JP2006177764A - Learning capacity correcting method of battery - Google Patents

Learning capacity correcting method of battery Download PDF

Info

Publication number
JP2006177764A
JP2006177764A JP2004371007A JP2004371007A JP2006177764A JP 2006177764 A JP2006177764 A JP 2006177764A JP 2004371007 A JP2004371007 A JP 2004371007A JP 2004371007 A JP2004371007 A JP 2004371007A JP 2006177764 A JP2006177764 A JP 2006177764A
Authority
JP
Japan
Prior art keywords
capacity
battery
learning
charge
remaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004371007A
Other languages
Japanese (ja)
Inventor
Kozo Oi
耕三 大井
Masao Yamaguchi
昌男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004371007A priority Critical patent/JP2006177764A/en
Publication of JP2006177764A publication Critical patent/JP2006177764A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To frequently and moreover accurately correct the leaning capacity of a battery, without completely discharging the battery. <P>SOLUTION: The learned capacity correcting method of the battery detects a charge capacity from a remaining capacity at a start of charging to a full charge when the battery is fully charged from the remaining capacity at the start of charging, adds the detected charge capacity to the remaining capacity at the start of charging, detects an add capacity, compares the detected add capacity with a previously learned capacity, and corrects the detected add capacity to the learned capacity if a difference between the add capacity and the learned capacity is a preset error or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電池の残容量演算において基準となる、電池の学習容量を補正する方法に関する。本明細書において、学習容量とは、電池の修正された満充電容量を意味するものであって、電池に実質的に充電できる容量を意味する。   The present invention relates to a method for correcting a learning capacity of a battery, which is a reference in calculating a remaining battery capacity. In this specification, the learning capacity means a corrected full charge capacity of the battery, and means a capacity that can substantially charge the battery.

電池は、使用するにしたがって、あるいは保存しているときに劣化して、実質的に満充電できる容量が次第に減少する。電池の残容量を満充電容量に対する相対値として、たとえば%で表示する場合、満充電容量(FCC)を正確に補正することが大切である。満充電容量の補正方法として、種々の方法が提案されている。たとえば、完全に放電した電池を満充電するまでの充電容量を積算して満充電容量を演算し、あるいは満充電した電池を完全に放電するまでの放電容量を積算して満充電容量を演算し、演算した満充電容量を正しい値として、前回の満充電容量を補正する。この方法は、正確に電池の満充電容量を補正できる。   The battery degrades as it is used or stored, and the capacity that can be substantially fully charged gradually decreases. When the remaining battery capacity is displayed as a relative value with respect to the full charge capacity, for example, in%, it is important to accurately correct the full charge capacity (FCC). Various methods have been proposed for correcting the full charge capacity. For example, calculate the full charge capacity by integrating the charge capacity until the fully discharged battery is fully charged, or calculate the full charge capacity by integrating the discharge capacity until the fully charged battery is fully discharged. The previous full charge capacity is corrected with the calculated full charge capacity as a correct value. This method can accurately correct the full charge capacity of the battery.

しかしながら、電池が完全に放電された状態から満充電され、あるいは満充電された状態から完全に放電される状態で満充電容量を演算する方法は、満充電容量を補正できるタイミングが極めて限られた状態となる。このため、満充電容量を補正する頻度が少なく、補正する間で誤差が大きくなる。   However, the method for calculating the full charge capacity when the battery is fully charged from the fully discharged state or fully discharged from the fully charged state has a very limited timing for correcting the full charge capacity. It becomes a state. For this reason, the frequency of correcting the full charge capacity is low, and the error increases between corrections.

電池の満充電容量を補正する頻度を高くする方法は開発されている。(特許文献1参照)
特開2002−236154号公報
A method of increasing the frequency of correcting the full charge capacity of the battery has been developed. (See Patent Document 1)
JP 2002-236154 A

以上の公報に記載される方法は、電池の充電容量の累積量がそのときの電池の学習容量に達する毎に1サイクルとカウントし、1サイクルの充電につき、学習容量を特定のサイクル劣化容量として減少させ、あるいは、電池の保存温度と残容量をパラメーターとして学習容量の減少率を保存劣化容量として特定し、保存時間が経過するにしたがって、電池の保存温度と残容量から特定された保存劣化容量で学習容量を減少させて補正する。   The method described in the above publication counts as one cycle every time the accumulated amount of battery charge capacity reaches the battery learning capacity at that time, and the learning capacity is defined as a specific cycle deterioration capacity for one cycle charge. Decrease or specify the learning capacity decrease rate as storage deterioration capacity using the battery storage temperature and remaining capacity as parameters, and the storage deterioration capacity specified from the battery storage temperature and remaining capacity as the storage time elapses To correct by reducing the learning capacity.

