JP2006192451A - Die for extrusion - Google Patents

Die for extrusion Download PDF

Info

Publication number
JP2006192451A
JP2006192451A JP2005004699A JP2005004699A JP2006192451A JP 2006192451 A JP2006192451 A JP 2006192451A JP 2005004699 A JP2005004699 A JP 2005004699A JP 2005004699 A JP2005004699 A JP 2005004699A JP 2006192451 A JP2006192451 A JP 2006192451A
Authority
JP
Japan
Prior art keywords
angle
bending
extrusion
bent portion
bending angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005004699A
Other languages
Japanese (ja)
Inventor
昌典 ▲濱▼▲崎▼
Masanori Hamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005004699A priority Critical patent/JP2006192451A/en
Publication of JP2006192451A publication Critical patent/JP2006192451A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die for extrusion capable of uniformly introducing refined crystal grains in a metallic material to be worked with high yield. <P>SOLUTION: In the die 1 for extrusion having a slot 3 with a bent part 4 in which a stock material 2 is pressed into the slot 3 and passed therethrough, and the shear strain is given to the stock material 2 by the bent part 4, an inner bent part 5 to bend the slot 3 and an outer bent part 6 having a round-shape around a top of the inner bent part 5 are formed on the bent part 4. The bend angle Φ of the inner bent part 5 and the round-shape providing angle Ψ of the outer bent part 6 are set so that the strain of ε≥1.0 is formed by ≥ 80% in terms of the sectional area ratio in the stock material 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

ECAP法を用いて被加工金属材料の結晶粒微細化を行う押出加工用金型に関する。   The present invention relates to an extrusion mold for refining crystal grains of a metal material to be processed using the ECAP method.

結晶粒の微細化は金属材料の靭性の向上や超塑性特性の発現には必須の条件であることは従来から明らかにされている。結晶粒の微細化方法にはいろいろあるが、その代表的な手法として、等断面傾斜角押出し(Equal Channel Angular Pressing:以下EPACと示す)法が考案されている。このEPAC法は、金属材料に高密度転位を導入し、結晶粒の微細化を図るものである。   It has been clarified in the past that refinement of crystal grains is an essential condition for improving the toughness of metal materials and manifesting superplastic properties. There are various methods for refining crystal grains, and as a typical technique, an equal cross-section inclined angle extrusion (hereinafter referred to as EPAC) method has been devised. In this EPAC method, high-density dislocations are introduced into a metal material to refine crystal grains.

ECAP法を用いた加工方法としては、例えば図6に示すように、等断面の溝孔102が交差する金型101で被加工素材104を押し出し、屈曲角度ΦとR形状付与角度Ψとを有する屈曲部103によって被加工素材104に剪断変形を与え、結晶粒の微細化を行うものである。つまり、EPAC法は、加工前後の被加工素材の断面積及びサイズを変えずに剪断ひずみを付与し、結晶粒の微細化を図るものである。   As a processing method using the ECAP method, for example, as shown in FIG. 6, the workpiece material 104 is extruded by a mold 101 in which slots 102 of equal cross sections intersect, and has a bending angle Φ and an R shape imparting angle Ψ. The material to be processed 104 is subjected to shear deformation by the bent portion 103 to refine the crystal grains. In other words, the EPAC method applies a shear strain without changing the cross-sectional area and size of the workpiece before and after processing, thereby achieving refinement of crystal grains.

従来の圧延や線引き等の通常の加工法では、強加工を加えると材料の厚さや太さが変わり、加えられる変形量は現実的に制約があったが、一方、EPAC法にはこのような制約がなく、動的あるいは静的回復、再結晶を組み合わせると、従来達成できなかった領域まで結晶粒を微細化することができる。最近の研究では、様々な材料で超微細粒組織が達成され、延性や超塑性特性が改良されることがわかり、新しいか加工プロセスとして期待が高まっている。   In conventional processing methods such as conventional rolling and wire drawing, the thickness and thickness of the material change when strong processing is applied, and the amount of deformation that can be applied is practically limited. When there is no restriction and dynamic or static recovery and recrystallization are combined, the crystal grains can be refined to a region that could not be achieved conventionally. Recent studies have shown that ultrafine grain structures can be achieved with various materials and that ductility and superplastic properties are improved, and expectations are growing for new or machining processes.

このような被加工素材の結晶粒微細化を図った押出加工用金型は、例えば、特許文献1に開示されている。   For example, Patent Document 1 discloses an extrusion mold in which crystal grains of such a workpiece material are refined.

特開2001−1042号公報JP 2001-1042 A

従来、EPAC時に被加工素材に導入される相当ひずみは式(1)に従うことが知られており、金型形状によらず被加工素材のどの断面を見ても均一な変形を受けるとさせている。   Conventionally, it is known that the equivalent strain introduced into the work material during EPAC follows the formula (1), and it is assumed that any cross section of the work material undergoes uniform deformation regardless of the mold shape. Yes.

