JP2006177759A - Processing of tip of carbon nanotube - Google Patents

Processing of tip of carbon nanotube Download PDF

Info

Publication number
JP2006177759A
JP2006177759A JP2004370850A JP2004370850A JP2006177759A JP 2006177759 A JP2006177759 A JP 2006177759A JP 2004370850 A JP2004370850 A JP 2004370850A JP 2004370850 A JP2004370850 A JP 2004370850A JP 2006177759 A JP2006177759 A JP 2006177759A
Authority
JP
Japan
Prior art keywords
carbon nanotube
tip
contact
conductivity
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004370850A
Other languages
Japanese (ja)
Inventor
Kazunori Nagai
一則 永井
Akihiro Sugimoto
明弘 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2004370850A priority Critical patent/JP2006177759A/en
Publication of JP2006177759A publication Critical patent/JP2006177759A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrical contact for inhibiting a fluctuation of a conductivity due to a contact angle, and stably maintaining the high conductivity. <P>SOLUTION: A conductive coating is laminated at a tip of a carbon nanotube by vacuum-depositing Au at the tip of the carbon nanotube after the carbon nanotube is laminated. The carbon nanotube is constituted to be cylindrically rounded on a two-dimensional graphite face. The circumferential wave number is quantized. A quantized band gap is larger than a room temperature in one-dimensional direction in the circumferential direction. Electrons do not flow in the circumferential direction, and a movement of the electrons is limited to the axial direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はモータのブラシと整流子及びスイッチ等の接点可動部に用いられる電気接点装置に関する。 The present invention relates to an electric contact device used for a contact moving part such as a brush, a commutator and a switch of a motor.

従来、モータの整流機構等の可動部に接触して用いられる端子(又はブラシ)としては金属性の電気接点材が主流であり、例えば特許文献1,2と言った構造が知られている。 Conventionally, as a terminal (or brush) used in contact with a movable part such as a rectifying mechanism of a motor, a metallic electrical contact material has been mainly used, and for example, structures such as Patent Documents 1 and 2 are known.

ここで特許文献1に示す端子では金属製の板バネを端子として使用する事で加工が容易で組み立てコストを抑えた端子構造を実現している。又、特許文献2に示す端子では超硬質の微粉末を含有する金属層によって測定部との接触部分を構成することによって測定部に接する部分に凹凸を形成し、従来の約半分以下の圧力で良好な接触を得ることが出来る構造を得ている。また、超硬質の微粉末を使用している為に接触部分に関しても摩耗しにくく、接点自体の長寿命化を可能としている。 Here, in the terminal shown in Patent Document 1, a metal leaf spring is used as a terminal to realize a terminal structure that is easy to process and has low assembly cost. In addition, in the terminal shown in Patent Document 2, the contact portion with the measurement portion is formed by forming a contact portion with the measurement portion with a metal layer containing ultra-hard fine powder, and the pressure is about half or less than the conventional pressure. A structure capable of obtaining good contact is obtained. In addition, since the ultra-hard fine powder is used, the contact portion is not easily worn and the life of the contact itself can be extended.

しかしながら、特許文献1のような構造を用いた端子では金属を用いている為に表面の酸化や接触部の摩耗といった課題があり、特許文献2のような構造では超硬質の微粉末を用いた為に端子自体の寿命は延びたが、可動部分に対して使用した場合、摩耗によって生じた微粉末が装置の隙間等に入り込み、装置全体の寿命を縮めてしまうという課題があった。 However, since a terminal using a structure such as Patent Document 1 uses metal, there are problems such as surface oxidation and contact wear, and a structure such as Patent Document 2 uses ultra-hard fine powder. For this reason, the life of the terminal itself has been extended, but when used on a movable part, there has been a problem that the fine powder generated by wear enters the gaps of the device and the like, and the life of the entire device is shortened.

