JP2006018112A - Organic photorefractive material - Google Patents

Organic photorefractive material Download PDF

Info

Publication number
JP2006018112A
JP2006018112A JP2004197217A JP2004197217A JP2006018112A JP 2006018112 A JP2006018112 A JP 2006018112A JP 2004197217 A JP2004197217 A JP 2004197217A JP 2004197217 A JP2004197217 A JP 2004197217A JP 2006018112 A JP2006018112 A JP 2006018112A
Authority
JP
Japan
Prior art keywords
compound
organic
photorefractive
prolinol
photorefractive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004197217A
Other languages
Japanese (ja)
Inventor
Akinori Nishio
昭徳 西尾
Chiharu Odane
千春 小田根
Takatoshi Sasaki
貴俊 佐々木
Shu Mochizuki
周 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2004197217A priority Critical patent/JP2006018112A/en
Publication of JP2006018112A publication Critical patent/JP2006018112A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photorefractive material which is excellent in phase stability of the material, exhibits excellent photorefractive characteristics for a long period of time, and has a long working life. <P>SOLUTION: The organic photorefractive material includes components of A, B, C and D groups mentioned below. Here, A is an organic photoconductive compound, B is a combination of N-(4-nitrophenyl)-L-prolinol and at least a kind of compound selected from a group of compounds mentioned below as electric field sensitive optical functional compounds, C is a photosensitizer, and D is a plasticizer, and the above mentioned group of compounds consists of N-(4-nitrophenyl)-L-prolinol methyl ether, (s)-(-)-N-(5-nitro-2-pyridyl) prolinol, [[4-(hexahydro-1H-azepin-1-yl) phenyl] methylene] propanedinitrile, 4-(2,2-dicyanovinyl)-N-ethyl-N-(5-hydroxypentyl) aniline, and 4-(2,2-dicyanovinyl)-N,N-bis(2-methoxyethyl) aniline. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はフォトリフラクティブ材料に関する。本発明のフォトリフラクティブ材料は、光導電性化合物を使用せず電圧印可なしにフォトリフラクティブ特性が得られ、光通信、光情報処理において優れた空間光変調素子となり得る。
フォトリフラクティブ材料とは光照射により屈折率の変化する材料である。すなわち、フォトリフラクティブ材料に、光を照射すると電子とホール(以下、キャリアという)が生成し、このキャリアが移動することにより空間電界が生ずる。そして、この空間電界に対応して材料中の屈折率が変化し屈折率変調が可能となる。
The present invention relates to photorefractive materials. The photorefractive material of the present invention can provide a photorefractive characteristic without applying a voltage without using a photoconductive compound, and can be a spatial light modulator excellent in optical communication and optical information processing.
A photorefractive material is a material whose refractive index changes upon irradiation with light. That is, when a photorefractive material is irradiated with light, electrons and holes (hereinafter referred to as carriers) are generated, and a spatial electric field is generated by the movement of the carriers. Then, the refractive index in the material changes corresponding to this spatial electric field, and refractive index modulation becomes possible.

フォトリフラクティブ材料に対し均一強度ではない、例えばコヒーレントな2つの光束の干渉光を照射すると、干渉光明部でのみキャリアが生成するため干渉光の光強度の分布に対応する空間電界が生じる。そして、材料には空間電界に対応した屈折率変調が生じ回折格子が形成される。   When the photorefractive material is irradiated with interference light of two coherent light beams that are not uniform in intensity, for example, carriers are generated only in the bright part of the interference light, and a spatial electric field corresponding to the light intensity distribution of the interference light is generated. Then, the material undergoes refractive index modulation corresponding to the spatial electric field to form a diffraction grating.

