JP2006173472A - 磁気記憶装置およびその製造方法 - Google Patents

磁気記憶装置およびその製造方法 Download PDF

Info

Publication number
JP2006173472A
JP2006173472A JP2004366293A JP2004366293A JP2006173472A JP 2006173472 A JP2006173472 A JP 2006173472A JP 2004366293 A JP2004366293 A JP 2004366293A JP 2004366293 A JP2004366293 A JP 2004366293A JP 2006173472 A JP2006173472 A JP 2006173472A
Authority
JP
Japan
Prior art keywords
layer
wiring
yoke
write
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004366293A
Other languages
English (en)
Inventor
Takeshi Kajiyama
健 梶山
Tomomasa Ueda
知正 上田
Tatsuya Kishi
達也 岸
Hisanori Aikawa
尚徳 相川
Masahisa Yoshikawa
将寿 吉川
Hiroaki Yoda
博明 與田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004366293A priority Critical patent/JP2006173472A/ja
Priority to US11/060,301 priority patent/US7200034B2/en
Publication of JP2006173472A publication Critical patent/JP2006173472A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】書き込み電流を低減できる磁気記憶装置およびその製造方法を提供する。
【解決手段】磁気記憶装置は、磁気抵抗効果素子MTJと、前記磁気抵抗効果素子の下方に配置され前記磁気抵抗効果素子に向かって突出した部分を有する第1配線層と、前記第1配線層の側壁を覆う第1領域と前記第1配線層の底面を覆う第2領域と前記突出した部分の両側壁に接して設けられ前記第1、第2領域と磁気的に結合された第3領域を有する第1ヨーク層とを備えた第1書き込み用配線21と、前記磁気抵抗効果素子の上方に配置され前記磁気抵抗効果素子に向かって突出した部分を有する第2配線層と、前記第2配線層の側壁を覆う第4領域と前記第2配線層の上面を覆う第5領域と前記突出した部分の両側壁に接して設けられ前記第4、第5領域と磁気的に結合された第6領域を有する第2ヨーク層とを備えた第2書き込み用配線22とを具備する。
【選択図】 図1