この方法は電池を、完全放電と満充電することなく学習容量を補正するので、学習容量を頻繁に補正できる。しかしながら、この方法は、電池の充電容量の累積量で、あるいは電池の保存温度と残容量に基づいて一定量に学習容量を補正するので、各々の電池において必ずしも正確に学習容量を補正できない欠点がある。それは、学習容量が、種々の要因で変動するからである。   Since this method corrects the learning capacity without fully discharging and fully charging the battery, the learning capacity can be corrected frequently. However, since this method corrects the learning capacity by a constant amount based on the accumulated amount of battery charge capacity or based on the storage temperature and remaining capacity of the battery, there is a drawback that the learning capacity cannot always be corrected accurately in each battery. is there. This is because the learning capacity varies depending on various factors.

本発明は、さらにこの欠点を解決することを目的に開発されたものである。本発明の重要な目的は、電池を完全に放電することなく、電池の学習容量を頻繁に、しかも正確な容量に補正できる電池の学習容量補正方法を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to provide a learning capacity correction method for a battery that can correct the learning capacity of the battery frequently and accurately without completely discharging the battery.

本発明の電池の学習容量補正方法は、前述の目的を達成するために以下の構成を備える。
電池の学習容量補正方法は、電池を所定の充電開始残容量から満充電するときに、充電開始残容量から満充電するまでの充電容量を検出し、検出された充電容量を充電開始残容量に加算して加算容量を検出し、検出された加算容量を先の学習容量と比較し、加算容量と学習容量との差が設定誤差以上であると、検出された加算容量を学習容量に訂正する。
The battery learning capacity correction method of the present invention has the following configuration in order to achieve the above-described object.
The battery learning capacity correction method detects when the battery is fully charged from the predetermined charge start remaining capacity, detects the charge capacity from the charge start remaining capacity until it is fully charged, and uses the detected charge capacity as the charge start remaining capacity. Addition is detected, the added capacity is detected, the detected added capacity is compared with the previous learned capacity, and if the difference between the added capacity and the learned capacity is greater than or equal to the setting error, the detected added capacity is corrected to the learned capacity .

本発明の電池の学習容量補正方法は、電池の充電開始残容量を、電池を充放電しない状態における電池電圧から決定し、あるいは充放電電流の積算値から決定することができる。   In the battery learning capacity correction method of the present invention, the remaining charge start capacity of the battery can be determined from the battery voltage when the battery is not charged or discharged, or can be determined from the integrated value of the charge / discharge current.

本発明の電池の学習容量補正方法は、電池が電動自転車のモーターを駆動する電源に使用することができる。電池は、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池のいずれかとすることができる。   The battery learning capacity correction method of the present invention can be used as a power source that drives a motor of an electric bicycle. The battery can be any one of a lithium ion secondary battery, a nickel metal hydride battery, and a nickel cadmium battery.

本発明の学習容量補正方法は、電池を満充電することなく正確に学習容量を補正できる。それは、本発明の学習容量補正方法が、満充電されない充電開始残容量の電池を満充電して充電容量を検出し、この充電容量を充電開始残容量に加算した加算容量を先の学習容量に比較し、加算容量と学習容量との差が設定誤差以上であるときに、検出した加算容量を学習容量とするからである。   The learning capacity correction method of the present invention can correct the learning capacity accurately without fully charging the battery. That is, the learning capacity correction method of the present invention detects a charging capacity by fully charging a battery with a remaining charging start capacity that is not fully charged, and uses the added capacity obtained by adding the charging capacity to the remaining charging start capacity as the previous learning capacity. This is because when the difference between the addition capacity and the learning capacity is equal to or larger than the setting error, the detected addition capacity is set as the learning capacity.

さらに、この方法は、電池を完全に放電することなく、所定の残容量である充電開始残容量から満充電して学習容量を補正できるので、学習容量を頻繁に補正できる特徴もある。   Further, this method has a feature that the learning capacity can be corrected frequently because the learning capacity can be corrected by fully charging from the predetermined charging remaining capacity without fully discharging the battery.