また、フォトリフラクティブ材料によって形成される回折格子は、他の回折格子形成メカニズム(フォトクロミックなど)とは異なり、干渉光の強度分布(干渉縞)との間で位相がずれる(π/2)ため、材料に入射した一方の光束と、他の光束との間にエネルギー移動が生じる。   In addition, unlike other diffraction grating formation mechanisms (such as photochromic), the diffraction grating formed by the photorefractive material is out of phase (π / 2) with the intensity distribution of interference light (interference fringes). Energy transfer occurs between one light beam incident on the material and the other light beam.

したがって、このような特性を利用することにより、信号光に対し非線形な信号処理を行う光変調素子への応用が可能である。すなわち、回折格子の形成を利用したホログラム記録材料や光合分波器、エネルギー移動を利用した光スイッチング素子、ビーム増幅器、画像相関処理、連想記憶素子などとして、また、回折格子から発生する回折光が位相共役となっていることから、位相共役鏡としても用い得ることができる(イェポーチ著、フォトリフラクティブ非線形光学,丸善,1995)。   Therefore, by utilizing such characteristics, application to an optical modulation element that performs nonlinear signal processing on signal light is possible. In other words, hologram recording materials and optical multiplexers / demultiplexers using diffraction grating formation, optical switching elements using energy transfer, beam amplifiers, image correlation processing, associative memory elements, etc. Since it is a phase conjugate, it can also be used as a phase conjugate mirror (Yepouch, Photorefractive Nonlinear Optics, Maruzen, 1995).

(無機フォトリフラクティブ材料)
古くから知られたフォトリフラクティブ材料としては、ニオブ酸リチウム、チタン酸バリウムなどの無機単結晶に、金属イオンなどをドープしたものがある。これらは前記の非線形信号処理を行う光変調素子として検討され、またフォトリフラクティブ特性の発現機構を研究する素材としても用いられている。しかしながら、これらはドーパントを含む無機単結晶の成長が困難で、また結晶であって硬く脆いため成形加工性が困難であることなどから、その利用は限定されている。
(Inorganic photorefractive material)
As photorefractive materials that have been known for a long time, there are those obtained by doping metal ions or the like into inorganic single crystals such as lithium niobate and barium titanate. These are studied as light modulation elements that perform the above-described nonlinear signal processing, and are also used as materials for studying the mechanism of the expression of photorefractive characteristics. However, their use is limited because it is difficult to grow an inorganic single crystal containing a dopant, and since the crystal is hard and brittle, it is difficult to form.

(有機フォトリフラクティブ材料)
このような背景から低コストで成形加工性に優れた非晶質性の有機化合物を用いたフォトリフラクティブ材料(以下、有機フォトリフラクティブ材料)が求められている。有機フォトリフラクティブ材料には、空間電界形成のための有機光導電性化合物と、空間電界に対応して屈折率変化を生ずる電界応答光学機能化合物(非線形光学色素など)が必須である。さらに、照射光を効率よく吸収するために増感剤や成形加工性向上のため可塑剤などを加えてもよい。
(Organic photorefractive material)
From such a background, a photorefractive material (hereinafter referred to as an organic photorefractive material) using an amorphous organic compound that is low in cost and excellent in moldability is demanded. For organic photorefractive materials, an organic photoconductive compound for forming a spatial electric field and an electric field response optical functional compound (such as a nonlinear optical dye) that causes a refractive index change corresponding to the spatial electric field are essential. Further, a sensitizer or a plasticizer may be added to improve the molding processability in order to efficiently absorb the irradiation light.

これまでの研究では、主に光導電性機能を有する高分子に非線形光学色素化合物などの電界応答光学機能化合物を配合したもの、逆に非線形光学色素含有高分子に光導電性機能を低分子化合物として配合したもの、さらには、ポリメチルメタクリレートやポリスチレンなど、フォトリフラクティブ特性には不活性な高分子化合物をバインダとし、これに光導電性機能ならび非線形光学色素を低分子で配合したものなどが提案されている。   In the past research, we mainly blended polymer with photoconductive function with electric field response optical functional compound such as nonlinear optical dye compound, and conversely low molecular compound with photoconductive function in nonlinear optical dye-containing polymer. In addition, a polymer compound that is inert to photorefractive properties, such as polymethyl methacrylate and polystyrene, is used as a binder, and a photoconductive function and a compound containing a nonlinear optical dye in a low molecular weight are proposed. Has been.

