temperature is high, the evaporation temperature rises, and the compressor Since the compression ratio of 1 was small and the discharge temperature did not rise, a high hot water supply water temperature could not be obtained. In this case, conventionally, the opening of the expansion device is reduced to make it difficult for the refrigerant to flow, the discharge pressure of the compressor is increased, the suction pressure is decreased to increase the compression ratio, and the discharge temperature is increased. As a result, the operation was inefficient.

本発明は前記従来の課題を解決するもので、圧縮機の吐出圧力上昇もなく、高効率で貯湯槽の下部まで高温湯を貯湯し、貯湯槽の容量を有効に利用可能であり、また、高外気温時にも、高効率で高温の給湯水温を生成することができるヒートポンプ給湯装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, there is no increase in the discharge pressure of the compressor, high temperature hot water is stored to the lower part of the hot water tank with high efficiency, and the capacity of the hot water tank can be used effectively, An object of the present invention is to provide a heat pump hot water supply apparatus that can generate a hot water supply water temperature with high efficiency and high temperature even at a high outside air temperature.

前記従来の課題を解決するために、本発明のヒートポンプ給湯装置は、少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続して構成した冷媒回路を備え、前記主絞り装置をバイパスするように、前記放熱器、前記主絞り装置の間と前記主絞り装置、前記蒸発器の間とを接続し、開閉弁、副絞り装置を直列に配設して形成したバイパス回路と、前記開閉弁と前記副絞り装置の間の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器とを設けたことを特徴とするもので、前記補助熱交換器での熱交換量を増減でき、圧縮機の吐出圧力と吐出温度を制御して、生成する給湯水温度に適した高効率な運転が可能となる。 In order to solve the above conventional problems, the heat pump water heater of the present invention, at least a compressor, a radiator, a main throttle device, e Bei refrigerant circuit constituted an evaporator are sequentially connected, the previous SL main throttle device A bypass circuit formed by connecting the radiator, the main throttle device and the main throttle device, between the evaporator, bypassing the on- off valve and the sub throttle device in series so as to bypass; An auxiliary heat exchanger for exchanging heat between the refrigerant between the on-off valve and the sub-throttle device and the refrigerant between the evaporator and the compressor is provided, the auxiliary heat exchanger The amount of heat exchange can be increased and decreased, and the discharge pressure and discharge temperature of the compressor can be controlled to enable highly efficient operation suitable for the temperature of hot water to be generated.

また、本発明のヒートポンプ給湯装置は、少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続して構成した冷媒回路を備え、前記主絞り装置をバイパスするように、前記放熱器、前記主絞り装置の間と前記主絞り装置、前記蒸発器の間とを接続し、副絞り装置を配設して形成したバイパス回路と、前記バイパス回路の副絞り装置の上流側の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器と、前記放熱器の出口冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記冷媒温度センサーの検知温度の方が、予め設定された冷媒温度値より高い場合に、前記副絞り装置の開度を大きくする制御装置とを設けたことを特徴とするもので、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出温度を制御することが可能となり、高効率な運転が可能となる。 Moreover, heat pump hot water supply apparatus of the present invention, at least a compressor, a radiator, a main throttle device, comprising a refrigerant circuit constituted an evaporator are sequentially connected so as to bypass the main throttle device, said heat radiator, the A bypass circuit formed by connecting between the main throttle device and the main throttle device and the evaporator and disposing the sub-throttle device, the refrigerant upstream of the sub-throttle device in the bypass circuit, and the evaporation An auxiliary heat exchanger that exchanges heat between the refrigerant and the refrigerant between the compressor, a refrigerant temperature sensor that detects an outlet refrigerant temperature of the radiator, a detection temperature of the refrigerant temperature sensor, and a preset refrigerant temperature value And a control device that increases the degree of opening of the sub-throttle device when the detected temperature of the refrigerant temperature sensor is higher than a preset refrigerant temperature value. The auxiliary heat Increase or decrease the amount of heat exchange in the exchanger, and controls the refrigerant dryness of the evaporator inlet and the compressor suction gas temperature, it is possible to control the ejection exit temperature of the compressor, allows efficient operation It becomes.

また、本発明のヒートポンプ給湯装置は、少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続して構成した冷媒回路を備え、前記放熱器と前記主絞り装置の間の一部をバイパスするように、前記放熱器、前記主絞り装置の間を接続し、開閉弁を配設して形成したバイパス回路と、前記バイパス回路の前記開閉弁の下流側の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器とを設けたことを特徴とするもので、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、高効率な運転が可能となる。 Moreover, heat pump hot water supply apparatus of the present invention, at least a compressor, a radiator, a main throttle device, e Bei refrigerant circuit constituted an evaporator are sequentially connected, a portion between the front Symbol radiator and the main throttle device A bypass circuit formed by connecting the radiator and the main throttle device so as to bypass the on-off valve, a refrigerant on the downstream side of the on-off valve of the bypass circuit, and the evaporator An auxiliary heat exchanger that exchanges heat with the refrigerant between the compressors is provided, the amount of heat exchange in the auxiliary heat exchanger can be increased or decreased, and the refrigerant dryness at the evaporator inlet By controlling the compressor intake gas temperature, it is possible to control the discharge pressure and discharge temperature of the compressor, thereby enabling highly efficient operation.

本発明によれば、圧縮機の吐出圧力上昇もなく、高効率で貯湯槽の下部まで高温湯を貯湯し、貯湯槽の容量を有効に利用可能であり、また、高外気温時にも、高効率で高温の給湯水温を生成することができるヒートポンプ給湯装置を提供できる。   According to the present invention, there is no increase in the discharge pressure of the compressor, high-temperature hot water is stored at the lower part of the hot water tank with high efficiency, and the capacity of the hot water tank can be effectively used. It is possible to provide a heat pump hot water supply apparatus that can efficiently generate a hot water supply water temperature.

第1の発明は、少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続して構成した冷媒回路を備え、前記主絞り装置をバイパスするように、前記放熱器、前記主絞り装置の間と前記主絞り装置、前記蒸発器の間とを接続し、開閉弁、副絞り装置を直列に配設して形成したバイパス回路と、前記開閉弁と前記副絞り装置の間の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器とを設けたことを特徴とするもので、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、高効率な運転が可能となる。 A first aspect of the present invention is at least a compressor, a radiator, a main throttle device, e Bei refrigerant circuit constituted an evaporator are sequentially connected so as to bypass the pre-Symbol main throttle device, said heat radiator, the main throttle And a bypass circuit formed by connecting an on-off valve and a sub-throttle device in series, and a refrigerant between the on-off valve and the sub-throttle device. And an auxiliary heat exchanger for exchanging heat between the evaporator and the refrigerant between the compressor, the amount of heat exchange in the auxiliary heat exchanger can be increased and decreased, and the evaporator inlet It is possible to control the discharge pressure and discharge temperature of the compressor by controlling the refrigerant dryness and the compressor intake gas temperature, thereby enabling highly efficient operation.