さらに、本発明の特筆すべき特徴は、電池を完全に放電した状態から満充電することなく、学習容量を正確に補正できることである。それは、本発明の方法が、充電開始残容量と充電容量との加算容量を常に学習容量とするのではなく、加算容量と学習容量との差が設定誤差以上であるときに限って、加算容量を学習容量として補正するからである。本発明の方法は、充電開始残容量に充電容量を加算して加算容量とするので、充電開始残容量が小さい程、加算容量が正確な学習容量となり、しかもこの状態で学習容量を補正する確率が高くなる。充電開始残容量が小さいほど、加算容量が正確な学習容量となるのは、完全に放電された電池を満充電する状態に近付くからである。また、この状態で学習容量を訂正する確率が高くなるのは、充電開始残容量に比較して加算容量が正確に検出できるので、先の学習容量に誤差があると、正確な加算容量との差が大きくなるからである。このため、本発明の学習容量補正方法は、加算容量を正確に検出できるほど、学習容量を補正する確率も高くなり、加算容量で学習容量を正確に補正できる特徴がある。   Furthermore, a notable feature of the present invention is that the learning capacity can be accurately corrected without fully charging the battery from a fully discharged state. This is because the method of the present invention does not always use the addition capacity between the remaining charge start capacity and the charge capacity as the learning capacity, but only when the difference between the addition capacity and the learning capacity is equal to or larger than the setting error. Is corrected as a learning capacity. In the method of the present invention, the charging capacity is added to the remaining charging start capacity to obtain an additional capacity. Therefore, the smaller the remaining charging start capacity, the more accurate the learning capacity, and the probability of correcting the learning capacity in this state. Becomes higher. The smaller the remaining charge start capacity is, the more accurately the added capacity becomes the learning capacity because the fully discharged battery is close to being fully charged. In addition, the probability of correcting the learning capacity in this state is high because the addition capacity can be detected more accurately than the remaining charge start capacity, so if there is an error in the previous learning capacity, This is because the difference increases. For this reason, the learning capacity correction method of the present invention has a feature that the more the added capacity can be detected more accurately, the higher the probability of correcting the learned capacity, and the learned capacity can be accurately corrected with the added capacity.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電池の学習容量補正方法を例示するものであって、本発明は学習容量補正方法を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a learning capacity correction method for a battery for embodying the technical idea of the present invention, and the present invention does not specify the learning capacity correction method as follows.

図1は、本発明の学習容量補正方法に使用される組電池の回路図である。この組電池は、電池1と、充放電の電流を検出する電流検出部2と、電池1の電圧を検出する電圧検出部3と、電池の温度を検出する温度検出部4と、電流検出部2と電圧検出部3と温度検出部4からの出力信号を演算して充放電電流または電力を積算する積算部5と、この積算部5の出力から電池1の残容量を演算する残容量演算部6と、電池1を電源として使用する電気機器に、SMBusで電池情報を伝送する通信処理部7とを備える。このような組電池は、電気機器に接続し、放電して電力を供給し、また、電気機器に内蔵される充電回路にて充電される。また、充電については、電気機器とは別に充電器を利用して充電してもよい。電気機器は、電動自転車で、主に、モーターを駆動する電源として使用する。また、電気機器は、電動自動車でもよい。   FIG. 1 is a circuit diagram of an assembled battery used in the learning capacity correction method of the present invention. The assembled battery includes a battery 1, a current detection unit 2 that detects a charge / discharge current, a voltage detection unit 3 that detects the voltage of the battery 1, a temperature detection unit 4 that detects the temperature of the battery, and a current detection unit. 2, an integration unit 5 that calculates output signals from the voltage detection unit 3 and the temperature detection unit 4 and integrates charge / discharge current or power, and a remaining capacity calculation that calculates the remaining capacity of the battery 1 from the output of the integration unit 5 Unit 6 and a communication processing unit 7 that transmits battery information by SMBus to an electric device that uses the battery 1 as a power source. Such an assembled battery is connected to an electric device, discharged to supply electric power, and charged by a charging circuit built in the electric device. In addition, charging may be performed using a charger separately from the electric device. The electric equipment is an electric bicycle and is mainly used as a power source for driving a motor. The electric device may be an electric vehicle.

電池1は、リチウムイオン二次電池またはニッケル−水素電池である。ただ、電池は、ニッケル−カドミウム電池等の充電できる全ての電池とすることができる。電池1は、ひとつまたは複数の二次電池を直列または並列に接続している。   The battery 1 is a lithium ion secondary battery or a nickel-hydrogen battery. However, the battery can be any rechargeable battery such as a nickel-cadmium battery. The battery 1 has one or a plurality of secondary batteries connected in series or in parallel.