Description

この発明は、磁気記憶装置およびその製造方法に関し、例えば、磁気ランダムアクセスメモリ(MRAM:magnetic random access memory)等に適用されるものである。
近年、高速読み書き、大容量、低消費電力動作も可能な次世代の固体不揮発メモリとして、強磁性体の磁気抵抗効果を利用したMRAMへの関心が高まっている。特に、強磁性トンネル接合を有する磁気抵抗効果素子が、大きな磁気抵抗変化率を示すことが見いだされて以来、ますます注目されている。
強磁性トンネル接合は、外部磁場によって磁化方向が容易に変化するフリー層(磁化自由層)と、上記フリー層と対向し外部磁場が加わっても所定の磁化方向を維持するピン層(磁化固着層)と、上記フリー層とピン層に挟まれたトンネルバリア層(絶縁体層)との三層積層構造を基本構成とする。強磁性トンネル接合では、トンネルバリア層をトンネルして電流が流れる。このとき、接合部の抵抗は、ピン層とフリー層との磁化方向の相対角により変化し、磁化方向が平行のとき極小値を、反平行のとき極大値をとる。この抵抗変化はトンネル磁気抵抗効果(Tunneling Magneto-Resistance effect:以下TMR効果と記す)と呼ばれ、実際にMRAMの一つの記憶セルとして強磁性トンネル接合を有する磁気素子を用いる場合には、ピン層とフリー層との磁化の平行、反平行状態(すなわち抵抗の極小、極大)を二進情報の“0”または“1”に対応づけることにより、情報を記憶する。
磁気情報の書き込み動作は、記憶セル近傍に書き込み用配線を配置し、電流を流した際に発生する電流磁場によって、フリー層の磁化方向のみを反転させることによって行う。また、磁気情報の読み出し動作は、記憶セルにセンス電流を流し、TMR効果による抵抗変化を検出することにより行う。以上に説明したようなTMR効果を利用した磁気抵抗効果素子を以下、MTJ素子(Magnetic Tunnel Junction 素子 )という。
ところで、ギガビット(G Bit)級のMRAMを実現しようとしてMTJ素子が集積化されるのに伴い、上記MTJ素子を書き込むために必要な書き込み電流が増大することが問題となっている。そこで、書き込み用配線に、MTJ素子側が開放された単純なコの字型のヨーク層を設け、書き込み電流を低減することが試みられてきた(例えば、特許文献1参照)。
より具体的に、従来のコの字型のヨーク層を設けた書き込み用配線を備えた磁気記憶装置について、図46および図47を用いて説明する。図中においては、書き込み用配線に設けられたヨーク層11、12を抽出して示している。
図示するように、2本の書き込み用配線のいずれにもコの字型のヨーク層11、12が設けられ、この書き込み用配線の交差位置にMTJ素子が設けられている。このヨーク層11、12が形成された書き込み用配線に書き込み用電流I−11、I−12を流すと、アンペアの法則により、それぞれ磁場13、14が発生する。この際、ヨーク層11、12によって、この磁場13、14が書き込み用配線周辺に磁場が漏れることを防止して、書き込み効率を向上し、書き込み電流を低減するとも考えられる。
しかし、書き込み用配線間の距離L1が小さくなると(例えば、L1≦2000Å程度)、以下に示す要因によって、期待される書き込み電流の低減の効果が得られないことが分かった。
即ち、ヨーク層の端部16においては、上側の書き込み用配線から発生した磁場M1と下側の書き込み用配線から発生した磁場M2とが同じ向きとなって強め合う相乗効果により、この端部16にMTJ素子に向かった磁場が集中する。一方、ヨーク層の端部17においては、上記磁場M1、M2とが反対向きとなって弱め合い、この端部17で磁場が弱くなり、MTJ素子に向かった磁場の空き領域(磁場の吸い込み)が発生する。
そのため、配線層にヨーク層11、12を設けて配線間の距離L1を小さくすれば、書き込み電流を低減できるとも考えられるが、実際は、ヨーク層11、12の効果が得られずに、依然として大きな書き込み電流が必要となるという問題がある。
さらに、この問題は、書き込み用配線の距離L1が小さいほどより顕著である(例えば、L1≦2000Å程度)。そのため、書き込み電流を低減しようとして、書き込み用配線間の距離L1を近づけた製造プロセス側の工夫が無駄となり、製造コストを増大させていた。
上記のように従来の磁気記憶装置では、書き込み用配線間の距離を近づけようとすると、書き込み用配線の交差位置の近傍の磁場の不均一が生じて素子近傍の磁場が減少し、書き込み電流が増大するという事情があった。
米国特許 US 6,661,688
この発明は上記のような事情に鑑みて、書き込み電流を低減できる磁気記憶装置およびその製造方法を提供する。
この発明の一態様によれば、磁気抵抗効果素子と、前記磁気抵抗効果素子の下方に配置され前記磁気抵抗効果素子に向かって突出した部分を有する第1配線層と、前記第1配線層の側壁を覆う第1領域と前記第1配線層の底面を覆う第2領域と前記突出した部分の両側壁に接して設けられ前記第1、第2領域と磁気的に結合された第3領域を有する第1ヨーク層とを備えた第1書き込み用配線と、前記磁気抵抗効果素子の上方に配置され前記磁気抵抗効果素子に向かって突出した部分を有する第2配線層と、前記第2配線層の側壁を覆う第4領域と前記第2配線層の上面を覆う第5領域と前記突出した部分の両側壁に接して設けられ前記第4、第5領域と磁気的に結合された第6領域を有する第2ヨーク層とを備えた第2書き込み用配線とを具備する磁気記憶装置を提供できる。
この発明の一形態によれば、絶縁層中に溝を形成し、この溝の内壁に沿った第1ヨーク層を形成する工程と、前記溝内の第1ヨーク層上に第1導電層を形成する工程と、前記第1導電層の上面をリセスして、前記第1ヨーク層の側壁の一部を露出する工程と、リセスされた前記第1導電層の上面上および露出された前記第1ヨーク層の側壁に第2ヨーク層を形成する工程と、前記第2ヨーク層を前記第1導電層の表面上までエッチバックして、前記第2ヨーク層を第1ヨーク層の側壁に残存させる工程と、前記溝内の前記第1導電体上、および第2ヨーク層の側壁に第2導電層を埋め込み形成して第1書き込み用配線を形成する工程と、前記第1書き込み用配線上に磁気抵抗効果素子を形成する工程と、前記磁気抵抗効果素子上に第2書き込み用配線を形成する工程とを具備する磁気記憶装置の製造方法を提供できる。
この発明によれば、書き込み電流を低減できる磁気記憶装置およびその製造方法が得られる。
以下、この発明の実施形態について図面を参照して説明する。尚、この説明においては、全図にわたり共通の部分には共通の参照符号を付す。
[第1の実施形態]
この発明の第1の実施形態に係る磁気記憶装置について、図1を用いて説明する。図1は、磁気記憶装置を模式的に示す断面図である。
図示するように、MTJ素子(磁気抵抗効果素子)の下方に書き込み用配線21が配置され、MTJ素子の上方に上記書き込み用配線21との距離D1が、200Å以上2000Å以下(200Å≦D1≦2000Å以下)となるように書き込み用配線22が配置されている。
MTJ素子は絶縁層20−2中に設けられ、強磁性層(例えば、ピン層)45、強磁性層45上に設けられたトンネル絶縁層46、トンネル絶縁層46上に設けられた強磁性層(例えば、フリー層)47を備えている。
書き込み用配線21は、ストッパ膜19を貫通して絶縁層20−1上に設けられ、MTJ素子に向かって突出した配線層24−1(突出した部分)とこの配線層24−1の下に設けられた配線層24−2と有した配線部24と、この配線部24の側壁および底面を覆うヨーク層26(第1、第2領域)と配線層24−1の両側壁に接して配置され上記ヨーク層26と磁気的に結合されたヨーク層23(第3領域)を備えている。
上記のように、ヨーク層26、23は、配線部の側壁、底面、および上面の一部を覆っている。以下、それぞれを、第1〜第3領域とし、本例では第1領域と第2領域とが連続してヨーク層26として形成されている。
ヨーク層26表面上を覆うようにしてバリアメタル膜25、27が設けられている。
このヨーク層23の上面と突出した配線層24−1の上面およびヨーク層26の上面とは、連続するように(面一であるように)設けられている。
突出した配線層24−1は、配線層24−2と電気的に接続されている。
書き込み用配線22は、ストッパ膜29を貫通して絶縁層20−2上に設けられ、MTJ素子に向かって突出した配線層38(突出した部分)とこの配線層38の両側壁に設けられた配線層40と配線層38の側面および底面を覆うバリアメタル膜とを有する配線部34と、この配線部24の側壁を覆うヨーク層36(第4領域)と上面を覆うヨーク層33(第5領域)と配線層38の両側壁に接して配置され上記ヨーク層36、33と磁気的に結合されたヨーク層33(第3領域)を備えている。
