JP2006183474A - Enclosed electric compressor and refrigeration cycle device - Google Patents

Enclosed electric compressor and refrigeration cycle device Download PDF

Info

Publication number
JP2006183474A
JP2006183474A JP2004374994A JP2004374994A JP2006183474A JP 2006183474 A JP2006183474 A JP 2006183474A JP 2004374994 A JP2004374994 A JP 2004374994A JP 2004374994 A JP2004374994 A JP 2004374994A JP 2006183474 A JP2006183474 A JP 2006183474A
Authority
JP
Japan
Prior art keywords
rotor
stator
electric compressor
iron core
hermetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004374994A
Other languages
Japanese (ja)
Inventor
Izumi Onoda
泉 小野田
Toshihiko Futami
俊彦 二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2004374994A priority Critical patent/JP2006183474A/en
Publication of JP2006183474A publication Critical patent/JP2006183474A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an enclosed electric compressor equipped with an outer rotor electric motor, suppressing the change in rotational speed by suppressing the winding wire resistance and current density and increasing the inertia moment of a rotor, and making a stable rotation which is small in runout of a rotary shaft and deflection by making the rotor's center of gravity closer to a copmression mechanism, and an refrigeration cycle device equipped with the enclosed electric compressor, enabling the improvement of refrigeration efficiency. <P>SOLUTION: The electric motor 4 and a compression mechanism 3 are housed in an enclosed case 1. The electric motor is provided with a stator 9 in which an iron core is formed by laminating a plurality of magnetic steel sheets, a plurality of slots 50 are provided radially from the center of the iron core, and the slots are wound by coil 52; and the rotor 10 arranged at the outer peripheral side of the stator, and composed of an permanent magnet M and the iron core T laminated by a plurality of magnetic steel sheets. The ratio (D/H) of the rotor iron core's outer diameter D to a lamination thickness H is set to equal to 2.0 or more (D≥2H). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スロットに巻線を施した固定子と、この固定子の外周側に配置される回転子とからなる電動機部を備えた密閉型電動圧縮機と、この密閉型電動圧縮機を備えた冷凍サイクル装置に関する。   The present invention includes a hermetic electric compressor including an electric motor unit including a stator having a winding wound in a slot and a rotor disposed on an outer peripheral side of the stator, and the hermetic electric compressor. The present invention relates to a refrigeration cycle apparatus.

密閉ケース内に、電動機部および圧縮機構部を回転軸を介して連結してなる電動圧縮機本体を収納する密閉型電動圧縮機が、冷凍サイクル回路を構成する冷凍サイクル装置に用いられている。上記電動機部は、従来、電磁鋼板を複数枚積層させてなる固定子を密閉ケース内面に取付け、この固定子の内周面と間隙を存して永久磁石と鉄心とからなる回転子を対向させた、いわゆるインナーロータータイプのものが用いられている。上記固定子には巻線が施されていて、巻線方法としては、固定子に形成される歯部を絶縁体で覆い、この絶縁体上に巻線を巻回する集中巻き方式と、異なるスロット間に亘って巻線を施す分布巻き方式とがある。   A hermetic type electric compressor that houses an electric compressor body in which an electric motor part and a compression mechanism part are connected via a rotating shaft in a hermetic case is used in a refrigeration cycle apparatus that constitutes a refrigeration cycle circuit. Conventionally, the motor section has a stator in which a plurality of electromagnetic steel plates are laminated and attached to the inner surface of the sealed case, and a rotor composed of a permanent magnet and an iron core is opposed to the inner peripheral surface of the stator and a gap. The so-called inner rotor type is also used. The stator is wound with a winding, and the winding method is different from the concentrated winding method in which the teeth formed on the stator are covered with an insulator and the winding is wound on the insulator. There is a distributed winding method in which winding is performed between slots.

これに対して上記回転子を構成する永久磁石は、はじめフェライト磁石が用いられていた。このフェライト磁石の特性は、磁力が弱いことにあり、配置スペースを拡大することなく必要な磁力を確保するために、回転子自体を軸方向に長く延ばすことで対処していた。したがって、回転子の重量が大で慣性モーメントが大となり、圧縮機構部の1回転中の負荷トルク変動が大きい場合にも、いわゆる滑らかな回転を確保することができる。その反面、圧縮機の大型化を招くとともに、この圧縮機を配置する室外機の重量増大に繋がる不具合がある。   On the other hand, as the permanent magnet constituting the rotor, a ferrite magnet was first used. The characteristic of this ferrite magnet is that the magnetic force is weak, and in order to secure the necessary magnetic force without expanding the arrangement space, the rotor itself is extended long in the axial direction. Therefore, even when the weight of the rotor is large and the moment of inertia is large and the load torque fluctuation during one rotation of the compression mechanism is large, so-called smooth rotation can be ensured. On the other hand, there is a problem in that the size of the compressor is increased and the weight of the outdoor unit in which the compressor is arranged is increased.

近時、上記永久磁石はフェライト磁石に代って、より磁力が大である特性を備えた、希土類元素を含む磁石が多用される傾向にある。この種の磁石を用いることにより、フェライト磁石で構成される回転子よりも軸方向長さを短縮でき、軽量化する。具体的には、直径と軸方向長さとの比がほぼ1の構成が可能となる。したがって、圧縮機自体の高さ寸法も短縮するが、回転子の軽量化にともない慣性モーメントが小さくなって、圧縮機構部の1回転中の負荷トルク変動により回転ムラが生じ易い。   Recently, instead of ferrite magnets, magnets containing rare earth elements tending to be frequently used instead of ferrite magnets. By using this type of magnet, the axial length can be shortened and the weight can be reduced compared to a rotor composed of a ferrite magnet. Specifically, a configuration in which the ratio of the diameter to the axial length is approximately 1 is possible. Therefore, although the height of the compressor itself is shortened, the moment of inertia is reduced with the weight reduction of the rotor, and rotation unevenness is likely to occur due to load torque fluctuation during one rotation of the compression mechanism.

そこで、本出願人においては、[特許文献1]に、固定子の外周側に回転子を備えた、いわゆるアウターロータータイプの密閉型圧縮機を提案している。具体的には、上記回転子は、回転軸に取付けられる傘型に形成されるフレームに吊り下げられ、固定子は回転子の内側に位置し、圧縮機構部に取付け固定される。
上記[特許文献1]によれば、永久磁石と薄板の電磁鋼板を複数枚積層してなる回転子鉄心とで回転子を構成していて、回転子の直径が大となり、慣性モーメントの拡大化を図ることができて、低速度回転においても回転ムラがなく、円滑な回転駆動を確保できる。
特開2001−268832号公報
Therefore, the present applicant has proposed a so-called outer rotor type hermetic compressor including a rotor on the outer peripheral side of the stator in [Patent Document 1]. Specifically, the rotor is suspended from a frame formed in an umbrella shape attached to a rotating shaft, and the stator is positioned inside the rotor and is attached and fixed to the compression mechanism.
According to the above [Patent Document 1], a rotor is composed of a permanent magnet and a rotor core formed by laminating a plurality of thin electromagnetic steel sheets, the rotor diameter is increased, and the moment of inertia is increased. Therefore, there is no rotation unevenness even at low speed rotation, and smooth rotation drive can be ensured.
JP 2001-268832 A