分子配向によって、ポッケルス効果だけでなく複屈折性も屈折率変調に寄与する。このため、ガラス転移温度の低いフォトリフラクティブ材料は、室温付近でも非線形光学色素の分子運動が制限されず、大きな電気光学特性を有し、無機材料を超える高いフォトリフラクティブ特性を示す。
このように有機フォトリフラクティブ材料は、光学変調素子への応用が期待されており、近年の光情報通信事情を反映して、現在活発な研究開発がなされている。
Depending on the molecular orientation, not only the Pockels effect but also birefringence contributes to the refractive index modulation. For this reason, the photorefractive material having a low glass transition temperature is not limited in the molecular motion of the nonlinear optical dye even near room temperature, has a large electro-optic characteristic, and exhibits a high photorefractive characteristic exceeding that of an inorganic material.
As described above, the organic photorefractive material is expected to be applied to an optical modulation element, and active research and development are currently being performed reflecting the recent optical information communication situation.

W.E.Moerner and S.M.Silence著、Chemistry Review、94巻、127−155頁、1994W.E.Moerner and S.M.Silence, Chemistry Review, 94, 127-155, 1994

このように有機フォトリフラクティブ材料は一般に様々な機能性化合物の混合物であり、その成分の一部が析出しやすく相安定性が低いため可使時間が短い。かかる欠点を解消するため、例えば、共重合により全ての機能性化合物を1分子中に取り入れるなどの提案もあるが、化合物の合成操作が煩雑であるなどの難点がある。また、有機フォトリフラクティブ材料中の機能性化合物との相溶性に優れた溶媒、相溶化剤、または可塑剤の配合量を増加することなども考え得る。しかしながら、このような方法ではフォトリフラクティブ材料中における必要な他の機能性化合物濃度が低下しフォトリフラクティブの特性の低下を招く。本発明の目的は、材料の相安定性に優れ、長期にわたり優れたフォトリフラクティブ特性を示し、可使時間の長いフォトリフラクティブ材料を提供することにある。
本発明者らは、このような課題について鋭意検討を行った結果、2種以上の電界応答光学機能化合物を用いることにより、結晶化の阻害、もしくは結晶化に至るまでの時間をより長期化できるとの知見を得て本発明を完成した。本発明の技術によれば、可塑剤の配合量増加をはかる方法と異なり機能性化合物の濃度低下がない。
As described above, the organic photorefractive material is generally a mixture of various functional compounds, and a part of the components are likely to precipitate, and the phase stability is low, so that the pot life is short. In order to eliminate such drawbacks, for example, there is a proposal that all functional compounds are incorporated into one molecule by copolymerization, but there are difficulties such as complicated compound synthesis operations. It is also conceivable to increase the blending amount of a solvent, a compatibilizer, or a plasticizer excellent in compatibility with the functional compound in the organic photorefractive material. However, in such a method, the concentration of other functional compounds required in the photorefractive material is lowered, and the photorefractive characteristics are lowered. An object of the present invention is to provide a photorefractive material that is excellent in phase stability of the material, exhibits excellent photorefractive characteristics over a long period of time, and has a long pot life.
As a result of intensive studies on such problems, the present inventors can use a two or more types of electric field response optical functional compounds to inhibit the crystallization or prolong the time until crystallization. As a result, the present invention was completed. According to the technique of the present invention, the concentration of the functional compound does not decrease unlike the method for increasing the blending amount of the plasticizer.