上記のように、ヨーク層33、36は、配線部34の側壁、上面、および底面の一部を覆っている。以下、それぞれを、第4〜第6領域とし、本例では第4領域と第6領域とが連続してヨーク層36として形成されている。
ヨーク層36表面上を覆うようにしてバリアメタル膜35、37が設けられている。
このヨーク層36の底面と突出した配線層38の底面とは、連続するように(面一であるように)設けられている。
バリアメタル膜25、27は、配線層24−1、ヨーク層26中の物質の拡散に対するバリアとして働く。バリアメタル膜39は、配線層38、40中の物質の拡散に対するバリアとして働き、バリアメタル膜35、37は、ヨーク膜36中の物質の拡散に対するバリアとして働く。
配線層24−1、24−2、38、40は、例えば、銅(Cu)等により形成されている。バリアメタル膜25、27、35、37、39は、例えば、タンタル(Ta)、窒化タンタル(TaN)等により形成されている。ヨーク層23、26、33、36は、例えば、ニッケル鉄(NiFe)等により形成されている。
強磁性層45、47は、コバルト(Co)、鉄(Fe)、ニッケル(Ni)等を主成分とした強磁性材料により形成され、例えば、コバルト鉄(CoFe)等により形成されている。
上記のような構成によれば、書き込み用配線21はヨーク層23を備えているため、この配線21から発生した磁場をこのヨーク層23内に導き、ヨーク層26の端部の近傍48の磁場の空き領域(磁場の吸い込み)や磁場の集中する領域を緩和して、MTJ素子近傍の磁場を増大できる。そのため、書き込み電流を低減でき、消費電力を効率化できる。
同様に、書き込み用配線22はヨーク層36を備えているため、配線22から発生した磁場をヨーク層内36に導き、ヨーク層36の端部の近傍49の磁場の空き領域(磁場の吸い込み)や集中する領域を緩和して、MTJ素子近傍の磁場を増大でき、書き込み電流を低減できる。
上記のように、近傍48、49の磁場の空き領域(磁場の吸い込み)や集中する領域を緩和できるため、書き込み用配線21、22間の距離D1を2000Å以下のように、より近づけることが可能となり、書き込み電流を低減できる。書き込み電流の大きさは、配線間21、22の距離D1の大きさに伴って増大するからである。また、かかる距離D1を低減できることによって、膜面垂直方向の専有面積を低減でき、微細化できる点でも有利である。
また、書き込み用配線21、22間の距離D1を200Å以上確保することによって、MTJ素子の最小膜厚程度の間隔を確保できる。
次に、図1に示した磁気記憶装置を例に挙げて、磁気記憶装置の製造方法を説明する。
まず、図2に示すように、周知の工程を用いて絶縁層20−1上にストッパ膜19を形成する。
続いて、図3に示すように、ストッパ膜19上に絶縁層20−2を形成する。
続いて、図4に示すように、絶縁層20−2上にフォトレジスト51を塗布し、このフォトレジスト51に露光および現像を行って、絶縁層20−2中に配線を形成するための開口部を形成する。
続いて、図5に示すように、上記フォトレジスト51をマスクとして、例えば、RIE法等の異方性エッチングを絶縁層20−1表面上まで行って、絶縁層20−2、ストッパ膜19を貫通する溝52を形成する。この工程の際にストッパ膜19は、オーバーエッチングされることに対するストッパとして働く。
続いて、図6に示すように、例えばCVD法により、絶縁層20−1上、溝52の内壁に沿って、タンタル(Ta)等を堆積し、バリアメタル膜25を形成する。その後、バリアメタル膜25上に、例えばニッケル鉄(NiFe)等を形成し、ヨーク層26を形成する。さらに、ヨーク層26上に、同様の工程によってタンタル(Ta)等を堆積して、バリアメタル膜27を形成する。その後、バリアメタル膜27上に、例えば、電気めっき法により銅(Cu)等を堆積し、配線層24−2を形成する。
続いて、図7に示すように、例えば、CMP法により、ヨーク層26、バリアメタル膜25、27、配線層24−2を絶縁層20−2表面上まで平坦化して、溝52内に埋め込む。
続いて、図8に示すように、例えば、ウエットエッチング法等により配線層24−2の表面を厚さDy1程度までリセスし、ヨーク層26の上部の側壁を露出させる。
続いて、図9に示すように、絶縁層20−2上、ヨーク層26上、配線層24−2上に、例えば、スパッタ法により膜厚Dy2程度のニッケル鉄(NiFe)層53を堆積形成する。
続いて、図10に示すように、ニッケル鉄層53を、例えば、イオンミリング法等によりエッチバックして、露出させたヨーク層26の上部の側壁に残存させ、ヨーク層23を形成する。
このヨーク層23の高さは、配線層24−2をリセスする深さDy1により決定され、ヨーク層23の長さは、リセスされた配線層24−2上に堆積された上記ニッケル鉄層53等の膜厚Dy2により決定される。
続いて、図11に示すように、周知の工程により、配線層24−2上にヨーク層23に接するように配線層24−1を形成し、さらに絶縁層20−2表面上まで、例えば、CMP法等を用いて、ヨーク層26、23、および配線層24−1の上面が連続するように(面一となるように)平坦化することにより、書き込み用配線21を形成する。
尚、この配線層24−1の材料は、銅(Cu)等に限らず、例えば、CVD法により形成されたアルミ二ウム(Al)等により形成することも可能である。このように配線層24−1、24−2を異なる材料で形成した場合には、必要に応じて配線部24の抵抗値を制御できる。
続いて、図12に示すように、周知の工程により、絶縁層20−2中に順次強磁性層45、トンネル絶縁層46、強磁性層47を形成して、MTJ素子を形成する。この際、絶縁層20−2の膜厚(書き込み用配線間の距離)D1は、200Å以上2000Å以下(200Å≦D1≦2000Å)となるように形成する。その後、絶縁層20−2上にストッパ膜29、絶縁層23−3を順次形成する。さらに、上記と同様の工程により、絶縁層20−3およびストッパ膜29を貫通して底が絶縁層20−2表面上の溝55を形成する。このストッパ膜29は、溝55を形成する際のストッパとして働く。
続いて、図13に示すように、例えばCVD法により、絶縁層20−3上、溝52の内壁に沿って、タンタル(Ta)等を堆積し、バリアメタル膜35を形成する。その後、バリアメタル膜35上に、例えばニッケル鉄(NiFe)等を形成し、ヨーク膜36を形成する。さらに、ヨーク膜36上に、同様の工程によってタンタル(Ta)等を堆積して、バリアメタル膜37を形成する。その後、バリアメタル膜37上に、例えば、電気めっき法により膜厚Dy3程度の銅(Cu)等を堆積し、配線層40を形成する。
続いて、図14に示すように、例えば、RIE法等の異方性エッチングを絶縁層20−2表面上まで行い、ヨーク膜36、バリアメタル膜35、37、配線層40を溝53の側壁に残存させる。この工程により、溝55の内側方向に突出したヨーク層36を形成する。ヨーク層36の長さは、配線層40の膜厚Dy3により決定される。
続いて、図15に示すように、絶縁層20−3上、ヨーク層36上、配線層40上、および配線層40の側壁に沿ってバリメタル膜39を形成する。その後、バリアメタル膜39上に、例えば、電気めっき法により銅(Cu)層57を堆積形成する。
続いて、図16に示すように、銅層57を絶縁層20−3表面上まで、例えばCMP法等により平坦化して溝55内に埋め込み、配線層38を形成する。
続いて、図17に示すように、バリアメタル膜39上、配線層38上に、例えばCVD法によりニッケル鉄(NiFe)層58等を堆積する。
続いて、図18に示すように、ニッケル鉄(NiFe)層58上にフォトレジストを塗布し露光および現像を行って、書き込み用配線22となる部分以外が露出するようなフォトレジスト59を形成する。
続いて、図19に示すように、上記フォトレジスト59をマスク層として、例えば、RIE法等の異方性エッチングを絶縁層20−3表面上まで行い、ヨーク層33を形成する。その後、フォトレジスト59を除去し、書き込み用配線22を形成する。
以下、周知の工程を用いて、書き込み用配線22上を覆うように絶縁層を形成し、図1に示す磁気記憶装置を製造する。
上記のような磁気記憶装置の製造方法によれば、ヨーク層23の高さは、配線層24−2をリセスする深さDy1程度となり、ヨーク層23の長さは、リセスされた配線層24−2上に堆積されるニッケル鉄層53等の膜厚Dy2程度となる。そのため、配線層24−2をリセスする深さD1および膜厚Dy2を形成する際の反応条件等を制御することにより、ヨーク層23の高さおよび長さを選択できる。そのため、必要に応じてヨーク層23の磁気特性を選択できる点で有利である。