Figure 2006192451
Figure 2006192451

しかしながら、図7に示すように、剪断ひずみが導入された被加工素材を調べてみると、a部及びb部のように場所によって大きく組織が異なり、均一な剪断変形を受けていないことが解った。被加工素材に均一な剪断ひずみが与えられないということは、均一な微細化した結晶粒も得られないということに繋がってしまう。工業的に実用化を図るためには、均一な加工を受け、組織(機械的特性)が一様な素材を得られなくてはならず、また、その条件を明らかにする必要があると解される。   However, as shown in FIG. 7, when the work material into which shear strain is introduced is examined, it is found that the structure differs greatly depending on the location, such as a part and b part, and it is not subjected to uniform shear deformation. It was. The fact that uniform shear strain is not given to the workpiece material leads to the fact that uniform fine crystal grains cannot be obtained. In order to put it to practical use industrially, it is necessary to obtain a material with uniform processing and a uniform structure (mechanical properties), and it is necessary to clarify the conditions. Is done.

更に、従来は式(1)に従って相当ひずみを変化させた組織の均一性については検討されてきたが、場所による組織の不均一性という観点からは考えられていなかった。これは、EPAC法を用いた押出加工用金型はこれまでに数多くの研究がなされているが、その多くは数センチ角の実験室サイズの供試材を用いて検討されたものであり、工業的に実用的なサイズでの検討はされていなかったからである。   Further, conventionally, the homogeneity of the tissue in which the considerable strain is changed according to the formula (1) has been studied, but it has not been considered from the viewpoint of the nonuniformity of the tissue depending on the location. This is because many researches have been conducted on extrusion molds using the EPAC method, many of which have been studied using laboratory-sized specimens of several centimeters square, This is because the industrially practical size has not been studied.

従って、本発明は上記課題を解決するものであり、被金属材料に微細化した結晶粒を均一に高歩留まりで導入することができる押出加工用金型を提供することを目的とする。   Accordingly, an object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide an extrusion mold that can introduce finely divided crystal grains uniformly into a metal material at a high yield.

上記課題を解決する第1の発明に係る押出加工用金型は、
屈曲部を有する溝孔を備え、当該溝孔に被加工素材を押し込んで通過させ、前記屈曲部で前記被加工素材に剪断ひずみを与えるようにした押出加工用金型において、
前記屈曲部に前記溝孔を屈曲させる内側屈曲部と、該内側屈曲部の頂点を中心にR形状が形成される外側屈曲部とを形成し、
前記被加工素材に、ε≧1.0のひずみが断面積率で80%以上形成されるように、前記内側屈曲部の屈曲角度及び前記外側屈曲部のR形状付与角度を設定した
ことを特徴とする。
The extrusion mold according to the first invention for solving the above-mentioned problems is,
In the extrusion mold provided with a slot having a bent portion, pushing the workpiece material into the slot and passing it, and applying shear stress to the workpiece material at the bent portion,
Forming an inner bent portion that bends the slot in the bent portion, and an outer bent portion in which an R shape is formed around the apex of the inner bent portion;
The bending angle of the inner bending portion and the R-shaped imparting angle of the outer bending portion are set so that a strain of ε ≧ 1.0 is formed in the workpiece material by 80% or more in terms of a cross-sectional area. And

上記課題を解決する第2の発明に係る押出加工用金型は、
第1の発明に係る押出加工用金型おいて、
前記屈曲角度及び前記R形状付与角度を変えて、ε≧1.0のひずみが断面積率で80%以上となる前記屈曲角度及び前記R形状付与角度の範囲を求め、当該範囲内に前記屈曲角度及び前記R形状付与角度を設定した
ことを特徴とする。
The extrusion mold according to the second invention for solving the above-mentioned problems is
In the extrusion mold according to the first invention,
By changing the bending angle and the R-shaped imparting angle, a range of the bending angle and the R-shaped imparting angle at which a strain of ε ≧ 1.0 is 80% or more in terms of a cross-sectional area is obtained, and the bending is within the range. The angle and the R-shaped provision angle are set.

上記課題を解決する第3の発明に係る押出加工用金型は、
第1の発明に係る押出加工用金型おいて、
前記屈曲角度及び前記R形状付与角度からなるマップを作成し、
前記屈曲角度を90°及び前記R形状付与角度を30°と設定した点と、
前記屈曲角度を100°及び前記R形状付与角度を0°と設定した点とを直線で結び、
当該直線の下部の範囲内に前記屈曲角度及び前記R形状付与角度を設定した
ことを特徴とする。
The extrusion mold according to the third invention for solving the above-mentioned problems is
In the extrusion mold according to the first invention,
Create a map consisting of the bending angle and the R-shaped provision angle,
The bending angle is set to 90 ° and the R-shaped imparting angle is set to 30 °;
The points where the bending angle is set to 100 ° and the R-shaped imparting angle is set to 0 ° are connected by a straight line,
The bending angle and the R-shaped imparting angle are set within a range below the straight line.

上記課題を解決する第4の発明に係る押出加工用金型は、
第1の発明に係る押出加工用金型おいて、
前記屈曲角度を90°以下とし、かつ前記R形状付与角度を30°以下とした
ことを特徴とする。
The extrusion mold according to the fourth invention for solving the above-mentioned problems is as follows.
In the extrusion mold according to the first invention,
The bending angle is 90 ° or less, and the R-shaped imparting angle is 30 ° or less.

上記課題を解決する第5の発明に係る押出加工用金型は、
第1の発明に係る押出加工用金型おいて、
前記屈曲角度を100°以下とし、かつ前記R形状付与角度を0°とした
ことを特徴とする。
An extrusion mold according to a fifth invention for solving the above-mentioned problem is as follows.
In the extrusion mold according to the first invention,
The bending angle is 100 ° or less, and the R-shaped imparting angle is 0 °.