第2の発明は、少なくとも貯湯槽、放熱器を順次接続した給湯回路を備え、前記貯湯槽より前記放熱器に流入する給湯水の温度を検知する入水温度センサーと、前記入水温度センサーの検知温度と予め設定された入水温度値とを比較して、前記入水温度センサーの温度の方が、予め設定された入水温度値より高い場合に、開閉弁を開放する制御装置とを設けたことを特徴とするもので、入水温度が高く、高温給湯が必要な場合に、前記補助熱交換器に流入する吸入ガス冷媒循環量を多くして熱交換量を増加でき、蒸発器入口の乾き度を低くして、そこでの冷媒ホールド量を多くでき、圧縮機の吐出圧力を低く維持したまま高温給湯を高効率で生成することができる。   A second aspect of the invention includes a hot water supply circuit in which at least a hot water storage tank and a radiator are sequentially connected, an incoming water temperature sensor that detects the temperature of hot water flowing into the radiator from the hot water storage tank, and detection of the incoming water temperature sensor A controller for opening the on-off valve when the temperature of the incoming water temperature sensor is higher than a preset incoming water temperature value by comparing the temperature with a preset incoming water temperature value When the incoming water temperature is high and high-temperature hot water supply is required, the intake gas refrigerant circulation amount flowing into the auxiliary heat exchanger can be increased to increase the heat exchange amount, and the dryness of the evaporator inlet The refrigerant hold amount can be increased, and high-temperature hot water supply can be generated with high efficiency while keeping the discharge pressure of the compressor low.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。   In addition, even when the incoming water temperature rises near the completion of the boiling operation, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, making the heat pump safe. And it can be operated with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

第3の発明は、放熱器の出口冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記冷媒温度センサーの検知温度の方が、予め設定された冷媒温度値より高い場合に、開閉弁を開放する制御装置とを設けたことを特徴とするもので、前記放熱器出口冷媒温度に応じて、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、生成する給湯水温度に適した高効率な運転が可能となる。   According to a third aspect of the present invention, the refrigerant temperature sensor that detects the refrigerant temperature at the outlet of the radiator is compared with the detected temperature of the refrigerant temperature sensor and a preset refrigerant temperature value. Is provided with a control device that opens the on-off valve when the refrigerant temperature value is higher than a preset refrigerant temperature value, and depending on the refrigerant outlet refrigerant temperature, the auxiliary heat exchanger The amount of heat exchange can be increased and decreased, and it is possible to control the discharge pressure and discharge temperature of the compressor by controlling the refrigerant dryness of the evaporator inlet and the compressor suction gas temperature, which is suitable for the temperature of hot water to be generated Highly efficient operation is possible.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。   In addition, even when the incoming water temperature rises near the completion of the boiling operation, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, making the heat pump safe. And it can be operated with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

第4の発明は、少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続して構成した冷媒回路を備え、前記主絞り装置をバイパスするように、前記放熱器、前記主絞り装置の間と前記主絞り装置、前記蒸発器の間とを接続し、副絞り装置を配設して形成したバイパス回路と、前記バイパス回路の副絞り装置の上流側の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器と、前記放熱器の出口冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記冷媒温度センサーの検知温度の方が、予め設定された冷媒温度値より高い場合に、
前記副絞り装置の開度を大きくする制御装置とを設けたことを特徴とするもので、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、高効率な運転が可能となる。
A fourth invention, at least a compressor, a radiator, a main throttle device, comprising a refrigerant circuit constituted an evaporator are sequentially connected so as to bypass the main throttle device, said heat radiator, of the main throttle device Between the main throttle device and the evaporator, and a bypass circuit formed by disposing a sub-throttle device, a refrigerant upstream of the sub-throttle device of the bypass circuit, the evaporator, and the compression The auxiliary heat exchanger for exchanging heat with the refrigerant between the machines, the refrigerant temperature sensor for detecting the outlet refrigerant temperature of the radiator, and the detected temperature of the refrigerant temperature sensor and a preset refrigerant temperature value are compared. When the detected temperature of the refrigerant temperature sensor is higher than a preset refrigerant temperature value,
And a control device for increasing the opening degree of the sub-throttle device, the amount of heat exchange in the auxiliary heat exchanger can be increased and decreased, the refrigerant dryness at the evaporator inlet and the compressor intake gas It is possible to control the discharge pressure and discharge temperature of the compressor by controlling the temperature, and a highly efficient operation is possible .

また、放熱器の出口冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記冷媒温度センサーの検知温度の方が、予め設定された冷媒温度値より高い場合に、副絞り装置の開度を大きくする制御装置とを設けたことを特徴とするもので、前記放熱器出口冷媒温度に応じて、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、生成する給湯水温度に適した高効率な運転が可能となる。 In addition, the refrigerant temperature sensor that detects the refrigerant temperature at the outlet of the radiator and the temperature detected by the refrigerant temperature sensor are compared with a preset refrigerant temperature value, and the detected temperature of the refrigerant temperature sensor is set in advance. And a control device that increases the degree of opening of the sub-throttle device when the refrigerant temperature value is higher than the refrigerant temperature value, and depending on the refrigerant outlet refrigerant temperature, the auxiliary heat exchanger The amount of heat exchange can be increased and decreased, and it is possible to control the discharge pressure and discharge temperature of the compressor by controlling the refrigerant dryness of the evaporator inlet and the compressor suction gas temperature, which is suitable for the temperature of hot water to be generated Highly efficient operation is possible.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。   In addition, even when the incoming water temperature rises near the completion of the boiling operation, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, making the heat pump safe. And it can be operated with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

第5の発明は、少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続して構成した冷媒回路を備え、前記放熱器と前記主絞り装置の間の一部をバイパスするように、前記放熱器、前記主絞り装置の間を接続し、開閉弁を配設して形成したバイパス回路と、前記バイパス回路の前記開閉弁の下流側の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器とを設けたことを特徴とするもので、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、高効率な運転が可能となる。 A fifth invention is, at least a compressor, a radiator, a main throttle device, e Bei refrigerant circuit constituted an evaporator are sequentially connected to bypass a portion between the front Symbol radiator and the main throttle device A bypass circuit formed by connecting between the radiator and the main throttle device and provided with an on-off valve, a refrigerant downstream of the on-off valve of the bypass circuit, the evaporator, and the compressor And an auxiliary heat exchanger for exchanging heat with the refrigerant between them, the amount of heat exchange in the auxiliary heat exchanger can be increased and decreased, the refrigerant dryness at the evaporator inlet and the compressor intake gas It is possible to control the discharge pressure and discharge temperature of the compressor by controlling the temperature, and a highly efficient operation is possible.

