JP2006184773A - Optical waveguide and opto-electric hybrid substrate having the same - Google Patents

Optical waveguide and opto-electric hybrid substrate having the same Download PDF

Info

Publication number
JP2006184773A
JP2006184773A JP2004380679A JP2004380679A JP2006184773A JP 2006184773 A JP2006184773 A JP 2006184773A JP 2004380679 A JP2004380679 A JP 2004380679A JP 2004380679 A JP2004380679 A JP 2004380679A JP 2006184773 A JP2006184773 A JP 2006184773A
Authority
JP
Japan
Prior art keywords
optical waveguide
core
resin
resin layer
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004380679A
Other languages
Japanese (ja)
Inventor
Takashi Shioda
剛史 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004380679A priority Critical patent/JP2006184773A/en
Publication of JP2006184773A publication Critical patent/JP2006184773A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical waveguide having a reflection area having a high reflectance on a core end face to be formed at an arbitrary place thereof in order to input and output light in and from the optical waveguide, and also to provide an opto-electric hybrid substrate provided with the optical waveguide. <P>SOLUTION: The optical waveguide is composed of a core 2 and a clad 1 consisting of a first resin, and is characterized in that, on the surface of the core end face prepared by cutting off the core, a reflection area is formed by film-forming a second resin layer 12 with the same refractive index as the first resin and that the thickness of the second resin layer is 0.05-5 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は光導波路およびこれを備えた光電気混載基板に関し、特に光集積回路、光インターコネクション用光学部品、光電気混載板等を製造する方法に関する。   The present invention relates to an optical waveguide and an opto-electric hybrid board including the same, and more particularly to a method of manufacturing an optical integrated circuit, an optical component for optical interconnection, an opto-electric hybrid board, and the like.

光部品、あるいは光ファイバの基材としては、光伝搬損失が小さく、伝送帯域が広いという特徴を有する石英ガラスや多成分ガラス等の無機系の材料が広く使用されているが、最近では高分子系の材料も開発され、無機系材料に比べて加工性や価格の点で優れていることから、光導波路用材料として注目されている。例えば、ポリメチルメタクリレート(PMMA)、あるいは、ポリスチレンのような透明性に優れた高分子をコアとし、そのコア材料よりも屈折率の低い高分子をクラッド材料としたコア−クラッド構造からなる平板型光導波路が作製されている(特許文献1)。これに対して耐熱性の高い透明性高分子であるポリイミドを用い低損失の平板型光導波路が実現されている(特許文献2)。   As base materials for optical components or optical fibers, inorganic materials such as quartz glass and multicomponent glass, which have the characteristics of low light propagation loss and wide transmission band, are widely used. System materials have also been developed and are attracting attention as materials for optical waveguides because they are superior in processability and price compared to inorganic materials. For example, a flat plate type having a core-clad structure in which a polymer having excellent transparency such as polymethyl methacrylate (PMMA) or polystyrene is used as a core and a polymer having a refractive index lower than that of the core material is used as a cladding material. An optical waveguide is produced (Patent Document 1). On the other hand, a low-loss flat optical waveguide is realized using polyimide, which is a transparent polymer with high heat resistance (Patent Document 2).

高分子光導波路の用途の一つとして、光電気混載基板が考えられる。光電気混載基板や光インタコネクション用に用いられる光導波路に対しては、受発光素子として、面型の光素子が用いられる。つまり、光導波路の回路の光軸と光素子の光軸とは90度異なる。よって、90度光路変換機能を付与することが必要となる。そのような手法として、ダイシングソーを用いて光導波路端面を45度に切断する手法がある(特許文献3)。この45度面を鏡面とし、光は90度光路変換する。樹脂と空気の屈折率差からこの45度面は反射鏡となり、光路変換できる。   One of the uses of the polymer optical waveguide is an opto-electric hybrid board. For optical waveguides used for opto-electric hybrid boards and optical interconnections, planar optical elements are used as light emitting / receiving elements. That is, the optical axis of the optical waveguide circuit and the optical axis of the optical element differ by 90 degrees. Therefore, it is necessary to provide a 90-degree optical path conversion function. As such a technique, there is a technique of cutting the end face of the optical waveguide at 45 degrees using a dicing saw (Patent Document 3). The 45-degree plane is used as a mirror surface, and the light is changed by 90 degrees. Due to the difference in refractive index between the resin and air, this 45 degree plane becomes a reflecting mirror and can change the optical path.

これらの加工によって得られた反射鏡の反射率は加工面粗さの影響を受ける。つまり、加工面粗さが大きい場合、散乱光が増え、反射率が低くなってしまう。また、反射鏡表面にゴミや汚れが付着した場合、全反射条件を満たさなくなり、反射率が低下してしまう。また、ダイシングソーなどで加工したまま露出した面は、樹脂によっては信頼性という点での懸念がある。そのために、金やアルミニウム、誘電体多層膜などを端面にコーティングし、反射鏡を作ることにより、このような問題を解決することが一般的に行われている。さらに高反射率を得ようとすると、金やアルミニウムなどの金属膜、誘電体多層膜などをコア端面に直接形成したのでは、反射率が思うように上がらないという問題があった。さらに信頼性の点で光導波路との密着性を確保する必要がある。
特開平3-188402号 特開平04−9807 特開平10-300961号
The reflectance of the reflecting mirror obtained by these processes is affected by the roughness of the processed surface. That is, when the processed surface roughness is large, the scattered light increases and the reflectance decreases. In addition, when dust or dirt adheres to the reflecting mirror surface, the total reflection condition is not satisfied, and the reflectance decreases. In addition, the exposed surface processed with a dicing saw or the like has a concern in terms of reliability depending on the resin. For this purpose, it is a common practice to solve such problems by coating the end face with gold, aluminum, a dielectric multilayer film or the like to make a reflecting mirror. In order to obtain a higher reflectivity, there is a problem that the reflectivity does not increase as expected when a metal film such as gold or aluminum, a dielectric multilayer film, or the like is directly formed on the end face of the core. Furthermore, it is necessary to ensure adhesion with the optical waveguide in terms of reliability.
Japanese Patent Laid-Open No. 3-188402 JP 04-9807 Japanese Patent Laid-Open No. 10-300961

本発明の目的は、上記の問題を回避すべく、光導波路への光の入出力のためにその任意の箇所に形成されるコアの端面に高反射率を有する反射面が形成された光導波路、およびこの光導波路を備えた光電気混載基板を提供することにある。 In order to avoid the above problems, an object of the present invention is to provide an optical waveguide in which a reflecting surface having a high reflectance is formed on an end surface of a core formed at an arbitrary position for inputting / outputting light to / from the optical waveguide. And an opto-electric hybrid board provided with the optical waveguide.