電池1の充放電の電流を検出する電流検出部2は、電流を電圧に変換して電流を検出する。この電流検出部は、図示しないが、電池と直列に接続している電流検出抵抗と、この電流検出抵抗の両端に発生する電圧を増幅するアンプと、アンプから出力されるアナログ信号をデジタル信号に変換するA/Dコンバータとを備える。電流検出抵抗は、電池1に流れる電流に比例した電圧が発生するので、電圧で電流を検出することができる。アンプは、+−の信号を増幅できるオペアンプで、出力電圧の+−で充電電流と放電電流を識別する。アンプの出力信号は、A/Dコンバータでアナログ信号からデジタル信号に変換される。このデジタル信号は、積算部5と通信処理部7とに出力される。   The current detection unit 2 that detects the charge / discharge current of the battery 1 converts the current into a voltage and detects the current. Although not shown, the current detection unit includes a current detection resistor connected in series with the battery, an amplifier that amplifies the voltage generated at both ends of the current detection resistor, and an analog signal output from the amplifier as a digital signal. An A / D converter for conversion. Since the current detection resistor generates a voltage proportional to the current flowing through the battery 1, the current can be detected by the voltage. The amplifier is an operational amplifier capable of amplifying a +-signal, and identifies a charging current and a discharging current by +-of the output voltage. The output signal of the amplifier is converted from an analog signal to a digital signal by an A / D converter. This digital signal is output to the integrating unit 5 and the communication processing unit 7.

電圧検出部3は、電池1の電圧を検出する。電圧検出部3は、検出したアナログ信号の電圧信号を、A/Dコンバータ(図示せず)でデジタル信号の電圧信号に変換して残容量演算部6に出力する。残容量演算部6は、電池電圧が放電終止電圧(E.V)まで低下すると、残容量を0に補正し、電池1の電圧が過放電電圧(OverDischarge)まで低下すると、パック電池の放電を停止させる。   The voltage detection unit 3 detects the voltage of the battery 1. The voltage detection unit 3 converts the detected voltage signal of the analog signal into a digital voltage signal by an A / D converter (not shown) and outputs the digital signal to the remaining capacity calculation unit 6. The remaining capacity calculation unit 6 corrects the remaining capacity to 0 when the battery voltage decreases to the discharge end voltage (EV), and discharges the battery pack when the voltage of the battery 1 decreases to the overdischarge voltage (OverDischarge). Stop.

温度検出部4は、電池1の温度を検出する。温度検出部4は、検出した電池の温度信号をA/Dコンバータ(図示せず)でデジタル信号に変換して、変換された温度のデジタル信号を、積算部5と、残容量演算部6と、通信処理部7とに出力する。   The temperature detection unit 4 detects the temperature of the battery 1. The temperature detection unit 4 converts the detected battery temperature signal into a digital signal by an A / D converter (not shown), and converts the converted temperature digital signal into an integration unit 5, a remaining capacity calculation unit 6, To the communication processing unit 7.

積算部5は、電流検出部2から入力されるデジタル信号の電流信号を演算して電池1の残容量(Ah)を演算する。この積算部5は、電池1の充電容量(Ah)から放電容量(Ah)を減算して、電池1の残容量(Ah)を電流の積算値(Ah)として演算する。充電容量(Ah)は、電池1の充電電流の積算値で、あるいはこれに充電効率をかけて演算される。放電容量(Ah)は、放電電流の積算値、あるいは放電効率を考慮して演算される。積算部5は、電流の積算に代わって、電力の積算値(Wh)で残容量を演算することもできる。電力の積算値(Wh)は、充電電力から放電電力を減算して演算される。電力は、電流検出部2から入力される電流信号に、電圧検出部3から入力される電圧をかけて演算される。   The accumulating unit 5 calculates the remaining current (Ah) of the battery 1 by calculating the current signal of the digital signal input from the current detecting unit 2. The accumulator 5 subtracts the discharge capacity (Ah) from the charge capacity (Ah) of the battery 1 and calculates the remaining capacity (Ah) of the battery 1 as an integrated value (Ah) of the current. The charging capacity (Ah) is calculated by the integrated value of the charging current of the battery 1 or by multiplying this by the charging efficiency. The discharge capacity (Ah) is calculated in consideration of the integrated value of the discharge current or the discharge efficiency. The integrating unit 5 can also calculate the remaining capacity using the integrated value of electric power (Wh) instead of integrating the current. The integrated power value (Wh) is calculated by subtracting the discharge power from the charge power. The electric power is calculated by multiplying the current signal input from the current detection unit 2 by the voltage input from the voltage detection unit 3.