第6の発明は、少なくとも貯湯槽、放熱器を順次接続した給湯回路を備え、前記貯湯槽より前記放熱器に流入する給湯水の温度を検知する入水温度センサーと、前記入水温度センサーの検知温度と予め設定された入水温度値とを比較して、前記入水温度センサーの検知温度の方が、予め設定された入水温度値より高い場合に、開閉弁を開放する制御装置とを設けたことを特徴とするもので、入水温度が高く、高温給湯が必要な場合に、前記補助熱交換器に流入する吸入ガス冷媒循環量を多くして熱交換量を増加でき、蒸発器入口の乾き度を低くして、そこでの冷媒ホールド量を多くでき、圧縮機の吐出圧力を低く維持したまま高温給湯を高効率で生成することができる。 A sixth aspect of the invention includes a hot water supply circuit in which at least a hot water storage tank and a radiator are sequentially connected, an incoming water temperature sensor that detects the temperature of hot water flowing into the radiator from the hot water storage tank, and detection of the incoming water temperature sensor A controller for opening the on-off valve when the detected temperature of the incoming water temperature sensor is higher than a preset incoming water temperature value by comparing the temperature with a preset incoming water temperature value When the incoming water temperature is high and high-temperature hot water supply is required, the amount of heat exchange can be increased by increasing the circulation amount of the suction gas refrigerant flowing into the auxiliary heat exchanger, and the evaporator inlet can be dried. The temperature can be reduced, the refrigerant hold amount can be increased, and high-temperature hot water supply can be generated with high efficiency while keeping the discharge pressure of the compressor low.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプを安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。   In addition, even when the incoming water temperature rises near the completion of the boiling operation, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, making the heat pump safe. And it can be operated with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

第7の発明は、放熱器の出口冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記冷媒温度センサーの検知温度の方が、予め設定された冷媒温度値より高い場合に、開閉弁を開放する制御装置とを設けたことを特徴とするもので、前記放熱器出口冷媒温度に応じて、前記補助熱交換器での熱交換量を増減でき、蒸発器入口の冷媒乾き度と圧縮機吸入ガス温度とを制御して、圧縮機の吐出圧力と吐出温度を制御することが可能となり、生成する給湯水温度に適した高効率な運転が可能となる。 According to a seventh aspect of the present invention, a refrigerant temperature sensor that detects an outlet refrigerant temperature of a radiator is compared with a detected temperature of the refrigerant temperature sensor and a preset refrigerant temperature value, and the detected temperature of the refrigerant temperature sensor Is provided with a control device that opens the on-off valve when the refrigerant temperature value is higher than a preset refrigerant temperature value, and depending on the refrigerant outlet refrigerant temperature, the auxiliary heat exchanger The amount of heat exchange can be increased and decreased, and it is possible to control the discharge pressure and discharge temperature of the compressor by controlling the refrigerant dryness of the evaporator inlet and the compressor suction gas temperature, which is suitable for the temperature of hot water to be generated Highly efficient operation is possible.

また、沸き上げ運転完了近くになって入水温度が高くなった場合にも、圧縮機の吐出圧力や吐出温度を低減しながら、給湯水を容易に高温に加熱することができ、ヒートポンプ
を安全にかつ高効率で運転できる。また、貯湯槽の下部まで高温湯を貯湯でき、貯湯槽の容量を有効に利用できる。
In addition, even when the incoming water temperature rises near the completion of the boiling operation, the hot water supply can be easily heated to a high temperature while reducing the discharge pressure and discharge temperature of the compressor, making the heat pump safe. And it can be operated with high efficiency. Moreover, hot water can be stored up to the bottom of the hot water tank, and the capacity of the hot water tank can be used effectively.

第8の発明は、冷媒として炭酸ガスを用いたもので、給湯水の高温化を高効率で実現すると共に、冷媒が外部に漏れた場合にも、地球温暖化への影響は非常に少なくなる。 The eighth aspect of the invention uses carbon dioxide as a refrigerant, and realizes high temperature of hot water supply with high efficiency, and even when the refrigerant leaks to the outside, the influence on global warming is very small. .

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。なお、各実施の形態において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment. In each embodiment , portions having the same configuration and the same operation are denoted by the same reference numerals, and detailed description thereof is omitted.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ給湯装置とその制御方法の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a heat pump hot water supply apparatus and a control method thereof according to the first embodiment of the present invention.

図1において、圧縮機31、放熱器32、主絞り装置33、蒸発器34を順に環状に接続し、冷媒として炭酸ガスを封入して冷媒循環回路を形成し、蒸発器34は外気を送風するためのファン35を備えている。また、貯湯槽36、循環ポンプ37、放熱器32を順に接続した給湯回路を形成しており、圧縮機31より吐出された高温高圧の過熱ガス冷媒は放熱器32に流入し、ここで循環ポンプ37から送られてきた給湯水を加熱するようになっている。   In FIG. 1, a compressor 31, a radiator 32, a main throttle device 33, and an evaporator 34 are sequentially connected in an annular form, and carbon dioxide gas is sealed as a refrigerant to form a refrigerant circulation circuit. The evaporator 34 blows outside air. Fan 35 is provided. Further, a hot water supply circuit in which the hot water tank 36, the circulation pump 37, and the radiator 32 are connected in order is formed, and the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 31 flows into the radiator 32, where the circulation pump The hot water supplied from 37 is heated.

さらに、前記主絞り装置33をバイパスするように、開閉弁38と副絞り装置39とを順に直列に接続した回路を設け、前記開閉弁38と前記副絞り装置39の間の配管と、蒸発器34と圧縮機31との間の配管とを間接的に熱交換する補助熱交換器40を設けている。   Further, a circuit in which an on-off valve 38 and a sub-throttle device 39 are sequentially connected in series is provided so as to bypass the main throttling device 33, a pipe between the on-off valve 38 and the sub-throttle device 39, and an evaporator An auxiliary heat exchanger 40 for indirectly exchanging heat between the pipe 34 and the piping between the compressor 31 is provided.

さらに、循環ポンプ37より放熱器32に流入する給湯水の入水温度を検知する入水温度センサー41と、その温度を検知し開閉弁38の開閉を制御する制御装置42が設けられている。この、制御装置42は、入水温度センサー41の温度と、予め設定された温度とを比較して、入水温度が設定温度より高い場合に開閉弁38を開放するように制御する。また、冷媒としては炭酸ガスが封入されている。   Furthermore, an incoming water temperature sensor 41 that detects the incoming temperature of the hot water flowing into the radiator 32 from the circulation pump 37 and a control device 42 that detects the temperature and controls the opening and closing of the on-off valve 38 are provided. The control device 42 compares the temperature of the incoming water temperature sensor 41 with a preset temperature and controls to open the on-off valve 38 when the incoming water temperature is higher than the set temperature. Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ給湯装置とその制御方法について、以下その動作、作用を説明する。   About the heat pump hot water supply apparatus comprised as mentioned above and its control method, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、放熱器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、補助熱交換器38を通過して、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化する。   The refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing in the hot water supply circuit by the radiator 32 and becomes a medium temperature and high pressure refrigerant and passes through the auxiliary heat exchanger 38. Then, after being decompressed by the main throttle device 33, it flows into the evaporator 34, where it exchanges heat with the outside air blown by the fan 35, thereby evaporating gas.

通常の場合、循環ポンプ37で送られた給湯水の入水温度は低く、入水温度センサーで検知した入水温度は、予め設定された温度より低いため、制御装置42は開閉弁38を閉止に制御する。そのため、放熱器32を出た冷媒は補助熱交換器40を通ることなく、すべて主絞り装置33を通って、蒸発器34を通過し、圧縮機31にもどる通常のヒートポンプサイクルで運転される。   In a normal case, since the incoming temperature of the hot water sent by the circulation pump 37 is low and the incoming temperature detected by the incoming temperature sensor is lower than a preset temperature, the control device 42 controls the on-off valve 38 to be closed. . Therefore, all the refrigerant that has exited the radiator 32 does not pass through the auxiliary heat exchanger 40, passes through the main throttle device 33, passes through the evaporator 34, and is operated in a normal heat pump cycle that returns to the compressor 31.

一方、循環ポンプ37で送られた給湯水は放熱器32で加熱され、生成した湯は貯湯槽36の上部に流入し、上から次第に貯湯されていく。   On the other hand, the hot water supplied by the circulation pump 37 is heated by the radiator 32, and the generated hot water flows into the upper part of the hot water storage tank 36 and is gradually stored from above.