本発明者は、鋭意検討した結果、光導波路の光の入出射のための傾斜した端面に樹脂膜を形成することによって、反射率を高めることができることを見出し、本発明を完成させた。すなわち本発明は、第1の樹脂からなるコアとクラッドからなる光導波路であって、コアが切断されて形成されたコア端面の表面に、第1の樹脂と屈折率が等しい第2の樹脂層が成膜されて反射面を形成し、第2の樹脂層の厚さが0.05μm〜5μmであることを特徴とする光導波路である。 As a result of intensive studies, the present inventor has found that the reflectance can be increased by forming a resin film on the inclined end surface for entering and exiting the light of the optical waveguide, and has completed the present invention. That is, the present invention is an optical waveguide comprising a core made of a first resin and a clad, and a second resin layer having a refractive index equal to that of the first resin on the surface of the core end surface formed by cutting the core. Is formed to form a reflection surface, and the thickness of the second resin layer is 0.05 μm to 5 μm.

ダイシングソーなどによる機械加工だけでなく、レーザを照射して光導波路を構成するコアの一部を切断すると、切断面の表面は面荒れが生じやすい事がわかった。面荒れが生じると光が散乱して反射率が低下する。そこで切断面にコア材と屈折率が等しい第2の樹脂層を形成すると、第2の樹脂層表面の面粗度はコアの切断面よりも小さくなる。反射面は面粗度の改善された第2の樹脂層の外表面となるので、反射率も向上する。さらにそのうえに金属膜や誘電体多層膜を形成することにより、第2の樹脂層と金属膜と誘電体多層膜の界面が反射面となり反射率がより向上する。コア端面は光路の方向に応じてコアの延長方向に対して傾斜するように切断すればよい。例えば45度傾斜させると90度の光路変換ができる。   In addition to machining with a dicing saw or the like, it was found that when a part of the core constituting the optical waveguide was cut by laser irradiation, the surface of the cut surface was likely to be rough. When surface roughness occurs, light is scattered and the reflectance decreases. Therefore, when the second resin layer having the same refractive index as the core material is formed on the cut surface, the surface roughness of the surface of the second resin layer becomes smaller than the cut surface of the core. Since the reflecting surface becomes the outer surface of the second resin layer with improved surface roughness, the reflectance is also improved. Furthermore, by forming a metal film or a dielectric multilayer film thereon, the interface between the second resin layer, the metal film, and the dielectric multilayer film becomes a reflective surface, and the reflectance is further improved. What is necessary is just to cut | disconnect a core end surface so that it may incline with respect to the extension direction of a core according to the direction of an optical path. For example, if it is inclined 45 degrees, the optical path can be changed 90 degrees.

コアと前記反射面で形成される光路を含む面内において、コア端面と第2の樹脂の外表面とのなす最大角度は2度以下が好ましい。これによりコアをレーザや機械加工で切断してコア端面を形成する時に、切断するときの傾斜角をコントロールすることにより、光の反射角を設計値とおり定めることができる。
コア端面を形成するためのコアの切断方法としては、レーザ照射によるレーザ加工、ダイシングソーなどによる機械加工、ドライエッチングなどのエッチング加工などが挙げられる。この中でレーザ加工によるものが好ましい。
In the plane including the optical path formed by the core and the reflecting surface, the maximum angle formed by the core end surface and the outer surface of the second resin is preferably 2 degrees or less. Thereby, when the core is cut by laser or machining to form the end face of the core, the reflection angle of light can be determined as designed by controlling the tilt angle when cutting.
Examples of the core cutting method for forming the core end face include laser processing by laser irradiation, mechanical processing by a dicing saw, and etching processing such as dry etching. Of these, the laser processing is preferable.

レーザ加工や機械加工により任意の場所に形成されたコアへの光の入出力用端面に、反射率の高い反射面を形成することができる。高反射で光素子と光導波路間の光路変換および光結合が可能となる。  A reflective surface with high reflectivity can be formed on the input / output end face of the light to the core formed at an arbitrary place by laser processing or machining. High reflection enables optical path conversion and optical coupling between the optical element and the optical waveguide.

以下、本発明を図を用いて詳細に説明する。ここでは、光回路層としてポリイミド光導波路、電気配線層として銅張ポリイミドフィルムを例に挙げて説明するが、光導波路および電気配線板の材料としてポリイミド以外の樹脂を用いることももちろん可能である。また、光電気混載基板として光導波路層と電気配線板層とが積層している構造だけでなく、光導波路に直接電気配線が施されている場合や、更には、光導波路単体の場合も可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. Here, a polyimide optical waveguide will be described as an example of the optical circuit layer and a copper-clad polyimide film will be described as an example of the electrical wiring layer, but it is of course possible to use a resin other than polyimide as a material for the optical waveguide and the electrical wiring board. In addition to a structure in which an optical waveguide layer and an electrical wiring board layer are laminated as an opto-electric hybrid board, it is possible to have direct electrical wiring on the optical waveguide, or even a single optical waveguide It is.

図1に端面を45度に加工したマルチの光導波路、図2に導波路面内に45度で穴をあけて45度端面を加工した光導波路を示す。これらの光導波路は、公知のフォトリソグラフィとドライエッチング技術によって作製した。まず、クラッド1となるポリイミドの前駆体であるポリアミド酸溶液をシリコンウェハなどの基板上にコートする。その後、加熱イミド化する。続いてコア2となるポリイミドの前駆体であるポリアミド酸溶液をシリコンウェハなどの基板上にコートする。その後、加熱イミド化する。フォトリソグラフィと酸素プラズマエッチングによって、コアパターンを形成する。次に、上からクラッド1を覆うことによって、埋め込み型の光導波路を作製する。   FIG. 1 shows a multiple optical waveguide whose end face is processed at 45 degrees, and FIG. 2 shows an optical waveguide whose end face is processed by making a hole at 45 degrees in the waveguide plane. These optical waveguides were produced by known photolithography and dry etching techniques. First, a polyamide acid solution, which is a polyimide precursor to be the cladding 1, is coated on a substrate such as a silicon wafer. Thereafter, it is heated and imidized. Subsequently, a polyamic acid solution, which is a polyimide precursor serving as the core 2, is coated on a substrate such as a silicon wafer. Thereafter, it is heated and imidized. A core pattern is formed by photolithography and oxygen plasma etching. Next, a buried optical waveguide is manufactured by covering the cladding 1 from above.