すなわち、本発明は、下記A、B、C並びにD群の成分を含んでなる有機フォトリフラクティブ材料を提供するものである。
A:有機光導電性化合物
B:電界応答光学機能化合物として、N−(4−ニトロフェニル)−L−プロリノールと、 下記の化合物群から選ばれた少なくとも1種の化合物との組合せ:
N−(4−ニトロフェニル)−L−プロリノールメチルエーテル、(s)−(−)−N−(5−ニトロ−2−ピリジル)プロリノール、[[4−(ヘキサヒドロ−1H−アゼピン−1−イル)フェニル]メチレン]プロパンジニトリル、4−(2,2−ジシアノビニル)−N−エチル−N−(5−ヒドロキシペンチル)アニリン、及び4−(2,2−ジシアノビニル)−N,N−ビス(2−メトキシエチル)アニリン
C:増感剤
D:可塑剤
また、本発明の好ましい有機フォトリフラクティブ材料は、前記の有機光導電性化合物がポリ(N−ビニルカルバゾール)であり、増感剤が2,4,7−トリニトロ−9−フルオレノンであり、可塑剤が2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネートである。また、本発明の有機フォトリフラクティブ材料中における各成分A、B、C及びD群の成分の各配合量は、有機光導電性化合物15〜70重量%、電界応答光学機能化合物10〜50重量%、増感剤0.01〜20重量%、可塑剤5〜70重量%であるのが好ましい。特に、電界応答光学機能化合物中、N−(4−ニトロフェニル)−L−プロリノールの配合量が50〜90重量%であるのが好ましい。
That is, the present invention provides an organic photorefractive material comprising the following A, B, C and D group components.
A: Organic photoconductive compound B: Combination of N- (4-nitrophenyl) -L-prolinol as an electric field responsive optical functional compound and at least one compound selected from the following compound group:
N- (4-nitrophenyl) -L-prolinol methyl ether, (s)-(−)-N- (5-nitro-2-pyridyl) prolinol, [[4- (hexahydro-1H-azepine-1 -Yl) phenyl] methylene] propanedinitrile, 4- (2,2-dicyanovinyl) -N-ethyl-N- (5-hydroxypentyl) aniline, and 4- (2,2-dicyanovinyl) -N, N-bis (2-methoxyethyl) aniline C: sensitizer D: plasticizer Further, the preferred organic photorefractive material of the present invention is a poly (N-vinylcarbazole), wherein the organic photoconductive compound is poly (N-vinylcarbazole). The sensitizer is 2,4,7-trinitro-9-fluorenone and the plasticizer is 2- (1,2-cyclohexanedicarboximido) ethyl propionate. Moreover, each compounding amount of each component A, B, C and component D in the organic photorefractive material of the present invention is 15 to 70% by weight of the organic photoconductive compound, and 10 to 50% by weight of the electric field response optical functional compound. The sensitizer is preferably 0.01 to 20% by weight and the plasticizer is preferably 5 to 70% by weight. In particular, the compounding amount of N- (4-nitrophenyl) -L-prolinol in the electric field response optical functional compound is preferably 50 to 90% by weight.

本発明によれば、フォトリフラクティブ材料の製造にあたり煩雑な合成操作を必要とせず、安定した特性を示す有機フォトリフラクティブ材料が得られ、長期にわたる使用が可能となる。   According to the present invention, an organic photorefractive material exhibiting stable characteristics can be obtained without requiring a complicated synthesis operation in producing the photorefractive material, and can be used for a long period of time.