ところで、上記したインナーロータータイプの電動機部を基礎として、[特許文献1]に示すようなアウターロータータイプの電動機部に変更するには、適切な条件を整えなければならない。
たとえば、インナーロータータイプの電動機部における鉄心(固定子鉄心および回転子鉄心)の積厚と外径を同一とし、すなわち電動機部の体積を変えずに、磁路断面積(回転子鉄心幅×積厚)をほぼ等しくし、さらに減磁耐力を同一とするため磁石の厚さを変えずにアウターロータータイプの電動機部に変更することが考えられる。
By the way, on the basis of the above-described inner rotor type electric motor part, in order to change to the outer rotor type electric motor part as shown in [Patent Document 1], appropriate conditions must be prepared.
For example, the inner rotor type motor part has the same core (stator core and rotor core) thickness and outer diameter, that is, without changing the volume of the motor part, the magnetic path cross-sectional area (rotor core width x product) It is conceivable to change to an outer rotor type electric motor part without changing the thickness of the magnet in order to make the thickness) substantially equal and to make the demagnetization resistance the same.

この場合、回転子の外周側に設けられるインナーロータータイプの固定子と比較して、回転子の内周側に設けられるアウターロータータイプの固定子におけるスロットの断面積が小さくなる。そして、固定子の内周側に設けられるインナーロータータイプにおける回転子よりも固定子の外周側に設けられるアウターロータータイプの回転子の径が大きくなり、回転子を構成する永久磁石の周長が長くなる。
永久磁石の磁束量は、永久磁石の断面積である周長×高さ(積厚)と、永久磁石の厚さに大きく依存するが、アウターロータータイプでは周長が大きくなるので、インナーロータータイプの電動機部と同じ厚さおよび特性の永久磁石を用いた場合は、磁束量が大幅に増加する。
In this case, the slot cross-sectional area of the outer rotor type stator provided on the inner peripheral side of the rotor is smaller than that of the inner rotor type stator provided on the outer peripheral side of the rotor. And the diameter of the outer rotor type rotor provided on the outer peripheral side of the stator is larger than the rotor in the inner rotor type provided on the inner peripheral side of the stator, and the peripheral length of the permanent magnet constituting the rotor is become longer.
The amount of magnetic flux of a permanent magnet depends largely on the circumference of the permanent magnet x the height (stack thickness) and the thickness of the permanent magnet, but the outer rotor type has a larger circumference, so the inner rotor type When a permanent magnet having the same thickness and characteristics as the motor part is used, the amount of magnetic flux is significantly increased.

電動機部を設計する際に、インナーロータータイプとアウターロータータイプの違いはあっても、磁束量や磁路断面積、スロット断面積(巻線量、巻線抵抗)の適正値には大差がない。一般的に、特性を同じくするときには、電動機部の鉄心の体積を同一の体積とするので、鉄心の体積と磁路断面積を同一にしてインナーロータータイプのものを基礎にアウターロータータイプを設計すると、スロット断面積が小さくなる一方で磁束量は増大する。
スロット断面積が小さくなると、巻線径を小さくする必要があり、巻線抵抗増大による銅損増大、すなわち効率低下や、電流密度増大による巻線温度の上昇によって信頼性の低下を招く。このため、磁石の厚さを小さくして磁束量を適切にするが、磁石の厚さを小さくすると減磁し易くなり、電機子反作用が大きくなって特性悪化や騒音増大を招く。なお、磁石の高さ寸法を鉄心の積厚よりも小さくすることも考えられるが、高さ方向で磁束の分布にアンバランスが生じ、電動機特性が悪化してしまう。
When designing the motor section, there is no great difference in the appropriate values of the magnetic flux amount, magnetic path cross-sectional area, and slot cross-sectional area (winding amount, winding resistance) even if there is a difference between the inner rotor type and the outer rotor type. Generally, when the characteristics are the same, the volume of the iron core of the motor part is the same volume, so the outer rotor type is designed based on the inner rotor type with the same volume and magnetic path cross-sectional area. The amount of magnetic flux increases while the slot cross-sectional area decreases.
When the slot cross-sectional area is reduced, it is necessary to reduce the winding diameter, which leads to a decrease in reliability due to an increase in copper loss due to an increase in winding resistance, that is, a decrease in efficiency and an increase in winding temperature due to an increase in current density. For this reason, the magnet thickness is reduced to make the amount of magnetic flux appropriate, but if the magnet thickness is reduced, demagnetization is facilitated, and the armature reaction increases, leading to deterioration in characteristics and increase in noise. Although it is conceivable to make the height of the magnet smaller than the thickness of the iron core, imbalance occurs in the distribution of magnetic flux in the height direction, and the motor characteristics deteriorate.

本発明は上記事情に着目してなされたものであり、その目的とするところは、アウターロータータイプの電動機部を備えるうえで、巻線抵抗および電流密度を抑制しながら、回転子の慣性モーメントを大きくして、1回転中の回転速度の変動を抑制するとともに、回転子の重心を圧縮機構部に近づけて、回転軸の振れ、撓みが小さく安定した回転を行う密閉型圧縮機と、この密閉型圧縮機を備えて冷凍サイクルを構成することにより、冷凍効率の向上化を得られる冷凍サイクル装置を提供しようとするものである。   The present invention has been made paying attention to the above circumstances, and the purpose of the present invention is to provide an outer rotor type electric motor part, while suppressing the winding resistance and current density, while reducing the rotor inertia moment. A hermetic compressor that suppresses fluctuations in the rotational speed during one rotation, moves the center of gravity of the rotor closer to the compression mechanism, and performs stable rotation with little rotation and deflection of the rotating shaft, and this hermetic seal An object of the present invention is to provide a refrigeration cycle apparatus that can improve the refrigeration efficiency by configuring a refrigeration cycle with a mold compressor.

上記目的を達成するため本発明の密閉型圧縮機は、密閉ケース内に電動機部および圧縮機構部を収納し、上記電動機部は、複数枚の電磁鋼板を積層して鉄心を構成するとともに、この鉄心の中心から放射状に複数のスロットを設け、これらスロットに巻線を施した固定子と、この固定子の外周側に配置され、永久磁石および複数枚の電磁鋼板を積層した鉄心からなる回転子とを備え、上記回転子は、回転子鉄心の外径Dと積層厚さHとの比(D/H)を、2.0と等しいか、それ以上( D ≧ 2H )に設定した。
上記目的を達成するため本発明の冷凍サイクル装置は、上記密閉型電動圧縮機と、凝縮器と、膨張装置と、蒸発器とを冷凍サイクル回路を構成するよう冷媒管を介して連通してなる。
In order to achieve the above object, the hermetic compressor of the present invention houses an electric motor part and a compression mechanism part in a hermetic case, and the electric motor part constitutes an iron core by laminating a plurality of electromagnetic steel plates. A rotor comprising a stator in which a plurality of slots are provided radially from the center of the iron core, and windings are provided on the slots, and an iron core disposed on the outer peripheral side of the stator and laminated with a permanent magnet and a plurality of electromagnetic steel plates. The ratio of the outer diameter D of the rotor core to the stacking thickness H (D / H) was set to be equal to or greater than 2.0 (D ≧ 2H).
In order to achieve the above object, a refrigeration cycle apparatus according to the present invention is configured such that the hermetic electric compressor, a condenser, an expansion device, and an evaporator communicate with each other via a refrigerant pipe so as to constitute a refrigeration cycle circuit. .