図1において、複数のコア2はクラッド1に埋め込まれており、端面はダイシングソーなどによって45度に切断されて反射面3が形成されている。図2は光導波路のコア2の途中をレーザ照射によって穴4をあけて切断したものである。レーザを45度傾けて照射することにより、クラッド1およびコア2に45度傾斜した反射面3を形成している。図2の場合は、反射面は任意の場所、任意のサイズに加工することが可能である。   In FIG. 1, a plurality of cores 2 are embedded in a clad 1, and end surfaces are cut at 45 degrees by a dicing saw or the like to form a reflecting surface 3. FIG. 2 is a diagram in which a hole 4 is cut in the middle of the core 2 of the optical waveguide by laser irradiation. By irradiating the laser at an angle of 45 degrees, the reflecting surface 3 inclined at an angle of 45 degrees is formed on the clad 1 and the core 2. In the case of FIG. 2, the reflecting surface can be processed into an arbitrary place and an arbitrary size.

ダイシング加工したときの加工面の平均粗さRaは0.1μm、エキシマレーザ加工を用いたときの加工面平均粗さRaは0.2μmであった。傾斜した端面の平均粗さは、レーザ顕微鏡や共焦点顕微鏡などで測定することができる。それら装置として、例えば、キーエンス社製VK-9500やレーザテック社製HD100DやOPTELICS C130などがある。コア付近の凹凸をスキャニングし、解析ソフトなどを用いて、JIS B0601-1994で定められている平均粗さRaを算出することができる。測定面が斜面であるために、必要であれば角度補正を行う。   The average roughness Ra of the machined surface when dicing was performed was 0.1 μm, and the average roughness Ra of the machined surface when using excimer laser machining was 0.2 μm. The average roughness of the inclined end face can be measured with a laser microscope or a confocal microscope. Examples of such devices include VK-9500 manufactured by Keyence, HD100D manufactured by Lasertec, and OPTELICS C130. The average roughness Ra defined by JIS B0601-1994 can be calculated by scanning unevenness in the vicinity of the core and using analysis software or the like. Since the measurement surface is a slope, angle correction is performed if necessary.

光導波路単体ではなく、光導波路に直接電気配線層が形成されているもの、光導波路と電気配線層が積層されている構造に対しても、このように微小鏡を形成することは可能である。例えば、ポリイミド光導波路を挟む形で、二枚の銅張ポリイミドフィルムを、接着層を用い熱プレスによって積層する。その後、光入出力部にダイシング加工やレーザ加工によって積層体に穴をあけて、コアを切断した断面を微小反射鏡として形成する。   It is possible to form a micromirror in this way not only for a single optical waveguide but also for a structure in which an electrical wiring layer is formed directly on the optical waveguide or a structure in which the optical waveguide and the electrical wiring layer are laminated. . For example, two copper-clad polyimide films are laminated by hot pressing using an adhesive layer so as to sandwich a polyimide optical waveguide. Thereafter, a hole is made in the laminated body by dicing processing or laser processing in the light input / output portion, and a cross section obtained by cutting the core is formed as a minute reflecting mirror.

このとき、微小反射鏡面の粗さRaは、ダイシング加工直後で0.1μm、エキシマレーザ加工で0.2μmであった。波長850nmの光を反射させる場合、この粗さでは散乱損失が問題になる場合がある。散乱損失を低減するためには、粗さを低減する必要がある。そのために、反射端面に樹脂層をコーティングする。光導波路との密着性を高めるためには、例えば光導波路の材料がフッ素化ポリイミドの場合、樹脂層の材料はフッ素を含まないポリイミドやエポキシ樹脂が好ましい。樹脂をコーティングした後の反射角度変化を抑えるために、樹脂層の厚さは均一であることが好ましい。均一さの程度として、コアと前記反射面で形成される光路を含む仮想面内において、前記コア端面と樹脂層の外表面のなす角度が2度以下であることが好ましい。この角度は樹脂層を塗布する前後のコア端面箇所をレーザ顕微鏡で測定してそれぞれの傾斜角を求めて、その差として求めることができる。また厚さの均一性を得るために、樹脂層の厚さは2μm以下、好ましくは1μm以下がさらに好ましい。   At this time, the roughness Ra of the minute reflecting mirror surface was 0.1 μm immediately after dicing and 0.2 μm by excimer laser processing. When reflecting light having a wavelength of 850 nm, this roughness may cause scattering loss. In order to reduce scattering loss, it is necessary to reduce roughness. For this purpose, a resin layer is coated on the reflection end face. In order to improve the adhesion to the optical waveguide, for example, when the material of the optical waveguide is fluorinated polyimide, the material of the resin layer is preferably polyimide or epoxy resin that does not contain fluorine. In order to suppress a change in the reflection angle after coating the resin, the thickness of the resin layer is preferably uniform. As the degree of uniformity, it is preferable that an angle formed by the end surface of the core and the outer surface of the resin layer is 2 degrees or less in a virtual plane including an optical path formed by the core and the reflection surface. This angle can be obtained as a difference between the core end face portions before and after applying the resin layer measured with a laser microscope to obtain respective inclination angles. In order to obtain a uniform thickness, the thickness of the resin layer is 2 μm or less, preferably 1 μm or less.

これらの条件を満たす樹脂層は、コア端面が傾斜している場合であっても、光導波路に樹脂の前駆体溶液を通常のスピンコーティングで塗布することによりコア端面にも樹脂溶液が塗布され、その後必要により加熱固化することにより得ることができる。   The resin layer that satisfies these conditions is applied to the core end surface by applying the resin precursor solution to the optical waveguide by ordinary spin coating, even when the core end surface is inclined, Thereafter, it can be obtained by heating and solidifying if necessary.