発明の詳細な記述Detailed description of the invention

(A:有機光導電性化合物)
本発明における有機光導電性化合物は、光を照射することによって、電子とホール(キャリア)を生成し、このキャリアが移動することにより空間電界が生じる機能を有する化合物である。
かかる有機光導電性化合物としては、ポリ(N−ビニルカルバゾール)(式A1)、α,α',α''−トリス−(4−(6−カルバゾリル)−n−ヘキシルオキシフェニル)−1,3,5−トリイソプロピルベンゼン(式A2)、ポリ(2−(9−カルバゾリル)エチルアクリレート)(式A3)、エチルカルバゾール(式A4)、4,4’−ビス(カルバゾール-9-イル)−ビフェニル(式A5)などのカルバゾール誘導体や、
N,N’−ビス(4−ヘキシルオキシフェニル)−N,N’−ジフェニルベンジジン(式A6)、N,N’−ビス(4(2−ペンチルオキシ)フェニル)−N,N’−ジフェニルベンジジン(式A7)などのN,N,N’,N’−テトラフェニルベンジジン誘導体や、
4−ジフェニルアミノ-ベンズアルデヒド−N,N−ジフェニルヒドラゾン(式A8)、4−ジベンジルアミノ-ベンズアルデヒド−N,N−ジフェニルヒドラゾン(式A9)などのヒドラゾン誘導体や、
4−ジフェニルアミノ-ベンズアルデヒド(式A10)、4−ジフェニルアミノ-アニソール(式A11)などのトリフェニルアミン類などが知られている。
これらのうち、他の成分との相溶性及びコストを考慮すると、ポリ(N-ビニルカルバゾール)が好ましい。
(A: Organic photoconductive compound)
The organic photoconductive compound in the present invention is a compound having a function of generating electrons and holes (carriers) by irradiating light, and generating a spatial electric field when the carriers move.
Such organic photoconductive compounds include poly (N-vinylcarbazole) (formula A1), α, α ′, α ″ -tris- (4- (6-carbazolyl) -n-hexyloxyphenyl) -1, 3,5-triisopropylbenzene (formula A2), poly (2- (9-carbazolyl) ethyl acrylate) (formula A3), ethylcarbazole (formula A4), 4,4′-bis (carbazol-9-yl)- Carbazole derivatives such as biphenyl (formula A5),
N, N′-bis (4-hexyloxyphenyl) -N, N′-diphenylbenzidine (formula A6), N, N′-bis (4 (2-pentyloxy) phenyl) -N, N′-diphenylbenzidine N, N, N ′, N′-tetraphenylbenzidine derivatives such as (formula A7),
Hydrazone derivatives such as 4-diphenylamino-benzaldehyde-N, N-diphenylhydrazone (formula A8), 4-dibenzylamino-benzaldehyde-N, N-diphenylhydrazone (formula A9),
Triphenylamines such as 4-diphenylamino-benzaldehyde (formula A10) and 4-diphenylamino-anisole (formula A11) are known.
Of these, poly (N-vinylcarbazole) is preferable in consideration of compatibility with other components and cost.

Figure 2006018112
Figure 2006018112

Figure 2006018112
Figure 2006018112

本発明材料中、有機光導電性化合物の含有率は、後記の他成分との相溶性を考慮して決定されるが、15〜70重量%が好ましく、20〜50重量%がより好ましい。光導電性化合物の配合量がこれより少ないと、光電荷生成効率が低下したり、電荷輸送能が低下するなどの不具合が生じることがある。一方、配合量が前記の範囲より多いとフォトリフラクティブ特性の発現に必要な他の成分の濃度が低下し特性が低下する。   In the material of the present invention, the content of the organic photoconductive compound is determined in consideration of compatibility with other components described later, preferably 15 to 70% by weight, and more preferably 20 to 50% by weight. If the blending amount of the photoconductive compound is less than this, problems such as a decrease in photocharge generation efficiency and a decrease in charge transport ability may occur. On the other hand, when the blending amount is larger than the above range, the concentration of other components necessary for the expression of the photorefractive property is lowered, and the property is lowered.