上記の課題に対して近年、モータのブラシと整流子及びスイッチ等に使用する電気的接点材として、炭素を積層したカーボンナノチューブを使用したブラシ状端子があり、機械的接触に対して高い導電率を持ち、電気的特性が変化しない端子として出願されている。(特許文献3参照) In recent years, there has been a brush-like terminal using carbon nanotubes with carbon laminated as an electrical contact material used for motor brushes, commutators, switches, etc., which has high conductivity against mechanical contact. It has been filed as a terminal that does not change its electrical characteristics. (See Patent Document 3)

前記特許文献3記載の電気的接点装置では複数のカーボンナノチューブをブラシ接点材として使用することによって、寿命の長い接点部を提供している。
これは、カーボンナノチューブが高い弾性率を持ち、表面が酸化しても二酸化炭素を生じるだけという特性を利用したもので、上述した金属材料を使用する端子に比べて機械的にも優れた特性を有する端子を得ることが可能となる。
In the electrical contact device described in Patent Document 3, a contact portion having a long life is provided by using a plurality of carbon nanotubes as a brush contact material.
This is because carbon nanotubes have a high elastic modulus and only generate carbon dioxide even when the surface is oxidized, and mechanically superior to the terminals using the above-mentioned metal materials. It is possible to obtain a terminal having the same.

また、ブラシの密度により端子全体の剛性を変えることが可能となっており、可動状況に応じて最適な接触状態を得ることが出来ると同時に、可動部の形状によって最適な接点構造を維持する事が出来る。 In addition, it is possible to change the rigidity of the entire terminal according to the density of the brush, so that an optimum contact state can be obtained according to the movable state, and at the same time, an optimum contact structure can be maintained depending on the shape of the movable part. I can do it.

特開平05−003638JP 05-003638 A 特開平11−304838JP-A-11-304838 特開2003−284304JP 2003-284304 A

しかしながら、上述したカーボンナノチューブを使った端子構造の場合、導電性に関して制限があるという課題を有している。一般にカーボンナノチューブは二次元グラファイト面を円筒状に丸めた構造となっており、電子の運動がナノチューブの軸方向だけに制限されるという異方性導電特性を有している。(図2参照) However, in the case of the terminal structure using the above-described carbon nanotube, there is a problem that there is a limitation on conductivity. In general, a carbon nanotube has a structure in which a two-dimensional graphite surface is rounded into a cylindrical shape, and has anisotropic conductive characteristics in which the movement of electrons is limited only in the axial direction of the nanotube. (See Figure 2)

このため、上述のように電気的接点材として使用する場合に接触するブラシの先端部分が端部か側面かによって導電率が変わり、安定した導電率を得る為にはブラシの密度によって剛性を変えつつ、実用に耐えうる導電率を維持する必要があった。 For this reason, as described above, when used as an electrical contact material, the conductivity changes depending on whether the tip of the brush that comes into contact is the end or the side, and in order to obtain a stable conductivity, the rigidity is changed depending on the density of the brush. However, it has been necessary to maintain a conductivity that can withstand practical use.

そこで本出願は接触角度による導電率のバラツキを抑え、安定して高い導電率を保つことが出来る電気的接点を提供することを目的とする。
Accordingly, an object of the present application is to provide an electrical contact capable of suppressing a variation in conductivity due to a contact angle and stably maintaining a high conductivity.

前記課題を解決する為、請求項1では電気的接点として用いられるカーボンナノチューブの先端部にスパッタ等の手段を用いて金属被膜を形成した構造を特徴としている。
In order to solve the above-mentioned problems, claim 1 is characterized by a structure in which a metal film is formed on the tip of a carbon nanotube used as an electrical contact by means such as sputtering.

請求項1記載の発明によれば、接触角度による導電率のバラツキを抑え、接触角度に影響されずに高い導電率を持つ電気的接点を得ることが出来る。又、ブラシ密度に関わらず安定した導電率が維持できるので、本数にかかわらず接点を形成することが出来、より微小な可動部に対しても接点として使用することが出来る。 According to the first aspect of the present invention, it is possible to obtain an electrical contact having high conductivity without being affected by the contact angle by suppressing variation in conductivity due to the contact angle. Further, since a stable conductivity can be maintained regardless of the brush density, a contact can be formed regardless of the number of the brushes, and even a smaller movable part can be used as a contact.