第1の発明に係る押出加工用金型によれば、屈曲部を有する溝孔を備え、当該溝孔に被加工素材を押し込んで通過させ、前記屈曲部で前記被加工素材に剪断ひずみを与えるようにした押出加工用金型において、前記屈曲部に前記溝孔を屈曲させる内側屈曲部と、該内側屈曲部の頂点を中心にR形状が形成される外側屈曲部とを形成し、前記被加工素材に、ε≧1.0のひずみが断面積率で80%以上形成されるように、前記内側屈曲部の屈曲角度及び前記外側屈曲部のR形状付与角度を設定したことにより、前記被金属材料に微細化した結晶粒を均一に高歩留まりで導入することができる。   According to the extrusion mold according to the first aspect of the present invention, it is provided with a slot having a bent portion, the workpiece material is pushed through the slot, and a shear strain is applied to the workpiece material at the bent portion. In the extrusion mold as described above, the bent portion is formed with an inner bent portion that bends the slot, and an outer bent portion that is formed with an R shape around the apex of the inner bent portion. By setting the bending angle of the inner bending portion and the R-shaped imparting angle of the outer bending portion so that a strain of ε ≧ 1.0 is formed in the work material at a cross-sectional area ratio of 80% or more, The refined crystal grains can be uniformly introduced into the metal material at a high yield.

第2の発明に係る押出加工用金型によれば、第1の発明に係る押出加工用金型おいて、前記屈曲角度及び前記R形状付与角度を変えて、ε≧1.0のひずみが断面積率で80%以上となる前記屈曲角度及び前記R形状付与角度の範囲を求め、当該範囲内に前記屈曲角度及び前記R形状付与角度を設定したことにより、前記被金属材料に微細化した結晶粒を均一に高歩留まりで導入することができる。   According to the extrusion mold according to the second invention, in the extrusion mold according to the first invention, the strain of ε ≧ 1.0 is changed by changing the bending angle and the R-shaped imparting angle. A range of the bending angle and the R-shaped imparting angle that is 80% or more in cross-sectional area was obtained, and the bending angle and the R-shaped imparting angle were set within the range, thereby miniaturizing the metal material. Crystal grains can be uniformly introduced at a high yield.

第3の発明に係る押出加工用金型によれば、第1の発明に係る押出加工用金型おいて、前記屈曲角度及び前記R形状付与角度からなるマップを作成し、前記屈曲角度を90°及び前記R形状付与角度を30°と設定した点と、前記屈曲角度を100°及び前記R形状付与角度を0°と設定した点とを直線で結び、当該直線の下部の範囲内に前記屈曲角度及び前記R形状付与角度を設定したことにより、前記被金属材料に微細化した結晶粒を均一に高歩留まりで導入することができる。   According to the extrusion mold according to the third invention, in the extrusion mold according to the first invention, a map comprising the bending angle and the R-shaped imparting angle is created, and the bending angle is set to 90. And a point where the R-shape imparting angle is set to 30 ° and a point where the bending angle is set to 100 ° and the R-shape imparting angle is set to 0 ° are connected by a straight line, and the point within the range below the straight line is By setting the bending angle and the R-shaped imparting angle, the refined crystal grains can be uniformly introduced at a high yield in the metal material.

第4の発明に係る押出加工用金型によれば、第1の発明に係る押出加工用金型おいて、前記屈曲角度を90°以下とし、かつ前記R形状付与角度を30°以下としたことにより、前記被金属材料に微細化した結晶粒を均一に高歩留まりで導入することができる。   According to the extrusion mold according to the fourth invention, in the extrusion mold according to the first invention, the bending angle is set to 90 ° or less, and the R-shaped imparting angle is set to 30 ° or less. Thus, the refined crystal grains can be uniformly introduced into the metal material with a high yield.

第5の発明に係る押出加工用金型によれば、第1の発明に係る押出加工用金型おいて、前記屈曲角度を100°以下とし、かつ前記R形状付与角度を0°としたことにより、前記被金属材料に微細化した結晶粒を均一に高歩留まりで導入することができる。   According to the extrusion mold according to the fifth invention, in the extrusion mold according to the first invention, the bending angle is set to 100 ° or less and the R-shaped imparting angle is set to 0 °. Thus, the refined crystal grains can be uniformly introduced into the metal material with a high yield.

以下、本発明に係る押出加工用金型の実施形態を図面を用いて詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an extrusion mold according to the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施例に係る押出加工用金型の断面図、図2は本発明の一実施例に係る押出加工用金型を用いたときの解析結果を示した図、図3はR形状付与角度Ψと剪断ひずみεとの関係を示した図、図4は式(1)より求めた屈曲角度Φと剪断ひずみεとの関係を示した図、図5は屈曲角度ΦとR形状付与角度Ψとの関係を示した図である。   FIG. 1 is a cross-sectional view of an extrusion mold according to an embodiment of the present invention, FIG. 2 is a view showing an analysis result when the extrusion mold according to an embodiment of the present invention is used, and FIG. Is a diagram showing the relationship between the R-shape imparting angle Ψ and the shear strain ε, FIG. 4 is a diagram showing the relationship between the bending angle Φ and the shear strain ε obtained from the equation (1), and FIG. It is the figure which showed the relationship with R shape provision angle (PSI).