また、ヨーク層36の配線層38に接した部分の長さは、配線層40の膜厚Dy3により決定されるため、配線層40を形成する際の反応条件等を制御することにより、ヨーク層36の配線層38に接した部分の長さを選択できる。そのため、必要に応じてヨーク層36の磁気特性を選択できる点で有利である。
さらに、図11に示すように、絶縁層20−2表面上までヨーク層26、23、および配線層24−1の上面が連続するように(面一となるように)平坦化することにより、書き込み用配線21を形成する。そのため、書き込み用配線21の上面が平坦となって、以後の製造工程が容易になるさ。また、書き込み用配線21上に形成されMTJ素子を構成する強磁性層45、47、トンネル絶縁膜46の平坦性を向上でき、MTJ素子の磁気特性の劣化を防止できる点で有利である。
[変形例1(下側書き込み用配線の変形例−1)]
次に、上記書き込み用配線21の変形例について、図20を用いて説明する。図20は、この変形例に係る書き込み用配線を示す断面図である。この説明において、上記第1の実施形態と重複する部分の説明を省略する。
図示するように、MTJ素子に向かって突出するように設けられた上記配線層24−1に置換して絶縁層60が埋め込み形成されている。この絶縁層60の表面、ヨーク層23、26の表面、およびバリアメタル膜25、27の表面とは連続するように(面一であるように)設けられている。
絶縁層60は、例えば、TEOS(Tetraethylorthosilicate)膜等の酸化膜により形成されている。また、絶縁層に限らずに、有する高抵抗層をこの位置に設けることも可能である。尚、図示しないが、この書き込み用配線21の上方には、MTJ素子および書き込み用配線22が設けられている。
上記のような構成によれば、上記第1の実施形態と同様な効果が得られる。さらに、絶縁層60を備えているため、ヨーク層23の間に流れる書き込み用電流を低減して、磁場の不均一をより緩和できる点で有利である。
次に、この変形例1に係る磁気記憶装置の書き込み用配線21の製造方法について、図21および図22を用いて説明する。
まず、図21に示すように、上記第1の実施形態と同様の工程により、配線層24−2上にヨーク層26の側壁に接したヨーク層23を形成する。
続いて、図22に示すように、絶縁層20−2上、ヨーク層23、26上、配線層24−2上、バリアメタル層25、27上に、例えば、反応ガスにTEOSを用いたCVD法によってTEOS膜70を形成する。その後、絶縁層20−2表面上まで、例えば、CMP法等によりTEOS膜70を平坦化して埋め込む。
以後周知の工程により、図20に示す書き込み用配線21を製造する。
上記のように、この変形例1に係る書き込み用配線21の製造方法によれば、上記第1の実施形態と同様の効果が得られる。
[変形例2(下側書き込み用配線の変形例−2)]
次に、上記書き込み用配線21の変形例について、図23を用いて説明する。図23は、この変形例に係る書き込み用配線を示す断面図である。この説明において、上記第1の実施形態と重複する部分の説明を省略する。
図示するように、ヨーク層26上に配線層24−1の両側壁に接して配置されたヨーク層61(第3領域)が設けられている。このヨーク層61の上面と、配線層24−1の上面とは連続するように設けられている。配線部24の内に、導電層62が設けられている。この導電層62とヨーク層61とは、例えば、ニッケル鉄(NiFe)等の同一材料により形成されている。上記のように、ヨーク層61、26は、配線部24の側壁、底面、および上面の一部を覆っており、本例では第1領域と第2領域とが連続してヨーク層26として形成されている。
尚、図示は省略するが、この書き込み用配線21の上方には、MTJ素子および書き込み用配線22が設けられている。
上記のような構成によれば、上記第1の実施形態と同様の効果が得られる。
次に、この変形例2に係る磁気記憶装置の製造方法について、図24乃至図30を用いて説明する。
まず、図24に示すように、上記第1の実施形態と同様の工程により、バリアメタル膜25、27、ヨーク層26を堆積形成する。その後、バリアメタル膜27上に、例えば、電気めっき法により銅(Cu)等の導電層65を形成する。
続いて、図25に示すように、バリアメタル膜25、27、ヨーク層26、および導電層65を絶縁層20−2表面上まで、例えば、CMP法等により平坦化し、溝52内に埋め込み、配線層24−2を形成する。
続いて、図26に示すように、バリアメタル膜25、27、ヨーク層26、および導電層65の表面上を、例えば、ウエットエッチング法等により深さDy5程度でリセスする。
続いて、図27に示すように、例えば、スパッタ法により、バリアメタル膜25、27、ヨーク層26、および導電層65上にニッケル鉄等の磁性層66を形成する。この工程の際には、スパッタ法の異方性を利用して、膜面垂直方向のみに磁性層66を形成する。
続いて、図28に示すように、磁性層66上に、例えば、電気めっき法により銅(Cu)等の導電層67を形成する。
続いて、図29に示すように、導電層67および磁性層66を絶縁層20−2表面上まで、例えば、CMP法により平坦化して溝52内に埋め込み、配線層24−1と膜厚Dy5程度のヨーク層61とを形成する。
続いて、図30に示すように、絶縁層20−2上、ヨーク層61上、および配線層24−1上に絶縁層20−4を形成する。以上の工程により、図23に示す磁気記憶装置を製造する。
上記のような磁気記憶装置の製造方法によれば、第1の実施形態と同様の効果が得られる。さらに、ヨーク層61の高さは、ヨーク層23および導電層65をリセスする深さDy5程度となる。そのため、リセスする際の反応条件等を制御することにより、ヨーク層61の高さおよび長さを選択でき、必要に応じてヨーク層61の磁気特性を選択できる点で有利である。
[変形例3(上側書き込み用配線の変形例2)]
次に、上記書き込み用配線22の変形例について、図31を用いて説明する。図31は、この変形例に係る書き込み用配線を示す断面図である。この説明において、上記第1の実施形態と重複する部分の説明を省略する。
図示するように、ヨーク層36上および配線部34上における絶縁層20−3中にヨーク層69(第5領域)が設けられ、このヨーク層69の側面および底面を覆うようにバリアメタル膜68が設けられている。ヨーク層69上、バリアメタル膜68上に絶縁層20−4が設けられている。上記のように、ヨーク層69、36は、配線部34の側壁、上面、および底面の一部を覆っており、本例では第4領域と第6領域とが連続してヨーク層36として形成されている。
バリアメタル膜68は、例えばタンタル(Ta)等により形成され、銅(Cu)等により形成された配線層38、40中の物質の拡散に対するバリアとして働く。
尚、図示しないが、この書き込み用配線の下方には、MTJ素子および書き込み用配線21が設けられている。
上記のような構成によれば、第1の実施形態と同様の効果が得られる。さらに、配線層38、40中の物質の拡散に対するバリアとして働くメタルバリア膜68が設けられているため、書き込み用配線22の信頼性を向上できる点で有利である。
次に、図31で示した書き込み用配線を例にあげて、この変形例3に係る書き込み用配線の製造方法を、図32乃至図35を用いて説明する。
まず、図32に示すように、上記第1の実施形態と同様の工程を用いて、ヨーク層36、配線部36の上面を、例えばウエットエッチング法等によりリセスする。
続いて、図33に示すように、絶縁層20−3上、上記リセスしたヨーク層36および配線部34の上面上に、例えば、CVD法等によりバリアメタル膜71を形成する。その後、バリアメタル膜71上に、例えば、CVD法等によりニッケル鉄(NiFe)等を堆積して磁性層72を形成する。
続いて、図34に示すように、バリアメタル膜71および磁性膜72を絶縁層20−3表面上まで、例えばCMP法等により平坦化して溝52内に埋め込み、バリアメタル膜68、ヨーク層69を形成する。
続いて、図35に示すように、周知の工程を用いて、絶縁層20−3上およびヨーク層69上に絶縁層20−4を形成する。
以上の製造工程により、図31に示す書き込み用配線を製造する。
上記のように、この変形例に係る磁気記憶装置における書き込み用配線の製造方法によれば、上記第1の実施形態と同様の効果が得られる。
[変形例4(上側書き込み用配線の変形例3)]
次に、上記書き込み用配線22の変形例について、図36を用いて説明する。図36は、この変形例に係る書き込み用配線を示す断面図である。この説明において、上記第1の実施形態と重複する部分の説明を省略する。