残容量演算部6は、電圧検出部3から入力される電圧信号で、満充電された状態と、完全に放電された状態を判別する。残容量演算部6は、電池1の満充電電圧と放電終止電圧を記憶している。電圧検出部3から入力される電圧信号を満充電電圧と放電終止電圧に比較して、電池1の電圧が満充電電圧に上昇し、あるいは放電終止電圧に低下したことを検出する。残容量演算部6は、充電している電池1の電圧が満充電電圧まで上昇することを検出すると、電池1が満充電されたと判定する。また、放電している電池1の電圧が放電終止電圧まで低下すると、電池1が完全に放電されたと判定して、積算部5で演算した残容量を0に補正する。電池電圧が放電終止電圧まで低下すると、電池1の現実の容量は0になるからである。   The remaining capacity calculation unit 6 determines a fully charged state and a completely discharged state based on the voltage signal input from the voltage detection unit 3. The remaining capacity calculation unit 6 stores a full charge voltage and a discharge end voltage of the battery 1. The voltage signal input from the voltage detector 3 is compared with the full charge voltage and the discharge end voltage, and it is detected that the voltage of the battery 1 has increased to the full charge voltage or has decreased to the discharge end voltage. When the remaining capacity calculation unit 6 detects that the voltage of the battery 1 being charged rises to the fully charged voltage, it determines that the battery 1 is fully charged. When the voltage of the discharged battery 1 decreases to the discharge end voltage, it is determined that the battery 1 is completely discharged, and the remaining capacity calculated by the integrating unit 5 is corrected to zero. This is because the actual capacity of the battery 1 becomes zero when the battery voltage decreases to the discharge end voltage.

残容量演算部6は、実質的な満充電容量である学習容量を検出する。学習容量は、満充電された電池を完全に放電されるまでの積算容量、あるいは完全に放電された電池を満充電するまでの積算容量である。電池1の学習容量は、満充電された電池を完全に放電し、あるいは完全に放電された電池を満充電して検出できる。ただ、この方法で学習容量を検出するには、電池1を満充電した後に完全に放電し、あるいは完全に放電された後に満充電する必要がある。満充電と完全放電のいずれか一方のみが発生する状態では、学習容量を正確に算出できない。しかしながら、電池1は、多くの場合は、満充電と完全放電を繰り返さない状態で使用されるので、学習容量を検出できない。   The remaining capacity calculation unit 6 detects a learning capacity that is a substantial full charge capacity. The learning capacity is an accumulated capacity until the fully charged battery is completely discharged, or an accumulated capacity until the fully discharged battery is fully charged. The learning capacity of the battery 1 can be detected by fully discharging a fully charged battery or by fully charging a fully discharged battery. However, in order to detect the learning capacity by this method, it is necessary to fully discharge the battery 1 after it is fully charged, or to fully charge it after it is completely discharged. In the state where only one of full charge and complete discharge occurs, the learning capacity cannot be calculated accurately. However, since the battery 1 is often used in a state where full charge and complete discharge are not repeated, the learning capacity cannot be detected.

図2は、残容量演算部6が学習容量を検出して補正するフローチャートを示す。このフローチャートは、以下のステップで、電池1の学習容量を検出して補正する。   FIG. 2 shows a flowchart in which the remaining capacity calculation unit 6 detects and corrects the learning capacity. This flowchart detects and corrects the learning capacity of the battery 1 in the following steps.