図1に示すように、EPAC法を用いた押出加工用金型1は被加工素材2に微細化した結晶粒を導入する金型である。押出加工用金型1には被加工素材2が通過する等断面でL字状の溝孔3が形成されている。溝孔3は屈曲部4を有しており、この屈曲部4には内側屈曲部5と外側屈曲部6とが形成されている。内側屈曲部5は屈曲角度Φで形成されると共に、外側屈曲部6はR形状(円弧状)に形成され、そのR形状付与角度Ψは内側屈曲部5の頂点を中心にして付与されている。そして、被加工素材2はこの溝孔3の開口部3aから挿入され、押出プランジャー7の押出力によって開口部3bから押し出される。図1中に押出プランジャー7の押出力方向と被加工素材2の押出方向とを矢印で示す。   As shown in FIG. 1, an extrusion mold 1 using the EPAC method is a mold for introducing refined crystal grains into a workpiece 2. The extrusion die 1 is formed with an L-shaped groove 3 having an equal cross section through which the workpiece 2 passes. The slot 3 has a bent portion 4, and an inner bent portion 5 and an outer bent portion 6 are formed in the bent portion 4. The inner bent portion 5 is formed at a bending angle Φ, and the outer bent portion 6 is formed in an R shape (arc shape), and the R shape imparting angle ψ is given around the apex of the inner bent portion 5. . Then, the workpiece 2 is inserted from the opening 3 a of the slot 3 and pushed out from the opening 3 b by the pushing force of the pushing plunger 7. In FIG. 1, the pushing force direction of the pushing plunger 7 and the pushing direction of the workpiece 2 are indicated by arrows.

従って、上述した構成の押出加工用金型1により被加工素材2の押出加工を行うには、溝孔3の断面と断面積及び形状とが同じで所定の長さの被加工素材2を準備し、その被加工素材2を開口部3aに挿入する。そして、被加工素材2の後方から押出プランジャー7にて押し込む。被加工素材2は押出力を受けて溝孔3内を進み、屈曲部4に到達し、更に押出プランジャー7により押し込まれると屈曲部4を通過して開口部3bから押し出される。被加工素材2は屈曲部4を通過するときに屈曲されて剪断変形を受ける。これにより剪断ひずみが導入され、結晶粒の微細化が行われる。   Therefore, in order to extrude the workpiece 2 using the extrusion mold 1 having the above-described configuration, a workpiece 2 having the same length, cross-sectional area and shape as the slot 3 is prepared. Then, the workpiece 2 is inserted into the opening 3a. And it pushes in with the extrusion plunger 7 from the back of the workpiece 2. The workpiece 2 receives the pushing force, travels in the groove 3, reaches the bent portion 4, and further passes through the bent portion 4 and is pushed out from the opening 3 b when pushed by the pushing plunger 7. The workpiece 2 is bent and undergoes shear deformation when passing through the bent portion 4. This introduces shear strain and refines the crystal grains.

なお、溝孔3の断面形状は正方形や円形等でも構わない。押出加工を行う際には、被加工素材2を1つ加工するごとに取り出して断続的に行ってもよく、また、押出プランジャー7が最下点に達した後に後退させ、次の被加工素材2を押出プランジャー7により押し出すことで先の被加工素材2を取り出して連続的に行ってもよい。押出プランジャー7の最下点の位置は、屈曲部4の手前に設定すると効率よく押出加工が行える。更に、被加工素材2は所望する結晶粒の微細化が図れるまで、数回の押出加工を行うようにしても構わない。   The cross-sectional shape of the slot 3 may be square or circular. When performing the extrusion processing, the workpiece 2 may be taken out every time one workpiece is processed, or the extrusion plunger 7 is retracted after reaching the lowest point, and the next workpiece is processed. The raw material 2 may be continuously extracted by extruding the raw material 2 by pushing the extrusion plunger 7. If the position of the lowest point of the extrusion plunger 7 is set before the bent portion 4, the extrusion process can be performed efficiently. Furthermore, the workpiece 2 may be extruded several times until the desired crystal grains can be refined.

被加工素材へ導入される剪断ひずみは屈曲角度ΦとR形状付与角度Ψとに起因することは式(1)からも解っており、屈曲角度Φが180°よりも小さくなるにしたがって剪断ひずみが導入され易く、R形状付与角度Ψが小さくなると剪断ひずみ量の変化量が大きくなる。また、経験的に屈曲角度Φが90°に近いほど結晶粒を効率的に微細化できるとされている。しかし、屈曲角度Φが小さ過ぎると被加工素材に過剰な剪断変形が与えられ割れ等が発生し、大き過ぎると剪断変形が与えられず結晶粒の微細化も殆ど行われない。これにより、被加工素材に剪断ひずみを導入するときの屈曲角度ΦとR形状付与角度Ψとの範囲は、ある程度予測することができる。   It is understood from the equation (1) that the shear strain introduced into the workpiece material is caused by the bending angle Φ and the R-shape imparting angle Ψ, and the shear strain decreases as the bending angle Φ becomes smaller than 180 °. It is easy to introduce, and the amount of change in shear strain increases as the R-shape imparting angle Ψ decreases. Further, empirically, the closer the bending angle Φ is to 90 °, the more efficiently the crystal grains can be refined. However, if the bending angle Φ is too small, excessive shear deformation is given to the material to be processed and cracks occur. If it is too large, shear deformation is not given and crystal grains are hardly refined. As a result, the range of the bending angle Φ and the R-shaped imparting angle Ψ when the shear strain is introduced into the workpiece can be predicted to some extent.