図示するように、MTJ素子(図示せず)に向かって突出した配線層38の両側壁に接したヨーク層36の端部75はテーパ角(鋭角)を有している。そのため、配線層38を埋め込み易くできる点で有利である。尚、図示しないが、この書き込み用配線22の下方には、MTJ素子および書き込み用配線21が設けられている。
次に、図36で示した書き込み用配線を例に挙げて、この変形例に係る書き込み用配線の製造方法について説明する。
まず、図37に示すように、上記第1の実施形態と同様の工程により、絶縁層20−3上および溝55の内壁に沿って、バリアメタル膜35、ヨーク層36、バリアメタル膜37を順次形成する。その後、バリアメタル膜37上に、例えば、電気めっき法により銅(Cu)等を堆積し、配線層40を形成する。
続いて、図38に示すように、例えば、RIE法等の異方性エッチングについてテーパ角を付けて絶縁層20−2表面上まで行い、ヨーク層36、バリアメタル膜35、37、配線層40を溝55の側壁に残存させる。この工程により、溝55の内側方向に突出し、端部75にテーパ角を有するヨーク層36を形成する。
続いて、上記第1の実施形態と同様の工程を用いてバリアメタル膜39を形成した後、このバリアメタル膜39上に、例えば、電気めっき法により銅(Cu)層を堆積形成し、
この銅層を絶縁層20−3表面上まで、例えばCMP法等により平坦化して溝55内に埋め込み、配線層38を形成する。
以後、上記第1の実施形態と同様の工程により、ヨーク部69、バリアメタル膜68、および絶縁層20−4を形成することにより、図36に示す書き込み用配線を製造する。
上記のように、この変形例に係る磁気記憶装置における書き込み用配線の製造方法によれば、上記第1の実施形態と同様の効果が得られる。
さらに、この変形例に係る製造方法によれば、端部75にテーパ角を有するヨーク層36を形成した後、例えば、電気めっき法により銅(Cu)層を堆積形成し、この銅層を絶縁層20−3表面上まで、例えばCMP法等により平坦化して溝55内に埋め込み、配線層38を形成する。そのため、端部75が鋭角となって、溝55内に銅層等の配線層38を埋め込み易くできる点で有利である。また、配線層38を埋め込み易くできるため、例えば溝55の深さが深い場合にあっては、埋め込む際に配線層38中のボイドの発生を防止でき、信頼性を向上できる点で有利である。
[変形例5(上側書き込み用配線の変形例4)]
次に、上記書き込み用配線22の変形例について、図39を用いて説明する。図39は、この変形例に係る書き込み用配線を示す断面図である。この説明において、上記第1の実施形態と重複する部分の説明を省略する。
図示するように、配線層38の側壁および底面を覆うように高抵抗層81が設けられ、この高抵抗層81の底面とバリアメタル膜35の底面とは連続するように(面一であるように)設けられている。換言すれば、配線部34のうちのMTJ素子に向かって突出した部分は高抵抗であって、ヨーク層36に挟まれて高抵抗層81が設けられ、この高抵抗層81の底面とバリアメタル膜35の底面とは連続するように設けられている。
高抵抗層81は、例えば、タンタル(Ta)、窒化タンタル(TaN)、窒化チタン(TiN)等により形成されている。また、高抵抗層に限らずに、さらに高い抵抗値を有する絶縁層をこの高抵抗層81の位置に設けることも可能である。尚、図示しないが、この書き込み用配線22の下方には、MTJ素子および書き込み用配線21が設けられている。
上記のような構成によれば、上記第1の実施形態と同様な効果が得られる。さらに、高抵抗層81を備えているため、ヨーク層36の間に流れる書き込み用電流を低減して、磁場の不均一をより緩和できる点で有利である。
また、この高抵抗層81の位置にさらに抵抗値が高い絶縁層を設けた場合では、ヨーク層36の間に流れる書き込み用電流をさらに低減できる。
次に、図39で示した書き込み用配線を例に挙げて、この変形例に係る書き込み用配線の製造方法について説明する。
まず、図40に示すように、上記第1の実施形態と同様の工程により、溝55の側壁に沿ってヨーク層36、バリアメタル膜35、36、および配線層40を形成する。その後、ヨーク層36、バリアメタル膜35、36、および配線層40の溝55の内壁上に沿って、例えば、CVD法等によりタンタル(Ta)等を堆積形成して、高抵抗層81を形成する。さらに、高抵抗層81上および溝55内に導電層57を形成する。
続いて、図41に示すように、高抵抗層81および導電層57を、例えば、CMP法等により絶縁層20−3表面上まで平坦化して溝55内に埋め込む。以後、周知の工程を用いて、図39に示す書き込み用配線を製造する。
上記のような磁気記憶装置における書き込み用配線の製造方法によれば、上記第1の実施形態と同様の効果が得られる。
[第2の実施形態(1T1MTJ型)]
次に、この発明の第2の実施形態に係る磁気記憶装置について、図42を用いて説明する。この実施形態は、いわゆる1T1MTJ(1transistor-1MTJ)型の磁気記憶装置の一例である。この説明において、上記第1の実施形態と重複する部分の説明を省略する。
図示するように、この実施形態に係る1T1MTJ型の磁気記憶装置では、以下の点で第1の実施形態に係る磁気記憶装置と相違する。まず、書き込み用配線21、22が交差するように配置され、この交差位置にMTJ素子が設けられている。MTJ素子の強磁性層47の上面は書き込み用配線22に接してこの配線22に電気的に接続されている。MTJ素子の強磁性層45の底面は配線22方向に引き出された下地導電層83に接して電気的に接続されている。さらに、基板85上に選択トランジスタTRが設けられ、下地導電層83がドレインコンタクトDC−1〜DC−4を介して選択トランジスタTRのドレインDに電気的に接続されている。選択トランジスタTRは、基板85上に設けられたゲート絶縁膜86、ゲート絶縁膜86上に設けられたゲート電極87、ゲート電極87を挟むように基板87中に設けられたソースS/ドレインDを備えている。ソースS上にソースコンタクトSCを介してソース線SLが設けられている。また、書き込み用配線21、22間の距離D2は、200Å以上2000Å以下(200Å≦D2≦2000Å)である。
上記のような構成によれば、上記第1の実施形態と同様の効果が得られる。さらに、この実施形態に係る磁気記憶装置には、MTJ素子の底面に電気的に接続された選択トランジスタTRが設けられている。そのため、MTJ素子がアレイ状に配置されている場合に、選択した以外のMTJ素子にも書き込み電流が流れ込むいわゆる回り込み電流を防止し、選択されたMTJ素子のみにデータを書き込む/読み込むことができる点で有利である。
尚、この実施形態に係る磁気記憶装置の主要部の製造方法は、第1の実施形態と実質的に同様であるため説明を省略する。
[第3の実施形態(クロスポイント型)]
次に、この発明の第3の実施形態に係る磁気記憶装置について、図43を用いて説明する。この実施形態は、いわゆるクロスポイント型の磁気記憶装置の一例である。図43は、この実施形態に係る磁気記憶装置を示す断面図である。この説明において、上記第1の実施形態と重複する部分の説明を省略する。
図示するように、この実施形態に係るクロスポイント型の磁気記憶装置は、以下の点で上記第1の実施形態に係る磁気記憶装置と相違する。まず、書き込み用配線21、22が交差するように配置され、この交差位置にMTJ素子が設けられている。MTJ素子の強磁性層47の上面は書き込み用配線22に接してこの配線22に電気的に接続されている。MTJ素子の強磁性層45の底面は書き込み用配線21に接してこの配線21に電気的に接続されている。また、書き込み用配線21、22間の距離D3は、200Å以上2000Å以下(200Å≦D3≦2000Å)である。
上記のような構成によれば、上記第1の実施形態と同様の効果が得られる。さらに、この実施形態に係る磁気記憶装置は、上記第2の実施形態のように選択トランジスタが設けられていない。そのため、選択トランジスタを設ける必要がない分だけセル面積を低減でき、微細化に対して有利である。
尚、この実施形態に係る磁気記憶装置の主要部の製造方法は、第1の実施形態と実質的に同様であるため説明を省略する。
[第4の実施形態(クロスポイント型)]
次に、この発明の第3の実施形態に係る磁気記憶装置について、図44を用いて説明する。この実施形態は、いわゆるクロスポイント型の磁気記憶装置の一例である。図44は、この実施形態に係る磁気記憶装置を示す断面図である。この説明において、上記第3の実施形態と重複する部分の説明を省略する。