本発明ではカーボンナノチューブ先端部に導体被膜を設けることで端部の導電率を側面部もまた有することを可能としており、端部のみに被膜を設ける事でカーボンナノチューブの持つ弾性力を生かしたまま全体の導電性を向上させる構造となっている。
In the present invention, by providing a conductive film at the tip of the carbon nanotube, it is possible to have the conductivity of the end also at the side, and by providing a film only at the end, the elasticity of the carbon nanotube is utilized. It has a structure that improves the overall conductivity.

以下に図を用いて本発明の実施形態に関わるカーボンナノチューブの先端加工について説明する。
図1は本実施例に関わるカーボンナノチューブの先端の状態とカーボンナノチューブの持つ異方性導電特性のモデル図である。
The tip processing of the carbon nanotube according to the embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a model diagram of the state of the tip of the carbon nanotube and the anisotropic conductive characteristics of the carbon nanotube according to this example.

本実施例ではカーボンナノチューブを積層した後にAuをカーボンナノチューブ先端部に真空蒸着することでカーボンナノチューブ先端部に導体被膜を積層している。
前述したようにカーボンナノチューブは二次元グラファイト面を円筒状に丸めて作った構成であり、円周方向の波数は量子化されている。ここで、量子化された円周方向に於ける一次元方向のバンド間隔は室温よりも大きく、この為に円周方向に電子が流れず、電子の運動が軸方向に制限される。この異方性導電特性を具体的なモデルを図2に示す。
In this embodiment, after the carbon nanotubes are laminated, Au is vacuum-deposited on the carbon nanotube tips, thereby laminating the conductor coating on the carbon nanotube tips.
As described above, the carbon nanotube is configured by rounding a two-dimensional graphite surface into a cylindrical shape, and the wave number in the circumferential direction is quantized. Here, the band interval in the one-dimensional direction in the quantized circumferential direction is larger than room temperature, so that electrons do not flow in the circumferential direction, and the movement of electrons is limited in the axial direction. A specific model of this anisotropic conductive characteristic is shown in FIG.

図2に示したモデル図からも解るように、従来の先端に導体被膜を持たないブラシ構造では側面と接触した部分はその部分のみ導通し、そのカーボンナノチューブの接触していない部分に関しては導通しない。従ってカーボンナノチューブ全体を導体として使用することが出来るのは先端部が接触した場合だけとなる。 As can be seen from the model diagram shown in FIG. 2, in the conventional brush structure having no conductor coating on the tip, only the portion that is in contact with the side surface is conductive, and the portion that is not in contact with the carbon nanotube is not conductive. . Therefore, the entire carbon nanotube can be used as a conductor only when the tip part contacts.

これに対し、本実施例のように先端部に導体被膜(図1ではAu)を設けることにより、被膜を通じて先端部の端部と側面部が電気的に接続される為、先端部の側面部に接触しても端部が接触しているのと同等の導電率を得ることができ、安定した導電率を得ることが可能となる。 On the other hand, by providing a conductor coating (Au in FIG. 1) at the tip as in the present embodiment, the end and the side of the tip are electrically connected through the coating. Even if it contacts, the electrical conductivity equivalent to that which the edge part is contacting can be obtained, and it becomes possible to obtain the stable electrical conductivity.

本実施例では、スパッタによりカーボンナノチューブ端子先端部にスパッタを用いてAu被膜を積層することで、側面部のみが接触しても先端部が接触しているのと同じ導電率を備えることを可能としている。また、被膜を全体ではなく先端部に限定することによって被膜の積層を容易かつ安価にし、カーボンナノチューブが持つ優れた機械的特性を残したまま導電性を向上させる事が出来る。
In this example, by depositing the Au film by sputtering on the tip of the carbon nanotube terminal by sputtering, it is possible to have the same conductivity as that of the tip contacting even if only the side surface contacts It is said. Further, by limiting the coating to the tip instead of the whole, it is possible to easily and inexpensively laminate the coating, and to improve the conductivity while leaving the excellent mechanical properties of the carbon nanotube.

本発明に於ける第一の実施形態First embodiment of the present invention 本発明で用いるカーボンナノチューブの持つ異方性導電特性のモデル図Model diagram of anisotropic conductive properties of carbon nanotubes used in the present invention

Claims (1)

基板上に積層されたカーボンナノチューブを用いて電気的接点材とした電気接点装置において、カーボンナノチューブ先端にスパッタ、蒸着、液体コーティング等の手段を用いて導体の被膜を設けた事を特徴とする端子構造。
An electrical contact device using carbon nanotubes laminated on a substrate as an electrical contact material, characterized in that a conductor coating is provided on the tip of the carbon nanotubes by means of sputtering, vapor deposition, liquid coating, etc. Construction.
JP2004370850A 2004-12-22 2004-12-22 Processing of tip of carbon nanotube Withdrawn JP2006177759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004370850A JP2006177759A (en) 2004-12-22 2004-12-22 Processing of tip of carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370850A JP2006177759A (en) 2004-12-22 2004-12-22 Processing of tip of carbon nanotube

Publications (1)

Publication Number Publication Date
JP2006177759A true JP2006177759A (en) 2006-07-06

Family

ID=36732011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370850A Withdrawn JP2006177759A (en) 2004-12-22 2004-12-22 Processing of tip of carbon nanotube

Country Status (1)

Country Link
JP (1) JP2006177759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243999A (en) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp Measuring apparatus having nanotube probe
JP2010507098A (en) * 2006-10-16 2010-03-04 フォームファクター, インコーポレイテッド Production and use of carbon nanotubes
JP2011038859A (en) * 2009-08-07 2011-02-24 Kobe Steel Ltd Contact probe pin
JP2018067483A (en) * 2016-10-20 2018-04-26 ヤマハ株式会社 Anisotropic conductive sheet, electric inspection head, electric inspection device, and method for manufacturing anisotropic conductive sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507098A (en) * 2006-10-16 2010-03-04 フォームファクター, インコーポレイテッド Production and use of carbon nanotubes
JP2009243999A (en) * 2008-03-31 2009-10-22 Hitachi High-Technologies Corp Measuring apparatus having nanotube probe
JP4644723B2 (en) * 2008-03-31 2011-03-02 株式会社日立ハイテクノロジーズ Measuring device with nanotube probe
JP2011038859A (en) * 2009-08-07 2011-02-24 Kobe Steel Ltd Contact probe pin
JP2018067483A (en) * 2016-10-20 2018-04-26 ヤマハ株式会社 Anisotropic conductive sheet, electric inspection head, electric inspection device, and method for manufacturing anisotropic conductive sheet

Similar Documents

Publication Publication Date Title
Toth et al. Carbon-nanotube-based electrical brush contacts
WO2006116323A3 (en) Diamond-like carbon thermoelectric conversion devices and methods for the use and manufacture thereof
US7202586B2 (en) Electrical contact member
JP2007283110A5 (en)
TWI265538B (en) Rotary electrical component
JP3898684B2 (en) Rotating current collector and rotating cathode X-ray tube
US10199788B1 (en) Monolithic MAX phase ternary alloys for sliding electrical contacts
TW200701287A (en) Diamond-like carbon thermoelectric conversion devices and methods for the use and manufacture thereof
JP2006177759A (en) Processing of tip of carbon nanotube
JP4038402B2 (en) Sliding contacts and sliding electrical parts and sensors
GB2061005A (en) Switch unit
CN104851616A (en) Micro-switch and method for manufacturing the micro-switch
US7145557B2 (en) Roller construction with direction finding for a mobile navigation device
JP5163565B2 (en) Rotation sensor
JP2005251527A (en) Battery contact mechanism, battery housing structure, power supply device, electronic equipment and pressure contact mechanism
JP2003308748A (en) Input device having sliding part
JP4866986B2 (en) Brush for motor, motor provided with the same, and method for manufacturing brush
JP2008231216A (en) High-friction sliding film and drive unit using the same
JP2004087135A (en) Fixing structure of battery
JP6579425B2 (en) Board switch
US448331A (en) feietsch
JP2003100411A (en) Brush
JP2007305458A (en) Switch
JP2007287409A (en) Rotary operation type encoder
JP2003134740A (en) Sliding member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304