しかしながら、屈曲角度ΦとR形状付与角度Ψとの組み合わせは無数に存在するので、これらの角度範囲を明確に断定することは難しく、これに加えて、剪断ひずみの大きさ及び導入量を同時に考慮しなくてはならない。これは、所定の大きさの剪断ひずみを導入しても剪断ひずみ量が少なかったり、所定の剪断ひずみ量を導入しても小さな剪断ひずみであったりする場合には、結晶粒の微細化も効率よく行われず、被加工素材の強度や靭性の向上もなされない。また、加工中に割れ等の欠陥が生じては、被加工素材が工業的にも必要とされないからである。   However, since there are an infinite number of combinations of the bending angle Φ and the R-shaped imparting angle Ψ, it is difficult to clearly determine these angle ranges, and in addition to this, the magnitude of the shear strain and the amount introduced are considered simultaneously. I have to do it. If the shear strain amount is small even if a predetermined amount of shear strain is introduced, or if the shear strain is small even if a predetermined shear strain amount is introduced, refinement of crystal grains is also efficient. It is not performed well, and the strength and toughness of the workpiece are not improved. Further, if a defect such as a crack occurs during processing, the material to be processed is not required industrially.

ここで、被加工素材の結晶粒が剪断変形によって微細化されるには、剪断ひずみεがε≧1.0であれば確実に微細化されると考えると共に、押出加工後の被加工素材の切り落とし領域等を考慮してε≧1.0の断面積率が80%以上であれば工業的にも利用可能であると考えられる。   Here, in order for the crystal grains of the workpiece material to be refined by shear deformation, it is considered that if the shear strain ε is ε ≧ 1.0, the workpiece material is surely refined, and the extruded workpiece material Considering the cut-off area, etc., if the cross-sectional area ratio of ε ≧ 1.0 is 80% or more, it can be considered industrially usable.

そこで、本実施例においては、工業的に利用可能である条件として、ε≧1.0の断面積率が80%以上となるような屈曲角度ΦとR形状付与角度Ψとの範囲を特定することにした。   Therefore, in the present embodiment, as a condition that can be used industrially, a range of the bending angle Φ and the R-shaped imparting angle ψ that specifies the cross-sectional area ratio of ε ≧ 1.0 to be 80% or more is specified. It was to be.

次に、図2〜5を用いて屈曲角度ΦとR形状付与角度Ψとの関係について説明する。   Next, the relationship between the bending angle Φ and the R shape imparting angle Ψ will be described with reference to FIGS.

図2は、屈曲角度Φを比較的に結晶粒を効率的に微細化できる90°に一定とし、R形状付与角度Ψをパラメータとして有限要素解析を行い、導入される剪断ひずみεの解析を行ったものである。R形状付与角度Ψは0〜90°と段階的に設定され、4種類(I 〜IV)の形状から被加工素材を押出加工した。そして、各被加工素材の断面A−Aから断面D−Dにおいて、ε≧1.0の断面積率について調べてみた。   FIG. 2 shows that the bending angle Φ is kept constant at 90 ° so that the crystal grains can be made relatively fine, and the finite element analysis is performed using the R-shape imparting angle Ψ as a parameter to analyze the introduced shear strain ε. It is a thing. The R-shaped imparting angle ψ was set stepwise as 0 to 90 °, and the workpiece material was extruded from four types (I to IV). Then, the cross-sectional area ratio of ε ≧ 1.0 was examined from the cross-section AA to the cross-section DD of each workpiece material.

この結果、断面において、R形状付与角度Ψが小さくなるにつれて、ε≧1.0の断面積率が大きくなると共に、剪断ひずみは均一化されていくことが解った。   As a result, it was found that, as the R-shape imparting angle Ψ decreases in the cross section, the cross-sectional area ratio of ε ≧ 1.0 increases and the shear strain becomes uniform.

図3は、図2の結果をまとめたものであり、屈曲角度Φを90°と一定にした状態でのR形状付与角度Ψとε≧1.0の断面積率との関係を曲線Xで示したものである。この図からも解るとおり、ε≧1.0の断面積率が80%以上となるのは、R形状付与角度Ψが30°以下である。   FIG. 3 summarizes the results of FIG. 2, and the curve X shows the relationship between the R-shape imparting angle Ψ and the cross-sectional area ratio of ε ≧ 1.0 when the bending angle Φ is constant at 90 °. It is shown. As can be seen from this figure, the cross-sectional area ratio of ε ≧ 1.0 is 80% or more when the R-shape imparting angle Ψ is 30 ° or less.

また、屈曲角度Φは小さくなるにつれて、導入される剪断ひずみが増加すると考えられることから、ε≧1.0の断面積率が80%以上となる被加工素材を加工する押出加工用金型の屈曲部の形状は、屈曲角度Φが90°以下、かつR形状付与角度Ψが30°以下の範囲であると考えられる。この範囲を以下、範囲1と示す。   Further, since it is considered that the shear strain to be introduced increases as the bending angle Φ decreases, an extrusion mold for processing a workpiece having a cross-sectional area ratio of ε ≧ 1.0 of 80% or more. The shape of the bent portion is considered to be a range in which the bending angle Φ is 90 ° or less and the R-shaped imparting angle ψ is 30 ° or less. This range is hereinafter referred to as range 1.