図示するように、この実施形態に係るクロスポイント型の磁気記憶装置は、強磁性層45と書き込み用配線21との間にダイオード層88が更に設けられている点で、上記第3の実施形態に係る磁気記憶装置と相違する。尚、ダイオード層88は、強磁性層47と書き込み用配線22との間に設けることも可能である。
上記のような磁気記憶装置によれば、上記第3の実施形態と同様な効果が得られる。さらに、この実施形態に係る磁気記憶装置は、MTJ素子と書き込み用配線21との間に、ダイオード層88が更に設けられている。そのため、いわゆる回り込み電流を防止でき、信頼性を向上できる点で有利である。
また、ダイオード層88は、MTJ素子と書き込み用配線21との間、またはMTJ素子と書き込み用配線22との間に少なくとも一層設ければよいため、MTJ素子方向の専有面積の増大を低減でき、微細化に対して有利である。
尚、この実施形態に係る磁気記憶装置の主要部の製造方法は、第1の実施形態と実質的に同様であるため説明を省略する。
[第5の実施形態(トグルセル型)]
次に、この発明の第5の実施形態に係る磁気記憶装置について、図45を用いて説明する。この実施形態は、いわゆるトグルセル( toggle cell)型の磁気記憶装置の一例である。図45は、この実施形態に係る磁気記憶装置を示す平面図である。この説明において、上記第1の実施形態と重複する部分の説明を省略する。
図示するように、この実施形態に係るトグルセル型の磁気記憶装置では、以下の点で、上記第1の実施形態に係る磁気記憶装置と相違する。まず、MTJ素子の磁化容易軸が、書き込み用配線22の延設方向(X方向)または書き込み用配線21の延設方向(Y方向)に対して傾くように設けられている。換言すれば、書き込み用配線22に流す書き込み用電流Iw1の方向は、書き込み用配線21に流す書き込み用電流Iw2の方向に対して傾くようにMTJ素子が配置されている。ここで、MTJ素子の傾きは、例えば、30°乃至60°程度であり、45°がより望ましい。また、断面構造は、図43等と同様である。
さらに、上記のようなトグルセル型において、データの書き込み/読み出しは、以下のように行われる。
まず、書き込み動作が行われる前に、選択セルのデータを読み出す確認サイクルを行う。従って、選択セルのデータを読み出した結果、任意のデータが既に書き込まれていた場合には書き込みを行わず、任意のデータと異なるデータが書き込まれていた場合にはデータを書き換えるために書き込みが行われる。
上記のような確認サイクルの後、選択セルにデータを書き込む必要がある場合は、2本の書き込み用配線21、22を順にONし、先にONした書き込み用配線を先にOFFしてから、後にONした書き込み用配線をOFFする。例えば、書き込み用配線22をONして書き込み用電流Iw1を流す→書き込み用配線21をONして書き込み用電流Iw2を流す→書き込み用配線22をOFFして書き込み用電流Iw1を流すのをやめる→書き込み用配線21をOFFして書き込み用電流Iw2を流すのをやめる、という4サイクルの手順となる。
一方、データの読み出し動作は、選択されたMTJ素子に接続する書き込み用配線21、22に読み出し電流を流して、MTJ素子のデータが読み出される。
このトグルセル型の磁気記憶装置では、フリー層(強磁性層)47は、少なくとも強磁性層/非磁性層/強磁性層の三層構造であって、この2つの強磁性層は互いに反強磁性結合していることが望ましい。
上記のような構成によれば、上記第1の実施形態と同様の効果が得られる。さらに、この実施形態に係るトグルセル型の磁気記憶装置では、MTJ素子の磁化容易軸が、書き込み用配線22の延設方向(X方向)または書き込み用配線21の延設方向(Y方向)に対して傾くように設けられている。さらに、書き込み動作が上記の4サイクルの手順により行われる。
よって、書き込み用配線21、22のいずれか一方のみに書き込み用電流を流した場合に非選択のセルが書き込まれること、即ち、半選択セルの誤書き込みを低減でき、信頼性を向上できる点で有利である。
この実施形態に係る磁気記憶装置の主要部の製造方法は、第1の実施形態と実質的に同様であるため説明を省略する。
尚、上記第1乃至第5の実施形態で示した書き込み用配線21、22は、一例であり、上記変形例1乃至変形例5で示した種々の書き込み用配線21、22等を適用することが可能である。
また、この発明はMTJ素子に限定されず、例えば、GMR(Giant Magneto-resistance)素子、CMR(Colossal Magneto-resistance)素子等、その他の磁気抵抗効果素子(magneto-resistance effect element)を備えた磁気記憶装置に適用することが可能である。
以上、第1乃至第5の実施形態、および変形例1乃至変形例5を用いてこの発明の説明を行ったが、この発明は上記各実施形態および各変形例に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記各実施形態および各変形例には種々の発明が含まれており、開示される複数の構成要件の適宜な組み合わせにより種々の発明が抽出され得る。例えば、各実施形態および各変形例に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題の少なくとも1つが解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
この発明の第1の実施形態に係る磁気記憶装置を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第1の実施形態に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例1に係る磁気記憶装置を示す断面図。 この発明の変形例1に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例1に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例2に係る磁気記憶装置を示す断面図。 この発明の変形例2に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例2に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例2に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例2に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例2に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例2に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例2に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例3に係る磁気記憶装置を示す断面図。 この発明の変形例3に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例3に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例3に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例3に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例4に係る磁気記憶装置を示す断面図。 この発明の変形例4に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例4に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例5に係る磁気記憶装置を示す断面図。 この発明の変形例5に係る磁気記憶装置の一製造工程を示す断面図。 この発明の変形例5に係る磁気記憶装置の一製造工程を示す断面図。 この発明の第2の実施形態に係る磁気記憶装置を示す断面図。 この発明の第3の実施形態に係る磁気記憶装置を示す断面図。 この発明の第4の実施形態に係る磁気記憶装置を示す断面図。 この発明の第5の実施形態に係る磁気記憶装置を示す断面図。 従来の磁気記憶装置を示す斜視図。 従来の磁気記憶装置を示す平面図。
符号の説明
21、22…書き込み用配線、MTJ…MTJ素子、24、34…配線部、23−1、23、33−1〜33−3…ヨーク部、D1…書き込み用配線21、22間の距離。