本発明によれば、回転軸の回転安定性を向上させて、高効率で信頼性の高いアウターロータータイプの電動機部を備えた密閉型電動圧縮機と、この密閉型圧縮機を備えて冷凍効率の向上化を得られる冷凍サイクル装置を提供できる。   According to the present invention, a hermetic electric compressor including an outer rotor type electric motor unit that improves the rotational stability of the rotating shaft and has high efficiency and reliability, and a refrigeration efficiency including the hermetic compressor. It is possible to provide a refrigeration cycle apparatus that can improve the efficiency.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
密閉型電動圧縮機Cにおいて、図中1は密閉ケースである。この密閉ケース1内には、回転軸2を介して圧縮機構部3と電動機部4とが連結されてなる電動圧縮機本体5が収容される。上記圧縮機構部3は、主軸受け6と副軸受け7との間にシリンダ8が介在される。上記電動機部4は、固定子9の外周側に傘型回転子10を備えた、いわゆるアウターロータータイプの電動機部である。
なお、圧縮機構部3について詳述すると、シリンダ8の外周部は複数の取付けボルト11を介して密閉ケース1に設けられる取付け座12に取付け固定される。シリンダ8の上部側開口面は主軸受け6で閉成され、シリンダ8の下部側開口面は副軸受け7で閉成されていて、シリンダ8内にはこれら主軸受け6と副軸受け7とで囲まれるシリンダ室(図示しない)が形成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the hermetic electric compressor C, reference numeral 1 in the drawing denotes a hermetic case. The hermetic case 1 houses an electric compressor body 5 in which a compression mechanism unit 3 and an electric motor unit 4 are connected via a rotating shaft 2. In the compression mechanism section 3, a cylinder 8 is interposed between a main bearing 6 and a sub-bearing 7. The electric motor unit 4 is a so-called outer rotor type electric motor unit including an umbrella rotor 10 on the outer peripheral side of the stator 9.
The compression mechanism portion 3 will be described in detail. The outer peripheral portion of the cylinder 8 is attached and fixed to a mounting seat 12 provided in the sealed case 1 via a plurality of mounting bolts 11. The upper opening surface of the cylinder 8 is closed by the main bearing 6, and the lower opening surface of the cylinder 8 is closed by the sub bearing 7. The cylinder 8 is surrounded by the main bearing 6 and the sub bearing 7. A cylinder chamber (not shown) is formed.

このシリンダ室には、上記回転軸2に一体に設けられる偏心部が収容され、偏心部にはローラーが回転自在に嵌め込まれる。回転軸2の回転にともなって、シリンダ室において回転軸偏心部とローラーが偏心回転をなす。ローラーの周面一部は常に軸方向に沿ってシリンダ室周面と線状に接触し、この接触部分はシリンダ室を二室に区分する。ローラーの回転方向でシリンダ室の区分された一方の室部分には弁機構を備えている。
密閉ケース1の底部中心軸部分は下面側に膨出形成されていて、潤滑油を集溜する油溜り部11が形成される。この油溜り部11を設けることによって、上記副軸受け7に対する密閉ケース1の干渉が回避される。
In this cylinder chamber, an eccentric part provided integrally with the rotary shaft 2 is accommodated, and a roller is rotatably fitted in the eccentric part. As the rotating shaft 2 rotates, the rotating shaft eccentric portion and the roller rotate eccentrically in the cylinder chamber. A part of the peripheral surface of the roller always makes a linear contact with the peripheral surface of the cylinder chamber along the axial direction, and this contact portion divides the cylinder chamber into two chambers. One chamber portion of the cylinder chamber divided in the rotation direction of the roller is provided with a valve mechanism.
The bottom central shaft portion of the sealed case 1 is formed to bulge on the lower surface side, and an oil reservoir 11 for collecting lubricating oil is formed. By providing the oil reservoir 11, interference of the sealed case 1 with the auxiliary bearing 7 is avoided.

上記主軸受け6は、シリンダ8上に直接載置されて、シリンダの開口面を閉成するフランジ部6aと、このフランジ部6aから回転軸2に沿い上方へ一体に突設され、内径部で回転軸2の一部を回転自在に軸支し、外径部に上記電動機部4を構成する固定子9が圧入固定されるボス部6bとから構成される。
本来、主軸受け6は回転軸2を軸支するために備えられるので、主軸受け6の全長に亘って回転軸2を軸支するのが通常の構成である。ところが、ここではあえて主軸受けボス部6bの内径部を回転軸2周面と間隙を存して形成しており、この間隙部分を空間逃げ部14と呼ぶ。
The main bearing 6 is directly mounted on the cylinder 8 and is integrally projected upward from the flange 6a along the rotary shaft 2 with a flange 6a that closes the opening surface of the cylinder. A part of the rotating shaft 2 is rotatably supported, and a boss portion 6b in which a stator 9 constituting the electric motor portion 4 is press-fitted and fixed to an outer diameter portion.
Since the main bearing 6 is originally provided to support the rotating shaft 2, it is a normal configuration to support the rotating shaft 2 over the entire length of the main bearing 6. However, here, the inner diameter portion of the main bearing boss portion 6b is intentionally formed with a gap between the circumferential surface of the rotary shaft 2 and this gap portion is called a space escape portion 14.

上記空間逃げ部14の上端は開放され、空間逃げ部14下端は固定子9下端面よりも下方にある。主軸受けボス部6bは断面凹状の容器と同一構成となり、空間逃げ部14に潤滑油を集溜することが可能である。
上記主軸受けボス部6bに、空間逃げ部14と主軸受けボス部6bの外径部とを連通する、小孔からなる油逃し孔15が設けられる。上記油逃し孔15は主軸受けボス部6bの外径部に取付けられる固定子9の下端面から露出するよう設けられていて、密閉ケース1内に開放する。
The upper end of the space escape portion 14 is opened, and the lower end of the space escape portion 14 is below the lower end surface of the stator 9. The main bearing boss portion 6b has the same configuration as a container having a concave cross section, and can collect lubricating oil in the space escape portion 14.
The main bearing boss portion 6b is provided with an oil escape hole 15 consisting of a small hole that communicates the space escape portion 14 and the outer diameter portion of the main bearing boss portion 6b. The oil relief hole 15 is provided so as to be exposed from the lower end surface of the stator 9 attached to the outer diameter portion of the main bearing boss portion 6 b, and opens into the sealed case 1.