一方、沸き上げ運転時間の経過とともに貯湯槽36内の湯と水の接する部分で湯水混合
層が生じ、その層は貯湯槽36の下部に拡大し、沸き上げ運転完了近くになると、貯湯槽36下部より循環ポンプ37を経て、放熱器32に流入する水温は高くなってくる。
On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at a portion where the hot water in the hot water storage tank 36 is in contact with water, and the layer expands to the lower part of the hot water storage tank 36. The temperature of the water flowing into the radiator 32 from the lower part through the circulation pump 37 becomes higher.

この場合、入水温度センサー41で検知した入水温度が制御装置42にあらかじめ設定してある温度よりも上昇した場合には、開閉弁38を開放する方向に動作させる。こうすることにより、放熱器32を出た冷媒の一部は開閉弁38を通って補助熱交換器40に流入し、さらに副絞り装置39で低圧まで減圧されて、放熱器32を出て主絞り装置33で低圧まで減圧された冷媒と合流して蒸発器34を通った後圧縮機31に吸入される。   In this case, when the incoming water temperature detected by the incoming water temperature sensor 41 rises above the temperature preset in the control device 42, the on-off valve 38 is operated in the opening direction. In this way, a part of the refrigerant that has exited the radiator 32 flows into the auxiliary heat exchanger 40 through the on-off valve 38, and is further reduced to a low pressure by the sub-throttle device 39. The refrigerant combined with the refrigerant depressurized to a low pressure by the expansion device 33 passes through the evaporator 34 and is then sucked into the compressor 31.

放熱器32を出て開閉弁38を通って補助熱交換器40に流入した冷媒は、ここで、蒸発器34を出た比較的低温の冷媒の一部と熱交換して、その温度が低下してエンタルピーが減少する。   The refrigerant that exits the radiator 32 and flows into the auxiliary heat exchanger 40 through the on-off valve 38 exchanges heat with a part of the relatively low-temperature refrigerant that exits the evaporator 34, and the temperature decreases. And enthalpy is reduced.

このように入水温度が高い場合、通常のヒートポンプサイクルの場合、放熱器32の出口温度も上昇し、放熱器32および蒸発器34の冷媒ホールド量が減少するため高圧が上昇する傾向にあるが、本発明のように、補助熱交換器40で蒸発器34を出た低温の冷媒と熱交換して、放熱器32を出た冷媒の一部を冷却することにより、冷媒エンタルピーが減少してその密度が増加し、また、蒸発器34入口の乾き度も減少して蒸発器34の冷媒ホールドが増加するため、高圧は上昇することなくヒートポンプサイクルを安全に運転できるものである。   Thus, when the incoming water temperature is high, in the case of a normal heat pump cycle, the outlet temperature of the radiator 32 also rises, and the refrigerant hold amount of the radiator 32 and the evaporator 34 decreases, so the high pressure tends to rise. As in the present invention, the auxiliary heat exchanger 40 exchanges heat with the low-temperature refrigerant exiting the evaporator 34 to cool a part of the refrigerant exiting the radiator 32, thereby reducing the refrigerant enthalpy. Since the density increases and the dryness at the inlet of the evaporator 34 also decreases and the refrigerant hold of the evaporator 34 increases, the high pressure can be safely operated without increasing the high pressure.

したがって、入水温度が高くなっても連続運転ができるので、貯湯槽36の下部まで高温湯を貯湯でき、貯湯槽36の容量を有効に利用できる効果がある。
一方、入水温度センサー41で検知した入水温度が制御装置42にあらかじめ設定してある温度よりも低下した場合には、開閉弁39を閉止する方向に動作させる。こうすることにより、再び、放熱器32を出た冷媒は補助熱交換器40を通ることなく、すべて主絞り装置33を通って、蒸発器34を通過し、圧縮機31にもどる通常の高効率なヒートポンプサイクルで運転される。
Therefore, since continuous operation can be performed even when the incoming water temperature becomes high, hot water can be stored up to the lower part of the hot water tank 36, and the capacity of the hot water tank 36 can be effectively used.
On the other hand, when the incoming water temperature detected by the incoming water temperature sensor 41 is lower than the temperature preset in the control device 42, the on-off valve 39 is operated in the closing direction. By doing so, the refrigerant that has exited the radiator 32 again passes through the main throttle device 33, passes through the evaporator 34, and returns to the compressor 31 without passing through the auxiliary heat exchanger 40. It is operated with a simple heat pump cycle.

なお、入水温度が低い通常運転時に、開閉弁38を開放のまま運転した場合には、圧縮機31の吸入ガス温度が、最適な状態とはならないため、本発明のように入水温度が高い場合に開閉弁38を開放することが望ましい。   In the normal operation where the incoming water temperature is low, when the on-off valve 38 is operated while being opened, the intake gas temperature of the compressor 31 is not in an optimum state, and thus the incoming water temperature is high as in the present invention. It is desirable to open the on-off valve 38.

また、開閉弁38は膨張弁としても同様な効果があり、この場合には、入水温度センサー41で検知した入水温度が制御装置42にあらかじめ設定してある温度よりも上昇した場合には、膨張弁の開度を大きくする(開く)方向に動作させることにより、入水温度が高くなっても、同様に、安全に、かつ高効率な運転ができる。   The on-off valve 38 has the same effect as an expansion valve. In this case, when the incoming water temperature detected by the incoming water temperature sensor 41 rises above the temperature preset in the control device 42, the on-off valve 38 expands. By operating in the direction of increasing (opening) the opening degree of the valve, even if the incoming water temperature becomes high, the operation can be performed safely and efficiently.

なお、ここにおいては、補助熱交換器40は、管と管をロー付してある構成や、二重管の構成などの形態でもよく、これらは、すべて本発明に含まれる。   Here, the auxiliary heat exchanger 40 may have a configuration in which a tube and a tube are brazed, a configuration of a double tube, and the like, which are all included in the present invention.

また、入水温度センサー41に代わって、放熱器32の出口冷媒温度としても良い。すなわち、入水温度が高い場合には、放熱器32の出口冷媒温度も高くなり、温度の上昇下降の傾向は同様になるため、同様の作用により同様の効果があり、これらも本発明に含まれる。   Further, instead of the incoming water temperature sensor 41, the outlet refrigerant temperature of the radiator 32 may be used. That is, when the incoming water temperature is high, the outlet refrigerant temperature of the radiator 32 is also high, and the tendency of the temperature rise and fall is the same, so that the same effect is obtained by the same action, and these are also included in the present invention. .

(実施の形態2)
図2は、本発明の第2の実施の形態におけるヒートポンプ給湯装置の構成図を示すものである。図2において、実施の形態1で示した図1と同様の構成で同様の機能を有する部
品については同一の番号を付してある。
(Embodiment 2)
FIG. 2 shows a configuration diagram of a heat pump hot-water supply apparatus in the second embodiment of the present invention. In FIG. 2, parts having the same functions as those in FIG. 1 shown in the first embodiment are given the same numbers.