Claims (5)

  1. 磁気抵抗効果素子と、
    前記磁気抵抗効果素子の下方に配置され前記磁気抵抗効果素子に向かって突出した部分を有する第1配線層と、前記第1配線層の側壁を覆う第1領域と前記第1配線層の底面を覆う第2領域と前記突出した部分の両側壁に接して設けられ前記第1、第2領域と磁気的に結合された第3領域を有する第1ヨーク層とを備えた第1書き込み用配線と、
    前記磁気抵抗効果素子の上方に配置され前記磁気抵抗効果素子に向かって突出した部分を有する第2配線層と、前記第2配線層の側壁を覆う第4領域と前記第2配線層の上面を覆う第5領域と前記突出した部分の両側壁に接して設けられ前記第4、第5領域と磁気的に結合された第6領域を有する第2ヨーク層とを備えた第2書き込み用配線とを具備すること
    を特徴とする磁気記憶装置。
  2. 前記第1、第2書き込み用配線間の距離は、200Å以上2000Å以下であること
    を特徴とする請求項1に記載の磁気記憶装置。
  3. 前記第1、第2配線層の突出した部分は、前記第1、第2配線層の他の部分よりも抵抗値が高い材料により形成されていること
    を特徴とする請求項1または2に記載の磁気記憶装置。
  4. 前記突出した部分の両側壁に接した第3、第6領域の端部は、テーパ角を有すること
    を特徴とする請求項1乃至3のいずれか1項に記載の磁気記憶装置。
  5. 絶縁層中に溝を形成し、この溝の内壁に沿った第1ヨーク層を形成する工程と、
    前記溝内の第1ヨーク層上に第1導電層を形成する工程と、
    前記第1導電層の上面をリセスして、前記第1ヨーク層の側壁の一部を露出する工程と、
    リセスされた前記第1導電層の上面上および露出された前記第1ヨーク層の側壁に第2ヨーク層を形成する工程と、
    前記第2ヨーク層を前記第1導電層の表面上までエッチバックして、前記第2ヨーク層を第1ヨーク層の側壁に残存させる工程と、
    前記溝内の前記第1導電体上、および第2ヨーク層の側壁に第2導電層を埋め込み形成して第1書き込み用配線を形成する工程と、
    前記第1書き込み用配線上に磁気抵抗効果素子を形成する工程と、
    前記磁気抵抗効果素子上に第2書き込み用配線を形成する工程とを具備すること
    を特徴とする磁気記憶装置の製造方法。
JP2004366293A 2004-12-17 2004-12-17 磁気記憶装置およびその製造方法 Pending JP2006173472A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004366293A JP2006173472A (ja) 2004-12-17 2004-12-17 磁気記憶装置およびその製造方法
US11/060,301 US7200034B2 (en) 2004-12-17 2005-02-18 Magnetic memory device having yoke layer on write interconnection and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366293A JP2006173472A (ja) 2004-12-17 2004-12-17 磁気記憶装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2006173472A true JP2006173472A (ja) 2006-06-29

Family

ID=36595413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366293A Pending JP2006173472A (ja) 2004-12-17 2004-12-17 磁気記憶装置およびその製造方法

Country Status (2)

Country Link
US (1) US7200034B2 (ja)
JP (1) JP2006173472A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990143B1 (ko) 2008-07-03 2010-10-29 주식회사 하이닉스반도체 자기터널접합 장치, 이를 구비하는 메모리 셀 및 그제조방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008098365A (ja) * 2006-10-11 2008-04-24 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
TWI333208B (en) * 2007-03-26 2010-11-11 Ind Tech Res Inst Magnetic memory and method for manufacturing the same
KR101998676B1 (ko) * 2012-07-20 2019-07-10 삼성전자주식회사 자기 메모리 장치 및 그 제조 방법
KR102078849B1 (ko) * 2013-03-11 2020-02-18 삼성전자 주식회사 자기저항 구조체, 이를 포함하는 자기 메모리 소자 및 자기저항 구조체의 제조 방법
US10359804B2 (en) * 2014-03-03 2019-07-23 Apple Inc. Cold spray of stainless steel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19836567C2 (de) * 1998-08-12 2000-12-07 Siemens Ag Speicherzellenanordnung mit Speicherelementen mit magnetoresistivem Effekt und Verfahren zu deren Herstellung
US6559511B1 (en) * 2001-11-13 2003-05-06 Motorola, Inc. Narrow gap cladding field enhancement for low power programming of a MRAM device
US6661688B2 (en) * 2001-12-05 2003-12-09 Hewlett-Packard Development Company, L.P. Method and article for concentrating fields at sense layers
JP3993522B2 (ja) * 2002-03-29 2007-10-17 株式会社東芝 磁気記憶装置の製造方法
JP3959335B2 (ja) * 2002-07-30 2007-08-15 株式会社東芝 磁気記憶装置及びその製造方法
JP4868431B2 (ja) * 2003-10-10 2012-02-01 Tdk株式会社 磁気記憶セルおよび磁気メモリデバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990143B1 (ko) 2008-07-03 2010-10-29 주식회사 하이닉스반도체 자기터널접합 장치, 이를 구비하는 메모리 셀 및 그제조방법

Also Published As

Publication number Publication date
US20060132984A1 (en) 2006-06-22
US7200034B2 (en) 2007-04-03

Similar Documents

Publication Publication Date Title
JP3906139B2 (ja) 磁気ランダムアクセスメモリ
US7848136B2 (en) Magnetic memory
US7247506B2 (en) Method for producing magnetic memory device
US7869265B2 (en) Magnetic random access memory and write method of the same
US20070278603A1 (en) Magnetic memory device and method for fabricating the same
JP4373938B2 (ja) 磁気ランダムアクセスメモリ
JP2004296869A (ja) 磁気ランダムアクセスメモリ
JP2006294191A (ja) 磁気ランダムアクセスメモリのデータ読み出し方法
JP2007081280A (ja) 磁気抵抗効果素子及び磁気メモリ装置
US8729648B2 (en) Magnetic body device and manufacturing method thereof
US20050270828A1 (en) Magnetic memory device and manufacturing method thereof
CN101751991A (zh) 电阻变化型存储装置
US20080241598A1 (en) Magnetic random access memory having magnetoresistive element with nonmagnetic metal layer
US20130113058A1 (en) Magnetic memory element, magnetic memory and manufacturing method of the same
US7826254B2 (en) Magnetic storage device and method for producing the same
JP2006278645A (ja) 磁気メモリ装置
US7200034B2 (en) Magnetic memory device having yoke layer on write interconnection and method of manufacturing the same
US7366010B2 (en) Magnetic memory
JP2007324171A (ja) 磁気メモリ装置及びその製造方法
JP2005166896A (ja) 磁気メモリ
JP3596536B2 (ja) 磁気メモリ装置およびその製造方法
JP2007103692A (ja) 磁気メモリセル、磁気ランダムアクセスメモリ、及び磁気メモリセルの製造方法
JP4492052B2 (ja) 磁気記憶セルおよび磁気メモリデバイス
JP2005340366A (ja) 磁気記憶装置およびその製造方法
JP2006156893A (ja) 磁気メモリ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805