(B:電界応答光学機能化合物)
本発明にて用いられる電界応答光学機能化合物は、前記A群の成分の機能により形成された空間電界の強度に応じて屈折率が変化する。このような屈折率が変化する現象は、大きな複屈折性を有する分子の分子配向が電界により変化し、あるいはポッケルス効果やカー効果などにより生ずるものと推定される。このような電界応答光学機能化合物としては、非線形光学色素、液晶化合物、イミド類など大きな複屈折性を有するものが挙げられる。
(B: electric field response optical functional compound)
The refractive index of the electric field-responsive optical functional compound used in the present invention varies depending on the strength of the spatial electric field formed by the function of the component of the group A. Such a phenomenon in which the refractive index changes is presumed to be caused by the molecular orientation of molecules having large birefringence being changed by an electric field, or by the Pockels effect or Kerr effect. Examples of such electric field responsive optical functional compounds include those having large birefringence such as nonlinear optical dyes, liquid crystal compounds, and imides.

本発明において電界応答光学機能化合物には異なったものを混合して用いる。このような組み合わせにより相安定性が向上する。本発明の材料において用いられる電界応答光学機能化合物としては、N−(4−ニトロフェニル)−L−プロリノール(式B1)、N−(4−ニトロフェニル)−L−プロリノールメチルエーテル(式B2)、(s)−(−)−N−(5−ニトロ−2−ピリジル)プロリノール(式B3)、[[4−(ヘキサヒドロ−1H−アゼピン−1−イル)フェニル]メチレン]プロパンジニトリル(式B4)、4−(2,2−ジシアノビニル)−N−エチル−N−(5−ヒドロキシペンチル)アニリン(式B5)、4−(2,2−ジシアノビニル)−N,N−ビス(2−メトキシエチル)アニリン(式B6)が好ましい。   In the present invention, different compounds are used as electric field response optical functional compounds. Such a combination improves the phase stability. Examples of the field response optical functional compound used in the material of the present invention include N- (4-nitrophenyl) -L-prolinol (formula B1), N- (4-nitrophenyl) -L-prolinol methyl ether (formula B2), (s)-(−)-N- (5-nitro-2-pyridyl) prolinol (formula B3), [[4- (hexahydro-1H-azepin-1-yl) phenyl] methylene] propanedi Nitrile (formula B4), 4- (2,2-dicyanovinyl) -N-ethyl-N- (5-hydroxypentyl) aniline (formula B5), 4- (2,2-dicyanovinyl) -N, N- Bis (2-methoxyethyl) aniline (formula B6) is preferred.

Figure 2006018112
Figure 2006018112

有機フォトリフラクティブ材料中、電界応答光学機能化合物の配合量は他の成分との相溶性を考慮し10〜50重量%が好ましく、10〜30重量%がより好ましい。配合量がこれより少ないと電界応答光学機能が低下する。一方、配合量がこの範囲より多いと、他の成分の濃度が低くフォトリフラクティブ特性が低下する。   In the organic photorefractive material, the blending amount of the electric field response optical functional compound is preferably 10 to 50% by weight, more preferably 10 to 30% by weight in consideration of compatibility with other components. If the blending amount is less than this, the electric field response optical function is lowered. On the other hand, if the blending amount is larger than this range, the concentration of other components is low and the photorefractive characteristics are deteriorated.