一方、回転軸2の上端部は固定子9の上端面よりも上方へ突出していて、この上端部に上記傘型回転子10が取付けられる。傘型回転子10は、回転軸2の上端面に取付けボルト16を介して取付けられる傘部10Aと、傘部に一体に設けられる回転子部10Bとから構成される。
上記傘部10Aは、中心部位である回転軸2に対する取付け部分から径方向へ延出され、固定子9外周面と所定間隔を存した位置で、固定子9外周面と平行に折曲形成される。上記回転子部10Bは、傘部10Aの固定子9外周面と並行な部位に一体に取付けられ、この内周面は固定子9外周面と所定(狭小)の間隙を存するように配置されて円環状をなす。
On the other hand, the upper end portion of the rotating shaft 2 protrudes upward from the upper end surface of the stator 9, and the umbrella-shaped rotor 10 is attached to the upper end portion. The umbrella-type rotor 10 includes an umbrella portion 10A that is attached to the upper end surface of the rotary shaft 2 via attachment bolts 16, and a rotor portion 10B that is provided integrally with the umbrella portion.
The umbrella portion 10A extends in a radial direction from a portion attached to the rotation shaft 2 that is a central portion, and is bent in parallel with the outer peripheral surface of the stator 9 at a position spaced apart from the outer peripheral surface of the stator 9. The The rotor portion 10B is integrally attached to a portion parallel to the outer peripheral surface of the stator 9 of the umbrella portion 10A, and the inner peripheral surface is disposed so as to have a predetermined (narrow) gap from the outer peripheral surface of the stator 9. It has an annular shape.

なお、上記した固定子9および傘型回転子10を構成する回転子部10Bについては、さらに後述する。
密閉型電動圧縮機Cとしては、以上のように構成されていて、密閉ケース1上部に接続される冷媒管Pには凝縮器20と、膨張装置30と、蒸発器40および図示しない気液分離器が順次設けられ、気液分離器と密閉型電動圧縮機Cとは冷媒管Pによって連通され、冷凍サイクル装置の冷凍サイクル回路Rが構成される。
上記密閉型電動圧縮機Cに通電すると、電動機部4を構成する固定子9に駆動信号が入力され、傘型回転子10が回転駆動される。傘型回転子10と一体に連結される回転軸2が回転して、回転軸2の偏心部とローラーが圧縮機構部3を構成するシリンダ室で偏心回転する。
The rotor portion 10B constituting the stator 9 and the umbrella rotor 10 will be further described later.
The hermetic electric compressor C is configured as described above. The refrigerant pipe P connected to the upper portion of the hermetic case 1 is connected to the condenser 20, the expansion device 30, the evaporator 40, and a gas-liquid separation (not shown). The gas-liquid separator and the hermetic electric compressor C are communicated with each other by a refrigerant pipe P to constitute a refrigeration cycle circuit R of the refrigeration cycle apparatus.
When the hermetic electric compressor C is energized, a drive signal is input to the stator 9 constituting the electric motor unit 4 and the umbrella-type rotor 10 is rotationally driven. The rotating shaft 2 connected integrally with the umbrella-shaped rotor 10 rotates, and the eccentric portion and the roller of the rotating shaft 2 rotate eccentrically in the cylinder chamber constituting the compression mechanism portion 3.

それにともなって、冷媒ガスが冷媒管Pを介して圧縮機構部3のシリンダ室に吸込まれ、かつ圧縮されて高圧ガスとなる。高圧ガスは、シリンダ室から密閉ケース1内へ吐出され充満し、さらに吐出冷媒管Pを介して冷凍サイクル回路Rを構成する凝縮器20へ吐出され、膨張装置30と蒸発器40に導かれて冷凍サイクル作用がなされる。そのあと、気液分離器を介して密閉型電動圧縮機Cに吸込まれて再び上述の径路を循環する。
油溜り部13の潤滑油は、圧縮機構部3の作用にともなって圧縮機構部3に吸上げられ、圧縮機構部3を構成する各摺接部に給油されて、これらの潤滑性を確保する。そのあと、潤滑油は主軸受けボス部6bに形成される空間逃げ部14に一旦溜まり、ここに設けられる油逃し孔15から導出され、ついには油溜り部13に戻る。
Accordingly, the refrigerant gas is sucked into the cylinder chamber of the compression mechanism section 3 through the refrigerant pipe P and is compressed to become high-pressure gas. The high-pressure gas is discharged from the cylinder chamber into the sealed case 1 to be filled, and is further discharged to the condenser 20 constituting the refrigeration cycle circuit R through the discharge refrigerant pipe P and led to the expansion device 30 and the evaporator 40. A refrigeration cycle action is performed. After that, it is sucked into the sealed electric compressor C through the gas-liquid separator and circulates again through the above-mentioned path.
Lubricating oil in the oil reservoir 13 is sucked up by the compression mechanism unit 3 in accordance with the action of the compression mechanism unit 3 and supplied to each sliding contact portion constituting the compression mechanism unit 3 to ensure the lubricity thereof. . Thereafter, the lubricating oil temporarily accumulates in a space escape portion 14 formed in the main bearing boss 6 b, is led out from an oil relief hole 15 provided therein, and finally returns to the oil reservoir 13.

つぎに、上記電動機部4について詳述する。
図2(A)は本発明に適用されるアウターロータータイプ電動機部4の平面図と断面図、図2(B)は比較例としてのアウターロータータイプタイプ電動機部4Aの平面図と断面図である。
図2(A)に示すように、本発明のアウターロータータイプ電動機部4は、中心軸に沿って上記回転軸2が嵌着される孔部aを備えるとともに、周面に沿って放射状に複数のスロット50(歯部55)が形成される固定子9と、この固定子9の外周側に配置され、永久磁石Mと回転子鉄心Tを組合せた回転子部10B(以下、単に回転子10と呼ぶ)とから構成される。
Next, the motor unit 4 will be described in detail.
2A is a plan view and a cross-sectional view of an outer rotor type electric motor unit 4 applied to the present invention, and FIG. 2B is a plan view and a cross-sectional view of an outer rotor type electric motor unit 4A as a comparative example. .
As shown in FIG. 2 (A), the outer rotor type electric motor unit 4 of the present invention includes a hole a in which the rotating shaft 2 is fitted along the central axis, and a plurality of radials along the peripheral surface. And a rotor portion 10B (hereinafter simply referred to as the rotor 10) in which the permanent magnet M and the rotor core T are combined. Called).

上記回転子鉄心Tは、薄板からなる電磁鋼板を複数枚、積み重ねて構成したものであり、この外径φD2と、積厚H2との比(D2/H2)を、 2.6 に設定している。また、上記永久磁石Mは、円弧状に形成された複数の永久磁石片gからなり、残留磁束密度Br:0.6〜0.7(T:テラス)の希土類ボンド磁石が用いられている。
図2(B)に示すように、比較例としてのアウターロータータイプ電動機部4Aは、インナーロータータイプと同じ回転子鉄心の外径と積厚の比とした条件にもとづいて設計されている。
すなわち、インナーロータータイプの固定子鉄心の外径と上記アウターロータータイプ電動機部4Aの回転子鉄心の外径を同一にしている。中心軸に沿って、上記回転軸2が嵌着される孔部aを備えるとともに、周面に沿って放射状に複数のスロット50a(歯部55)が形成される固定子9Zと、この固定子9Zの外周側に配置される永久磁石Maおよび回転子鉄心Taからなる回転子10Zとから構成される。
The rotor core T is formed by stacking a plurality of thin magnetic steel plates, and the ratio (D2 / H2) between the outer diameter φD2 and the stack thickness H2 is set to 2.6. Yes. The permanent magnet M is composed of a plurality of permanent magnet pieces g formed in an arc shape, and a rare earth bonded magnet having a residual magnetic flux density Br: 0.6 to 0.7 (T: terrace) is used.
As shown in FIG. 2 (B), the outer rotor type electric motor section 4A as a comparative example is designed based on the same condition as the ratio of the outer diameter and the thickness of the rotor core same as the inner rotor type.
That is, the outer diameter of the inner rotor type stator core and the outer diameter of the rotor core of the outer rotor type electric motor section 4A are made the same. A stator 9Z having a hole a into which the rotary shaft 2 is fitted along the central axis, and a plurality of slots 50a (tooth portions 55) formed radially along the peripheral surface, and the stator It is comprised from the rotor 10Z which consists of the permanent magnet Ma arrange | positioned on the outer peripheral side of 9Z, and the rotor core Ta.

