JP2006193354A - Method of manufacturing carbon nanotube formed body - Google Patents

Method of manufacturing carbon nanotube formed body Download PDF

Info

Publication number
JP2006193354A
JP2006193354A JP2005004927A JP2005004927A JP2006193354A JP 2006193354 A JP2006193354 A JP 2006193354A JP 2005004927 A JP2005004927 A JP 2005004927A JP 2005004927 A JP2005004927 A JP 2005004927A JP 2006193354 A JP2006193354 A JP 2006193354A
Authority
JP
Japan
Prior art keywords
carbon nanotube
nanotube molded
producing
carbon
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005004927A
Other languages
Japanese (ja)
Inventor
Masao Goto
正男 後藤
Hideaki Nakamura
秀明 中村
Masao Karube
征夫 輕部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005004927A priority Critical patent/JP2006193354A/en
Publication of JP2006193354A publication Critical patent/JP2006193354A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a carbon nanotube formed body which is used suitably as a conductive material such as a filament of an electric lamp or the like. <P>SOLUTION: The carbon nanotube formed body is manufactured by shaping a mixture of a carbon nanotube with a vehicle substance capable of being carbonized into a prescribed shape and heating at 800-1,500°C in a reduced pressure atmosphere or an inert atmosphere. The carbon nanotube conventionally impossible to be used as a conductive material by itself because of its short length in spite of having conductivity is obtained as the conductive material having about 0.5-5 mm diameter and about ≥20 cm length by shaping the carbon nanotube generally having about 0.5-10 nm diameter and about 1 μm length and about ≤10 μm length even if it is long by this method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カーボンナノチューブ成形体の製造法に関する。さらに詳しくは、白熱電球のフィラメント等の導電性材料として好適に用いられるカーボンナノチューブ成形体の製造法に関する。   The present invention relates to a method for producing a carbon nanotube molded body. More specifically, the present invention relates to a method for producing a carbon nanotube molded article suitably used as a conductive material such as a filament of an incandescent bulb.

白熱電球は、ウォルフラム(タングステン)のような融点の高い金属をフィラメントとして用い、酸化を防ぐためにこれをガラス製の真空管または適当な気体を封入した管(ガス入り電球)内に封入して構成されている。しかしながら、従来から用いられているタングステンの場合、これは資源的にみて貴重な金属であり、これの使用を続けることは、資源の有効利用という観点から問題がある。また、消費電力や明るさの効率などの点にも、未だ課題がみられる。   Incandescent bulbs are made by using a metal with a high melting point, such as Wolfram (tungsten), as a filament and sealing it in a glass vacuum tube or a tube filled with a suitable gas (gas bulb) to prevent oxidation. Has been. However, in the case of tungsten conventionally used, this is a precious metal from the viewpoint of resources, and continuing to use this is problematic from the viewpoint of effective use of resources. There are still problems in terms of power consumption and brightness efficiency.

本発明の目的は、白熱電球のフィラメント等の導電性材料として好適に用いられるカーボンナノチューブ成形体の製造法を提供することにある。   The objective of this invention is providing the manufacturing method of the carbon nanotube molded object used suitably as electroconductive materials, such as a filament of an incandescent lamp.

かかる本発明の目的は、カーボンナノチューブ類および炭化し得る賦形物質の混合物を所定形状に賦形した後、減圧雰囲気中または不活性雰囲気中で800〜1500℃で加熱処理してカーボンナノチューブ成形体を製造することによって達成される。   An object of the present invention is to form a carbon nanotube molded body by shaping a mixture of carbon nanotubes and a carbonizable shaping substance into a predetermined shape, and then heat-treating the mixture at 800 to 1500 ° C. in a reduced-pressure atmosphere or an inert atmosphere. Is achieved by manufacturing.