本発明の有機フォトリフラクティブ材料においては、電界応答光学機能化合物を2種以上用いる。このように異種の電界応答光学機能化合物を併用することにより、結晶化による相安定性の低下が防止できる。これは本発明の材料が、固溶体と呼ばれる固体状態になっているためと推測される。ここで用いられる好ましい電界応答光学機能化合物としては、単独でも優れたフォトリフラクティブ特性を示し、また、固溶体が、類似する2種の化合物(色素)から得られやすいことを考慮して、N−(4−ニトロフェニル)−L−プロリノール(式B1)、N−(4−ニトロフェニル)−L−プロリノールメチルエーテル(式B2)などの前記電界応答光学機能化合物が挙げられる。これらは構造が類似しており、また各化合物単独でもフォトリフラクティブ性が現れることから、これらより選択するのが好ましい。
これら電界応答光学機能化合物の組み合わせにあたっては、前記色素中、単独で使用して最もフォトリフラクティブ特性の高いN−(4−ニトロフェニル)−L−プロリノールに対し、前記の他の色素を加えその結晶化を阻害する。したがって、配合された電界応答光学機能化合物の全量中、N−(4−ニトロフェニル)−L−プロリノールを50〜90重量%配合し、残り10〜50%を他の電界応答光学機能化合物とするのが好ましい。
In the organic photorefractive material of the present invention, two or more kinds of electric field responsive optical functional compounds are used. Thus, by using together different kinds of electric field response optical functional compounds, it is possible to prevent a decrease in phase stability due to crystallization. This is presumably because the material of the present invention is in a solid state called a solid solution. As a preferable electric field response optical functional compound used here, N- () exhibits excellent photorefractive characteristics even when used alone, and it is easy to obtain a solid solution from two similar compounds (pigments). Examples of the field-responsive optical functional compound include 4-nitrophenyl) -L-prolinol (formula B1) and N- (4-nitrophenyl) -L-prolinol methyl ether (formula B2). Since these are similar in structure and each compound alone exhibits photorefractive properties, it is preferable to select them.
In combining these electric field response optical functional compounds, the above-mentioned other dyes are added to N- (4-nitrophenyl) -L-prolinol having the highest photorefractive characteristics when used alone in the dye. Inhibits crystallization. Therefore, 50 to 90% by weight of N- (4-nitrophenyl) -L-prolinol is blended in the total amount of the compounded field response optical functional compound, and the remaining 10 to 50% is combined with other field response optical functional compounds. It is preferable to do this.

(C:増感剤)
キャリアを生成するには、光導電性化合物への照射光の吸収が必要である。光導電性化合物単体では、通常、波長350nm以下の光に対してのみ効率よくキャリアが生成する。したがって、フォトリフラクティブ材料においては、可視域波長(300〜800nm)以上の長波長光に対する吸収向上のため増感剤が必要である。増感剤は、光導電性化合物と共に電荷移動錯体を形成することが知られており、800nm程度までの光を吸収してキャリアを生成し、生成したキャリアは光導電性材料によって輸送される。
(C: sensitizer)
In order to generate carriers, it is necessary to absorb irradiation light to the photoconductive compound. A single photoconductive compound usually generates carriers efficiently only for light having a wavelength of 350 nm or less. Therefore, in the photorefractive material, a sensitizer is necessary for improving absorption of long wavelength light having a visible wavelength (300 to 800 nm) or longer. The sensitizer is known to form a charge transfer complex together with the photoconductive compound, absorbs light up to about 800 nm, generates carriers, and the generated carriers are transported by the photoconductive material.

本発明にて用いられる増感剤は、光導電性化合物と共に電荷移動錯体を形成するものが好ましい。かかる増感剤としては、下記に示す2,4,7−トリニトロ−9−フルオレノン(式C1)、2, 4,7−トリニトロ−9−フルオレニリデンマロニトリル(式C2)、ジメチルテレフタレート(式C3)、p−ジシアノベンゼン(式C4)、並びにC60(式C5)、C70(式C6)などが知られているが、これらのうち、配合成分相互の相溶性を考慮すると,2,4,7−トリニトロ−9−フルオレノンが好ましい。 The sensitizer used in the present invention preferably forms a charge transfer complex together with the photoconductive compound. Such sensitizers include 2,4,7-trinitro-9-fluorenone (formula C1), 2,4,7-trinitro-9-fluorenylidenemalonitrile (formula C2), dimethyl terephthalate (formula C3), p-dicyanobenzene (formula C4), and C 60 (formula C5), although such C 70 (formula C6) are known, among these, considering the compatibility of the blend components with one another, 2, 4,7-trinitro-9-fluorenone is preferred.