回転子10Zを構成する回転子鉄心Taは、外径φD1と、積厚H1との比(D1/H1)を、 1.83 に設定している。また、永久磁石Maは、円弧状に形成された複数の永久磁石片gaからなり、残留磁束密度:0.6〜0.7(T:テラス)の希土類ボンド磁石が用いられている。
いずれの永久磁石M,Maも、希土類ボンド磁石としては、PPS(ポリフェニレンサルファイド)樹脂材、またはPBT(ポリブチレンテレフタレート)樹脂材、またはLCP(液晶ポリマー)樹脂材をバインダーとした射出成形磁石が用いられている。
In the rotor core Ta constituting the rotor 10Z, the ratio (D1 / H1) between the outer diameter φD1 and the stack thickness H1 is set to 1.83. The permanent magnet Ma is composed of a plurality of permanent magnet pieces ga formed in an arc shape, and a rare earth bonded magnet having a residual magnetic flux density of 0.6 to 0.7 (T: terrace) is used.
Both of the permanent magnets M and Ma are, as rare earth bonded magnets, injection molded magnets using a PPS (polyphenylene sulfide) resin material, a PBT (polybutylene terephthalate) resin material, or an LCP (liquid crystal polymer) resin material as a binder. It has been.

図3は、固定子9に形成されるスロット50の有効断面積Sの範囲を示す説明図である。上記固定子9は、薄板の電磁鋼板を複数枚積み重ねて鉄心を構成していて、この鉄心の外周面に放射状に設けられるそれぞれのスロット50には絶縁材51が嵌め込まれている。そして、絶縁材51を介してスロット50(歯部55)に巻線52が巻回される。巻線52は、巻線ノズル53を用いて巻回されるので、スロット50には巻線ノズル53が挿入できる幅寸法が必要である。
したがって、スロット50に巻線52を巻回できるスロット有効断面積Sは、スロット50から絶縁体51の板厚分と、巻線ノズル53が通過する範囲の幅寸法Wnを除いたものであり、スロット50底部における幅寸法Wは巻線52の重なりを考慮して、一定の値以上とする。
FIG. 3 is an explanatory diagram showing the range of the effective cross-sectional area S of the slot 50 formed in the stator 9. The stator 9 is configured by stacking a plurality of thin electromagnetic steel plates to form an iron core, and an insulating material 51 is fitted in each of the slots 50 provided radially on the outer peripheral surface of the iron core. Then, the winding 52 is wound around the slot 50 (tooth portion 55) through the insulating material 51. Since the winding 52 is wound using the winding nozzle 53, the slot 50 needs to have a width dimension in which the winding nozzle 53 can be inserted.
Therefore, the slot effective cross-sectional area S in which the winding 52 can be wound around the slot 50 is obtained by removing the plate thickness of the insulator 51 from the slot 50 and the width dimension Wn in the range through which the winding nozzle 53 passes, The width dimension W at the bottom of the slot 50 is set to a certain value or more in consideration of the overlapping of the windings 52.

図4は、回転子鉄心Tの外径Dに対する、固定子9のスロット50の断面積、巻線抵抗、磁束量の関係および、回転子鉄心Tの外径Dと積層厚さHとの比の関係を表す図である。
すなわち、磁路断面積(回転子鉄心Tの幅10c×積厚)および磁石厚さを一定にした条件のもとで、インナーロータータイプの電動機部をアウターロータータイプの電動機部4に設計変更したとき、回転子鉄心Tの外径に対してスロット有効断面積等の変化をグラフ化したものである。
FIG. 4 shows the relationship between the cross-sectional area of the slot 50 of the stator 9, the winding resistance, and the amount of magnetic flux with respect to the outer diameter D of the rotor core T, and the ratio between the outer diameter D of the rotor core T and the stacking thickness H. It is a figure showing these relationships.
That is, the design of the inner rotor type motor unit was changed to the outer rotor type motor unit 4 under the condition that the magnetic path cross-sectional area (width 10c of the rotor core T × product thickness) and the magnet thickness were constant. FIG. 8 is a graph of changes in the slot effective cross-sectional area and the like with respect to the outer diameter of the rotor core T.

インナーロータータイプの電動機部を備えた密閉型電動圧縮機を搭載する家庭用エアコンにおいて、通常、電動機部鉄心(回転子鉄心)は、外径を110mmとし、積厚を60mmに設定している。回転子鉄心とともに回転子を構成する永久磁石は、複数の円弧形状をなす永久磁石片を用意し、これら永久磁石片を円環状に配置していて、残留磁束密度Brは1.0(T)程度である。
この円弧形磁石は作り易く、かつ希土類焼結磁石のように運転時において磁石内部に渦電流損が発生しないことで採用されている。残留磁束密度Br:1.0(T)は、希土類ボンド磁石として一般に得られる最大のものであり、形状を小さくして使用量を減らすのに都合がよい。
In a home air conditioner equipped with a hermetic electric compressor having an inner rotor type electric motor part, the electric motor part iron core (rotor iron core) is normally set to have an outer diameter of 110 mm and a stack thickness of 60 mm. The permanent magnet that constitutes the rotor together with the rotor core has a plurality of arc-shaped permanent magnet pieces arranged in an annular shape, and the residual magnetic flux density Br is 1.0 (T). Degree.
This arc-shaped magnet is easy to make, and is adopted because no eddy current loss occurs in the magnet during operation like a rare earth sintered magnet. The residual magnetic flux density Br: 1.0 (T) is the maximum value generally obtained as a rare earth bonded magnet, and is convenient for reducing the amount of use by reducing the shape.