ここで、図2の形状IからR形状付与角度Ψが0°のときは、式(1)を用いても均一
変形することが確認できる。更に、均一変形(R形状付与角度Ψが0°のとき)するときの屈曲角度Φと剪断ひずみεとの関係を式(1)を用いて求めると、図4のような曲線Yが求められる。
Here, from the shape I in FIG. 2, when the R-shape imparting angle Ψ is 0 °, it can be confirmed that uniform deformation is performed even using the equation (1). Further, when the relationship between the bending angle Φ and the shear strain ε when uniformly deforming (when the R-shape imparting angle Ψ is 0 °) is obtained using the equation (1), a curve Y as shown in FIG. 4 is obtained. .

図4に示すように、ε≧1.0となる屈曲角度Φの範囲は、100°以下になることが解る。つまり、ε≧1.0の断面積率が80%以上となるのは、屈曲角度Φが100°以下である。屈曲角度Φが90〜100°の範囲については、図2のIの形状から考えると
、例え屈曲角度Φが90°から100°に大きくなったとしても、ε≧1.0の断面積率が80%以上になるであろうと推測できる。
As shown in FIG. 4, it can be seen that the range of the bending angle Φ where ε ≧ 1.0 is 100 ° or less. That is, the reason why the sectional area ratio of ε ≧ 1.0 is 80% or more is that the bending angle Φ is 100 ° or less. Regarding the range of the bending angle Φ of 90 to 100 °, considering the shape of I in FIG. 2, even if the bending angle Φ increases from 90 ° to 100 °, the cross-sectional area ratio of ε ≧ 1.0 is It can be estimated that it will be 80% or more.

上述した内容をまとめると図5に示すようになる。先ず、図2,3から求めた屈曲角度Φが90°以下、かつR形状付与角度Ψが30°以下の範囲は、図5中において範囲1と示すことができる。次に、図2,3で解析したε≧1.0であって、ε≧1.0の断面積率が最も低い形状IIの条件である点M(屈曲角度Φ=90°,R形状付与角度Ψ=30°
)と、図4で求めたε≧1.0であって、ε≧1.0の断面積率が最も低い条件である点N(屈曲角度Φ=100°,R形状付与角度Ψ=0°)とを結び、この直線を直線Zと示す。そして、直線Zの下部の範囲を範囲2とする。つまり、範囲1は範囲2に含有しているので、範囲2がε≧1.0の断面積率が80%以上となるような屈曲角度ΦとR形状付与角度Ψとの範囲となる。即ち、この範囲内で押出加工をすることにより、被加工素材2に均一で高密度な剪断ひずみを与えることができるので、工業的に利用可能である微細化した結晶粒を均一に高歩留まりで導入することができる。
The contents described above are summarized as shown in FIG. First, the range in which the bending angle Φ obtained from FIGS. 2 and 3 is 90 ° or less and the R-shaped imparting angle ψ is 30 ° or less can be shown as range 1 in FIG. Next, the point M (bending angle Φ = 90 °, R shape imparting), which is the condition of the shape II where ε ≧ 1.0 and the sectional area ratio of ε ≧ 1.0 is analyzed in FIGS. Angle Ψ = 30 °
) And point N (bending angle Φ = 100 °, R-shape imparting angle ψ = 0 °) where ε ≧ 1.0 obtained in FIG. ) And this straight line is shown as a straight line Z. A range below the straight line Z is set as a range 2. That is, since the range 1 is contained in the range 2, the range 2 is a range of the bending angle Φ and the R-shaped imparting angle ψ such that the cross-sectional area ratio of ε ≧ 1.0 is 80% or more. That is, by performing extrusion processing within this range, it is possible to give a uniform and high-density shear strain to the material 2 to be processed, so that refined crystal grains that can be used industrially can be uniformly obtained at a high yield. Can be introduced.

従って、本発明の押出加工用金型によれば、屈曲部4を有する溝孔3を備え、当該溝孔3に被加工素材2を押し込んで通過させ、屈曲部4で被加工素材2に剪断ひずみを与えるようにした押出加工用金型1において、屈曲部4に溝孔3を屈曲させる内側屈曲部5と、該内側屈曲部5の頂点を中心にR形状が形成される外側屈曲部6とを形成し、被加工素材2に、ε≧1.0の剪断ひずみが断面積率で80%以上形成されるように、内側屈曲部5の屈曲角度Φ及び外側屈曲部6のR形状付与角度Ψを設定し、或いは、屈曲角度Φ及びR形状付与角度Ψを変えて、ε≧1.0の剪断ひずみが断面積率で80%以上となる屈曲角度Φ及びR形状付与角度Ψの範囲を求め、当該範囲内に屈曲角度Φ及びR形状付与角度Ψを設定したことにより、均一で高密度な剪断ひずみを与えることができるので、工業的に利用可能である微細化した結晶粒を均一に高歩留まりで導入することができる。   Therefore, according to the extrusion mold of the present invention, the slot 3 having the bent portion 4 is provided, the workpiece 2 is pushed through the slot 3, and the workpiece 2 is sheared by the bent portion 4. In the extrusion mold 1 in which a strain is applied, an inner bent portion 5 for bending the slot 3 in the bent portion 4 and an outer bent portion 6 in which an R shape is formed around the apex of the inner bent portion 5. And forming a bending angle Φ of the inner bending portion 5 and an R shape of the outer bending portion 6 so that a shear strain of ε ≧ 1.0 is formed in the workpiece material 2 by 80% or more in terms of the cross-sectional area ratio. By setting the angle Ψ or changing the bending angle Φ and the R-shaped imparting angle Ψ, the range of the bending angle Φ and the R-shaped imparting angle Ψ in which the shear strain of ε ≧ 1.0 is 80% or more in the cross-sectional area ratio And by setting the bending angle Φ and the R shape imparting angle Ψ within the range, uniform and high density Since the shear strain can give, can be introduced grain is obtained by refining a commercially available uniformly high yield.