本実施の形態においては、主絞り装置33をバイパスするように、副絞り装置51を設けた回路を構成し、前記副絞り装置51の上流側の前記回路の配管と、蒸発器34と圧縮機31との間の配管とを間接的に熱交換する補助熱交換器52を設けている。さらに、放熱器32の出口冷媒温度を検知する冷媒温度センサー53と、その温度を検知し副絞り装置51の開度を制御する制御装置54が設けられている。   In the present embodiment, a circuit provided with a sub-throttle device 51 is configured so as to bypass the main throttling device 33, the circuit piping upstream of the sub-throttle device 51, the evaporator 34, and the compressor. An auxiliary heat exchanger 52 for indirectly exchanging heat with the pipe between the pipe 31 and the pipe 31 is provided. Furthermore, a refrigerant temperature sensor 53 that detects the outlet refrigerant temperature of the radiator 32 and a control device 54 that detects the temperature and controls the opening degree of the sub-throttle device 51 are provided.

この、制御装置54は、冷媒温度センサー53の温度と、予め設定された温度とを比較して、冷媒温度が設定温度より高い場合に副絞り装置51の開度を大きくする(開く)ように制御する。また、冷媒としては炭酸ガスが封入されている。   The control device 54 compares the temperature of the refrigerant temperature sensor 53 with a preset temperature so as to increase (open) the opening of the sub-throttle device 51 when the refrigerant temperature is higher than the set temperature. Control. Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ給湯装置とその制御方法について、以下その動作、作用を説明する。   About the heat pump hot water supply apparatus comprised as mentioned above and its control method, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、放熱器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、補助熱交換器38を通過して、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化する。   The refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing in the hot water supply circuit by the radiator 32 and becomes a medium temperature and high pressure refrigerant and passes through the auxiliary heat exchanger 38. Then, after being decompressed by the main throttle device 33, it flows into the evaporator 34, where it exchanges heat with the outside air blown by the fan 35, thereby evaporating gas.

通常の場合、循環ポンプ37で送られた給湯水の入水温度は低いため、放熱器32の出口温度も低くなり、冷媒温度センサー53で検知した冷媒温度は、予め設定された温度より低いため、制御装置54は副絞り装置51の開度を小さくする(閉める)ように制御する。そのため、放熱器32を出た冷媒のほとんどは、補助熱交換器52を通ることなく、主絞り装置33を通って、蒸発器34を通過し、圧縮機31にもどる通常のヒートポンプサイクルで運転される。   Usually, since the incoming temperature of the hot water sent by the circulation pump 37 is low, the outlet temperature of the radiator 32 is also low, and the refrigerant temperature detected by the refrigerant temperature sensor 53 is lower than a preset temperature. The control device 54 performs control so that the opening degree of the sub-throttle device 51 is reduced (closed). Therefore, most of the refrigerant that has exited the radiator 32 is operated in a normal heat pump cycle that passes through the main throttle device 33, passes through the evaporator 34, and returns to the compressor 31 without passing through the auxiliary heat exchanger 52. The

一方、循環ポンプ37で送られた給湯水は放熱器32で加熱され、生成した湯は貯湯槽36の上部に流入し、上から次第に貯湯されていく。   On the other hand, the hot water supplied by the circulation pump 37 is heated by the radiator 32, and the generated hot water flows into the upper part of the hot water storage tank 36 and is gradually stored from above.

一方、沸き上げ運転時間の経過とともに貯湯槽36内の湯と水の接する部分で湯水混合層が生じ、その層は貯湯槽36の下部に拡大し、沸き上げ運転完了近くになると、貯湯槽36下部より循環ポンプ37を経て、放熱器32に流入する水温は高くなり、それにつれて、放熱器32の出口冷媒温度も上昇してくる。   On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at the portion where the hot water in the hot water tank 36 is in contact with water, and the layer expands to the lower part of the hot water tank 36. The temperature of the water flowing into the radiator 32 from the lower part through the circulation pump 37 increases, and the outlet refrigerant temperature of the radiator 32 also rises accordingly.

この場合、冷媒温度センサー53で検知した冷媒温度が制御装置54にあらかじめ設定してある温度よりも上昇した場合には、副絞り装置51の開度を大きくする(開く)ように動作させる。こうすることにより、放熱器32を出た冷媒の一部は補助熱交換器52に流入し、さらに副絞り装置51で低圧まで減圧されて、放熱器32を出て主絞り装置33で低圧まで減圧された冷媒と合流して蒸発器34を通った後圧縮機31に吸入される。
放熱器32を出て補助熱交換器40に流入した冷媒は、ここで、蒸発器34を出た比較的低温の冷媒の一部と熱交換して、その温度が低下してエンタルピーが減少する。
In this case, when the refrigerant temperature detected by the refrigerant temperature sensor 53 rises above the temperature preset in the control device 54, the sub-throttle device 51 is operated to increase (open). In this way, a part of the refrigerant that has exited the radiator 32 flows into the auxiliary heat exchanger 52, and is further depressurized to a low pressure by the sub-throttle device 51. After joining the decompressed refrigerant and passing through the evaporator 34, it is sucked into the compressor 31.
The refrigerant that flows out of the radiator 32 and flows into the auxiliary heat exchanger 40 exchanges heat with a part of the relatively low-temperature refrigerant that comes out of the evaporator 34, so that the temperature is lowered and the enthalpy is reduced. .

このように入水温度が上昇し、それにつれて放熱器32の出口冷媒温度が高くなる場合、通常のヒートポンプサイクルの場合、放熱器32および蒸発器34の冷媒ホールド量が減少するため高圧が上昇する傾向にあるが、本発明のように、補助熱交換器52で蒸発器34を出た低温の冷媒と熱交換して、放熱器32を出た冷媒の一部を冷却することにより、冷媒エンタルピーが減少してその密度が増加し、また、蒸発器34入口の乾き度も減少して蒸発器34の冷媒ホールドが増加するため、高圧は上昇することなくヒートポンプサイクルを安全に運転できるものである。   When the incoming water temperature rises and the outlet refrigerant temperature of the radiator 32 increases accordingly, in the case of a normal heat pump cycle, the refrigerant hold amount of the radiator 32 and the evaporator 34 decreases, so the high pressure tends to increase. However, as in the present invention, the heat exchange with the low-temperature refrigerant exiting the evaporator 34 by the auxiliary heat exchanger 52 and cooling a part of the refrigerant exiting the radiator 32 results in the refrigerant enthalpy being reduced. The density is increased and the dryness at the inlet of the evaporator 34 is decreased, and the refrigerant hold of the evaporator 34 is increased. Therefore, the heat pump cycle can be safely operated without increasing the high pressure.

したがって、入水温度が高くなっても連続運転ができるので、貯湯槽36の下部まで高温湯を貯湯でき、貯湯槽36の容量を有効に利用できる効果がある。
一方、冷媒温度センサー53で検知した入水温度が制御装置54にあらかじめ設定してある温度よりも低下した場合には、副絞り装置51の開度を小さくする(閉める)ように動作させる。こうすることにより、再び、放熱器32を出た冷媒は補助熱交換器52を通ることなく、すべて主絞り装置33を通って、蒸発器34を通過し、圧縮機31にもどる通常の高効率なヒートポンプサイクルで運転される。
Therefore, since continuous operation is possible even when the incoming water temperature is high, hot water can be stored up to the lower part of the hot water tank 36, and the capacity of the hot water tank 36 can be effectively utilized.
On the other hand, when the incoming water temperature detected by the refrigerant temperature sensor 53 is lower than the temperature preset in the control device 54, the sub-throttle device 51 is operated to reduce (close) the opening. By doing so, the refrigerant that has exited the radiator 32 again passes through the main throttle device 33, passes through the evaporator 34, and returns to the compressor 31 without passing through the auxiliary heat exchanger 52. It is operated with a simple heat pump cycle.