図3に示すようにスロット有効面積Sを設定するうえに、巻線抵抗はスロット断面積に反比例し、磁路の周長(歯幅+積厚)×2に比例することを前提として計算している。また、スロット断面積比、巻線抵抗比、磁束量比はいずれもインナーロータータイプを基準としている。
[表1]に、基準となるインナーロータータイプの仕様を示している。

Figure 2006183474
In setting the slot effective area S as shown in FIG. 3, the winding resistance is calculated on the assumption that the winding resistance is inversely proportional to the slot cross-sectional area and proportional to the circumference of the magnetic path (tooth width + product thickness) × 2. ing. The slot cross-sectional area ratio, winding resistance ratio, and magnetic flux amount ratio are all based on the inner rotor type.
[Table 1] shows the specifications of the standard inner rotor type.
Figure 2006183474

再び、図4に示すように、スロット断面積比は回転子鉄心Tの外径Dが大きくなるにしたがって大きくなり、磁束量比は逆に小さくなる。巻線抵抗比は、回転子鉄心Tの外径Dが120mm程度で1となり、巻線抵抗がインナーロータータイプと同等となる。なお、スロット断面積比および巻線抵抗比におけるLは、Mを基準として磁路幅を0.85倍したものであり、Hは同様に磁路幅をMの1.1倍としたものであり、磁路幅(スロット断面積)を変えても大きく変らない。外径と積厚の比(外径/積厚)でみると、2.6程度で巻線抵抗比が1となる。   Again, as shown in FIG. 4, the slot cross-sectional area ratio increases as the outer diameter D of the rotor core T increases, and the magnetic flux amount ratio decreases conversely. The winding resistance ratio is 1 when the outer diameter D of the rotor core T is about 120 mm, and the winding resistance is equivalent to the inner rotor type. Note that L in the slot cross-sectional area ratio and the winding resistance ratio is obtained by multiplying the magnetic path width by 0.85 with respect to M, and H is similarly obtained by setting the magnetic path width to 1.1 times M. Yes, even if the magnetic path width (slot cross-sectional area) is changed, it does not change greatly. In terms of the ratio between the outer diameter and the product thickness (outer diameter / product thickness), the winding resistance ratio becomes 1 at about 2.6.

図2(A)はこの条件にもとづいて図示したものであり、回転子鉄心の外径をインナーロータータイプの固定子鉄心の外形と同じにし、積厚も同じにした条件(比較例)の図2(B)のものと比べて、スロット断面積が大きくなっている。
一方、磁束量比は1.6程度もあり、依然として磁束量が多過ぎるが、永久磁石の材質を残留磁束密度Br:1.0(T)から残留磁束密度Br:0.6(T)に変更すると、ほぼ同じ磁束量となる。したがって、回転子鉄心Tの外径Dと積厚Hの比を2.6程度とし、かつ永久磁石Mの材質を残留磁束密度Br:0.65(T)程度とすることにより、インナーロータータイプとほぼ等価な電動機部となり、特性のよい、信頼性の高い電動機部4を得られる。
FIG. 2 (A) is a diagram based on this condition, and shows a condition (comparative example) in which the outer diameter of the rotor core is the same as that of the inner rotor type stator core and the thickness is also the same. The slot cross-sectional area is larger than that of 2 (B).
On the other hand, the magnetic flux amount ratio is about 1.6 and the magnetic flux amount is still too much, but the material of the permanent magnet is changed from the residual magnetic flux density Br: 1.0 (T) to the residual magnetic flux density Br: 0.6 (T). If changed, the amount of magnetic flux becomes substantially the same. Accordingly, by setting the ratio of the outer diameter D and the thickness H of the rotor core T to about 2.6 and the material of the permanent magnet M to about the residual magnetic flux density Br: 0.65 (T), the inner rotor type Thus, the motor part 4 is obtained which is almost equivalent to the motor part 4 and has good characteristics and high reliability.

なお、スロット断面積(巻線径)が小さくなり過ぎると、運転時の電流密度が大きくなり過ぎて信頼性が問題となる。スロット断面積比0.8(電流密度1.25倍)を限度と考えると回転子鉄心Tの外径Dと積厚Hとの比は、2.0以上となる。
スロット断面積比および巻線抵抗比は、回転子鉄心Tの外径Dと積厚Hの比が、3.5程度で変化が飽和状態になる。回転子鉄心Tの外径Dが大き過ぎて、圧縮機M自体の外形が大きくなり過ぎると圧縮機の商品性が低下するところから、回転子鉄心Tの外径Dと積厚Hとの比は、3.5以下が望ましい。
Note that if the slot cross-sectional area (winding diameter) becomes too small, the current density during operation becomes too large and reliability becomes a problem. Considering the slot cross-sectional area ratio 0.8 (current density 1.25 times) as the limit, the ratio of the outer diameter D and the thickness H of the rotor core T is 2.0 or more.
The slot cross-sectional area ratio and the winding resistance ratio are saturated when the ratio of the outer diameter D and the thickness H of the rotor core T is about 3.5. Since the outer diameter D of the rotor core T is too large and the outer shape of the compressor M itself becomes too large, the commercial value of the compressor deteriorates. Is preferably 3.5 or less.

設計上、電動機部4に用いられる永久磁石Mの磁束量にも幅があるところから、永久磁石Mの残留磁束密度Brは、0.55〜0.7(T)とする。残留磁束密度Brが0.55〜0.7(T)の希土類ボンド磁石は、PPS(ポリフェニレンサルファイド)樹脂材、またはPBT(ポリブチレンテレフタレート)樹脂材、またはLCP(液晶ポリマー)樹脂材をバインダーとした射出成形磁石としたほうが、耐冷媒性や回転子の組立て性(鉄心との一体成形)、磁石の強度(圧縮成形に比べて機械的強度が高い)のうえで有利である。   In terms of design, the amount of magnetic flux of the permanent magnet M used in the motor unit 4 also has a width, so the residual magnetic flux density Br of the permanent magnet M is set to 0.55 to 0.7 (T). A rare earth bonded magnet having a residual magnetic flux density Br of 0.55 to 0.7 (T) is made of a PPS (polyphenylene sulfide) resin material, a PBT (polybutylene terephthalate) resin material, or an LCP (liquid crystal polymer) resin material as a binder. The injection molded magnet is more advantageous in terms of refrigerant resistance, rotor assembly (integral molding with the iron core) and magnet strength (higher mechanical strength than compression molding).

以上の検討は、冷房定格出力が2.2〜8KWの家庭用エアコンに使用される電動圧縮機Mに搭載されている電動機部鉄心鉄心(固定子鉄心)外径が110mm程度の電動機を前提としている。電動機部鉄心の外径が変っても効果が劣ることはないが、本発明は、冷房定格出力が上述の家庭用エアコンの密閉型圧縮機Cを構成する電動機部4において、より確実に得られる。   The above study is based on the assumption that the motor part core iron core (stator iron core) with an outer diameter of about 110 mm is mounted on the electric compressor M used in home air conditioners with a cooling rated output of 2.2 to 8 KW. Yes. Although the effect is not inferior even if the outer diameter of the motor part iron core is changed, the present invention is more reliably obtained in the motor part 4 constituting the hermetic compressor C of the above-described home air conditioner. .

また、上記した実施の形態では、固定子9の歯部に巻線を直接施す集中巻き方式を採用しているが、異なるスロット間に亘って巻線を施す分布巻き方式を採用する電動機部においても同様である。そして、以上は4極6スロットの電動機部4について述べているが、6極9スロットの集中巻の電動機部についても同様である。6極9スロットの方がスロット形状はより細長くなり、回転子鉄心Tの外径Dと積厚Hの比を大きくする必要がある。なお、回転子の外周に強磁性体のフレームを装着し、フレームが回転子のヨーク部の一部を構成する場合は、フレームの外径を電動機の外径とみなす。   Further, in the above-described embodiment, the concentrated winding method in which the winding is directly applied to the tooth portion of the stator 9 is adopted. However, in the electric motor portion that adopts the distributed winding method in which the winding is performed between different slots. Is the same. The above description is about the 4-pole 6-slot motor section 4, but the same applies to the 6-pole 9-slot concentrated winding motor section. The slot shape of the 6-pole 9-slot is longer and narrower, and the ratio of the outer diameter D and the thickness H of the rotor core T needs to be increased. When a ferromagnetic frame is attached to the outer periphery of the rotor and the frame forms a part of the yoke portion of the rotor, the outer diameter of the frame is regarded as the outer diameter of the motor.