その屈曲角度Φ及びR形状付与角度Ψの具体的な範囲は、屈曲角度Φを90°及びR形状付与角度Ψを30°と設定した点と、屈曲角度Φを100°及びR形状付与角度Ψを0°と設定した点とを結んだ直線の下部である。または、屈曲角度Φを90°以下とし、かつR形状付与角度Ψを30°以下とした範囲であってもよく、更には、曲角度Φを100°以下とし、かつR形状付与角度Ψを0°とした範囲でも被加工素材2に均一で高密度な剪断ひずみを与えることができるので、工業的に利用可能である微細化した結晶粒を均一に高歩留まりで導入することができる。   The specific ranges of the bending angle Φ and the R-shaped imparting angle Ψ are as follows: the bending angle Φ is set to 90 ° and the R-shaped imparting angle Ψ is set to 30 °; the bending angle Φ is set to 100 °; Is the lower part of a straight line connecting points set to 0 °. Alternatively, the range may be a range in which the bending angle Φ is 90 ° or less and the R-shape imparting angle ψ is 30 ° or less, and further the curvature angle Φ is 100 ° or less and the R-shape imparting angle ψ is 0. Even in the range of °, uniform and high-density shear strain can be applied to the workpiece 2, so that fine crystal grains that can be used industrially can be introduced uniformly and with a high yield.

本発明は、金属材料に微細化した結晶粒を導入する装置等に適用可能である。   The present invention is applicable to an apparatus for introducing fine crystal grains into a metal material.

本発明の一実施例に係る押出加工用金型の断面図である。It is sectional drawing of the metal mold | die for extrusion processing which concerns on one Example of this invention. 本発明の一実施例に係る押出加工用金型を用いたときの解析結果を示した図である。It is the figure which showed the analysis result when using the metal mold | die for extrusion processing which concerns on one Example of this invention. R形状付与角度Ψと剪断ひずみεとの関係を示した図である。It is the figure which showed the relationship between R shape provision angle (PSI) and shear strain (epsilon). 相当ひずみの基本式より求めた屈曲角度Φと剪断ひずみεとの関係を示した図である。It is the figure which showed the relationship between the bending angle (PHI) calculated | required from the basic formula of the equivalent strain, and the shear strain (epsilon). 屈曲角度ΦとR形状付与角度Ψとの関係を示した図である。It is the figure which showed the relationship between bending angle (PHI) and R shape provision angle (PSI). 従来の一実施例に係る押出加工用金型の概略図である。It is the schematic of the metal mold | die for extrusion which concerns on one prior art example. (1)従来の押出加工用金型を用いて押出加工をした被加工素材の組織図であり、(2)は図(1)のa,b部の拡大組織図である。(1) It is an organization chart of the processed material extruded by using a conventional extrusion mold, and (2) is an enlarged organization chart of portions a and b in FIG. (1).

符号の説明Explanation of symbols

1 押出加工用金型
2 被加工素材
3 溝孔
4 屈曲部
5 内側屈曲部
6 外側屈曲部
7 押出プランジャー
DESCRIPTION OF SYMBOLS 1 Mold for extrusion 2 Work material 3 Groove hole 4 Bending part 5 Inner bending part 6 Outer bending part 7 Extrusion plunger

Claims (5)