なお、ここにおいては、補助熱交換器40は、管と管をロー付してある構成や、二重管の構成などの形態でもよく、これらは、すべて本発明に含まれる。   Here, the auxiliary heat exchanger 40 may have a configuration in which a tube and a tube are brazed, a configuration of a double tube, and the like, which are all included in the present invention.

また、冷媒温度センサー53に代わって、放熱器32に流入する給湯水の温度を検知する入水温度センサーとしても良い。すなわち、放熱器32の出口冷媒温度が高くなる場合は、入水温度が高い場合であり、温度の上昇下降の傾向は同様になるため、同様の作用により同様の効果があり、これらも本発明に含まれる。   Further, instead of the refrigerant temperature sensor 53, a water temperature sensor for detecting the temperature of hot water flowing into the radiator 32 may be used. That is, when the outlet refrigerant temperature of the radiator 32 is high, the incoming water temperature is high, and the tendency of the temperature rise and fall is the same. included.

(実施の形態3)
図3は、本発明の第3の実施の形態におけるヒートポンプ給湯装置とその制御方法の構成図を示すものである。図3において、実施の形態1で示した図1と同様の構成で同様の
機能を有する部品については同一の番号を付してある。
(Embodiment 3)
FIG. 3 shows a configuration diagram of a heat pump hot water supply apparatus and a control method thereof according to the third embodiment of the present invention. In FIG. 3, parts having the same functions as those in FIG. 1 shown in the first embodiment are given the same numbers.

本実施の形態においては、冷媒回路の放熱器32と主絞り装置33の間の配管の一部をバイパスし、その途中に開閉弁61を設けたバイパス回路62を構成し、バイパス回路62上の開閉弁61の下流側の配管と、蒸発器34と圧縮機31の間の配管とを熱交換する補助熱交換器63を設けている。   In the present embodiment, a bypass circuit 62 in which a part of the piping between the radiator 32 of the refrigerant circuit and the main throttle device 33 is bypassed and an on-off valve 61 is provided in the middle is formed, and the bypass circuit 62 is An auxiliary heat exchanger 63 for exchanging heat between the pipe on the downstream side of the on-off valve 61 and the pipe between the evaporator 34 and the compressor 31 is provided.

さらに、循環ポンプ37より放熱器32に流入する給湯水の入水温度を検知する入水温度センサー64と、その温度を検知し開閉弁61の開閉を制御する制御装置65が設けられている。この、制御装置65は、入水温度センサー64の温度と、予め設定された温度とを比較して、入水温度が設定温度より高い場合に開閉弁61を開放するように制御する。また、冷媒としては炭酸ガスが封入されている。   Furthermore, an incoming water temperature sensor 64 that detects the incoming temperature of the hot water flowing into the radiator 32 from the circulation pump 37 and a control device 65 that detects the temperature and controls the opening and closing of the on-off valve 61 are provided. The controller 65 compares the temperature of the incoming water temperature sensor 64 with a preset temperature and controls to open the on-off valve 61 when the incoming water temperature is higher than the set temperature. Further, carbon dioxide gas is sealed as the refrigerant.

以上のように構成されたヒートポンプ給湯装置とその制御方法について、以下その動作、作用を説明する。   About the heat pump hot water supply apparatus comprised as mentioned above and its control method, the operation | movement and an effect | action are demonstrated below.

圧縮機31で高温高圧の超臨界状態に圧縮された冷媒(炭酸ガス)は、放熱器32で給湯回路を流れる水と熱交換し、自らは中温高圧の冷媒となり、主絞り装置33で減圧された後、蒸発器34に流入し、ここでファン35で送風された外気と熱交換して蒸発ガス化する。   The refrigerant (carbon dioxide gas) compressed to a supercritical state of high temperature and high pressure by the compressor 31 exchanges heat with water flowing through the hot water supply circuit by the radiator 32 and becomes itself a medium temperature and high pressure refrigerant and is decompressed by the main throttle device 33. After that, it flows into the evaporator 34, where it exchanges heat with the outside air blown by the fan 35 to be evaporated.

通常の場合、循環ポンプ37で送られた給湯水の入水温度は低く、入水温度センサー64で検知した入水温度は、予め設定された温度より低いため、制御装置65は開閉弁61を閉止に制御する。そのため、放熱器32を出た冷媒は補助熱交換器63を通ることなく、主絞り装置33を通って、蒸発器34を通過し、圧縮機31にもどる通常のヒートポンプサイクルで運転される。   Normally, the incoming temperature of the hot water sent by the circulation pump 37 is low, and the incoming temperature detected by the incoming temperature sensor 64 is lower than a preset temperature, so the control device 65 controls the on-off valve 61 to be closed. To do. Therefore, the refrigerant that has left the radiator 32 does not pass through the auxiliary heat exchanger 63, passes through the main throttle device 33, passes through the evaporator 34, and is operated in a normal heat pump cycle that returns to the compressor 31.

一方、循環ポンプ37で送られた給湯水は放熱器32で加熱され、生成した湯は貯湯槽36の上部に流入し、上から次第に貯湯されていく。   On the other hand, the hot water supplied by the circulation pump 37 is heated by the radiator 32, and the generated hot water flows into the upper part of the hot water storage tank 36 and is gradually stored from above.

一方、沸き上げ運転時間の経過とともに貯湯槽36内の湯と水の接する部分で湯水混合
層が生じ、その層は貯湯槽36の下部に拡大し、沸き上げ運転完了近くになると、貯湯槽36下部より循環ポンプ37を経て、放熱器32に流入する水温は高くなってくる。この場合、入水温度センサー64で検知した入水温度が制御装置65にあらかじめ設定してある温度よりも上昇した場合には、開閉弁61を開放する方向に動作させる。こうすることにより、放熱器32を出た冷媒の一部はバイパス回路62に流入し、開閉弁61を通って補助熱交換器63を通過し、放熱器32を出た残りの冷媒と合流して主絞り装置33で減圧され、蒸発器34を通った後圧縮機31に吸入される。
On the other hand, as the boiling operation time elapses, a hot water mixed layer is formed at a portion where the hot water in the hot water storage tank 36 is in contact with water, and the layer expands to the lower part of the hot water storage tank 36. The temperature of the water flowing into the radiator 32 from the lower part through the circulation pump 37 becomes higher. In this case, when the incoming water temperature detected by the incoming water temperature sensor 64 rises above the temperature preset in the control device 65, the on-off valve 61 is operated to open. In this way, a part of the refrigerant that has exited the radiator 32 flows into the bypass circuit 62, passes through the auxiliary heat exchanger 63 through the on-off valve 61, and merges with the remaining refrigerant that has exited the radiator 32. Then, the pressure is reduced by the main throttle device 33, passes through the evaporator 34, and is sucked into the compressor 31.