以上説明したように、本発明の密閉形圧縮機によれば、回転子鉄心Tの外径Dと積層Hとの比を、2.0と等しい、もしくはそれ以上とすることにより、巻線抵抗および電流密度を抑制しながら、回転子10の慣性モーメントを大きくできて、1回転中の回転速度の変動を抑制するとともに、回転子10の重心を圧縮機構部3に近づけて、回転軸2の振れ、撓みを小さくした安定した回転が行われる。   As described above, according to the hermetic compressor of the present invention, by setting the ratio of the outer diameter D of the rotor core T to the lamination H to be equal to or greater than 2.0, the winding resistance In addition, the moment of inertia of the rotor 10 can be increased while suppressing the current density, the fluctuation of the rotation speed during one rotation is suppressed, the center of gravity of the rotor 10 is brought close to the compression mechanism unit 3, and Stable rotation with reduced runout and deflection is performed.

さらに、上述の前提条件にプラして、回転子鉄心Tの外径Dと積層Hとの比を、3.5以下とすることにより、上述の効果にプラスして、インナーロータータイプと同等の巻線抵抗となり、特性のよい、信頼性の高い電動機とすることができる。
上記回転子10を構成する永久磁石Mは、複数の円弧形永久磁石片gを円環状に配置するとともに、この残留磁束密度Brを、0.55〜0.7(T)の希土類ボンド磁石とすることにより、インナーロータータイプと同等の磁束量となり、特性のよい電動機が得られる。
Furthermore, in addition to the above-mentioned preconditions, the ratio of the outer diameter D of the rotor core T and the stack H is 3.5 or less, which is equivalent to the inner rotor type in addition to the above-described effects. It becomes winding resistance, and it can be set as a reliable electric motor with good characteristics.
The permanent magnet M constituting the rotor 10 has a plurality of arc-shaped permanent magnet pieces g arranged in an annular shape, and a rare earth bonded magnet having a residual magnetic flux density Br of 0.55 to 0.7 (T). By doing so, the amount of magnetic flux becomes the same as that of the inner rotor type, and a motor with good characteristics can be obtained.

上記希土類ボンド磁石は、PPS(ポリフェニレンサルファイド)樹脂材、またはPBT(ポリブチレンテレフタレート)樹脂材、またはLCP(液晶ポリマー)樹脂材をバインダーとした射出成形磁石とすることにより、耐冷媒性があり、組立て性や機械的強度の優れた電動機部4を構成することができる。   The rare earth bonded magnet has refrigerant resistance by being an injection-molded magnet using a PPS (polyphenylene sulfide) resin material, a PBT (polybutylene terephthalate) resin material, or an LCP (liquid crystal polymer) resin material as a binder, The electric motor part 4 excellent in assemblability and mechanical strength can be configured.

そして、上述の密閉型電動圧縮機Mを備えて冷凍サイクル回路Rを構成する冷凍サイクル装置であれば、冷凍効率の向上化を得られる。
また、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。
And if it is the refrigeration cycle apparatus which comprises the above-mentioned sealed electric compressor M and comprises the refrigeration cycle circuit R, the improvement of refrigeration efficiency can be obtained.
Further, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments.

本発明の実施の形態に係る、密閉型電動圧縮機の概略の断面図と、冷凍サイクル構成図。1 is a schematic cross-sectional view of a hermetic electric compressor and a refrigeration cycle configuration diagram according to an embodiment of the present invention. 同実施の形態に係る、電動機部の平面図と断面図および、比較例としての電動機部の平面図と断面図。The top view and sectional drawing of an electric motor part based on the embodiment, and the top view and sectional drawing of the electric motor part as a comparative example. 同実施の形態に係る、固定子の一部平面図で、スロット有効断面積を説明する図。The figure explaining the slot effective cross-sectional area in the partial top view of the stator based on the embodiment. 同実施の形態に係る、電動機外径とスロット断面積、巻線抵抗、磁束量の関係を表すグラフ図。The graph showing the relationship between the motor outer diameter, slot cross-sectional area, winding resistance, and magnetic flux amount according to the embodiment.

符号の説明Explanation of symbols

1…密閉ケース、50…スロット、52…巻線、9…固定子、10…回転子、4…電動機部、3…圧縮機構部、M…密閉型電動圧縮機、T…回転子鉄心、M…永久磁石、20…凝縮器、30…膨張装置、40…蒸発器。   DESCRIPTION OF SYMBOLS 1 ... Sealing case, 50 ... Slot, 52 ... Winding, 9 ... Stator, 10 ... Rotor, 4 ... Electric motor part, 3 ... Compression mechanism part, M ... Sealing type electric compressor, T ... Rotor core, M ... permanent magnets, 20 ... condenser, 30 ... expansion device, 40 ... evaporator.

Claims (5)

密閉ケース内に、電動機部および圧縮機構部を収納した密閉型電動圧縮機において、
上記電動機部は、
複数枚の電磁鋼板を積層して鉄心を構成するとともに、この鉄心の中心から放射状に複数のスロットを設け、これらスロットに巻線を施した固定子と、
この固定子の外周側に配置され、永久磁石および複数枚の電磁鋼板を積層した鉄心からなる回転子とを備え、
上記回転子は、回転子鉄心の外径Dと積層厚さHとの比(D/H)を、2.0と等しいか、それ以上( D ≧ 2H )に設定したことを特徴とする密閉型電動圧縮機。
In a hermetic type electric compressor that houses an electric motor part and a compression mechanism part in a hermetic case,
The motor section is
A plurality of electromagnetic steel plates are laminated to form an iron core, a plurality of slots are provided radially from the center of the iron core, and a stator with windings on these slots,
It is arranged on the outer peripheral side of this stator, and comprises a rotor made of an iron core in which a permanent magnet and a plurality of electromagnetic steel plates are laminated,
The rotor is hermetically sealed, characterized in that the ratio (D / H) between the outer diameter D of the rotor core and the stacking thickness H is set to be equal to or greater than 2.0 (D ≧ 2H). Type electric compressor.
上記回転子は、回転子鉄心の外径Dと積層厚さHとの比(D/H)を、3.5以下( D ≦ 3.5H )に設定したことを特徴とする請求項1記載の密閉型電動圧縮機。   2. The rotor according to claim 1, wherein a ratio (D / H) between an outer diameter D of the rotor core and a stacking thickness H is set to 3.5 or less (D ≦ 3.5H). Hermetic electric compressor. 上記回転子を構成する永久磁石は、円弧状に形成され、残留磁束密度Br:0.55〜0.7(T)の希土類ボンド磁石から構成されることを特徴とする請求項1および請求項2のいずれかに記載の密閉型圧縮機。   The permanent magnet constituting the rotor is formed in a circular arc shape and is composed of a rare earth bonded magnet having a residual magnetic flux density Br: 0.55 to 0.7 (T). The hermetic compressor according to any one of 2 above. 上記希土類ボンド磁石は、PPS(ポリフェニレンサルファイド)樹脂材、またはPBT(ポリブチレンテレフタレート)樹脂材、またはLCP(液晶ポリマー)樹脂材をバインダーとした射出成形磁石であることを特徴とする請求項3記載の密閉型電動圧縮機。   4. The rare earth bonded magnet is an injection-molded magnet using a PPS (polyphenylene sulfide) resin material, a PBT (polybutylene terephthalate) resin material, or an LCP (liquid crystal polymer) resin material as a binder. Hermetic electric compressor. 請求項1ないし請求項4のいずれかに記載の密閉型電動圧縮機と、凝縮器と、膨張装置と、蒸発器とを冷凍サイクル回路を構成するよう冷媒管を介して連通してなることを特徴とする冷凍サイクル装置。
The hermetic electric compressor according to any one of claims 1 to 4, the condenser, the expansion device, and the evaporator are communicated via a refrigerant pipe so as to constitute a refrigeration cycle circuit. A characteristic refrigeration cycle apparatus.
JP2004374994A 2004-12-24 2004-12-24 Enclosed electric compressor and refrigeration cycle device Pending JP2006183474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004374994A JP2006183474A (en) 2004-12-24 2004-12-24 Enclosed electric compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374994A JP2006183474A (en) 2004-12-24 2004-12-24 Enclosed electric compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2006183474A true JP2006183474A (en) 2006-07-13