屈曲部を有する溝孔を備え、当該溝孔に被加工素材を押し込んで通過させ、前記屈曲部で前記被加工素材に剪断ひずみを与えるようにした押出加工用金型において、
前記屈曲部に前記溝孔を屈曲させる内側屈曲部と、該内側屈曲部の頂点を中心にR形状が形成される外側屈曲部とを形成し、
前記被加工素材に、ε≧1.0のひずみが断面積率で80%以上形成されるように、前記内側屈曲部の屈曲角度及び前記外側屈曲部のR形状付与角度を設定した
ことを特徴とする押出加工用金型。
In the extrusion mold provided with a slot having a bent portion, pushing the workpiece material into the slot and passing it, and applying shear stress to the workpiece material at the bent portion,
Forming an inner bent portion that bends the slot in the bent portion, and an outer bent portion in which an R shape is formed around the apex of the inner bent portion;
The bending angle of the inner bending portion and the R-shaped imparting angle of the outer bending portion are set so that a strain of ε ≧ 1.0 is formed in the workpiece material by 80% or more in terms of a cross-sectional area. Extrusion mold.
請求項1に記載の押出加工用金型において、
前記屈曲角度及び前記R形状付与角度を変えて、ε≧1.0のひずみが断面積率で80%以上となる前記屈曲角度及び前記R形状付与角度の範囲を求め、当該範囲内に前記屈曲角度及び前記R形状付与角度を設定した
ことを特徴とする押出加工用金型。
In the extrusion die according to claim 1,
By changing the bending angle and the R-shaped imparting angle, a range of the bending angle and the R-shaped imparting angle at which a strain of ε ≧ 1.0 is 80% or more in cross-sectional area is obtained, and the bending is within the range. An extrusion mold, wherein the angle and the R-shaped imparting angle are set.
請求項1に記載の押出加工用金型において、
前記屈曲角度及び前記R形状付与角度からなるマップを作成し、
前記屈曲角度を90°及び前記R形状付与角度を30°と設定した点と、
前記屈曲角度を100°及び前記R形状付与角度を0°と設定した点とを直線で結び、
当該直線の下部の範囲内に前記屈曲角度及び前記R形状付与角度を設定した
ことを特徴とする押出加工用金型。
In the extrusion die according to claim 1,
Create a map consisting of the bending angle and the R-shaped provision angle,
The bending angle is set to 90 ° and the R-shaped imparting angle is set to 30 °;
The points where the bending angle is set to 100 ° and the R-shaped imparting angle is set to 0 ° are connected by a straight line,
The bending mold and the R-shaped imparting angle are set within the range of the lower part of the straight line.
請求項1に記載の押出加工用金型において、
前記屈曲角度を90°以下とし、かつ前記R形状付与角度を30°以下とした
ことを特徴とする押出加工用金型。
In the extrusion die according to claim 1,
The extrusion mold, wherein the bending angle is 90 ° or less and the R-shaped imparting angle is 30 ° or less.
請求項1に記載の押出加工用金型において、
前記屈曲角度を100°以下とし、かつ前記R形状付与角度を0°とした
ことを特徴とする押出加工用金型。
In the extrusion die according to claim 1,
The extrusion mold, wherein the bending angle is 100 ° or less and the R-shaped imparting angle is 0 °.
JP2005004699A 2005-01-12 2005-01-12 Die for extrusion Withdrawn JP2006192451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005004699A JP2006192451A (en) 2005-01-12 2005-01-12 Die for extrusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005004699A JP2006192451A (en) 2005-01-12 2005-01-12 Die for extrusion

Publications (1)

Publication Number Publication Date
JP2006192451A true JP2006192451A (en) 2006-07-27

Family

ID=36798919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005004699A Withdrawn JP2006192451A (en) 2005-01-12 2005-01-12 Die for extrusion

Country Status (1)

Country Link
JP (1) JP2006192451A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898203A (en) * 2010-07-22 2010-12-01 重庆大学 Magnesium alloy continuous extrusion die
JP2018522400A (en) * 2015-05-20 2018-08-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Mold and method for forming permanent magnet with preform, and thermal deformation system
CN111530955A (en) * 2020-05-21 2020-08-14 燕山大学 Double-channel variable-channel corner extrusion forming device and forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898203A (en) * 2010-07-22 2010-12-01 重庆大学 Magnesium alloy continuous extrusion die
JP2018522400A (en) * 2015-05-20 2018-08-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Mold and method for forming permanent magnet with preform, and thermal deformation system
CN111530955A (en) * 2020-05-21 2020-08-14 燕山大学 Double-channel variable-channel corner extrusion forming device and forming method

Similar Documents

Publication Publication Date Title
Shin et al. Constrained groove pressing and its application to grain refinement of aluminum
Kim et al. Micro-extrusion of ECAP processed magnesium alloy for production of high strength magnesium micro-gears
Salimyanfard et al. EBSD analysis of nano-structured copper processed by ECAP
Jin et al. Continuous high strength aluminum bolt manufacturing by the spring-loaded ECAP system
JP2006289479A (en) Intensive working method of metal, and die used for intensive working method
US9447487B2 (en) Torsional extreme-plastic processing method of conic metal pipe
Bhovi et al. A comparison of repetitive corrugation and straightening and high-pressure torsion using an Al-Mg-Sc alloy
JP4332889B2 (en) Method for producing magnesium-based alloy compact
KR101210889B1 (en) Severe plastic deformation system and method for working wire rod using the same
JP2006192451A (en) Die for extrusion
US10780477B2 (en) System and method of producing nanostructured materials
KR101226483B1 (en) A method for manufacturing copper liner with homogeneous and fine micro-structure
Babaei et al. Tube twist pressing (TTP) as a new severe plastic deformation method
JP2000271693A (en) Production of magnesium alloy material
JP3735323B2 (en) Method for producing plate material made of Mg or Mg alloy
RU2352417C2 (en) Pressing method of profiles and matrix for implementation of current method
Derakhshandeh et al. Microstructure and mechanical properties of ultrafine-grained titanium processed by multi-pass ECAP at room temperature using core–sheath method
Yan et al. Microstructure and mechanical properties of semi-continuous equal-channel angular extruded interstitial-free steel
KR101622395B1 (en) Metalworking process using severe shear deformation by repetitive torsion
JP2000271695A (en) Production of magnesium alloy material
JP2006193765A (en) Method for producing member made of aluminum alloy
JP2003154407A (en) Aluminum extruded material for hydroforming and method of manufacturing the same
JP2001300652A (en) Piercing method and die in hydraulic bulging of metal tube
CN110177633B (en) Component of surface-treated steel sheet having cut end faces and method for producing same
KR100558085B1 (en) A method for insuring the strength of magnesium alloy through grain size refinement

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080401