電池1を完全に放電されない状態、いいかえると残容量を0としない状態から満充電して学習容量を演算する。満充電まで充電するとき、充電を開始するときの残容量を充電開始残容量とする。
[n=1、2のステップ]
電池1を充電も放電もしない状態、すなわち充放電の電流を0Aとする状態で、電池1の電圧を検出する。残容量演算部6は、検出された電池1の電圧から残容量を判定する。このことを実現するために、残容量演算部6は、各温度において電池電圧から残容量を特定するテーブルを記憶している。そして、このような電池電圧と残容量との関係は、リチウムイオン電池(1セル)では、特定の温度(=20℃)において、図3の関係となる。この方法は、電池電圧から残容量を決定するが、残容量は、電池電圧によらず、充電を開始するまでに演算された残容量とすることもできる。検出された残容量を電池1の充電開始残容量として以下のステップで学習容量を検出する。
[n=3〜6のステップ]
このステップで、残容量演算部6は、充電開始残容量から満充電されるまでの充電容量を検出する。電池1の満充電は、電池1の電圧が満充電電圧になったことを検出して判定する。この方法は、電池をリチウムイオン二次電池とする場合に適している。また、定電流定電圧充電で、電流低下を検出して満充電としてもよい。ただし、電池がニッケル水素電池やニッケルカドミウム電池の場合は、電池の電圧がピーク電圧となり、あるいはピーク電圧からΔV低下することを検出して、満充電と判定することができる。
The learning capacity is calculated by fully charging the battery 1 from a state where it is not completely discharged, in other words, a state where the remaining capacity is not zero. When charging to full charge, the remaining capacity at the start of charging is defined as the remaining charge start capacity.
[Steps of n = 1, 2]
The voltage of the battery 1 is detected in a state where the battery 1 is neither charged nor discharged, that is, in a state where the charge / discharge current is 0A. The remaining capacity calculation unit 6 determines the remaining capacity from the detected voltage of the battery 1. In order to realize this, the remaining capacity calculation unit 6 stores a table for specifying the remaining capacity from the battery voltage at each temperature. Such a relationship between the battery voltage and the remaining capacity is as shown in FIG. 3 at a specific temperature (= 20 ° C.) in a lithium ion battery (1 cell). In this method, the remaining capacity is determined from the battery voltage. However, the remaining capacity may be the remaining capacity calculated until the start of charging regardless of the battery voltage. The detected remaining capacity is used as the remaining charge starting remaining capacity of the battery 1 to detect the learning capacity in the following steps.
[Steps n = 3-6]
In this step, the remaining capacity calculation unit 6 detects the charging capacity from the charging start remaining capacity until it is fully charged. The full charge of the battery 1 is determined by detecting that the voltage of the battery 1 has reached the full charge voltage. This method is suitable when the battery is a lithium ion secondary battery. Moreover, it is good also as a full charge by detecting a current fall by constant current constant voltage charge. However, when the battery is a nickel metal hydride battery or a nickel cadmium battery, it can be determined that the battery is fully charged by detecting that the voltage of the battery reaches a peak voltage or that ΔV decreases from the peak voltage.

[n=7〜9ステップ]
残容量演算部6は、検出した充電容量を充電開始残容量に加算して加算容量を検出する。加算容量は、充電開始残容量と充電容量に誤差がないとすれば、学習容量となる。ただ、現実には、学習容量は常に電池の現実の正しい学習容量とはならない。学習容量が誤差を含むからである。したがって、残容量演算部6は、検出された加算容量を、先の学習容量と比較する。そして、加算容量と学習容量との差が設定誤差(例えば、先の学習容量に対して約5%の差)以上であるときは、検出された加算容量を学習容量に訂正する。加算容量と先に検出している学習容量との差が、設定誤差よりも小さいとき、加算容量を学習容量に補正しない。
[N = 7-9 steps]
The remaining capacity calculator 6 adds the detected charging capacity to the charging start remaining capacity to detect the added capacity. The added capacity is a learning capacity if there is no error between the remaining charge start capacity and the charge capacity. In reality, however, the learning capacity is not always the correct learning capacity of the battery. This is because the learning capacity includes an error. Therefore, the remaining capacity calculation unit 6 compares the detected added capacity with the previous learning capacity. When the difference between the addition capacity and the learning capacity is equal to or greater than a setting error (for example, a difference of about 5% with respect to the previous learning capacity), the detected addition capacity is corrected to the learning capacity. When the difference between the added capacity and the previously detected learning capacity is smaller than the setting error, the added capacity is not corrected to the learned capacity.

以上のステップで学習容量が補正しながら検出される。検出された学習容量(Ah)に基づいて、残容量演算部6は、電池1の残存率(%)を算出する。電池1の残存率は、残容量(Ah)/学習容量(Ah)の比率で演算される。   Through the above steps, the learning capacity is detected while being corrected. Based on the detected learning capacity (Ah), the remaining capacity calculator 6 calculates the remaining rate (%) of the battery 1. The remaining rate of the battery 1 is calculated by the ratio of remaining capacity (Ah) / learning capacity (Ah).

通信処理部7は、残容量演算部6で演算された残容量や残存率を、SMBusで装着している機器に伝送する。   The communication processing unit 7 transmits the remaining capacity and the remaining rate calculated by the remaining capacity calculating unit 6 to the device attached with the SMBus.