Family

ID=36736776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374994A Pending JP2006183474A (en) 2004-12-24 2004-12-24 Enclosed electric compressor and refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2006183474A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103375382A (en) * 2012-04-17 2013-10-30 宁波穗通制冷设备有限公司 Refrigeration compressor with outer rotor structure
CN105275811A (en) * 2014-06-17 2016-01-27 广东美芝制冷设备有限公司 Rotary compressor and refrigeration system with rotary compressor
CN107806411A (en) * 2016-09-08 2018-03-16 艾默生环境优化技术有限公司 Compressor
EP3358719A1 (en) 2017-02-01 2018-08-08 Mitsubishi Heavy Industries Thermal Systems, Ltd. Rotary compressor system, rotary compressor, and motor
US10323638B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10495086B2 (en) 2012-11-15 2019-12-03 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US10598180B2 (en) 2015-07-01 2020-03-24 Emerson Climate Technologies, Inc. Compressor with thermally-responsive injector
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10907633B2 (en) 2012-11-15 2021-02-02 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US10954940B2 (en) 2009-04-07 2021-03-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11635078B2 (en) 2009-04-07 2023-04-25 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US10954940B2 (en) 2009-04-07 2021-03-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
CN103375382A (en) * 2012-04-17 2013-10-30 宁波穗通制冷设备有限公司 Refrigeration compressor with outer rotor structure
US10495086B2 (en) 2012-11-15 2019-12-03 Emerson Climate Technologies, Inc. Compressor valve system and assembly
US11434910B2 (en) 2012-11-15 2022-09-06 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
US10907633B2 (en) 2012-11-15 2021-02-02 Emerson Climate Technologies, Inc. Scroll compressor having hub plate
CN105275811A (en) * 2014-06-17 2016-01-27 广东美芝制冷设备有限公司 Rotary compressor and refrigeration system with rotary compressor
US10323639B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10323638B2 (en) 2015-03-19 2019-06-18 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10598180B2 (en) 2015-07-01 2020-03-24 Emerson Climate Technologies, Inc. Compressor with thermally-responsive injector
US10801495B2 (en) 2016-09-08 2020-10-13 Emerson Climate Technologies, Inc. Oil flow through the bearings of a scroll compressor
US10890186B2 (en) 2016-09-08 2021-01-12 Emerson Climate Technologies, Inc. Compressor
CN107806411A (en) * 2016-09-08 2018-03-16 艾默生环境优化技术有限公司 Compressor
CN107806411B (en) * 2016-09-08 2020-06-30 艾默生环境优化技术有限公司 Compressor with a compressor housing having a plurality of compressor blades
EP3358719A1 (en) 2017-02-01 2018-08-08 Mitsubishi Heavy Industries Thermal Systems, Ltd. Rotary compressor system, rotary compressor, and motor
US10753352B2 (en) 2017-02-07 2020-08-25 Emerson Climate Technologies, Inc. Compressor discharge valve assembly
US11022119B2 (en) 2017-10-03 2021-06-01 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10962008B2 (en) 2017-12-15 2021-03-30 Emerson Climate Technologies, Inc. Variable volume ratio compressor
US10995753B2 (en) 2018-05-17 2021-05-04 Emerson Climate Technologies, Inc. Compressor having capacity modulation assembly
US11754072B2 (en) 2018-05-17 2023-09-12 Copeland Lp Compressor having capacity modulation assembly
US11655813B2 (en) 2021-07-29 2023-05-23 Emerson Climate Technologies, Inc. Compressor modulation system with multi-way valve
US11879460B2 (en) 2021-07-29 2024-01-23 Copeland Lp Compressor modulation system with multi-way valve
US11846287B1 (en) 2022-08-11 2023-12-19 Copeland Lp Scroll compressor with center hub
US11965507B1 (en) 2022-12-15 2024-04-23 Copeland Lp Compressor and valve assembly

Similar Documents

Publication Publication Date Title
US11183892B2 (en) Consequent pole type rotor, motor having the same, compressor having the same, and fan having the same
JP2006183474A (en) Enclosed electric compressor and refrigeration cycle device
KR100713743B1 (en) Electric Compressor and Chilling Device Using Thereof
US11863020B2 (en) Motor, compressor, and air conditioner
WO2015083687A1 (en) Compressor
JP6914346B2 (en) Manufacturing method of stator, motor, compressor, air conditioner and stator
JP5061576B2 (en) Axial gap type motor and compressor using the same
JPWO2008062789A1 (en) Rotary compressor and refrigeration cycle apparatus
JP2012124976A (en) Permanent magnet type motor and compressor
JP6383381B2 (en) Compressor
JP2008141892A (en) Self-starting permanent magnet type synchronous electric motor and compressor using the same
US20230091530A1 (en) Rotor, motor, compressor, and air conditioner
JP5135779B2 (en) Compressor
JP4096254B2 (en) Permanent magnet type motor and compressor
JP2005188518A (en) Motor driven compressor
WO2019123531A1 (en) Stator and electric motor provided with stator
JP2009002352A (en) Compressor
US11949291B2 (en) Motor having rotor with different core regions, compressor, and air conditioner having the motor
JP2007330048A (en) Axial-gap motor and compressor
JP2005210898A (en) Motor
JP4712026B2 (en) Permanent magnet type motor and compressor
JP2005143300A (en) Dynamo-electric motor
WO2021131053A1 (en) Motor, compressor, and air conditioning device
JP2005192399A (en) Motor
WO2021117175A1 (en) Stator, motor, compressor, and air conditioner