フッ素を含まないポリアミド酸溶液を加熱イミド化後1μmになる条件で、溶液をスピンコートし、熱処理した。このようにして、反射膜の上に樹脂層が付いた微小反射鏡が形成された。この樹脂を塗布する前後での端面の角度変化は1°以下であった。微小反射鏡への樹脂層のコーティング後の平均粗さRaは、ダイシング加工した面で0.03μm、エキシマレーザ加工した面で0.06μmとなり加工面の平滑化が可能となった。波長850nmの光を光導波路に挿入し、エキシマレーザ加工したコア端面の反射鏡の反射率の変化を測定したところ、樹脂層コート前で82%であったものが、樹脂層コート後で95%まで向上した。   The solution was spin-coated and heat-treated under the condition that the polyamic acid solution containing no fluorine was heated to imidize to 1 μm. In this way, a micromirror having a resin layer on the reflective film was formed. The angle change of the end face before and after applying this resin was 1 ° or less. The average roughness Ra after coating of the resin layer on the micro-reflecting mirror was 0.03 μm on the dicing surface and 0.06 μm on the excimer laser processing surface, making it possible to smooth the processing surface. When the change in the reflectance of the reflector on the core end face subjected to excimer laser processing was measured by inserting light with a wavelength of 850 nm into the optical waveguide, it was 82% before the resin layer coating and 95% after the resin layer coating. Improved.

樹脂層の外表面である反射鏡面の平均粗さは光導波路の伝搬光の1/9以下、好ましくは1/10にすることが好ましい。例えば、850nmの波長の伝播光に対しては、0.1μm以下、このましくは0.08μm以下となる。これによりより高い反射率が得られる。もう一層反射率を高めるために、この樹脂層の外表面に金属膜または誘電体多層膜をさらに設けてもよい。   The average roughness of the reflecting mirror surface, which is the outer surface of the resin layer, is preferably 1/9 or less, more preferably 1/10 of the propagation light of the optical waveguide. For example, for propagating light having a wavelength of 850 nm, it is 0.1 μm or less, preferably 0.08 μm or less. Thereby, a higher reflectance can be obtained. In order to further increase the reflectance, a metal film or a dielectric multilayer film may be further provided on the outer surface of the resin layer.

図3に、クラッド1とコア2からなる光導波路の加工端面11に第2の樹脂層12が形成された光導波路の断面を示す。樹脂層12の外表面13が反射面となる。図4にはその後、樹脂層12の外表面にさらに金属膜あるいは誘電体多層膜21を形成した光導波路の断面を示す。金属膜あるいは誘電体多層膜として、例えば金をスパッタにより約0.15μm厚コーティングした。このとき、微小反射鏡面の平滑化のための樹脂層12に金属との密着性の有する樹脂を用いたことにより、金属との密着性の優れた金属反射膜が形成できる。一般に、金と光導波路材料の1つであるフッ素化ポリイミドとの密着性は良くない。フッ素化ポリイミド光導波路に直接金薄膜を蒸着した後、JIS Z 1522に規定されたセロハンテープを金蒸着部に指圧によって圧着し、約10秒後、素早くテープを引き剥がし、目視によって金蒸着膜が剥がれるかどうか確認したところ、金蒸着膜が部分的に剥がれてしまった。しかしながら、樹脂層にフッ素を含まないポリイミドをコートしたところ、同様のテープテストにおいて、剥がれのない良好な反射鏡が形成できた。   FIG. 3 shows a cross section of the optical waveguide in which the second resin layer 12 is formed on the processed end surface 11 of the optical waveguide composed of the clad 1 and the core 2. The outer surface 13 of the resin layer 12 becomes a reflective surface. FIG. 4 shows a cross section of an optical waveguide in which a metal film or a dielectric multilayer film 21 is further formed on the outer surface of the resin layer 12 thereafter. As a metal film or a dielectric multilayer film, for example, gold was coated by sputtering to a thickness of about 0.15 μm. At this time, by using a resin having adhesiveness to the metal for the resin layer 12 for smoothing the minute reflecting mirror surface, a metal reflective film having excellent adhesiveness to the metal can be formed. In general, adhesion between gold and fluorinated polyimide which is one of optical waveguide materials is not good. After depositing the gold thin film directly on the fluorinated polyimide optical waveguide, the cellophane tape specified in JIS Z 1522 is pressure-bonded to the gold deposition part by finger pressure, and after about 10 seconds, the tape is quickly peeled off, and the gold deposited film is visually observed. When it was confirmed whether it peeled off, the gold vapor deposition film was partially peeled off. However, when a polyimide containing no fluorine was coated on the resin layer, a good reflecting mirror without peeling was formed in the same tape test.

この光導波路を各種用途に用いる時に、金属膜や誘電体多層膜などが剥き出しになっていると、ハンドリングなどのときに傷付いてしまう可能性がある。図5は光導波路の加工端面11に第2の樹脂層12、金属膜あるいは誘電体多層膜21、第3の樹脂層31を順次コートした微小反射鏡付光導波路の断面を示す。第3の樹脂は、金属膜や誘電体多層膜を傷などから保護する。   When this optical waveguide is used in various applications, if a metal film, a dielectric multilayer film, or the like is exposed, there is a possibility that it will be damaged during handling. FIG. 5 shows a cross section of the optical waveguide with a micro-reflector in which the processed end face 11 of the optical waveguide is sequentially coated with the second resin layer 12, the metal film or dielectric multilayer film 21, and the third resin layer 31. The third resin protects the metal film and the dielectric multilayer film from scratches.

これらの光導波路を電気プリント配線基板に貼り合わせて光電気混載基板を得ることができる。すなわちプリント配線基板で光の入出力を行う箇所に予め貫通穴をあけておき、端面の加工を行う前の光導波路をプリント配線基板に貼り合わせる。プリント配線基板に予め設けた穴の近傍をねらって基板面に対して約45°傾けてレーザビームを照射し、基板に新たな穴と光導波路のコアを切断して端面を形成する。そして樹脂をスピンコートして硬化することにより光電気混載基板が得られる。   These optical waveguides can be bonded to an electric printed wiring board to obtain an opto-electric hybrid board. That is, a through hole is made in advance at a place where light is input and output on the printed wiring board, and the optical waveguide before the end face is processed is bonded to the printed wiring board. An end face is formed by cutting a new hole and the core of the optical waveguide on the substrate by irradiating a laser beam at an angle of about 45 ° with respect to the surface of the printed wiring board in the vicinity of the hole provided in advance. Then, an opto-electric hybrid board is obtained by spin-coating and curing the resin.

引き続いて、いくつかの実施例を用いて本発明を更に詳しく説明する。なお、分子構造の異なる種々の高分子を用いることにより数限りない本発明の光電気混載基板および光導波路が得られることは明らかである。したがって、本発明はこれらの実施例のみに限定されるものではない。   Subsequently, the present invention will be described in more detail using several examples. It is obvious that an unlimited number of opto-electric hybrid boards and optical waveguides according to the present invention can be obtained by using various polymers having different molecular structures. Therefore, the present invention is not limited only to these examples.

(実施例1)
5インチシリコンウェハ上に2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)と2,2−ビス(トリフルオロメチル)−4, 4' −ジアミノビフェニル(TFDB)から形成されるポリイミドをクラッドとして、6FDAとTFDBおよび6FDAと4, 4' −オキシジアニリン(ODA)の共重合ポリアミド酸溶液から形成されるポリイミドをコアとして、フォトリソグラフィとドライエッチング技術により埋め込み型光導波路フィルムを作製した。コア高さ25μm、幅40μmとした。比屈折率差は1.1%とした。その後、このシリコンウェハ上の光導波路を5wt%のフッ酸水溶液中に浸漬させ、シリコンウェハから光導波路を剥し、フィルム光導波路を作製した。フッ素化ポリイミド光導波路のフィルム厚は70μmであった。この光導波路を長さ55mm、幅40mmにカッターで切断した。その後、光導波路片側端面が45度に、反対側の端面を垂直になるようダイシングによって切断加工した。このとき、45度端面の平均粗さは0.1μmであった。次に、オキシジフタル酸ニ無水物(ODPA)とアミノフェノキシベンゼン(APB)からなるポリイミドである熱可塑性ポリイミド樹脂を加工面にスピンコーティングした。すなわちポリアミド酸溶液を加熱イミド化した後の厚さが1μmとなる条件でスピンコートして、熱処理した。45度端面の粗さは、0.03μmであった。垂直端面から光ファイバにて波長850nmの光を光導波路に挿入し、45度端面で反射してきた光をレンズと受光素子の組合せで光検出したところ、反射率はコーティング前が88%であったのに対して、コーティングすることによって、1μm厚条件の場合97%へ向上した。レーザ顕微鏡での測定によると、45度端面の樹脂コート前後の面の相互の角度は1度以下であった。
(Example 1)
2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis (trifluoromethyl) -4,4'-diaminobiphenyl (TFDB) on a 5-inch silicon wafer ) And a polyimide formed from a copolymerized polyamic acid solution of 6FDA and TFDB and 6FDA and 4,4′-oxydianiline (ODA) as a core and embedded by photolithography and dry etching technology Type optical waveguide film was prepared. The core height was 25 μm and the width was 40 μm. The relative refractive index difference was 1.1%. Thereafter, the optical waveguide on the silicon wafer was immersed in a 5 wt% hydrofluoric acid aqueous solution, and the optical waveguide was peeled off from the silicon wafer to produce a film optical waveguide. The film thickness of the fluorinated polyimide optical waveguide was 70 μm. This optical waveguide was cut to a length of 55 mm and a width of 40 mm with a cutter. Thereafter, the optical waveguide was cut by dicing so that one end face of the optical waveguide was 45 degrees and the other end face was vertical. At this time, the average roughness of the 45 ° end face was 0.1 μm. Next, a thermoplastic polyimide resin, which is a polyimide composed of oxydiphthalic dianhydride (ODPA) and aminophenoxybenzene (APB), was spin-coated on the processed surface. That is, the polyamic acid solution was spin-coated under the condition that the thickness after heat imidization was 1 μm and heat-treated. The roughness of the 45 ° end face was 0.03 μm. When light having a wavelength of 850 nm was inserted into the optical waveguide from the vertical end face using an optical fiber, and the light reflected by the 45 degree end face was detected by a combination of a lens and a light receiving element, the reflectance was 88% before coating. On the other hand, the coating improved to 97% when the thickness was 1 μm. According to the measurement with a laser microscope, the angle between the surfaces of the 45 ° end face before and after the resin coating was 1 ° or less.

(実施例2)
45度端面にスピンコートする層の厚さを0.5μmとなる条件にした以外は、実施例1と同じようにしたところ、45度端面の平均粗さは0.06μmであった。そして反射率はコート前の88%が95%へ向上した。
(Example 2)
The average roughness of the 45 ° end face was 0.06 μm, except that the thickness of the layer to be spin coated on the 45 ° end face was 0.5 μm. The reflectance was improved from 88% before coating to 95%.

(実施例3)
実施例1と同様に、5インチシリコンウェハ上に6FDAとTFDBから形成されるポリイミドをクラッドとして、6FDAとTFDBおよび6FDAとODAの共重合ポリアミド酸溶液から形成されるポリイミドをコアとして、フォトリソグラフィとドライエッチング技術により埋め込み型光導波路フィルムを作製した。コア高さ25μm、幅40μmとした。比屈折率差は1.1%とした。その後、このシリコンウェハ上の光導波路を5wt%のフッ酸水溶液中に浸漬させ、シリコンウェハから光導波路を剥し、フィルム光導波路を作製した。フッ素化ポリイミド光導波路のフィルム厚は70μmであった。この光導波路を長さ55mm、幅40mmにカッターで切断した。その後、光導波路片側端面を45度面に、反対側の端面を垂直にダイシング加工によって切断した。このとき、45度端面の平均粗さは0.1μmであった。次に、オキシジフタル酸ニ無水物(ODPA)とアミノフェノキシベンゼン(APB)からなるポリイミドからなる熱可塑性ポリイミド樹脂を加工面にスピンコート法によりコーティングした。すなわちポリアミド酸溶液を加熱イミド化後約1μmの条件でスピンコートし、熱処理した。45端面の平均粗さは、0.03μmであった。次に、スパッタ装置にて、金を0.15μm厚蒸着した。このとき、端面付近のみスパッタされるように、マスクを施した。反射率は実施例1と同様97%であった。JIS Z 1522に規定されたセロハンテープを金蒸着部に指圧によって圧着し、約10秒後、素早くテープを引き剥がし、目視によって金蒸着膜が剥がれるかどうか確認したところ、金薄膜は剥がれなかった。
(Example 3)
As in Example 1, a polyimide formed from 6FDA and TFDB on a 5-inch silicon wafer is used as a cladding, and a polyimide formed from a copolymerized polyamic acid solution of 6FDA and TFDB and 6FDA and ODA is used as a core. An embedded optical waveguide film was produced by a dry etching technique. The core height was 25 μm and the width was 40 μm. The relative refractive index difference was 1.1%. Thereafter, the optical waveguide on the silicon wafer was immersed in a 5 wt% hydrofluoric acid aqueous solution, and the optical waveguide was peeled off from the silicon wafer to produce a film optical waveguide. The film thickness of the fluorinated polyimide optical waveguide was 70 μm. This optical waveguide was cut to a length of 55 mm and a width of 40 mm with a cutter. Thereafter, the end face on one side of the optical waveguide was cut into a 45-degree face, and the end face on the opposite side was cut by dicing. At this time, the average roughness of the 45 ° end face was 0.1 μm. Next, a thermoplastic polyimide resin composed of polyimide composed of oxydiphthalic dianhydride (ODPA) and aminophenoxybenzene (APB) was coated on the processed surface by spin coating. That is, the polyamic acid solution was spin-coated under the condition of about 1 μm after heat imidization and heat-treated. The average roughness of the 45 end faces was 0.03 μm. Next, gold was deposited in a thickness of 0.15 μm using a sputtering apparatus. At this time, a mask was applied so that only the vicinity of the end face was sputtered. The reflectance was 97% as in Example 1. The cellophane tape specified in JIS Z 1522 was pressure-bonded to the gold vapor-deposited part by finger pressure, and after about 10 seconds, the tape was quickly peeled off. When the gold vapor-deposited film was checked by visual observation, the gold thin film was not peeled off.

(実施例4)
実施例1と同様にフッ素化ポリイミド光導波路を作製し、KrF(波長248nm)エキシマレーザ加工により、導波路一本に対して、一箇所45度の端面を形成した。導波路のもう一方の端面はダイシング加工によって、垂直に加工した。エキシマレーザの照射条件は、総照射エネルギー0.4J/パルス、エネルギー密度は1J/(cm2・パルス)、繰り返し周波数200パルス/秒で2秒間とした。加工面積は、導波路面で200μm平方とした。このとき、45度端面の平均粗さは0.2μmであった。次に、オキシジフタル酸ニ無水物(ODPA)とアミノフェノキシベンゼン(APB)からなるポリイミドからなる熱可塑性ポリイミド樹脂を加工面にコーティングした。ポリアミド酸溶液を加熱イミド化後約1μmの条件でスピンコートし、熱処理した。このとき、斜め加工面の粗さは、0.06μmとなった。次に、スパッタ装置にて、金を0.15μm厚コートした。このとき、端面付近のみスパッタされるように、マスクを施した。さらに、オキシジフタル酸ニ無水物(ODPA)とアミノフェノキシベンゼン(APB)からなるポリイミドからなる熱可塑性ポリイミド樹脂を加工面にコーティングした。ポリアミド酸溶液を加熱イミド化後約1μmの条件でスピンコートし、熱処理した。
(Example 4)
A fluorinated polyimide optical waveguide was produced in the same manner as in Example 1, and an end face of 45 ° was formed at one location for one waveguide by KrF (wavelength 248 nm) excimer laser processing. The other end face of the waveguide was vertically processed by dicing. Excimer laser irradiation conditions were a total irradiation energy of 0.4 J / pulse, an energy density of 1 J / (cm 2 · pulse), and a repetition rate of 200 pulses / second for 2 seconds. The processing area was 200 μm square on the waveguide surface. At this time, the average roughness of the 45 ° end face was 0.2 μm. Next, a thermoplastic polyimide resin composed of polyimide composed of oxydiphthalic dianhydride (ODPA) and aminophenoxybenzene (APB) was coated on the processed surface. The polyamic acid solution was spin-coated under the condition of about 1 μm after heat imidization and heat-treated. At this time, the roughness of the obliquely processed surface was 0.06 μm. Next, gold was coated to a thickness of 0.15 μm using a sputtering apparatus. At this time, a mask was applied so that only the vicinity of the end face was sputtered. Further, a thermoplastic polyimide resin composed of polyimide composed of oxydiphthalic dianhydride (ODPA) and aminophenoxybenzene (APB) was coated on the processed surface. The polyamic acid solution was spin-coated under the condition of about 1 μm after heat imidization and heat-treated.

垂直端面から光ファイバにて波長850nmの光を光導波路へ挿入し、45度面で反射してきた光をレンズと受光素子の組合せで光検出したところ、反射率はコーティング前が82%であったのに対して、コーティングすることによって、95%まで向上した。45度端面の樹脂コート前後の面相互の角度は1度以下であった。   When light having a wavelength of 850 nm was inserted into the optical waveguide from the vertical end face using an optical fiber, and the light reflected by the 45 degree plane was detected by a combination of a lens and a light receiving element, the reflectance was 82% before coating. On the other hand, it was improved to 95% by coating. The angle between the surfaces of the 45 ° end face before and after the resin coating was 1 ° or less.

光導波路の端面が形成された一例を示す図。The figure which shows an example in which the end surface of the optical waveguide was formed. 光導波路の端面が形成された一例を示す図。The figure which shows an example in which the end surface of the optical waveguide was formed. 本発明のコア端面に樹脂層が形成されている一例を示す断面図Sectional drawing which shows an example by which the resin layer is formed in the core end surface of this invention 本発明のコア端面の樹脂層上にさらに反射層が形成された一例を示す断面図。Sectional drawing which shows an example in which the reflection layer was further formed on the resin layer of the core end surface of this invention. 反射層の上に樹脂層を設けた断面図。Sectional drawing which provided the resin layer on the reflection layer.

符号の説明Explanation of symbols

1:クラッド、 2:コア、 3:反射面、 4:穴
11:加工端面、 12:樹脂層、 13:外表面
21:金属膜あるいは誘電体多層膜、 31:第3の樹脂層
1: Cladding 2: Core 3: Reflecting surface 4: Hole 11: Processed end surface 12: Resin layer 13: Outer surface 21: Metal film or dielectric multilayer film 31: Third resin layer

Claims (5)

第1の樹脂からなるコアとクラッドからなる光導波路であって、コアが切断されて形成されたコア端面の表面に、第1の樹脂と屈折率が等しい第2の樹脂層が成膜されて反射面を形成し、第2の樹脂層の厚さが0.05μm〜5μmであることを特徴とする光導波路。 An optical waveguide comprising a core made of a first resin and a clad, wherein a second resin layer having a refractive index equal to that of the first resin is formed on the surface of the core end surface formed by cutting the core. An optical waveguide having a reflective surface and a thickness of the second resin layer of 0.05 μm to 5 μm. コアと前記反射面で形成される光路を含む面内において、前記コア端面と第2の樹脂の外表面のなす最大角度が2度以下である請求項1に記載の光導波路。 2. The optical waveguide according to claim 1, wherein a maximum angle formed by the end surface of the core and the outer surface of the second resin is 2 degrees or less in a plane including an optical path formed by the core and the reflection surface. 第2の樹脂の該外表面の平均粗さが伝播波長の1/9以下である請求項1または請求項2に記載の光導波路。 The optical waveguide according to claim 1 or 2, wherein an average roughness of the outer surface of the second resin is 1/9 or less of a propagation wavelength. 前記第2の樹脂層の表面に金属膜あるいは誘電体多層膜からなる反射膜が少なくとも1層形成されている請求項1乃至請求項3に記載の光導波路。 4. The optical waveguide according to claim 1, wherein at least one reflective film made of a metal film or a dielectric multilayer film is formed on the surface of the second resin layer. 5. 請求項1乃至請求項4に記載の光導波路を備えたことを特徴とする光電気混載基板。

An opto-electric hybrid board comprising the optical waveguide according to claim 1.

JP2004380679A 2004-12-28 2004-12-28 Optical waveguide and opto-electric hybrid substrate having the same Pending JP2006184773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004380679A JP2006184773A (en) 2004-12-28 2004-12-28 Optical waveguide and opto-electric hybrid substrate having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380679A JP2006184773A (en) 2004-12-28 2004-12-28 Optical waveguide and opto-electric hybrid substrate having the same

Publications (1)

Publication Number Publication Date
JP2006184773A true JP2006184773A (en) 2006-07-13

Family

ID=36737914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380679A Pending JP2006184773A (en) 2004-12-28 2004-12-28 Optical waveguide and opto-electric hybrid substrate having the same

Country Status (1)