開閉弁61を通って補助熱交換器63に流入した冷媒は、ここで、蒸発器34を出た比較的低温の冷媒の一部と熱交換して、その温度が低下してエンタルピーが減少する。   The refrigerant that has flowed into the auxiliary heat exchanger 63 through the on-off valve 61 exchanges heat with a part of the relatively low-temperature refrigerant that has left the evaporator 34, and the temperature is lowered to reduce the enthalpy. .

このように入水温度が高い場合、通常のヒートポンプサイクルの場合、放熱器32の出口温度も上昇し、放熱器32および蒸発器34の冷媒ホールド量が減少するため高圧が上昇する傾向にあるが、本発明のように、補助熱交換器63で蒸発器34を出た低温の冷媒と熱交換して、放熱器32を出た冷媒の一部を冷却することにより、冷媒エンタルピーが減少してその密度が増加し、また、蒸発器34入口の乾き度も減少して蒸発器34の冷媒ホールドが増加するため、高圧は上昇することなくヒートポンプサイクルを安全に運転できるものである。   Thus, when the incoming water temperature is high, in the case of a normal heat pump cycle, the outlet temperature of the radiator 32 also rises, and the refrigerant hold amount of the radiator 32 and the evaporator 34 decreases, so the high pressure tends to rise. As in the present invention, the auxiliary heat exchanger 63 exchanges heat with the low-temperature refrigerant exiting the evaporator 34 to cool a part of the refrigerant exiting the radiator 32, thereby reducing the refrigerant enthalpy. Since the density increases and the dryness at the inlet of the evaporator 34 also decreases and the refrigerant hold of the evaporator 34 increases, the high pressure can be safely operated without increasing the high pressure.

したがって、入水温度が高くなっても連続運転ができるので、貯湯槽36の下部まで高温湯を貯湯でき、貯湯槽36の容量を有効に利用できる効果がある。   Therefore, since continuous operation can be performed even when the incoming water temperature becomes high, hot water can be stored up to the lower part of the hot water tank 36, and the capacity of the hot water tank 36 can be effectively used.

一方、入水温度センサー64で検知した入水温度が制御装置65にあらかじめ設定してある温度よりも低下した場合には、開閉弁61を閉止する方向に動作させる。こうすることにより、再び、放熱器32を出た冷媒は補助熱交換器63を通ることなく、すべて主絞り装置33を通って、蒸発器34を通過し、圧縮機31にもどる通常の高効率なヒートポンプサイクルで運転される。   On the other hand, when the incoming water temperature detected by the incoming water temperature sensor 64 is lower than the temperature preset in the control device 65, the on-off valve 61 is operated to close. By doing this, the refrigerant that has exited the radiator 32 again passes through the main throttle device 33, passes through the evaporator 34, and returns to the compressor 31 without passing through the auxiliary heat exchanger 63. It is operated with a simple heat pump cycle.

なお、入水温度が低い通常運転時に、開閉弁61を開放のまま運転した場合には、圧縮機31の吸入ガス温度が、最適な状態とはならないため、本発明のように入水温度が高い場合に開閉弁61を開放することが望ましい。なお、ここにおいては、補助熱交換器63は、管と管をロー付してある構成や、二重管の構成などの形態でもよく、これらは、すべて本発明に含まれる。また、入水温度センサー64に代わって、放熱器32の出口冷媒温度としても良い。すなわち、入水温度が高い場合には、放熱器32の出口冷媒温度も高くなり、温度の上昇下降の傾向は同様になるため、同様の作用により同様の効果があり、これらも本発明に含まれる。   Note that when the on-off valve 61 is operated with the intake valve temperature open during normal operation with a low intake water temperature, the intake gas temperature of the compressor 31 does not reach an optimum state, so that the intake water temperature is high as in the present invention. It is desirable to open the on-off valve 61. Here, the auxiliary heat exchanger 63 may have a configuration in which a tube and a tube are brazed, a configuration of a double tube, and the like, which are all included in the present invention. Further, instead of the incoming water temperature sensor 64, the outlet refrigerant temperature of the radiator 32 may be used. That is, when the incoming water temperature is high, the outlet refrigerant temperature of the radiator 32 is also high, and the tendency of the temperature rise and fall is the same, so that the same effect is obtained by the same action, and these are also included in the present invention. .

以上のように、本発明にかかるヒートポンプ給湯装置とその制御方法は、冷媒回路の圧縮機の吐出圧力を低減しながら、給湯水を容易に高温に加熱することができが可能となるので、高温を得るヒートポンプ給湯機や高温風を得る空調機等の用途に有用である。   As described above, the heat pump water heater and the control method thereof according to the present invention can easily heat hot water to a high temperature while reducing the discharge pressure of the compressor of the refrigerant circuit. It is useful for applications such as a heat pump water heater that obtains heat and an air conditioner that obtains high-temperature air.

本発明の実施の形態1におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 1 of this invention 本発明の実施の形態2におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 2 of this invention 本発明の実施の形態3におけるヒートポンプ給湯装置の構成図The block diagram of the heat pump hot-water supply apparatus in Embodiment 3 of this invention 従来のヒートポンプ給湯装置の構成図Configuration diagram of conventional heat pump water heater

符号の説明Explanation of symbols

31 圧縮機
32 放熱器
33 主絞り装置
34 蒸発器
35 ファン
36 貯湯槽
37 循環ポンプ
40、52、63 補助熱交換器
39、51 副絞り装置
38、61 開閉弁
41、64 入水温度センサー
42、54、65 制御装置
53 冷媒温度センサー
62 バイパス回路
31 Compressor 32 Radiator 33 Main throttle device 34 Evaporator 35 Fan 36 Hot water storage tank 37 Circulation pump 40, 52, 63 Auxiliary heat exchanger 39, 51 Sub-throttle device 38, 61 On-off valve 41, 64 Incoming water temperature sensor 42, 54 65 Controller 53 Refrigerant temperature sensor 62 Bypass circuit

Claims (8)

