JP2006177227A - Rotary two-stage compressor - Google Patents

Rotary two-stage compressor Download PDF

Info

Publication number
JP2006177227A
JP2006177227A JP2004370382A JP2004370382A JP2006177227A JP 2006177227 A JP2006177227 A JP 2006177227A JP 2004370382 A JP2004370382 A JP 2004370382A JP 2004370382 A JP2004370382 A JP 2004370382A JP 2006177227 A JP2006177227 A JP 2006177227A
Authority
JP
Japan
Prior art keywords
compression element
pressure
roller
rotary
pressure compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004370382A
Other languages
Japanese (ja)
Inventor
Atsushi Kubota
淳 久保田
Kazutaka Watabe
一孝 渡部
Masato Kaneko
正人 金子
Atsushi Onuma
敦 大沼
Hiroshi Izaki
宏 井崎
Tetsuya Tadokoro
哲也 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004370382A priority Critical patent/JP2006177227A/en
Priority to CN 200510138113 priority patent/CN1793663B/en
Publication of JP2006177227A publication Critical patent/JP2006177227A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce power consumption of a compressor by suppressing the increase of leakage loss or sliding loss at a sealing surface of a roller. <P>SOLUTION: This rotary two-stage compressor is provided, in a sealed container, with a rotary shaft driven by a motor and having two eccentric parts; a rotary compression element wherein a low pressure compression element and a high pressure compression element with rollers provided in compression chambers respectively and put in revolving motion by the eccentric rotation of the eccentric parts are provided through an intermediate partition plate; and intermediate passages connected to the compression chamber of the low pressure compression element and the compression chamber of the high pressure compression element and separated from the internal space of the sealed container. Pressure in the sealed container is the pressure of discharge gas compressed by the high pressure compression element, and each compression chamber is provided with an end plate and the intermediate partition plate in the direction of the rotary shaft. As to the radial width of the sealing surface at the upper and lower end faces of the roller facing the end plate and intermediate plate, the radial width of the sealing surface of the roller used for the low pressure compression element is made larger than that of the sealing surface of the roller used for the high pressure compression element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍サイクルを備えた空気調和機に使用されるロータリ圧縮機に関する。   The present invention relates to a rotary compressor used in an air conditioner equipped with a refrigeration cycle.

従来、冷凍サイクルに使用されるロータリ式2段圧縮機として、例えば特開昭60−128990号公報(以下、特許文献1)に開示された構造が知られている。この従来技術における圧縮機は、密閉容器の内部において上部にステータとロータからなる電動機を備えている。電動機に連結された回転軸は2つの偏心部を備えている。それらの偏心部に対応した圧縮機構として、電動機側から順に、高圧用圧縮要素と低圧用圧縮要素とが密閉容器の内部に設けられている。   Conventionally, as a rotary two-stage compressor used in a refrigeration cycle, for example, a structure disclosed in Japanese Patent Application Laid-Open No. 60-128990 (hereinafter referred to as Patent Document 1) is known. The compressor in this prior art is provided with an electric motor composed of a stator and a rotor at the upper part inside a sealed container. The rotating shaft connected to the electric motor has two eccentric portions. As a compression mechanism corresponding to these eccentric portions, a high-pressure compression element and a low-pressure compression element are provided inside the sealed container in order from the electric motor side.

各圧縮要素は、回転軸の偏心部の偏心回転によりローラを公転運動させる。それらの偏心部は位相が180°異なり、各圧縮要素の圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相である。   Each compression element revolves the roller by the eccentric rotation of the eccentric portion of the rotation shaft. The eccentric portions have a phase difference of 180 °, and the phase difference of the compression process of each compression element is 180 °. That is, the compression process of the two compression elements is in antiphase.

作動流体であるガス冷媒は低圧Psで低圧用圧縮要素内に吸入されて、圧縮されて中間圧Pmに上昇する。中間圧Pmで吐出されたガス冷媒は中間流路に吐出される。次に中間圧Pmのガス冷媒は中間流路を経て高圧用圧縮要素内に吸入され、高圧Pdに圧縮される。   The gas refrigerant, which is a working fluid, is sucked into the low pressure compression element at a low pressure Ps, is compressed, and rises to an intermediate pressure Pm. The gas refrigerant discharged at the intermediate pressure Pm is discharged into the intermediate flow path. Next, the gas refrigerant having the intermediate pressure Pm is sucked into the high pressure compression element through the intermediate flow path and compressed to the high pressure Pd.

圧縮機から吐出された高圧Pdのガス冷媒は凝縮器で凝縮された後、膨張機構で低圧Psまで減圧される。その後、蒸発器で蒸発してガス冷媒となり低圧用圧縮要素内に吸入される。   The high-pressure Pd gas refrigerant discharged from the compressor is condensed by the condenser and then decompressed to the low pressure Ps by the expansion mechanism. After that, it evaporates in an evaporator to become a gas refrigerant and is sucked into the low pressure compression element.

このような密閉容器の内圧が高圧Pdとなるロータリ式2段圧縮機の構造として、例えば特許文献1に開示された構造が知られている。従来技術のロータリ式2段圧縮機は、低圧用圧縮要素で低圧Psから中間圧Pmへ、高圧用圧縮要素で中間圧Pmから高圧Pdへ段階的にガス冷媒を圧縮する。   As a structure of such a rotary two-stage compressor in which the internal pressure of the hermetic container is high pressure Pd, for example, a structure disclosed in Patent Document 1 is known. The conventional rotary two-stage compressor compresses the gas refrigerant stepwise from the low pressure Ps to the intermediate pressure Pm by the low pressure compression element and from the intermediate pressure Pm to the high pressure Pd by the high pressure compression element.

しかし偏心部とローラの幾何形状の関係は特に記載されていない。一般的な単段のロータリ圧縮機と同様に、ローラは円筒形状であり、上下に密封端面であるシール面を備えている。ここでシール面とは、端板部や仕切板に対面して摺動面となる箇所であり、圧縮室と密閉容器内の内部空間とを一般的には潤滑油を介して封止する面である。   However, the relationship between the eccentric portion and the geometrical shape of the roller is not particularly described. Similar to a general single-stage rotary compressor, the roller has a cylindrical shape and is provided with sealing surfaces which are sealed end surfaces at the top and bottom. Here, the sealing surface is a portion that faces the end plate part or the partition plate and becomes a sliding surface, and is a surface that seals the compression chamber and the internal space in the sealed container generally with lubricating oil. It is.

特許文献1では、低圧用圧縮要素のシール幅t1は高圧用圧縮要素のシール幅t2よりも小さくなったいた。ここでシール幅は、シール面の径方向の幅である。   In Patent Document 1, the seal width t1 of the low-pressure compression element is smaller than the seal width t2 of the high-pressure compression element. Here, the seal width is the width in the radial direction of the seal surface.

特開昭60−128990号公報(第5頁、第1図)JP-A-60-128990 (page 5, FIG. 1)

従来技術で述べたロータリ式2段圧縮機を空気調和機に用いる場合、低圧用圧縮要素の内圧は、低圧Psから中間圧Pmに変化する。高圧用圧縮要素の内圧は、中間圧Pmから高圧Pdに変化する。一方、ローラの内筒側の圧力は、高圧Pdである。   When the rotary two-stage compressor described in the prior art is used for an air conditioner, the internal pressure of the low pressure compression element changes from the low pressure Ps to the intermediate pressure Pm. The internal pressure of the high pressure compression element changes from the intermediate pressure Pm to the high pressure Pd. On the other hand, the pressure on the inner cylinder side of the roller is a high pressure Pd.

したがってシール面でシールする最大圧力差をΔPとすると、低圧用圧縮要素のシール面での最大圧力差ΔP1は(高圧Pd−低圧Ps)であり、高圧用圧縮要素のシール面での最大圧力差ΔP2は(高圧Pd−中間圧Pm)である。   Therefore, when the maximum pressure difference sealed at the sealing surface is ΔP, the maximum pressure difference ΔP1 at the sealing surface of the low pressure compression element is (high pressure Pd−low pressure Ps), and the maximum pressure difference at the sealing surface of the high pressure compression element. ΔP2 is (high pressure Pd−intermediate pressure Pm).

ΔP1>ΔP2にもかかわらずシール幅t1<シール幅t2であったため、たとえば高圧用圧縮要素におけるローラのシール面でのシール性が適正である場合、低圧用圧縮要素のローラのシール面からの冷媒や冷凍機油の漏れ込み量が大きく圧縮機の消費電力を増大するという課題があった。   Since the seal width t1 is smaller than the seal width t2 in spite of ΔP1> ΔP2, for example, when the sealing performance on the seal surface of the roller in the high-pressure compression element is appropriate, the refrigerant from the roller seal surface of the low-pressure compression element In addition, there is a problem that the amount of refrigeration oil leakage is large and the power consumption of the compressor is increased.

逆に低圧用圧縮要素のローラのシール面でのシール性が適正である場合、高圧用圧縮要素のローラのシール面での余分な摺動損失が増大し、圧縮機の消費電力を増大するという課題があった。ここでシール性の適正値は、漏れ込み損失と摺動損失の和の極小値である。   Conversely, if the sealing performance of the low pressure compression element on the sealing surface of the roller is appropriate, the extra sliding loss on the sealing surface of the roller of the high pressure compression element increases, increasing the power consumption of the compressor. There was a problem. Here, the appropriate value of the sealing property is the minimum value of the sum of the leakage loss and the sliding loss.

本発明の目的は、ローラのシール面での漏れ込み損失もしくは摺動損失の増大を抑制し、圧縮機の消費電力を低減することにある。   An object of the present invention is to suppress an increase in leakage loss or sliding loss on the seal surface of a roller and to reduce power consumption of the compressor.

上記目的を達成するために、本発明のロータリ圧縮機は、密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動する略円筒形状のローラをそれぞれ圧縮室に備えた低圧用圧縮要素と高圧用圧縮要素とが中間仕切板を介して設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた中間流路と、を備え、前記密閉容器内の圧力が高圧となっている。前記各圧縮室は端板と前記中間仕切板とが前記回転軸方向に設けられ、それらの前記端版と前記中間仕切板とに対向する前記ローラの上下端面におけるシール面の半径方向の幅は、前記低圧用圧縮要素に用いられる前記ローラのシール面における半径方向幅の方が、前記高圧用圧縮要素に用いられる前記ローラのシール面における半径方向幅よりも大きくしたものである。つまり、前記低圧用圧縮要素に用いられる前記ローラの前記シール幅t1を、前記高圧用圧縮要素に用いられる前記ローラの前記シール幅t2よりも大きくした。   In order to achieve the above object, a rotary compressor according to the present invention includes an electric motor in a sealed container, a rotating shaft driven by the electric motor and having two eccentric parts, and a substantially cylinder that revolves by eccentric rotation of the eccentric part. A rotary compression element having a low-pressure compression element and a high-pressure compression element each provided with a roller having a shape provided via an intermediate partition plate; a compression chamber of the low-pressure compression element; and a compression element for the high-pressure compression element An intermediate channel separated from the internal space of the sealed container connected to the compression chamber, and the pressure in the sealed container is high. In each compression chamber, an end plate and the intermediate partition plate are provided in the rotational axis direction, and the radial width of the seal surface on the upper and lower end surfaces of the roller facing the end plate and the intermediate partition plate is The radial width of the seal surface of the roller used for the low pressure compression element is larger than the radial width of the seal surface of the roller used for the high pressure compression element. That is, the seal width t1 of the roller used for the low-pressure compression element is made larger than the seal width t2 of the roller used for the high-pressure compression element.

さらにローラの外径寸法や内径寸法の設計自由度を高めるため、前記ローラの内面と上下のシール面との間に面取りもしくはザグリを設けて上記シール幅の関係を設定してもよい。   Further, in order to increase the degree of freedom in designing the outer diameter and inner diameter of the roller, the relationship between the seal widths may be set by providing a chamfer or counterbore between the inner surface of the roller and the upper and lower seal surfaces.

本発明によれば、シール面の内と外で生じる圧力差が異なるロータリ2段圧縮機のローラにおけるシール面での漏れ込み損失もしくは摺動損失の増大を抑制し、圧縮機の消費電力を低減する。   According to the present invention, the increase in leakage loss or sliding loss at the seal surface in the roller of a rotary two-stage compressor having different pressure differences between the inside and outside of the seal surface is suppressed, and the power consumption of the compressor is reduced. To do.

本発明の実施形態を図を用いて説明する。図1に本実施形態のロータリ式2段圧縮機1の縦断面図を、図2にローラの斜視図を示す。圧縮機1は、底部21と蓋部12と胴部22からなる密閉容器13を備える。密閉容器13内部の上方には、ステータ7とロータ8を有する電動機14が設けられている。電動機14に連結された回転軸2は、2つの偏心部5を備えて、主軸受9と副軸受19aに軸支されている。その回転軸2に対して電動機14側から順に、端板部9aを備えた主軸受9、高圧用圧縮要素20b、中間仕切板15、低圧用圧縮要素20a及び端板部19bと副軸受19aを備えた中間容器19が積層され、ボルト等の締結要素36で一体化されている。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a rotary two-stage compressor 1 of the present embodiment, and FIG. 2 is a perspective view of a roller. The compressor 1 includes a sealed container 13 including a bottom portion 21, a lid portion 12, and a body portion 22. An electric motor 14 having a stator 7 and a rotor 8 is provided above the inside of the sealed container 13. The rotating shaft 2 connected to the electric motor 14 includes two eccentric portions 5 and is pivotally supported by the main bearing 9 and the auxiliary bearing 19a. The main bearing 9, the high-pressure compression element 20b, the intermediate partition plate 15, the low-pressure compression element 20a, the end plate portion 19b, and the auxiliary bearing 19a provided with the end plate portion 9a are sequentially arranged with respect to the rotating shaft 2 from the electric motor 14 side. The provided intermediate container 19 is laminated and integrated with a fastening element 36 such as a bolt.