本発明の一実施例にかかる電池の学習容量補正方法に使用される組電池の一例を示すブロック図である。It is a block diagram which shows an example of the assembled battery used for the learning capacity correction method of the battery concerning one Example of this invention. 本発明の一実施例にかかる電池の学習容量補正方法で学習容量を検出して補正するフローチャートである。3 is a flowchart for detecting and correcting a learning capacity by a battery learning capacity correction method according to an embodiment of the present invention. 電池電圧に対応した残容量を示すグラフである。It is a graph which shows the remaining capacity corresponding to a battery voltage.

符号の説明Explanation of symbols

1…電池
2…電流検出部
3…電圧検出部
4…温度検出部
5…積算部
6…残容量演算部
7…通信処理部
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Current detection part 3 ... Voltage detection part 4 ... Temperature detection part 5 ... Integration part 6 ... Remaining capacity calculation part 7 ... Communication processing part

Claims (4)

電池を所定の充電開始残容量から満充電するときに、充電開始残容量から満充電するまでの充電容量を検出し、検出された充電容量を充電開始残容量に加算して加算容量を検出し、検出された加算容量を先の学習容量と比較し、加算容量と学習容量との差が設定誤差以上であると、検出された加算容量を学習容量に訂正する電池の学習容量補正方法。   When the battery is fully charged from the predetermined charge start remaining capacity, the charge capacity from the charge start remaining capacity to the full charge is detected, and the detected charge capacity is added to the charge start remaining capacity to detect the added capacity. A method for correcting a learning capacity of a battery, wherein the detected additional capacity is compared with the previous learning capacity, and if the difference between the additional capacity and the learning capacity is equal to or greater than a setting error, the detected additional capacity is corrected to the learning capacity. 電池の充電開始残容量を、電池を充放電しない状態における電池電圧から決定し、あるいは充放電電流の積算値から決定する請求項1に記載される電池の学習容量補正方法。   The battery learning capacity correction method according to claim 1, wherein the remaining charge start capacity of the battery is determined from a battery voltage in a state where the battery is not charged or discharged, or is determined from an integrated value of charge / discharge current. 電池が電動自転車のモーターを駆動する電源に使用される請求項1に記載される電池の学習容量補正方法。   The battery learning capacity correction method according to claim 1, wherein the battery is used as a power source for driving a motor of an electric bicycle. 電池が、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池のいずれかである請求項1に記載される電池の学習容量補正方法。
The battery learning capacity correction method according to claim 1, wherein the battery is any one of a lithium ion secondary battery, a nickel metal hydride battery, and a nickel cadmium battery.
JP2004371007A 2004-12-22 2004-12-22 Learning capacity correcting method of battery Pending JP2006177764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371007A JP2006177764A (en) 2004-12-22 2004-12-22 Learning capacity correcting method of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371007A JP2006177764A (en) 2004-12-22 2004-12-22 Learning capacity correcting method of battery

Publications (1)

Publication Number Publication Date
JP2006177764A true JP2006177764A (en) 2006-07-06

Family

ID=36732016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371007A Pending JP2006177764A (en) 2004-12-22 2004-12-22 Learning capacity correcting method of battery

Country Status (1)

Country Link
JP (1) JP2006177764A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083022A (en) * 2006-08-30 2008-04-10 Toyota Motor Corp Deterioration evaluating system for charge accumulating device, vehicle, deterioration evaluating method for charge accumulating device, and computer-readable recording medium recorded with program for making computer execute deterioration evaluating method
US7901528B2 (en) 2006-09-19 2011-03-08 Seiko Epson Corporation Method for manufacturing wiring substrate having sheet
WO2011048471A1 (en) * 2009-10-23 2011-04-28 パナソニック電工株式会社 Power supply apparatus
WO2011108249A1 (en) * 2010-03-05 2011-09-09 パナソニック株式会社 Full charge capacity value correction circuit, battery pack, and charging system
US8736232B2 (en) 2010-05-14 2014-05-27 Panasonic Corporation Full charge capacity correction circuit, charging system, battery pack and full charge capacity correction method
JP2014517257A (en) * 2011-03-28 2014-07-17 チャンズ アセンディング エンタープライズ カンパニー リミテッド Charge state determination system and method
CN104101837A (en) * 2013-04-03 2014-10-15 比亚迪股份有限公司 On-line calculation method for current total capacity of battery
US9263777B2 (en) 2012-12-13 2016-02-16 Renesas Electronics Corporation Semiconductor device, battery pack, and electronic device
CN105470588A (en) * 2014-08-21 2016-04-06 中兴通讯股份有限公司 Battery information detection control method, intelligent battery and terminal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268985A (en) * 1997-03-27 1998-10-09 Toshiba Corp Device and method for controlling power source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268985A (en) * 1997-03-27 1998-10-09 Toshiba Corp Device and method for controlling power source

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083022A (en) * 2006-08-30 2008-04-10 Toyota Motor Corp Deterioration evaluating system for charge accumulating device, vehicle, deterioration evaluating method for charge accumulating device, and computer-readable recording medium recorded with program for making computer execute deterioration evaluating method
US7901528B2 (en) 2006-09-19 2011-03-08 Seiko Epson Corporation Method for manufacturing wiring substrate having sheet
WO2011048471A1 (en) * 2009-10-23 2011-04-28 パナソニック電工株式会社 Power supply apparatus
CN102612656A (en) * 2009-10-23 2012-07-25 松下电器产业株式会社 Power supply apparatus
US9086463B2 (en) 2009-10-23 2015-07-21 Panasonic Intellectual Property Management Co., Ltd. Power supply apparatus
WO2011108249A1 (en) * 2010-03-05 2011-09-09 パナソニック株式会社 Full charge capacity value correction circuit, battery pack, and charging system
US8405356B2 (en) 2010-03-05 2013-03-26 Panasonic Corporation Full charge capacity value correction circuit, battery pack, and charging system
US8736232B2 (en) 2010-05-14 2014-05-27 Panasonic Corporation Full charge capacity correction circuit, charging system, battery pack and full charge capacity correction method
JP2014517257A (en) * 2011-03-28 2014-07-17 チャンズ アセンディング エンタープライズ カンパニー リミテッド Charge state determination system and method
US9263777B2 (en) 2012-12-13 2016-02-16 Renesas Electronics Corporation Semiconductor device, battery pack, and electronic device
CN104101837A (en) * 2013-04-03 2014-10-15 比亚迪股份有限公司 On-line calculation method for current total capacity of battery
CN105470588A (en) * 2014-08-21 2016-04-06 中兴通讯股份有限公司 Battery information detection control method, intelligent battery and terminal
EP3185348A4 (en) * 2014-08-21 2017-08-30 ZTE Corporation Information processing method, smart battery, terminal and computer storage medium
US20170271896A1 (en) * 2014-08-21 2017-09-21 Zte Corporation Information processing method, smart battery, terminal and computer storage medium
KR101812460B1 (en) * 2014-08-21 2018-01-30 지티이 코포레이션 Information processing method, smart battery, terminal and computer storage medium
US10298033B2 (en) * 2014-08-21 2019-05-21 Zte Corporation Information processing method, smart battery, terminal and computer storage medium
CN105470588B (en) * 2014-08-21 2019-08-02 中兴通讯股份有限公司 A kind of battery information detection control method, intelligent battery and terminal

Similar Documents

Publication Publication Date Title
JP5960063B2 (en) Battery full charge capacity detection method
US7974796B2 (en) Fully-charged battery capacity detection method
US7944178B2 (en) Fully-charged battery capacity detection method
US6930465B2 (en) Residual capacity correction method for battery
JP4275078B2 (en) Battery current limit control method
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
US20150236523A1 (en) Charge control device and charge time calculation method
US20060158151A1 (en) Battery pack
CN102565716A (en) Apparatus for calculating residual capacity of secondary battery
JP2010085243A (en) Method of detecting full charge capacity of backup battery
JP2010200574A (en) Self-diagnosis circuit and power supply
WO2011135631A1 (en) Full-charge capacity correction circuit, charging system, battery pack, and full-charge capacity correction method
JP2011053097A (en) Discharge management circuit and battery pack
JP2006177764A (en) Learning capacity correcting method of battery
JP4117997B2 (en) Battery remaining capacity correction method
JP5084394B2 (en) How to calculate the remaining battery capacity
JP4188981B2 (en) Nickel metal hydride storage battery charging method and charging apparatus for executing the charging method
JP4660367B2 (en) Rechargeable battery remaining capacity detection method
JP4259768B2 (en) Battery remaining capacity calculation method
JP3551084B2 (en) Secondary battery state management method and battery pack using this method
JP4514541B2 (en) Battery remaining capacity detection method
JP2005039875A (en) Method for charging secondary battery and apparatus for charging using the same
JP2007010370A (en) Battery capacity detection method
JP2002048848A (en) Remaining capacity detector for accumulator
JP2006170867A (en) Calculation method of remaining capacity of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426