Country Link
JP (1) JP2006184773A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293108A (en) * 2006-04-26 2007-11-08 Mitsumi Electric Co Ltd Optical apparatus and its manufacturing method
JP2009237544A (en) * 2008-03-07 2009-10-15 Toray Ind Inc Optical waveguide film and method of manufacturing the same
JP2010113325A (en) * 2008-10-09 2010-05-20 Hitachi Cable Ltd Mirror-embedded light transmission medium and fabrication method of same
US9444424B2 (en) 2013-02-15 2016-09-13 Murata Manufacturing Co., Ltd. Polar-type low pass filter and demultiplexer equipped therewith
JP6183531B1 (en) * 2016-11-24 2017-08-23 住友ベークライト株式会社 Optical waveguide resin film manufacturing method and optical component manufacturing method
JP6183530B1 (en) * 2016-11-24 2017-08-23 住友ベークライト株式会社 Optical waveguide film and optical component
WO2018062042A1 (en) * 2016-09-30 2018-04-05 住友化学株式会社 Optical film, laminated film utilizing same, and method of manufacturing optical film
US10637204B2 (en) 2016-07-28 2020-04-28 Mitsubishi Electric Corporation Planar waveguide laser device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164929A (en) * 1991-12-17 1993-06-29 Nippon Telegr & Teleph Corp <Ntt> Production of polyimide optical waveguide
WO1998037445A1 (en) * 1997-02-19 1998-08-27 Hitachi, Ltd. Polymer optical waveguide, optical integrated circuit, optical module and optical communication apparatus
JP2000321457A (en) * 1999-05-06 2000-11-24 Mitsui Chemicals Inc Manufacture of polyimide optical waveguide
JP2001074949A (en) * 1999-09-05 2001-03-23 Hitachi Chem Co Ltd Optical waveguide made of resin with protective layer, its production and optical parts
JP2001108854A (en) * 1999-07-30 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> Polymer optical waveguide
JP2001194540A (en) * 2000-01-11 2001-07-19 Nippon Telegr & Teleph Corp <Ntt> Optical path switching device and its manufacturing method
JP2001242332A (en) * 2000-03-01 2001-09-07 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide and optical waveguide module using it
WO2002097522A1 (en) * 2001-05-29 2002-12-05 Hitachi Chemical Co.,Ltd. Electrode structure
JP2003172837A (en) * 2001-12-05 2003-06-20 Mitsui Chemicals Inc Optical waveguide element with lens and method of manufacturing the same
JP2003302544A (en) * 2002-04-10 2003-10-24 Mitsui Chemicals Inc Polymer optical waveguide element with function of converting optical path and method for manufacturing the same
JP2003315573A (en) * 2002-04-26 2003-11-06 Central Glass Co Ltd Resin optical waveguide and method for manufacturing the same
JP2004133103A (en) * 2002-10-09 2004-04-30 Sony Corp Polymer optical waveguide and its manufacturing method
JP2004341454A (en) * 2002-05-28 2004-12-02 Matsushita Electric Works Ltd Manufacturing method of optical circuit-electric circuit consolidation substrate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164929A (en) * 1991-12-17 1993-06-29 Nippon Telegr & Teleph Corp <Ntt> Production of polyimide optical waveguide
WO1998037445A1 (en) * 1997-02-19 1998-08-27 Hitachi, Ltd. Polymer optical waveguide, optical integrated circuit, optical module and optical communication apparatus
JP2000321457A (en) * 1999-05-06 2000-11-24 Mitsui Chemicals Inc Manufacture of polyimide optical waveguide
JP2001108854A (en) * 1999-07-30 2001-04-20 Nippon Telegr & Teleph Corp <Ntt> Polymer optical waveguide
JP2001074949A (en) * 1999-09-05 2001-03-23 Hitachi Chem Co Ltd Optical waveguide made of resin with protective layer, its production and optical parts
JP2001194540A (en) * 2000-01-11 2001-07-19 Nippon Telegr & Teleph Corp <Ntt> Optical path switching device and its manufacturing method
JP2001242332A (en) * 2000-03-01 2001-09-07 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide and optical waveguide module using it
WO2002097522A1 (en) * 2001-05-29 2002-12-05 Hitachi Chemical Co.,Ltd. Electrode structure
JP2003172837A (en) * 2001-12-05 2003-06-20 Mitsui Chemicals Inc Optical waveguide element with lens and method of manufacturing the same
JP2003302544A (en) * 2002-04-10 2003-10-24 Mitsui Chemicals Inc Polymer optical waveguide element with function of converting optical path and method for manufacturing the same
JP2003315573A (en) * 2002-04-26 2003-11-06 Central Glass Co Ltd Resin optical waveguide and method for manufacturing the same
JP2004341454A (en) * 2002-05-28 2004-12-02 Matsushita Electric Works Ltd Manufacturing method of optical circuit-electric circuit consolidation substrate
JP2004133103A (en) * 2002-10-09 2004-04-30 Sony Corp Polymer optical waveguide and its manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007293108A (en) * 2006-04-26 2007-11-08 Mitsumi Electric Co Ltd Optical apparatus and its manufacturing method
WO2007125716A1 (en) * 2006-04-26 2007-11-08 Mitsumi Electric Co., Ltd. Optical device and optical device manufacturing method
JP2009237544A (en) * 2008-03-07 2009-10-15 Toray Ind Inc Optical waveguide film and method of manufacturing the same
JP2010113325A (en) * 2008-10-09 2010-05-20 Hitachi Cable Ltd Mirror-embedded light transmission medium and fabrication method of same
US8335415B2 (en) 2008-10-09 2012-12-18 Hitachi Cable, Ltd. Mirror-embedded light transmission medium and fabrication method of same
US9444424B2 (en) 2013-02-15 2016-09-13 Murata Manufacturing Co., Ltd. Polar-type low pass filter and demultiplexer equipped therewith
US10637204B2 (en) 2016-07-28 2020-04-28 Mitsubishi Electric Corporation Planar waveguide laser device
WO2018062042A1 (en) * 2016-09-30 2018-04-05 住友化学株式会社 Optical film, laminated film utilizing same, and method of manufacturing optical film
JP2018059069A (en) * 2016-09-30 2018-04-12 住友化学株式会社 Optical film and laminated film using the same, and production method of optical film
CN109791244A (en) * 2016-09-30 2019-05-21 住友化学株式会社 Optical film and using its stacked film and optical film manufacturing method
CN109791244B (en) * 2016-09-30 2020-09-11 住友化学株式会社 Optical film, laminated film using same, and method for producing optical film
JP7112838B2 (en) 2016-09-30 2022-08-04 住友化学株式会社 OPTICAL FILM, LAMINATED FILM USING THE SAME, AND OPTICAL FILM MANUFACTURING METHOD
JP6183530B1 (en) * 2016-11-24 2017-08-23 住友ベークライト株式会社 Optical waveguide film and optical component
JP2018084695A (en) * 2016-11-24 2018-05-31 住友ベークライト株式会社 Method for manufacturing optical waveguide resin film and method for manufacturing optical component
JP2018084694A (en) * 2016-11-24 2018-05-31 住友ベークライト株式会社 Optical waveguide film and optical component
JP6183531B1 (en) * 2016-11-24 2017-08-23 住友ベークライト株式会社 Optical waveguide resin film manufacturing method and optical component manufacturing method

Similar Documents

Publication Publication Date Title
JP2008293040A (en) Optical waveguide having micromirror formed by laser beam machining
KR100926395B1 (en) Optical waveguide film, method for manufacturing the film, optoelectrical hybrid film including the waveguide film, and electronic device
US7477809B1 (en) Photonic guiding device
JP4153007B2 (en) Optical wiring board and opto-electric hybrid board
US20110084047A1 (en) Methods For Fabrication Of Large Core Hollow Waveguides
JP2010113325A (en) Mirror-embedded light transmission medium and fabrication method of same
JP2005284248A (en) Optical waveguide having micromirror formed by laser beam machining
JP2006184773A (en) Optical waveguide and opto-electric hybrid substrate having the same
JP2001108853A (en) Optical wiring layer, opto-electric wiring board, and packaging substrate
JP2007094296A (en) Optical waveguide device and its manufacturing method
JP2000298217A (en) Optical-electric wiring substrate and manufacture therefor, and mounting substrate
JP2001281479A (en) High-polymer optical waveguide element and method for manufacturing the same
JP2006047764A (en) Projected optical waveguide, method of manufacturing the same and optoelectric hybrid substrate using the same
JP2004133103A (en) Polymer optical waveguide and its manufacturing method
JP4277840B2 (en) Manufacturing method of optical waveguide device
TWI766901B (en) Optoelectronic Hybrid Substrate
JP2003172837A (en) Optical waveguide element with lens and method of manufacturing the same
JP2012503784A (en) Polarization-maintaining large core hollow waveguide
JP2009103860A (en) Optical waveguide, and method for manufacturing the same
JP2003172836A (en) Optical waveguide element with optical path alternation function
JP2005128319A (en) Optical functional element and its manufacturing method
JP2001033640A (en) Optical waveguide
JP2003302544A (en) Polymer optical waveguide element with function of converting optical path and method for manufacturing the same
JP2006091500A (en) Optical waveguide board into which optical waveguide is engaged and optical and electric hybrid circuit board
JP3062345B2 (en) Multilayer optical waveguide interlayer coupling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090216

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330