端板部9aは、胴部22の内壁に溶接によって固定されて、主軸受9を支持している。端板部19bは、副軸受19aに支持されている。なお、本実施形態は端板部19bを締結要素36で固定されているが、胴部22に溶接で固定されても構わない。   The end plate portion 9 a is fixed to the inner wall of the body portion 22 by welding and supports the main bearing 9. The end plate portion 19b is supported by the auxiliary bearing 19a. In this embodiment, the end plate portion 19b is fixed by the fastening element 36, but may be fixed to the body portion 22 by welding.

各圧縮要素20aと20bは、図1のように構成されている。低圧圧縮要素20aは、端板部19bと、円筒状のシリンダ10aと、偏心部5aの外周に嵌め合わされた円筒状のローラ11aと、中間仕切板15とで圧縮室23aは構成される。また、高圧圧縮要素20bは、主軸受9と、円筒状のシリンダ10bと、偏心部5bの外周に嵌め合わされた円筒状のローラ11bと、中間仕切板15とで圧縮室23bは構成される。それらの圧縮室23a、23bは、コイルバネのような付勢力付与手段に連結された平板状のベーン(図示せず)が、偏心部5a、5bの偏心運動に合わせて回転するローラ11a、11bの外周上を接触しながら進退運動することにより、圧縮室23a、23bを圧縮空間と吸込み空間に分割する。   Each compression element 20a and 20b is configured as shown in FIG. In the low-pressure compression element 20a, a compression chamber 23a is composed of an end plate portion 19b, a cylindrical cylinder 10a, a cylindrical roller 11a fitted to the outer periphery of the eccentric portion 5a, and an intermediate partition plate 15. In the high-pressure compression element 20b, a compression chamber 23b is constituted by the main bearing 9, the cylindrical cylinder 10b, the cylindrical roller 11b fitted to the outer periphery of the eccentric portion 5b, and the intermediate partition plate 15. These compression chambers 23a and 23b are made up of rollers 11a and 11b in which flat vanes (not shown) connected to biasing force applying means such as coil springs rotate in accordance with the eccentric motion of the eccentric portions 5a and 5b. The compression chambers 23a and 23b are divided into a compression space and a suction space by moving forward and backward while contacting the outer periphery.

圧縮要素20は、偏心部5が偏心回転することでローラ11を駆動する。図1に示すように偏心部5aと偏心部5bは位相が180°異なり、圧縮要素20a、20bの圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相となっている。   The compression element 20 drives the roller 11 when the eccentric part 5 rotates eccentrically. As shown in FIG. 1, the eccentric portion 5a and the eccentric portion 5b have a phase difference of 180 °, and the phase difference in the compression process of the compression elements 20a and 20b is 180 °. That is, the compression process of the two compression elements is in opposite phase.

作動流体であるガス冷媒の流れを、図1の矢印で表す。配管31を通って供給される低圧Psのガス冷媒は、配管31と接続する吸入口25aより低圧用圧縮要素20a内に吸入され、ローラ11aが偏心回転することにより中間圧Pmまで圧縮される。圧縮室23a内の圧力が予め設定された圧力になると開口する吐出弁28aが中間圧Pmで開口すると、中間圧Pmとなったガス冷媒が、吐出口26aと連通する吐出空間33に吐出される。この吐出空間33は、中間容器19と平板状のカバー35とにより密閉容器13内の密閉空間29と隔離された空間であり、その内部圧力は基本的には中間圧Pmとなる。中間流路30は、吐出空間33からの排出口26cと吸入口25bを連通する流路である。吐出弁28aが開口した吐出口26aから吐出された圧力Pmのガス冷媒は、吐出空間33に吐出された後、中間流路30を通って高圧圧力要素20bの圧力室23bと連通する吸入口25bに至る。   The flow of the gas refrigerant which is a working fluid is represented by an arrow in FIG. The low-pressure Ps gas refrigerant supplied through the pipe 31 is sucked into the low-pressure compression element 20a from the suction port 25a connected to the pipe 31, and is compressed to the intermediate pressure Pm by the eccentric rotation of the roller 11a. When the discharge valve 28a that opens when the pressure in the compression chamber 23a reaches a preset pressure opens at the intermediate pressure Pm, the gas refrigerant that has reached the intermediate pressure Pm is discharged into the discharge space 33 that communicates with the discharge port 26a. . The discharge space 33 is a space separated from the sealed space 29 in the sealed container 13 by the intermediate container 19 and the flat cover 35, and the internal pressure thereof is basically the intermediate pressure Pm. The intermediate flow path 30 is a flow path that connects the discharge port 26c from the discharge space 33 and the suction port 25b. The gas refrigerant having the pressure Pm discharged from the discharge port 26a opened by the discharge valve 28a is discharged into the discharge space 33, and then passes through the intermediate flow path 30 and communicates with the pressure chamber 23b of the high-pressure element 20b. To.

次に、中間流路30を通過して吸入口25bより高圧用圧縮要素20b内に吸入された中間圧Pmのガス冷媒は、ローラ11bが公転することにより高圧Pdまで圧縮される。圧縮室23b内の圧力が予め設定された圧力になると開口する吐出弁28bが高圧Pdで開口すると、ガス冷媒は吐出口26bから密閉容器13の内部空間である密閉空間29に吐出される。この密閉空間29に吐出された高圧Pdのガス冷媒は、電動機14の隙間を通過して吐出管27より吐出される。   Next, the gas refrigerant having the intermediate pressure Pm passing through the intermediate flow path 30 and sucked into the high pressure compression element 20b from the suction port 25b is compressed to the high pressure Pd by the revolution of the roller 11b. When the discharge valve 28b that opens when the pressure in the compression chamber 23b reaches a preset pressure opens at a high pressure Pd, the gas refrigerant is discharged from the discharge port 26b to the sealed space 29 that is the internal space of the sealed container 13. The high-pressure Pd gas refrigerant discharged into the sealed space 29 passes through the gap of the electric motor 14 and is discharged from the discharge pipe 27.

内部空間29の底面側には各部品間をシールし、潤滑するための冷凍機油48が封入されている。冷凍機油48は、回転軸2に設けた給油流路50で揚程され、密閉空間29の圧力Pdと圧縮室23の内圧との差圧により、圧縮室23内に給油される。図1の破線で示したように給油流路50は、略ドーナツ状の給油ピース51と、回転軸2と同軸であり給油ピース51の穴よりも径の大きい中央穴52と、偏心部5に設けられた中央穴52に連通している給油穴53で構成される。   Refrigerating machine oil 48 is sealed on the bottom side of the internal space 29 to seal and lubricate the components. The refrigerating machine oil 48 is lifted by an oil supply passage 50 provided on the rotary shaft 2, and is supplied into the compression chamber 23 by a differential pressure between the pressure Pd in the sealed space 29 and the internal pressure in the compression chamber 23. As shown by the broken line in FIG. 1, the oil supply passage 50 includes a substantially donut-shaped oil supply piece 51, a central hole 52 that is coaxial with the rotary shaft 2 and has a diameter larger than the hole of the oil supply piece 51, and the eccentric portion 5. It is constituted by an oil supply hole 53 communicating with the central hole 52 provided.

段階的に冷媒を圧縮する2段圧縮方式では、高圧用圧縮要素20bの押除量(行程容積)は低圧用圧縮要素20aの押除量よりも小さい。本圧縮機1は一般の空気調和機用であり、高圧用圧縮要素20bと低圧用圧縮要素20aと押除量の比を所定の値0.65〜0.85の範囲とした。   In the two-stage compression method in which the refrigerant is compressed stepwise, the amount of pressing (stroke volume) of the high pressure compression element 20b is smaller than the amount of pressing of the low pressure compression element 20a. The compressor 1 is for a general air conditioner, and the ratio of the high pressure compression element 20b, the low pressure compression element 20a, and the amount of pressing is set to a predetermined value range of 0.65 to 0.85.

各圧縮要素20の押除量は、シリンダ10の内径と高さと、偏心部5の回転軸2の中心からの偏心距離Eにより設定される。本実施形態ではシリンダ10の内径と高さを、各圧縮要素20と共に同じ値とした。これは各シリンダ10の部品加工治具や部品加工装置および測定装置や組み立て装置の統一化を図るためである。所定の押除量に対して、ローラ11bの外径はローラ11aの外径よりも小さくなり、ローラ11の外径に合わせて偏心距離E2<偏心距離E1となる。   The pressing amount of each compression element 20 is set by the inner diameter and height of the cylinder 10 and the eccentric distance E from the center of the rotating shaft 2 of the eccentric portion 5. In the present embodiment, the inner diameter and height of the cylinder 10 are set to the same value together with the compression elements 20. This is for the purpose of unifying the component processing jig, the component processing device, the measuring device, and the assembly device of each cylinder 10. For a predetermined pressing amount, the outer diameter of the roller 11b is smaller than the outer diameter of the roller 11a, and the eccentric distance E2 <the eccentric distance E1 according to the outer diameter of the roller 11.

図2に、ロータリ圧縮機1のローラ11の斜視図を示す。ローラ11の円筒内面の径は、図1に示すように、低圧用圧縮要素20aと高圧用圧縮要素20bとで同じ値とした。これはローラ11や回転軸2の偏心部5の部品加工治具や、部品加工装置および測定装置の統一化を図るためである。ローラ11の上下のシール面49と円筒内面との間には、テーパ42を設けた。   FIG. 2 is a perspective view of the roller 11 of the rotary compressor 1. As shown in FIG. 1, the diameter of the cylindrical inner surface of the roller 11 is the same value for the low pressure compression element 20a and the high pressure compression element 20b. This is for the purpose of unifying the part processing jig, the part processing apparatus, and the measuring apparatus of the eccentric part 5 of the roller 11 and the rotating shaft 2. A taper 42 is provided between the upper and lower sealing surfaces 49 of the roller 11 and the cylindrical inner surface.

ただしテーパ42は、偏心部5との摺動面を減じない範囲にシール幅t1>シール幅t2の関係になるように設けた。ローラ11の所定の外径、内径に対して、テーパ42を設けることによりシール幅tを本実施形態の範囲とした。ローラ11のシール面をこのような関係が成り立つように設けることで、各シール面の内側(偏心部5側)と外側(圧縮室23側)との間の冷媒や冷凍機油の余分な漏れ込みや摺動損失の増大を抑制することが可能となる。また図3に示すように、ローラ11にザグリ(座繰り)を設けて、本実施形態ののシール幅を確保しても良い。   However, the taper 42 is provided in a range in which the sliding surface with the eccentric portion 5 is not reduced so that the relationship of the seal width t1> the seal width t2. By providing a taper 42 with respect to the predetermined outer diameter and inner diameter of the roller 11, the seal width t is set in the range of the present embodiment. By providing the seal surface of the roller 11 so that such a relationship is established, excessive leakage of refrigerant or refrigerating machine oil between the inside (the eccentric portion 5 side) and the outside (the compression chamber 23 side) of each seal surface. And increase in sliding loss can be suppressed. Moreover, as shown in FIG. 3, the roller 11 may be provided with counterbore (counterbore) to ensure the seal width of the present embodiment.

テーパ42の設定により、図1に示したように低圧用圧縮要素20aのシール幅t1は、高圧用圧縮要素20bのシール幅t2よりも大きくした。またシール幅t1>シール幅t2の条件を満たせば、テーパ42を設けなくてもよい。   By setting the taper 42, as shown in FIG. 1, the seal width t1 of the low pressure compression element 20a is made larger than the seal width t2 of the high pressure compression element 20b. If the condition of seal width t1> seal width t2 is satisfied, the taper 42 may not be provided.

上記構成は、シール面49の最大差圧ΔPが高い低圧用圧縮要素20aでのシール幅t1がより長くなっているから、冷媒や冷凍機油50の圧縮室20aへの過剰な流入を抑制する。   In the above configuration, since the seal width t1 in the low pressure compression element 20a having a high maximum differential pressure ΔP of the seal surface 49 is longer, excessive inflow of refrigerant and refrigerating machine oil 50 into the compression chamber 20a is suppressed.

逆にシール面49aが適正なシール性の場合は、シール面49bでの余分な摺動損失の増大を抑制する。したがって本実施形態により、圧縮機の消費電力を低減する。   Conversely, when the seal surface 49a has an appropriate sealing property, an increase in excess sliding loss on the seal surface 49b is suppressed. Therefore, according to this embodiment, the power consumption of the compressor is reduced.

またテーパ42によりローラ11の諸寸法とは独立にシール幅を設定できるため、各圧縮要素20の設計自由度を損なわない。回転数や吸入温度や低圧Psや高圧Pd等の動作条件により、圧縮機1の各寸法を適正化した場合でも、シール幅t1>シール幅t2とすればより消費電力を低減できる。   Further, since the seal width can be set independently of the dimensions of the roller 11 by the taper 42, the degree of freedom in design of each compression element 20 is not impaired. Even when the dimensions of the compressor 1 are optimized according to the operating conditions such as the rotational speed, the suction temperature, the low pressure Ps, and the high pressure Pd, the power consumption can be further reduced if the seal width t1> the seal width t2.

本発明の一実施形態を示すロータリ式2段圧縮機の縦断面図。1 is a longitudinal sectional view of a rotary two-stage compressor showing an embodiment of the present invention. 本発明の一実施形態を示すローラの斜視図。The perspective view of the roller which shows one Embodiment of this invention. 本発明の一実施形態の応用例示すローラの縦断面図。The longitudinal cross-sectional view of the roller which shows the application example of one Embodiment of this invention.

符号の説明Explanation of symbols

1…圧縮機、2…回転軸、5…偏心部、10…シリンダ、11…ローラ、15…中間仕切板、20…圧縮要素、42…テーパ。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Rotating shaft, 5 ... Eccentric part, 10 ... Cylinder, 11 ... Roller, 15 ... Intermediate partition plate, 20 ... Compression element, 42 ... Taper.

Claims (2)

密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動する略円筒形状のローラをそれぞれ圧縮室に備えた低圧用圧縮要素と高圧用圧縮要素とが中間仕切板を介して設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた中間流路と、を備えたロータリ式2段圧縮機において、前記密閉容器内の圧力は前記高圧用圧縮要素で圧縮された吐出ガスの圧力であり、前記各圧縮室は端板と前記中間仕切板とが前記回転軸方向に設けられ、それらの前記端版と前記中間仕切板とに対向する前記ローラの上下端面におけるシール面の半径方向の幅は、前記低圧用圧縮要素に用いられる前記ローラのシール面における半径方向幅の方が、前記高圧用圧縮要素に用いられる前記ローラのシール面における半径方向の幅よりも大きいロータリ式2段圧縮機。   A low pressure compression element and a high pressure each having an electric motor in a hermetic container, a rotating shaft driven by the electric motor and having two eccentric parts, and a substantially cylindrical roller that revolves by the eccentric rotation of the eccentric part. A rotary compression element provided via an intermediate partition plate, and an intermediate space separated from the internal space of the sealed container connected to the compression chamber of the low pressure compression element and the compression chamber of the high pressure compression element A rotary two-stage compressor including a flow path, wherein the pressure in the sealed container is a pressure of a discharge gas compressed by the high-pressure compression element, and each compression chamber has an end plate and the intermediate partition plate Are provided in the direction of the rotation axis, and the radial width of the seal surface on the upper and lower end surfaces of the rollers facing the end plate and the intermediate partition plate is the width of the roller used for the compression element for low pressure. On the sealing surface That towards the radial width, rotary 2-stage compressor is greater than the radial width of the sealing surface of the roller used in the high-pressure compression element. 請求項1のロータリ式2段圧縮機において、前記ローラの内面とシール面との間に面取り部を備えたロータリ式2段圧縮機。
2. The rotary two-stage compressor according to claim 1, wherein a chamfered portion is provided between an inner surface of the roller and a seal surface.
JP2004370382A 2004-12-22 2004-12-22 Rotary two-stage compressor Pending JP2006177227A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004370382A JP2006177227A (en) 2004-12-22 2004-12-22 Rotary two-stage compressor
CN 200510138113 CN1793663B (en) 2004-12-22 2005-12-22 Rotary two-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370382A JP2006177227A (en) 2004-12-22 2004-12-22 Rotary two-stage compressor

Publications (1)

Publication Number Publication Date
JP2006177227A true JP2006177227A (en) 2006-07-06

Family

ID=36731563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370382A Pending JP2006177227A (en) 2004-12-22 2004-12-22 Rotary two-stage compressor

Country Status (2)

Country Link
JP (1) JP2006177227A (en)
CN (1) CN1793663B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226179A (en) * 2005-02-17 2006-08-31 Sanyo Electric Co Ltd Rotary compressor
JP2007170408A (en) * 2007-03-22 2007-07-05 Sanyo Electric Co Ltd Rotary compressor
JP2007170409A (en) * 2007-03-22 2007-07-05 Sanyo Electric Co Ltd Rotary compressor
JP2010031733A (en) * 2008-07-29 2010-02-12 Panasonic Corp Rotary compressor
US20100284847A1 (en) * 2007-11-13 2010-11-11 Jeong-Min Han 2 stage rotary compressor
CN102345605A (en) * 2010-08-02 2012-02-08 松下电器产业株式会社 Multi-cylinder compressor
KR101299370B1 (en) 2007-11-09 2013-08-22 엘지전자 주식회사 2 stage rotary compressor
KR101324865B1 (en) 2007-07-31 2013-11-01 엘지전자 주식회사 Rotary compressor
EP2589810A4 (en) * 2010-07-02 2016-05-18 Panasonic Corp Rotary compressor
CN114017330A (en) * 2021-11-05 2022-02-08 广东美芝制冷设备有限公司 Rotor compressor and refrigeration equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087888A (en) * 1998-09-10 2000-03-28 Toshiba Corp Rolling piston type rotary compressor
JP2004100608A (en) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc Compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102677A (en) * 1997-10-21 2000-08-15 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
JP3389539B2 (en) * 1999-08-31 2003-03-24 三洋電機株式会社 Internal intermediate pressure type two-stage compression type rotary compressor
JP3490950B2 (en) * 2000-03-15 2004-01-26 三洋電機株式会社 2-cylinder 2-stage compression type rotary compressor
CN1423055A (en) * 2001-11-30 2003-06-11 三洋电机株式会社 Revolving compressor, its manufacturing method and defrosting device using said compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087888A (en) * 1998-09-10 2000-03-28 Toshiba Corp Rolling piston type rotary compressor
JP2004100608A (en) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc Compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226179A (en) * 2005-02-17 2006-08-31 Sanyo Electric Co Ltd Rotary compressor
JP2007170408A (en) * 2007-03-22 2007-07-05 Sanyo Electric Co Ltd Rotary compressor
JP2007170409A (en) * 2007-03-22 2007-07-05 Sanyo Electric Co Ltd Rotary compressor
KR101324865B1 (en) 2007-07-31 2013-11-01 엘지전자 주식회사 Rotary compressor
KR101299370B1 (en) 2007-11-09 2013-08-22 엘지전자 주식회사 2 stage rotary compressor
US20100284847A1 (en) * 2007-11-13 2010-11-11 Jeong-Min Han 2 stage rotary compressor
KR101381085B1 (en) 2007-11-13 2014-04-10 엘지전자 주식회사 2 stage rotary compressor
JP2010031733A (en) * 2008-07-29 2010-02-12 Panasonic Corp Rotary compressor
EP2589810A4 (en) * 2010-07-02 2016-05-18 Panasonic Corp Rotary compressor
CN102345605A (en) * 2010-08-02 2012-02-08 松下电器产业株式会社 Multi-cylinder compressor
CN114017330A (en) * 2021-11-05 2022-02-08 广东美芝制冷设备有限公司 Rotor compressor and refrigeration equipment
CN114017330B (en) * 2021-11-05 2023-08-22 广东美芝制冷设备有限公司 Rotor compressor and refrigeration equipment

Also Published As

Publication number Publication date
CN1793663B (en) 2010-11-10
CN1793663A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
AU2005240929B2 (en) Rotary compressor
US7534100B2 (en) Rotary fluid machine
US7549851B2 (en) Rotary fluid machine having a pair of rotation mechanisms and a partition plate disposed between the rotation mechanisms
WO2013057946A1 (en) Rotary compressor having two cylinders
KR101300261B1 (en) Scroll compressor
EP1851437B1 (en) Capacity varying type rotary compressor
US9145890B2 (en) Rotary compressor with dual eccentric portion
JP2006152839A (en) Rotary two-stage compressor and air conditioner using the compressor
JP2006177227A (en) Rotary two-stage compressor
JP2006177223A (en) Rotary two stage compressor
JP2006177225A (en) Rotary compressor
KR100879177B1 (en) Two-stage rotary compressor
JP6083408B2 (en) Vane type compressor
JP2006177228A (en) Rotary two-stage compressor and air conditioner using the same
KR100572941B1 (en) Compressor
JP4305550B2 (en) Rotary fluid machine
WO2009090888A1 (en) Rotary fluid machine
JP2006336660A (en) Method of manufacturing hermetic rotary compressor
JPH06346878A (en) Rotary compressor
JPH06264881A (en) Rotary compressor
JP2014020209A (en) Two-stage compressor and two-stage compression system
JP5040111B2 (en) Compressor
JP5423538B2 (en) Rotary compressor
WO2013179677A1 (en) Rotary compressor
KR20010076889A (en) Low pressure type rotary compressor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201