少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続して構成した冷媒回路を備え、前記主絞り装置をバイパスするように、前記放熱器、前記主絞り装置の間と前記主絞り装置、前記蒸発器の間とを接続し、開閉弁、副絞り装置を直列に配設して形成したバイパス回路と、前記開閉弁と前記副絞り装置の間の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器とを設けたことを特徴とするヒートポンプ給湯装置。 At least a compressor, a radiator, a main throttle device, e Bei refrigerant circuit constituted an evaporator are sequentially connected so as to bypass the pre-Symbol main throttle device, said heat sink, said main and between said main throttle device A bypass circuit formed by connecting a throttle device and the evaporator, and an on-off valve and a sub-throttle device arranged in series ; a refrigerant between the on-off valve and the sub-throttle device; the evaporator; A heat pump hot water supply apparatus comprising an auxiliary heat exchanger for exchanging heat with a refrigerant between the compressors. 少なくとも貯湯槽、放熱器を順次接続した給湯回路を備え、前記貯湯槽より前記放熱器に流入する給湯水の温度を検知する入水温度センサーと、前記入水温度センサーの検知温度と予め設定された入水温度値とを比較して、前記入水温度センサーの温度の方が、予め設定された入水温度値より高い場合に、開閉弁を開放する制御装置とを設けたことを特徴とする請求項1記載のヒートポンプ給湯装置。 At least a hot water storage circuit including a hot water storage tank and a radiator connected in sequence, a water temperature sensor for detecting the temperature of hot water flowing into the radiator from the hot water storage tank, and a detection temperature of the water temperature sensor are set in advance. A control device is provided that compares an incoming water temperature value and opens the on-off valve when the temperature of the incoming water temperature sensor is higher than a preset incoming water temperature value. The heat pump hot water supply apparatus according to 1. 放熱器の出口冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記冷媒温度センサーの検知温度の方が、予め設定された冷媒温度値より高い場合に、開閉弁を開放する制御装置とを設けたことを特徴とする請求項1記載のヒートポンプ給湯装置。 The refrigerant temperature sensor for detecting the outlet refrigerant temperature of the radiator, the detected temperature of the refrigerant temperature sensor and a preset refrigerant temperature value are compared, and the detected temperature of the refrigerant temperature sensor is preset. The heat pump hot water supply device according to claim 1, further comprising a control device that opens the on-off valve when the refrigerant temperature value is higher than the refrigerant temperature value. 少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続して構成した冷媒回路を備え、前記主絞り装置をバイパスするように、前記放熱器、前記主絞り装置の間と前記主絞り装置、前記蒸発器の間とを接続し、副絞り装置を配設して形成したバイパス回路と、前記バイパス回路の副絞り装置の上流側の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器と、前記放熱器の出口冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記冷媒温度センサーの検知温度の方が、予め設定された冷媒温度値より高い場合に、前記副絞り装置の開度を大きくする制御装置とを設けたことを特徴とするヒートポンプ給湯装置。 A refrigerant circuit comprising at least a compressor, a radiator, a main throttle device, and an evaporator are sequentially connected, and between the radiator and the main throttle device and the main throttle device so as to bypass the main throttle device. A bypass circuit formed by connecting a sub-throttle device between the evaporators, a refrigerant upstream of the sub-throttle device of the bypass circuit, and a refrigerant between the evaporator and the compressor An auxiliary heat exchanger for exchanging heat, a refrigerant temperature sensor for detecting an outlet refrigerant temperature of the radiator, a refrigerant temperature sensor that compares a detection temperature of the refrigerant temperature sensor with a preset refrigerant temperature value, and A heat pump hot water supply apparatus comprising: a control device that increases an opening degree of the sub-throttle device when the detected temperature is higher than a preset refrigerant temperature value . 少なくとも圧縮機、放熱器、主絞り装置、蒸発器を順次接続して構成した冷媒回路を備え、前記放熱器と前記主絞り装置の間の一部をバイパスするように、前記放熱器、前記主絞り装置の間を接続し、開閉弁を配設して形成したバイパス回路と、前記バイパス回路の前
記開閉弁の下流側の冷媒と前記蒸発器と前記圧縮機の間の冷媒とを熱交換する補助熱交換器とを設けたことを特徴とするヒートポンプ給湯装置。
At least a compressor, a radiator, a main throttle device, e Bei refrigerant circuit constituted an evaporator are sequentially connected so as to bypass a portion between the front Symbol radiator and the main throttle device, said heat radiator, A bypass circuit formed by connecting between the main throttle devices and provided with an on-off valve, a refrigerant on the downstream side of the on-off valve of the bypass circuit, and a refrigerant between the evaporator and the compressor are heated. A heat pump hot water supply apparatus characterized by comprising an auxiliary heat exchanger to be replaced.
少なくとも貯湯槽、放熱器を順次接続した給湯回路を備え、前記貯湯槽より前記放熱器に流入する給湯水の温度を検知する入水温度センサーと、前記入水温度センサーの検知温度と予め設定された入水温度値とを比較して、前記入水温度センサーの検知温度の方が、予め設定された入水温度値より高い場合に、開閉弁を開放する制御装置とを設けたことを特徴とする請求項5記載のヒートポンプ給湯装置。 At least a hot water storage circuit including a hot water storage tank and a radiator connected in sequence, a water temperature sensor for detecting the temperature of hot water flowing into the radiator from the hot water storage tank, and a detection temperature of the water temperature sensor are set in advance. is compared with the incoming water temperature values, towards the detected temperature of the entering water temperature sensor is higher than a preset incoming water temperature values, characterized in that a control device for opening the on-off valve according Item 6. A heat pump water heater according to Item 5 . 放熱器の出口冷媒温度を検知する冷媒温度センサーと、前記冷媒温度センサーの検知温度と予め設定された冷媒温度値とを比較して、前記冷媒温度センサーの検知温度の方が、予め設定された冷媒温度値より高い場合に、開閉弁を開放する制御装置とを設けたことを特徴とする請求項5記載のヒートポンプ給湯装置。 The refrigerant temperature sensor for detecting the outlet refrigerant temperature of the radiator, the detected temperature of the refrigerant temperature sensor and a preset refrigerant temperature value are compared, and the detected temperature of the refrigerant temperature sensor is preset. 6. The heat pump hot water supply device according to claim 5, further comprising a control device that opens the on-off valve when the temperature is higher than the refrigerant temperature value. 冷媒として炭酸ガスを用いたことを特徴とする請求項1〜7のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump hot water supply device according to any one of claims 1 to 7 , wherein carbon dioxide gas is used as the refrigerant.
JP2004173515A 2004-04-14 2004-06-11 Heat pump water heater Expired - Fee Related JP4082389B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004173515A JP4082389B2 (en) 2004-06-11 2004-06-11 Heat pump water heater
CN2005100652186A CN1707197B (en) 2004-04-14 2005-04-14 Thermal pump hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173515A JP4082389B2 (en) 2004-06-11 2004-06-11 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005351557A JP2005351557A (en) 2005-12-22
JP4082389B2 true JP4082389B2 (en) 2008-04-30

Family

ID=35586184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173515A Expired - Fee Related JP4082389B2 (en) 2004-04-14 2004-06-11 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4082389B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278655A (en) * 2006-04-11 2007-10-25 Matsushita Electric Ind Co Ltd Heat storage type hot water supplier
JP4751851B2 (en) * 2007-04-27 2011-08-17 日立アプライアンス株式会社 Refrigeration cycle

Also Published As

Publication number Publication date
JP2005351557A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
KR100755160B1 (en) Control of refrigeration system
JP4517529B2 (en) Heat pump cycle, heating device, vehicle heating device, heating device, and vapor compression refrigeration cycle
JP5411643B2 (en) Refrigeration cycle apparatus and hot water heater
US10753645B2 (en) Refrigeration cycle apparatus
JP5278451B2 (en) Refrigeration cycle apparatus and hot water heater using the same
JP5375919B2 (en) heat pump
JP4317793B2 (en) Cooling system
JPWO2019064332A1 (en) Refrigeration cycle equipment
JP2008121982A (en) Refrigerating cycle device
JP2007051841A (en) Refrigeration cycle device
CN1707197B (en) Thermal pump hot water supply device
JP5919036B2 (en) Heat pump type water heater
JP4595546B2 (en) Heat pump equipment
JP2008082601A (en) Heat pump hot water supply device
JP5194492B2 (en) Heat pump water heater
JP5150300B2 (en) Heat pump type water heater
JP4082389B2 (en) Heat pump water heater
JP2006017377A (en) Heat pump water heater
JP4857903B2 (en) Water heater
JP2009085476A (en) Heat pump water heater
JP2005351538A (en) Heat pump water heater
JP4124166B2 (en) Heat pump water heater
JP2005351588A (en) Heat pump water heater
JP4285379B2 (en) Heat pump water heater
JP3841051B2 (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees