JP2006171320A - Organic photorefractive material - Google Patents

Organic photorefractive material Download PDF

Info

Publication number
JP2006171320A
JP2006171320A JP2004363206A JP2004363206A JP2006171320A JP 2006171320 A JP2006171320 A JP 2006171320A JP 2004363206 A JP2004363206 A JP 2004363206A JP 2004363206 A JP2004363206 A JP 2004363206A JP 2006171320 A JP2006171320 A JP 2006171320A
Authority
JP
Japan
Prior art keywords
organic
photorefractive material
photorefractive
electric field
fluorenone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363206A
Other languages
Japanese (ja)
Inventor
Akinori Nishio
昭徳 西尾
Takatoshi Sasaki
貴俊 佐々木
Shu Mochizuki
周 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004363206A priority Critical patent/JP2006171320A/en
Publication of JP2006171320A publication Critical patent/JP2006171320A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material which exhibits high photorefractive characteristics with a light ray of a short wavelength without application of voltage. <P>SOLUTION: The organic photorefractive material contains components A, B, C and D described below. A is an organic photoconductive compound, B is an electric field responsive optical functional compound, C is at least a kind of sensitizer selected from 2-nitro-9-fluorenone, 2,7-dinitro-9-fluorenone, naphthoquinone, and anthraquinone, and D is a plasticizer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は有機フォトリフラクティブ材料に関する。本発明のフォトリフラクティブ材料は電圧印加なしに短波長の光により優れたフォトリフラクティブ特性が得られ、光通信、光記録などの用途に用いることができる。   The present invention relates to organic photorefractive materials. The photorefractive material of the present invention can provide excellent photorefractive characteristics with light of a short wavelength without application of voltage, and can be used for applications such as optical communication and optical recording.

(フォトリフラクティブ材料)
フォトリフラクティブ材料は、光を照射すると空間電界が生じ、これに対応して屈折率が変化する材料である。フォトリフラクティブ材料に干渉光を照射すると、干渉光明部でのみキャリアが生成するため干渉光の光強度の分布に対応する空間電界が生じ、これに対応した屈折率変調が生じ回折格子が形成される。このようにして形成される回折格子は、干渉光の強度分布(干渉縞)との間で位相がずれる(π/2)ため、材料に入射した一方の光束と、他の光束との間にエネルギー移動が生じる。
(Photorefractive material)
A photorefractive material is a material in which a spatial electric field is generated when irradiated with light, and the refractive index changes correspondingly. When the photorefractive material is irradiated with interference light, carriers are generated only in the bright part of the interference light, so that a spatial electric field corresponding to the light intensity distribution of the interference light is generated, and a corresponding refractive index modulation is generated to form a diffraction grating. . The diffraction grating formed in this way is out of phase (π / 2) with the intensity distribution (interference fringes) of the interference light, and therefore between one light beam incident on the material and the other light beam. Energy transfer occurs.

したがって、このような特性を利用することにより信号光に対し非線形な信号処理を行う光変調素子への応用が可能である。すなわち、回折格子の形成を利用したホログラム記録材料、エネルギー移動を利用した光スイッチング素子、また回折格子から発生する回折光は位相共役となっていることから位相共役鏡としても用いることができる。   Therefore, application to an optical modulation element that performs nonlinear signal processing on signal light is possible by utilizing such characteristics. That is, the hologram recording material using the formation of the diffraction grating, the optical switching element using the energy transfer, and the diffracted light generated from the diffraction grating are phase conjugate, and therefore can be used as a phase conjugate mirror.

このようなフォトリフラクティブ材料としては、古くから知られた無機フォトリフラクティブ材料に替えて、非晶質の有機化合物を用い低コストで成形加工性に優れたフォトリフラクティブ材料(以下、有機フォトリフラクティブ材料という)が求められている。このような有機フォトリフラクティブ材料には、空間電界形成のための有機光導電性化合物と、空間電界に対応して屈折率変化を生ずる電界応答光学機能化合物(非線形光学色素など)が必須である。さらに、必要に応じて照射光の吸収効率向上のため増感剤や成形加工性向上のために可塑剤などを加えることも行われている。   As such a photorefractive material, a photorefractive material (hereinafter referred to as an organic photorefractive material) that uses an amorphous organic compound and has excellent molding processability instead of an inorganic photorefractive material that has been known for a long time. ) Is required. For such organic photorefractive materials, an organic photoconductive compound for forming a spatial electric field and an electric field response optical functional compound (such as a nonlinear optical dye) that causes a change in refractive index corresponding to the spatial electric field are essential. Further, as necessary, a sensitizer for improving the absorption efficiency of irradiation light and a plasticizer for improving molding processability are also added.

これまでの研究では主に光導電性機能を有する高分子化合物に非線形光学色素化合物などの電界応答光学機能化合物を配合したもの、逆に非線形光学色素含有高分子に光導電性機能を低分子化合物として配合したもの、あるいはポリメチルメタクリレートやポリスチレンなどフォトリフラクティブ特性について不活性な高分子をバインダ材料として用い、これに光導電性機能ならび非線形光学色素を低分子で配合したものなど種々提案がある。   In the past research, mainly high-molecular compounds having photoconductive function were compounded with electric field response optical functional compounds such as nonlinear optical dye compounds, and conversely, low-molecular compounds having photoconductive function in polymers containing nonlinear optical dyes. Various proposals have been made, such as those blended as a polymer, or a polymer inert to photorefractive properties such as polymethylmethacrylate and polystyrene as a binder material, and a compound containing a photoconductive function and a non-linear optical dye as a low molecule.

特開2003-322886号公報JP2003-322886 特開2004-210693号公報Japanese Patent Laid-Open No. 2004-210693

フォトリフラクティブ材料の可使波長は、電荷発生に関わる機能性化合物の光吸収波長に依存する。たとえば、本発明者らが先に提案したポリビニルカルバゾール及び2,4,7−トリニトロ−9−フルオレノンを用いた電荷移動錯体は、可視域に光吸収を示し赤色に対応する波長域(600nm超、700nm以下)に対して良好な応答性を示す(特願2004−118855号)。しかしながら、この錯体は600nm以下の可視域においても吸収が非常に大きく、また光分解反応など好ましくない反応も生じ、緑色を光源とするフォトリフラクティブ材料として用いることはできない。
本発明者らは600nm以下、特に緑色(波長500〜600nm)の光源を用いた場合に良好な応答性を示すフォトリフラクティブ材料を得るため鋭意検討を行った。その結果、特定の増感剤を用いることにより緑色の光源に対して優れた応答性を示すフォトリフラクティブ材料が得られるとの知見を得て本発明を完成した。
The usable wavelength of the photorefractive material depends on the light absorption wavelength of the functional compound involved in charge generation. For example, the charge transfer complex using polyvinyl carbazole and 2,4,7-trinitro-9-fluorenone previously proposed by the present inventors shows a light absorption in the visible range and a wavelength range corresponding to red (over 600 nm, Good response to 700 nm or less) (Japanese Patent Application No. 2004-118855). However, this complex has a very large absorption even in the visible region of 600 nm or less, and an unfavorable reaction such as a photodegradation reaction occurs, so that it cannot be used as a photorefractive material using green as a light source.
The inventors of the present invention have intensively studied to obtain a photorefractive material exhibiting good responsiveness when a light source having a wavelength of 600 nm or less, particularly green (having a wavelength of 500 to 600 nm) is used. As a result, the inventors have obtained the knowledge that a photorefractive material exhibiting excellent responsiveness to a green light source can be obtained by using a specific sensitizer, thereby completing the present invention.

本発明は下記の成分A、B、C及びDを含んでなる有機フォトリフラクティブ材料:
A:有機光導電性化合物
B:電界応答光学機能化合物
C:2−ニトロ−9−フルオレノン、2,7−ジニトロ−9−フルオレノン、
ナフトキノン及びアントラキノンから選ばれた少なくとも1種の増感剤
D:可塑剤
を提供するものである。
本発明の有機フォトリフラクティブ材料の好ましい態様では、有機光導電性化合物がポリ(N−ビニルカルバゾール)、電界応答光学機能化合物がN−(4−ニトロフェニル)−L−プロリノール、かつ可塑剤が2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネートであるのが好ましい。また前記の有機フォトリフラクティブ材料中、成分Aの配合量が15〜70重量%、成分Bの配合量が10〜50重量%、成分Cの配合量が0.01〜20重量%であり、かつ成分Dの配合量が5〜70重量%であるのが好ましい。本発明はこのような有機フォトリフラクティブ材料を用いた光記録材料、記録素子をも提供する。
The present invention provides an organic photorefractive material comprising the following components A, B, C and D:
A: Organic photoconductive compound B: Electric field response optical functional compound C: 2-nitro-9-fluorenone, 2,7-dinitro-9-fluorenone,
At least one sensitizer selected from naphthoquinone and anthraquinone D: a plasticizer is provided.
In a preferred embodiment of the organic photorefractive material of the present invention, the organic photoconductive compound is poly (N-vinylcarbazole), the electric field response optical functional compound is N- (4-nitrophenyl) -L-prolinol, and the plasticizer is 2- (1,2-cyclohexanedicarboximido) ethyl propionate is preferred. In the organic photorefractive material, the blending amount of component A is 15 to 70% by weight, the blending amount of component B is 10 to 50% by weight, the blending amount of component C is 0.01 to 20% by weight, and The amount of component D is preferably 5 to 70% by weight. The present invention also provides an optical recording material and a recording element using such an organic photorefractive material.

本発明によれば、短波長の光により電圧印加なしに高いフォトリフラクティブ特性を示す材料が得られる。   According to the present invention, a material exhibiting high photorefractive characteristics can be obtained without applying a voltage with light having a short wavelength.

発明の詳細な記述Detailed description of the invention

A:有機光導電性化合物
本発明にて用いられる有機光導電性化合物は、光を照射することによって電子とホール(キャリア)を生成し、このキャリアが移動することにより空間電界が生じる機能を有する化合物である。
かかる有機光導電性化合物としては、ポリ(N−ビニルカルバゾール)、α,α',α''−トリス−(4−(6−カルバゾリル)−n−ヘキシルオキシフェニル)−1,3,5−トリイソプロピルベンゼン、ポリ(2−(9−カルバゾリル)エチルアクリレート)、エチルカルバゾール、4,4'−ビス(カルバゾール−9−イル)−ビフェニルなどのカルバゾール誘導体;
N,N'−ビス(4−ヘキシルオキシフェニル)−N,N'−ジフェニルベンジジン、N,N'−ビス(4−ペンチルオキシフェニル)−N,N'−ジフェニルベンジジンなどのN,N,N',N'−テトラフェニルベンジジン誘導体;
4−ジフェニルアミノ−ベンズアルデヒド−N,N−ジフェニルヒドラゾン、4−ジベンジルアミノ−ベンズアルデヒド−N,N−ジフェニルヒドラゾンなどのヒドラゾン誘導体;
4−ジフェニルアミノ-ベンズアルデヒド、4−ジフェニルアミノアニソールなどのトリフェニルアミン類などが挙げられる。これらのうち、他の成分との相溶性などを考慮すると、ポリ(N−ビニルカルバゾール)が好ましい。
A: Organic photoconductive compound The organic photoconductive compound used in the present invention has a function of generating electrons and holes (carriers) by irradiating light, and generating a spatial electric field by moving the carriers. A compound.
Such organic photoconductive compounds include poly (N-vinylcarbazole), α, α ′, α ″ -tris- (4- (6-carbazolyl) -n-hexyloxyphenyl) -1,3,5- Carbazole derivatives such as triisopropylbenzene, poly (2- (9-carbazolyl) ethyl acrylate), ethyl carbazole, 4,4′-bis (carbazol-9-yl) -biphenyl;
N, N, N such as N, N′-bis (4-hexyloxyphenyl) -N, N′-diphenylbenzidine, N, N′-bis (4-pentyloxyphenyl) -N, N′-diphenylbenzidine ', N'-tetraphenylbenzidine derivatives;
Hydrazone derivatives such as 4-diphenylamino-benzaldehyde-N, N-diphenylhydrazone, 4-dibenzylamino-benzaldehyde-N, N-diphenylhydrazone;
And triphenylamines such as 4-diphenylamino-benzaldehyde and 4-diphenylaminoanisole. Of these, poly (N-vinylcarbazole) is preferable in consideration of compatibility with other components.

本発明において、光導電性化合物の含有率は他の成分との相溶性を考慮して決定されるが、フォトリフラクティブ材料全体に対して15〜70重量%が好ましく、20〜50重量%であるのがより好ましい。光導電性化合物の配合量がこれより少ないと、光電荷生成効率が低下したり、電荷輸送能低下などの不具合が生じる得る。一方、前記の範囲より多いと、フォトリフラクティブ特性の発現に必要な他の成分の濃度が低下してフォトリフラクティブ特性が低下する。   In the present invention, the content of the photoconductive compound is determined in consideration of compatibility with other components, but is preferably 15 to 70% by weight, and preferably 20 to 50% by weight with respect to the entire photorefractive material. Is more preferable. When the blending amount of the photoconductive compound is less than this, problems such as a decrease in photocharge generation efficiency and a decrease in charge transport ability may occur. On the other hand, when the amount is larger than the above range, the concentration of other components necessary for the expression of the photorefractive characteristic is lowered, and the photorefractive characteristic is lowered.

B:電界応答光学機能化合物
本発明にて用いられる電界応答光学機能化合物は、前記の有機光導電性化合物(A群)の機能により形成された空間電界の強度に応じて屈折率が変化する。このような屈折率が変化する現象は、材料に形成された電界によって分子配向が変化することや、ポッケルス効果などにより生ずるものと推定される。
このような電界応答光学機能化合物としては、N−(4−ニトロフェニル)−L−プロリノール、[[4−(ヘキサヒドロ−1H−アゼピン−1−イル)フェニル]メチレン]プロパンジニトリル、4−(2,2−ジシアノビニル)−N,N−ビス(2−メトキシエチル)アニリン、N−(4−ニトロフェニル)−L−プロリノールメチルエーテル、(s)−(−)−N−(5−ニトロ−2−ピリジル)プロリノールなどが好ましい。これらのうち、特にN−(4−ニトロフェニル)−L−プロリノールは大きな屈折率変化を生じるため好ましい。
有機フォトリフラクティブ材料中、電界応答光学機能化合物の含有量は、他の成分との相溶性などを考慮し10〜50重量%が好ましく、10〜30重量%であるのがより好ましい。配合量がこれより少ないと電界応答光学機能が低下する。一方、配合量がこの範囲より多いと、他の成分の濃度が低くなりフォトリフラクティブ特性が低下する。
B: Electric field responsive optical functional compound The electric field responsive optical functional compound used in the present invention changes in refractive index according to the strength of the spatial electric field formed by the function of the organic photoconductive compound (Group A). Such a phenomenon in which the refractive index changes is presumed to be caused by a change in molecular orientation due to an electric field formed in the material, a Pockels effect, or the like.
Examples of such an electric field responsive optical functional compound include N- (4-nitrophenyl) -L-prolinol, [[4- (hexahydro-1H-azepin-1-yl) phenyl] methylene] propanedinitrile, 4- (2,2-dicyanovinyl) -N, N-bis (2-methoxyethyl) aniline, N- (4-nitrophenyl) -L-prolinol methyl ether, (s)-(−)-N- (5 -Nitro-2-pyridyl) prolinol and the like are preferred. Of these, N- (4-nitrophenyl) -L-prolinol is particularly preferable because it causes a large refractive index change.
In the organic photorefractive material, the content of the electric field responsive optical functional compound is preferably 10 to 50% by weight and more preferably 10 to 30% by weight in consideration of compatibility with other components. If the blending amount is less than this, the electric field response optical function is lowered. On the other hand, if the blending amount is larger than this range, the concentration of other components is lowered and the photorefractive characteristics are lowered.

C:増感剤
光照射によりキャリアを生成するには光導電性化合物への光の吸収が必要である。増感剤により光を吸収し生成したキャリアは光導電性材料によって輸送される。本発明のフォトリフラクティブ材料は、可視域のうち緑色(500〜600nm)波長域の光を効率よく吸収し応答する。
かかるリフラクティブ材料に用いられる増感剤としては、2,7−ジニトロ−9−フルオレノン、2−ニトロ−9−フルオレノン、アントラキノン、ナフトキノンなどが挙げられる。
これら増感剤の配合量は、有機フォトリフラクティブ材料中0.01〜20重量%であり、好ましくは0.1〜10重量%である。増感剤の配合量が、この範囲より少ないと電荷のの生成効率が低い。一方、この範囲より多いと電荷発生量は増大するが、増感剤と有機光導電性化合物から生成する電荷移動錯体の光吸収が強くなり過ぎ、フォトリフラクディブ材料を光変調素子とした場合に信号光強度低下の原因となる。
C: Sensitizer To generate carriers by light irradiation, it is necessary to absorb light into the photoconductive compound. Carriers generated by absorbing light by the sensitizer are transported by the photoconductive material. The photorefractive material of the present invention efficiently absorbs and responds to light in the green (500 to 600 nm) wavelength region in the visible region.
Examples of the sensitizer used for such a refractive material include 2,7-dinitro-9-fluorenone, 2-nitro-9-fluorenone, anthraquinone, and naphthoquinone.
The compounding quantity of these sensitizers is 0.01-20 weight% in an organic photorefractive material, Preferably it is 0.1-10 weight%. When the amount of the sensitizer is less than this range, the charge generation efficiency is low. On the other hand, if the amount exceeds this range, the amount of charge generation increases, but the light absorption of the charge transfer complex generated from the sensitizer and the organic photoconductive compound becomes too strong, and the photorefractive material is used as a light modulation element. This causes a decrease in signal light intensity.

D:可塑剤
本発明において、可塑剤は前記各成分を均一に混合する溶媒または相溶化剤としての役割を果たし、材料の成形加工性を向上させる。このような可塑剤として、特に優れた特性を有するものとしては、2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネート、2−(1,2−シクロヘキサンジカルボキシイミド)ブチルプロピオネートなどのシクロヘキサンジカルボキシイミド類のほか、リン酸トリクレジル、フタル酸ブチルベンジルエステル、ジブチルスズジラウリン酸エステル、N−(n―ドデシル)ピロリドンなどの一般的な可塑剤が挙げられる。これらのうち、他の機能成分との相溶性がよいことから2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネートが好ましい。
可塑剤の配合量は、他の成分との相溶性を考慮し、フォトリフラクティブ材料中、通常5〜70重量%、好ましくは10〜65重量%である。可塑剤の配合量がこの範囲をはずれると相分離が生じやすくなる。
D: Plasticizer In the present invention, the plasticizer serves as a solvent or a compatibilizing agent for uniformly mixing the respective components, and improves the moldability of the material. As such plasticizers, those having particularly excellent characteristics include 2- (1,2-cyclohexanedicarboximido) ethyl propionate and 2- (1,2-cyclohexanedicarboximido) butyl propionate. And general plasticizers such as tricresyl phosphate, butylbenzyl phthalate, dibutyltin dilaurate, N- (n-dodecyl) pyrrolidone, and the like. Of these, 2- (1,2-cyclohexanedicarboximido) ethyl propionate is preferred because of its good compatibility with other functional components.
The blending amount of the plasticizer is usually 5 to 70% by weight, preferably 10 to 65% by weight in the photorefractive material in consideration of compatibility with other components. If the blending amount of the plasticizer is out of this range, phase separation tends to occur.

(フォトリフラクティブ成形体の調製)
前記の各成分を用いてフォトリフラクティブ成形体を製造する方法について説明する。フォトリフラクティブ成形体中の固形分は均一に混合する必要がある。したがって、固形分を高極性溶媒に溶解し、均一になるまで充分に攪拌、混合する。溶媒中の固形分濃度は均一な溶解が可能な濃度であればよいが、混合時における溶液粘度やフィルム作成時に必要な乾燥などの操作が容易なよう固形分濃度1〜20重量%となるよう溶解するのが好ましい。
(Preparation of photorefractive molding)
A method for producing a photorefractive molded article using each of the above components will be described. The solid content in the photorefractive molded body needs to be mixed uniformly. Therefore, the solid content is dissolved in a highly polar solvent and sufficiently stirred and mixed until uniform. The solid content concentration in the solvent may be a concentration that allows uniform dissolution, but the solid content concentration should be 1 to 20% by weight so that operations such as solution viscosity at the time of mixing and drying necessary for film formation are easy. It is preferred to dissolve.

このようにして得られた混合溶液を用いてキャスト法などによりフィルムを作成し実用可能なフォトリフラクティブ材料を製造する。なお、本発明のフォトリフラクティブ材料の形態はフィルムに限定されず、使用目的に応じて適宜の形態に成形することができる。
例えば、キャスト法によりフィルムを作成するには、ガラス板などの基材上にスピンコート、滴下などにより直接塗布して、目的の膜厚、形状に応じて溶液を流延し、平滑なフィルム表面を得る。ついで、減圧下、加温などによりキャストされた溶液から溶媒を除去しフィルムを作成する。
Using the mixed solution thus obtained, a film is produced by a casting method or the like to produce a practical photorefractive material. In addition, the form of the photorefractive material of this invention is not limited to a film, It can shape | mold into a suitable form according to the intended purpose.
For example, in order to create a film by a casting method, a smooth film surface is obtained by directly applying a film on a substrate such as a glass plate by spin coating or dripping, and casting a solution according to a desired film thickness and shape. Get. Next, the solvent is removed from the cast solution by heating or the like under reduced pressure to form a film.

つぎに、本発明を実施例および比較例によりさらに具体的に説明する。
[実施例1〜6、比較例1]
下記の成分を表1に示す割合にて配合し、有機フォトリフラクティブ材料を作製した。
Next, the present invention will be described more specifically with reference to examples and comparative examples.
[Examples 1 to 6, Comparative Example 1]
The following components were blended in the proportions shown in Table 1 to prepare an organic photorefractive material.

(試料の準備)
A:有機光導電性化合物
ポリ(N−ビニルカルバゾール)はアルドリッチ社製のものを購入し、再沈殿精製して用いた。

Figure 2006171320
B:電界応答光学機能化合物
N−(4−ニトロフェニル)−L−プロリノールは東京化成工業(株)製のものを購入しそのまま使用した。
Figure 2006171320
C:増感剤
2−ニトロ−9−フルオレノン、2,7−ジニトロ−9−フルオレノンは東京化成工業(株)製のものを購入し、そのまま使用した。ナフトキノン、アントラキノンは和光純薬工業(株)製のものを購入し、そのまま使用した。また2,4,7−トリニトロ−9−フルオレノン(比較例)は東京化成工業(株)製のものをそのまま使用した。
Figure 2006171320
(Sample preparation)
A: Organic photoconductive compound Poly (N-vinylcarbazole) manufactured by Aldrich was purchased and used after reprecipitation and purification.
Figure 2006171320
B: Electric field response optical functional compound N- (4-nitrophenyl) -L-prolinol was purchased from Tokyo Chemical Industry Co., Ltd. and used as it was.
Figure 2006171320
C: Sensitizer 2-Nitro-9-fluorenone and 2,7-dinitro-9-fluorenone were purchased from Tokyo Chemical Industry Co., Ltd. and used as they were. Naphthoquinone and anthraquinone manufactured by Wako Pure Chemical Industries, Ltd. were purchased and used as they were. Further, 2,4,7-trinitro-9-fluorenone (comparative example) manufactured by Tokyo Chemical Industry Co., Ltd. was used as it was.
Figure 2006171320

D:可塑剤
下記方法に従い合成した2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネートを用いた。

Figure 2006171320
フタル酸無水物149g(967mmol)にトルエン200mlとエタノールアミン62g(1000mmol)を加えて80℃で2時間攪拌した後、チタンブタネートを15g(44mmol)を加えて還流を19時間行った。冷却後反応溶液に水100mlを加えることで析出する白色沈殿物を濾別して有機層を回収した。溶媒を留去して得られる反応混合物をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:n−ヘキサンと酢酸エチルの混合溶媒)で精製してN−(2−ヒドロキシエチル)シクロヘキサンジカルボキシイミドを得た(200g)。 D: Plasticizer 2- (1,2-cyclohexanedicarboximido) ethyl propionate synthesized according to the following method was used.
Figure 2006171320
To 149 g (967 mmol) of phthalic anhydride, 200 ml of toluene and 62 g (1000 mmol) of ethanolamine were added and stirred at 80 ° C. for 2 hours, and then 15 g (44 mmol) of titanium butanate was added and refluxed for 19 hours. After cooling, 100 ml of water was added to the reaction solution, and the white precipitate precipitated was separated by filtration to recover the organic layer. The reaction mixture obtained by distilling off the solvent was purified by column chromatography (filler: silica gel, developing solvent: mixed solvent of n-hexane and ethyl acetate) to obtain N- (2-hydroxyethyl) cyclohexanedicarboximide. Obtained (200 g).

N−(2−ヒドロキシエチル)シクロヘキサンジカルボキシイミド52g(272mmol)にピリジン57ml、トルエン200ml、プロピオン酸クロライド30ml(347mmol)を加えて90℃で19時間攪拌した。反応混合物を希塩酸水、炭酸水素ナトリウム水溶液、食塩水の順で洗浄し有機層を回収した。溶媒を留去して得られる反応混合物をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:n−ヘキサンと酢酸エチルの混合溶媒)で精製し目的物を得た。収量45g、収率65%   To 52 g (272 mmol) of N- (2-hydroxyethyl) cyclohexanedicarboximide, 57 ml of pyridine, 200 ml of toluene and 30 ml (347 mmol) of propionic acid chloride were added and stirred at 90 ° C. for 19 hours. The reaction mixture was washed with diluted hydrochloric acid, sodium bicarbonate aqueous solution, and brine in this order to recover the organic layer. The reaction mixture obtained by distilling off the solvent was purified by column chromatography (filler: silica gel, developing solvent: mixed solvent of n-hexane and ethyl acetate) to obtain the desired product. Yield 45g, Yield 65%

(フォトリフラクティブ特性の評価方法)
得られた材料のフォトリフラクティブ効果の評価は、図1の試料を調製し、電圧の印加なしにコヒーレント光を照射して行った。すなわち、得られたフォトリフラクティブ材料1をガラス板2に、粒径100μmガラスビーズ(ユニオン社製SPM−100)のスペーサー3と共に挟み込み、加熱、減圧処理するなどして材料中の微小気泡などを除去した。
(Method for evaluating photorefractive characteristics)
Evaluation of the photorefractive effect of the obtained material was performed by preparing the sample of FIG. 1 and irradiating coherent light without applying voltage. That is, the obtained photorefractive material 1 is sandwiched between a glass plate 2 and a spacer 3 of glass beads having a particle size of 100 μm (SPM-100 made by Union Co., Ltd.), and subjected to heating and decompression to remove microbubbles in the material. did.

フォトリフラクティブ成形体の評価特性として、下記の方法により回折効率および応答時間を評価した。
(回折効率)
回折効率とはフォトリフラクティブ効果によって成形される回折格子に対し、光束を入射した場合に、透過する光と回折する光の強度の割合を示すものである。回折効率は縮退4光波混合法により25mWのネオジウムヤグレーザーの2倍波(532nm:緑色)を光源とし、P偏光書き込み、S偏光読み出しによって行った。このとき書き込み光はサンプル平面の法線に対して±9.6°で入射させた。所定時間の測定の後、回折光強度が最大となる点を求め、このときの透過光強度との比から回折効率(%)を下記の数式1より算出した。
回折効率={回折光強度/(回折光強度+透過光強度)}×100(数式1)
(応答時間)
応答時間は、前記の回折効率測定において、回折光強度が最大となるまでに要する時間である。
(結果)
増感剤に2−ニトロ−9−フルオレノン、2,7−ジニトロ−9−フルオレノン、ナフトキノン、アントラキノンを用いた材料(実施例1〜6)では532nmにおいて良好な特性を得た。一方、増感剤に2,4,7−トリニトロ−9−フルオレノンを用いた材料(比較例1)は532nmにおける吸収が大きく透過・回折光とも検出できないため測定が不可能であった。
As evaluation characteristics of the photorefractive molded article, diffraction efficiency and response time were evaluated by the following methods.
(Diffraction efficiency)
Diffraction efficiency indicates the ratio of the intensity of transmitted light and diffracted light when a light beam is incident on a diffraction grating formed by the photorefractive effect. The diffraction efficiency was determined by depolarized four-wave mixing using a 25 mW neodymium Yag laser double wave (532 nm: green) as a light source, P-polarized writing, and S-polarized reading. At this time, the writing light was incident at ± 9.6 ° with respect to the normal of the sample plane. After the measurement for a predetermined time, the point at which the diffracted light intensity was maximum was determined, and the diffraction efficiency (%) was calculated from the following formula 1 from the ratio with the transmitted light intensity.
Diffraction efficiency = {diffracted light intensity / (diffracted light intensity + transmitted light intensity)} × 100 (Equation 1)
(Response time)
The response time is the time required until the diffracted light intensity becomes maximum in the diffraction efficiency measurement.
(result)
In the materials (Examples 1 to 6) using 2-nitro-9-fluorenone, 2,7-dinitro-9-fluorenone, naphthoquinone and anthraquinone as sensitizers, good characteristics were obtained at 532 nm. On the other hand, the material using 2,4,7-trinitro-9-fluorenone as the sensitizer (Comparative Example 1) was impossible to measure because of its large absorption at 532 nm and detection of both transmitted and diffracted light.

Figure 2006171320
Figure 2006171320

フォトリフラクティブ材料の特性評価用の試料を示す説明図である。It is explanatory drawing which shows the sample for the characteristic evaluation of a photorefractive material.

符号の説明Explanation of symbols

1 フォトリフラクティブ材料
2 ガラス板
3 スペーサー
1 Photorefractive material 2 Glass plate 3 Spacer

Claims (5)

下記の成分A、B、C及びDを含んでなる有機フォトリフラクティブ材料。
A:有機光導電性化合物
B:電界応答光学機能化合物
C:2−ニトロ−9−フルオレノン、2,7−ジニトロ−9−フルオレノン、
ナフトキノン及びアントラキノンから選ばれた少なくとも1種の増感剤
D:可塑剤
An organic photorefractive material comprising the following components A, B, C and D.
A: Organic photoconductive compound B: Electric field response optical functional compound C: 2-nitro-9-fluorenone, 2,7-dinitro-9-fluorenone,
At least one sensitizer selected from naphthoquinone and anthraquinone D: plasticizer
有機光導電性化合物がポリ(N−ビニルカルバゾール)、電界応答光学機能化合物がN−(4−ニトロフェニル)−L−プロリノール、かつ可塑剤が2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネートである請求項1の有機フォトリフラクティブ材料。 The organic photoconductive compound is poly (N-vinylcarbazole), the electric field response optical functional compound is N- (4-nitrophenyl) -L-prolinol, and the plasticizer is 2- (1,2-cyclohexanedicarboximide) 2. The organic photorefractive material of claim 1 which is ethyl propionate. 有機フォトリフラクティブ材料中、成分Aの配合量が15〜70重量%、成分Bの配合量が10〜50重量%、成分Cの配合量が0.01〜20重量%であり、かつ成分Dの配合量が5〜70重量%である請求項1の有機フォトリフラクティブ材料。 In the organic photorefractive material, the blending amount of component A is 15 to 70% by weight, the blending amount of component B is 10 to 50% by weight, the blending amount of component C is 0.01 to 20% by weight, and The organic photorefractive material according to claim 1, wherein the blending amount is 5 to 70% by weight. 請求項1の有機フォトリフラクティブ材料を用いてなる光記録材料。 An optical recording material using the organic photorefractive material according to claim 1. 請求項1の有機フォトリフラクティブ材料を用いてなる記録素子。 A recording element comprising the organic photorefractive material according to claim 1.
JP2004363206A 2004-12-15 2004-12-15 Organic photorefractive material Pending JP2006171320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363206A JP2006171320A (en) 2004-12-15 2004-12-15 Organic photorefractive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363206A JP2006171320A (en) 2004-12-15 2004-12-15 Organic photorefractive material

Publications (1)

Publication Number Publication Date
JP2006171320A true JP2006171320A (en) 2006-06-29

Family

ID=36672162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363206A Pending JP2006171320A (en) 2004-12-15 2004-12-15 Organic photorefractive material

Country Status (1)

Country Link
JP (1) JP2006171320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047903A1 (en) * 2008-10-20 2010-04-29 Nitto Denko Corporation Optical devices for modulating light of photorefractive compositions with thermal control
WO2010047904A1 (en) * 2008-10-20 2010-04-29 Nitto Denko Corporation Method for modulating light of photore-fractive composition without external bias voltage
US7985356B2 (en) 2006-07-25 2011-07-26 Nitto Denko Corporation Non-linear optical device sensitive to green laser
US8203780B2 (en) 2007-01-26 2012-06-19 Nitto Denko Corporation Systems and methods for improving the performance of a photorefractive device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985356B2 (en) 2006-07-25 2011-07-26 Nitto Denko Corporation Non-linear optical device sensitive to green laser
US8203780B2 (en) 2007-01-26 2012-06-19 Nitto Denko Corporation Systems and methods for improving the performance of a photorefractive device
WO2010047903A1 (en) * 2008-10-20 2010-04-29 Nitto Denko Corporation Optical devices for modulating light of photorefractive compositions with thermal control
WO2010047904A1 (en) * 2008-10-20 2010-04-29 Nitto Denko Corporation Method for modulating light of photore-fractive composition without external bias voltage

Similar Documents

Publication Publication Date Title
JP5774104B2 (en) Photorefractive composition responsive to multiple laser wavelengths in the visible light spectrum
JP4456603B2 (en) Photorefractive composition
JP2012506068A (en) Method for modulating light of a photorefractive composition without an external bias voltage
JPH06507439A (en) Crosslinked polarized polymers and methods for their production for nonlinear optical applications
JP2006171320A (en) Organic photorefractive material
JPH10333195A (en) Photo-refractive material composition
JP2012506067A (en) Optical device for modulating light of photorefractive composition by thermal control
JP2006171321A (en) Organic photorefractive material
JP2006018113A (en) Organic photorefractive material and optical recording material using same
WO2015164390A1 (en) Chromophores for photochromic compositions useful for three dimensional display applications
JP2007041324A (en) Organic photorefractive material
JP2006091721A (en) Organic photorefractive material
JP2005258377A (en) Organic photorefractive material
JP2006018112A (en) Organic photorefractive material
Schaerlaekens et al. Photorefractive properties of bifunctional N-arylated carbazole derivatives in a carbazole polymer host matrix
Goikhman et al. Polyamidoimides with side chromophoric groups
JP2003322886A (en) Photorefractive material and method for manufacturing the same, and hologram using the same
JP2007045949A (en) Azobenzene monomer, polymer thereof, and holographic recording medium using the same
JP2669315B2 (en) Organic nonlinear optical material
JP2004210693A (en) Organic photoelectroconductive compound and photorefractive material using the same
JP4097314B2 (en) Polysilane photorefractive device with improved responsiveness
JPH03230127A (en) Aromatic nonlinear optical material
JP2003246778A (en) Compound for generating photocarrier and organic photorefractive material using it
JPH02935A (en) Nonlinear optical material
JP2004258604A (en) Organic photorefractive material and method for manufacturing the same