本発明方法により、一般に直径が約0.5〜10nm程度、長さが約1μm程度で長いものであっても約10μm程度以下のものであるカーボンナノチューブ類を賦形することにより、電圧印加による発光性、導電性、強度、耐摩擦・摩耗特性、耐熱性などの向上やコンポジットの軽量化などが達成されるので、白金電球のフィラメントを始め、軽量で送電効率の高い配線材料や送電線材料等として好適に用いられるカーボンナノチューブ成形体を得ることができる。このように、長さが短いため、それ自体では導電性はあっても導電体としては使用し得ないカーボンナノチューブを、本発明方法により一般に直径が約0.5〜5mm程度、長さが約20cm程度迄またはそれ以上の大きさを有する導電性材料として得ることを可能としている。   By the carbon nanotubes having a diameter of about 0.5 to 10 nm, a length of about 1 μm and a length of about 10 μm or less, by the method of the present invention, a light emitting property by applying a voltage is generally obtained. Improvements in conductivity, strength, friction / wear resistance, heat resistance, etc., and weight reduction of composites are achieved, making it suitable as a lightweight and highly efficient power transmission material such as platinum bulb filaments. The carbon nanotube molded object used for can be obtained. Thus, carbon nanotubes that are short in length and cannot be used as a conductor even though they are conductive by themselves are generally about 0.5 to 5 mm in diameter and about 20 cm in length by the method of the present invention. It is possible to obtain a conductive material having a size up to or more than that.

カーボンナノチューブ類としては、多層または単層のカーボンナノチューブ、ナノホーン、コクーン、カーボンナノコイル、フラーレン等が用いられ、これらはアーク放電法、レーザー蒸発法、化学的気相成長(CVD)法などで製造される。   As the carbon nanotubes, multi-walled or single-walled carbon nanotubes, nanohorns, cocoons, carbon nanocoils, fullerenes, etc. are used, which are manufactured by arc discharge method, laser evaporation method, chemical vapor deposition (CVD) method, etc. Is done.

これらのカーボンナノチューブ類と混合される賦形物質としては、加熱処理で炭化し得る合成樹脂、ゴムまたは熱可塑性エラストマーが好んで用いられる。合成樹脂としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ASB樹脂、AS樹脂、MBS樹脂、メタクリル樹脂等の熱可塑性樹脂、ポリアミド樹脂、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、熱可塑性ポリエステル樹脂(PBT樹脂、PET樹脂等)、フッ素樹脂、ポリフェニレンスルフィド、ポリサルホン、非晶ポリアリレート、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルケトン類、液晶ポリマー、ポリアミドイミド、熱可塑性ポリイミド類、非熱可塑性ポリイミド等のエンジニアリングプラスチック、フェノール樹脂、ユリア・メラミン樹脂、ポリウレタン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ジアリルフタレート樹脂等の熱硬化性樹脂が用いられる。ゴムとしては、NBR、水素化NBR、SBR、アクリルゴム、フッ素ゴム、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、ブチルゴム等が用いられる。また、熱可塑性エラストマーとしては、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、1,2-ポリブタジエン系のもの等が用いられる。   As the shaping substance mixed with these carbon nanotubes, a synthetic resin, rubber or thermoplastic elastomer that can be carbonized by heat treatment is preferably used. Synthetic resins include polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, ASB resin, AS resin, MBS resin, methacrylic resin, etc., polyamide resin, polyacetal, polycarbonate, modified polyphenylene ether , Thermoplastic polyester resin (PBT resin, PET resin, etc.), Fluorine resin, Polyphenylene sulfide, Polysulfone, Amorphous polyarylate, Polyetherimide, Polyethersulfone, Polyetherketone, Liquid crystal polymer, Polyamideimide, Thermoplastic polyimide , Engineering plastics such as non-thermoplastic polyimide, phenol resin, urea / melamine resin, polyurethane resin, epoxy resin, unsaturated polyester resin, silicone resin, diallyl phthalate resin A thermosetting resin such as is used. As the rubber, NBR, hydrogenated NBR, SBR, acrylic rubber, fluorine rubber, butadiene rubber, isoprene rubber, chloroprene rubber, butyl rubber and the like are used. As the thermoplastic elastomer, styrene-based, polyolefin-based, polyvinyl chloride-based, polyurethane-based, polyester-based, polyamide-based, 1,2-polybutadiene-based ones, and the like are used.

これらの賦形物質は、用いられる賦形物質の種類によっても異なるが、カーボンナノチューブ類を混合し、賦形し得る量、例えばカーボンナノチューブ類に対して重量で約2〜100倍量程度用いられ、所望の形状、例えば線状に賦形(ゴムの場合は加硫成形)され、炭化温度である約800〜1500℃、好ましくは約1000〜1500℃で加熱処理される。加熱処理は、約0.05MPa以下の減圧雰囲気中または窒素、ヘリウム、アルゴン等の不活性雰囲気中で行われ、賦形物質の燃焼を防止する。このような加熱処理によって、賦形された混合物の形状は若干収縮するが、ほぼ原形状を保持しており、細さとして約2mm程度の線状物を形成し得る。   These excipients vary depending on the type of excipient used, but the amount of carbon nanotubes that can be mixed and shaped, such as about 2 to 100 times the weight of carbon nanotubes, is used. Then, it is shaped into a desired shape, for example, a linear shape (vulcanization molding in the case of rubber), and is heat-treated at a carbonization temperature of about 800 to 1500 ° C., preferably about 1000 to 1500 ° C. The heat treatment is performed in a reduced pressure atmosphere of about 0.05 MPa or less or in an inert atmosphere such as nitrogen, helium, argon, etc. to prevent combustion of the excipient. By such heat treatment, the shape of the shaped mixture slightly shrinks, but it retains almost the original shape and can form a linear material having a thickness of about 2 mm.

なお、カーボンナノチューブ類と賦形物質との混合は、加熱溶融、オープンロール、ニーダ等を用いて行われ、その際各種カーボンブラックの添加はカーボンナノチューブを良好に分散させ、また加熱処理後の導電性の確保にとって有効である。   Mixing of carbon nanotubes and excipients is performed using heat melting, open roll, kneader, etc. At that time, the addition of various carbon blacks disperses the carbon nanotubes well, and the conductive material after heat treatment is also added. It is effective for ensuring sex.

加熱処理されたカーボンナノチューブ成形体は、導電性材料として用いられ、その線状導電性材料は白熱電球のフィラメント等として用いられる。フィラメントとして用いる場合には、これを白熱電球の電極端子に取付け、電球内を真空引きした後融着して閉じ、電球が製作される。このフィラメントの発光には、約1〜10V、好ましくは約2〜6Vの電圧が負荷される。   The heat-treated carbon nanotube molded body is used as a conductive material, and the linear conductive material is used as a filament of an incandescent lamp. When used as a filament, it is attached to the electrode terminal of an incandescent bulb, the inside of the bulb is evacuated, and then fused and closed to produce a bulb. The filament is illuminated with a voltage of about 1-10V, preferably about 2-6V.

次に、実施例について本発明方法を説明する。   Next, the method of the present invention will be described with reference to examples.

実施例
水素化NBR(日本ゼオン製品ゼットポール2010)100g、SRFカーボンブラック(東海カーボン製品シーストGS)60gおよびジクミルパーオキサイド(ゼオン化成製品)を予めロールで混練したものに、多層カーボンナノチューブ20gをロールで混練、混合し、これの線状賦形物(2×2×15mm)を180℃、6分間プレス加硫した後、150℃、1時間の二次加硫を行った。
Example 100 g of hydrogenated NBR (Nippon Zeon product Zetpol 2010), 60 g of SRF carbon black (Tokai carbon product Seast GS) and dicumyl peroxide (Zeon Chemical Product) were previously kneaded with a roll, and 20 g of multi-walled carbon nanotubes. After kneading and mixing with a roll, the linear shaped product (2 × 2 × 15 mm) was press vulcanized at 180 ° C. for 6 minutes, and then subjected to secondary vulcanization at 150 ° C. for 1 hour.

加硫成形された線状加硫物を、真空電気炉(真空度0.01MPa)中で、1000℃、6時間の加熱処理を行った。得られた線状物(ほぼ原寸法を維持している)を、フィラメントとして白熱電球の電極端子に取付け、電球内を真空引きした後融着して閉じ、電球を製作した。この電球の発光は、フィラメントに6Vの電圧を負荷することにより行われ、発光前の状態と発光後の状態はそれぞれ図1および図2の写真に示される。   The vulcanized linear vulcanizate was heat-treated at 1000 ° C. for 6 hours in a vacuum electric furnace (vacuum degree 0.01 MPa). The obtained linear object (substantially maintaining the original dimensions) was attached as a filament to the electrode terminal of an incandescent bulb, the inside of the bulb was evacuated and then fused and closed to produce a bulb. The bulb emits light by applying a voltage of 6 V to the filament, and the state before the light emission and the state after the light emission are shown in the photographs of FIGS. 1 and 2, respectively.

発光前のカーボンナノチューブ配合フィラメント電球の写真である。It is a photograph of a carbon nanotube-containing filament bulb before light emission. 発光後のカーボンナノチューブ配合フィラメント電球の写真である。It is a photograph of a carbon nanotube-containing filament bulb after light emission.

Claims (11)

カーボンナノチューブ類および炭化し得る賦形物質の混合物を所定形状に賦形した後、減圧雰囲気中または不活性雰囲気中で800〜1500℃で加熱処理することを特徴とするカーボンナノチューブ成形体の製造法。   A method of producing a carbon nanotube molded article, comprising: shaping a mixture of carbon nanotubes and a carbonizable shaping substance into a predetermined shape, and then heat-treating the mixture at 800 to 1500 ° C. in a reduced-pressure atmosphere or an inert atmosphere. . 多層または単層のカーボンナノチューブ類が用いられる請求項1記載のカーボンナノチューブ成形体の製造法。   The method for producing a carbon nanotube molded article according to claim 1, wherein multi-walled or single-walled carbon nanotubes are used. カーボンナノチューブ類がカーボンナノチューブ、ナノホーン、コクーン、カーボンナノコイルまたはフラーレンである請求項1または2記載のカーボンナノチューブ成形体の製造法。   The method for producing a carbon nanotube molded article according to claim 1 or 2, wherein the carbon nanotubes are carbon nanotubes, nanohorns, cocoons, carbon nanocoils, or fullerenes. アーク放電法、レーザー蒸発法または化学的気相成長(CVD)法で製造されたカーボンナノチューブ類が用いられる請求項1、2または3記載のカーボンナノチューブ成形体の製造法。   The method for producing a carbon nanotube molded body according to claim 1, 2 or 3, wherein carbon nanotubes produced by an arc discharge method, a laser evaporation method or a chemical vapor deposition (CVD) method are used. 炭化し得る賦形物質が合成樹脂、ゴムまたは熱可塑性エラストマーである請求項1記載のカーボンナノチューブ成形体の製造法。   The method for producing a carbon nanotube molded article according to claim 1, wherein the carbonizing shaping substance is a synthetic resin, rubber or thermoplastic elastomer. 0.05MPa以下の減圧雰囲気中で加熱処理が行われる請求項1記載のカーボンナノチューブ成形体の製造法。   The method for producing a carbon nanotube molded body according to claim 1, wherein the heat treatment is performed in a reduced pressure atmosphere of 0.05 MPa or less. 請求項1記載の方法で製造されたカーボンナノチューブ成形体。   The carbon nanotube molded object manufactured by the method of Claim 1. 導電性材料として用いられる請求項7記載のカーボンナノチューブ成形体。   The carbon nanotube molded article according to claim 7, which is used as a conductive material. 導電性材料が線状材料である請求項8記載のカーボンナノチューブ成形体。   The carbon nanotube molded body according to claim 8, wherein the conductive material is a linear material. 線状導電性材料がフィラメントである請求項9記載のカーボンナノチューブ成形体。   The carbon nanotube molded body according to claim 9, wherein the linear conductive material is a filament. 請求項10記載のフィラメントを用いた白熱電球。   An incandescent lamp using the filament according to claim 10.
JP2005004927A 2005-01-12 2005-01-12 Method of manufacturing carbon nanotube formed body Pending JP2006193354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004927A JP2006193354A (en) 2005-01-12 2005-01-12 Method of manufacturing carbon nanotube formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004927A JP2006193354A (en) 2005-01-12 2005-01-12 Method of manufacturing carbon nanotube formed body

Publications (1)

Publication Number Publication Date
JP2006193354A true JP2006193354A (en) 2006-07-27

Family

ID=36799727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004927A Pending JP2006193354A (en) 2005-01-12 2005-01-12 Method of manufacturing carbon nanotube formed body

Country Status (1)

Country Link
JP (1) JP2006193354A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511864A (en) * 1996-05-15 2000-09-12 ハイピリオン カタリシス インターナショナル インコーポレイテッド Rigid porous carbon structures, methods of making, using, and products containing the same
JP2004018328A (en) * 2002-06-18 2004-01-22 Japan Science & Technology Corp Carbon nanotube network and manufacture method of the same
JP2004315297A (en) * 2003-04-17 2004-11-11 Misuzu Kogyo:Kk Nano carbon composite material and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511864A (en) * 1996-05-15 2000-09-12 ハイピリオン カタリシス インターナショナル インコーポレイテッド Rigid porous carbon structures, methods of making, using, and products containing the same
JP2004018328A (en) * 2002-06-18 2004-01-22 Japan Science & Technology Corp Carbon nanotube network and manufacture method of the same
JP2004315297A (en) * 2003-04-17 2004-11-11 Misuzu Kogyo:Kk Nano carbon composite material and its manufacturing method

Similar Documents

Publication Publication Date Title
US8808049B2 (en) Method for making sheet-shaped heat and light source
KR100724235B1 (en) Thin film producing method, base material having thin film, electron emission material, method of producing electron emission material, and electron emitter
US20150303020A1 (en) Method for making sheet-shaped heat and light source and method for heating object adopting the same
US8808589B2 (en) Method for making a carbon nanotube film
US8410676B2 (en) Sheet-shaped heat and light source, method for making the same and method for heating object adopting the same
KR100631844B1 (en) Field emission type emitter electrode with carbon fiber web structure and manufacturing method
US20100283000A1 (en) Structural body comprising filler and incompatible resin or elastomer, and production process or use thereof
EP2031602A3 (en) Conductive polyolefins with good mechanical properties
Chen et al. Flexible low-dimensional semiconductor field emission cathodes: fabrication, properties and applications
JP2006083249A (en) Method for producing dispersed solution of rubber composition mixed with nano carbon
JP2006193354A (en) Method of manufacturing carbon nanotube formed body
KR101663821B1 (en) Carbon Nanotube Paste And Method For Manufacturing Thereof
JP4822549B2 (en) Electron emission device
KR20040039325A (en) Field electron emitting device
US20240062984A1 (en) Carbon nanotube based cold cathodes for x-ray generation
KR101476782B1 (en) External electrode fluorescent lamp electrodes of improved durability and fabricating method thereof
KR20110129659A (en) Polymer-carbon nanotube nanocomposite resin composition and method for manufacturing the same
Kita et al. High-brightness electron emission from flexible carbon nanotube/elastomer nanocomposite sheets
Shimoi et al. 53.3: Properties of a Field Emission Lighting Device Employing High Crystallized Single‐Wall Carbon Nanotubes
Kawamura et al. Flexible field emission device using carbon nanofiber nanocomposite sheet
JP2003206118A (en) Nano-carbon material and electron emission source
TWI425553B (en) Method for making carbon nantoube wire tip and method for making field emission structure
JP2010138305A (en) Carbon nanotube (cnt) compounded resin material
Song et al. Novel planar field emission of ultra-thin individual carbon nanotubes
JP2004152591A (en) Field emission lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214