Figure 2006018112
Figure 2006018112
Figure 2006018112
Figure 2006018112

Figure 2006018112
Figure 2006018112

その他の増感剤としては、2,4−ジニトロフルオレンなどのフルオレン誘導体、9−オキソ−9H−チオキサンテン−3−カルボン酸−10,10ジオキシドや9−オキソ−9H−チオキサンテン−3−カルボキシアミド−10,10ジオキシドなどのチオキサンテン類、テトラシアノエチレンや7,7,8,8-テトラシアノキノジメタンなどのシアノエチレン類も用いられてよい。     Other sensitizers include fluorene derivatives such as 2,4-dinitrofluorene, 9-oxo-9H-thioxanthene-3-carboxylic acid-10,10 dioxide and 9-oxo-9H-thioxanthene-3-carboxy. Thioxanthenes such as amide-10,10 dioxide, and cyanoethylenes such as tetracyanoethylene and 7,7,8,8-tetracyanoquinodimethane may also be used.

かかる増感剤の配合量は有機フォトリフラクティブ材料中0.01〜20重量%であり、好ましくは0.1〜20重量%である。増感剤の配合量が、この範囲より少ないとキャリアの生成効率が低い。一方、この範囲より多いと電荷発生量は増大するが、増感剤と有機光導電性化合物から生成する電荷移動錯体の光吸収が強くなり過ぎ、フォトリフラクティブ材料を光変調素子とした場合に信号光強度低下の原因となる。   The blending amount of such a sensitizer is 0.01 to 20% by weight, preferably 0.1 to 20% by weight in the organic photorefractive material. When the amount of the sensitizer is less than this range, the carrier generation efficiency is low. On the other hand, if the amount exceeds this range, the amount of charge generation increases, but the light absorption of the charge transfer complex generated from the sensitizer and the organic photoconductive compound becomes too strong, and the signal is generated when the photorefractive material is a light modulation element. It causes a decrease in light intensity.

(D:可塑剤)
本発明において、可塑剤は前記の各成分を均一に混合する溶媒または相溶化剤としての役割を果たし、材料の成形加工性を向上させる。このような可塑剤としては、有機高分子化合物と同様の特性を有するものが好ましく、特に優れた相溶性を示す可塑剤として2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネート(AX22)(式D1)が好ましい。また、他の可塑剤としては、2−(1,2−シクロヘキサンジカルボキシイミド)エチルブチレート(AX23)(式D2)、2−(1、2−シクロヘキサンジカルボキシイミド)エチルベンゾエート(AXPH)(式D3)、2−(1、2−シクロヘキサンジカルボキシイミド)エチルアクリレート(AX14)(式D4)、2−(フタルイミド)エチルプロピオネート(AX24)(式D5)が挙げられる。

Figure 2006018112
また、リン酸トリクレジル、フタル酸ジオクチルエステル、フタル酸ブチルベンジルエステル、ジブチルスズジラウリン酸エステルなど一般的な可塑剤及び下記の式D6、式D7の化合物が挙げられる。 (D: Plasticizer)
In the present invention, the plasticizer serves as a solvent or compatibilizer for uniformly mixing the above-described components, and improves the moldability of the material. As such a plasticizer, those having characteristics similar to those of the organic polymer compound are preferable, and 2- (1,2-cyclohexanedicarboximido) ethyl propionate (AX22) is particularly preferable as a plasticizer exhibiting excellent compatibility. ) (Formula D1) is preferred. Other plasticizers include 2- (1,2-cyclohexanedicarboximido) ethyl butyrate (AX23) (formula D2), 2- (1,2-cyclohexanedicarboximido) ethyl benzoate (AXPH) ( Formula D3), 2- (1,2-cyclohexanedicarboximido) ethyl acrylate (AX14) (Formula D4), 2- (phthalimido) ethyl propionate (AX24) (Formula D5).
Figure 2006018112
Further, general plasticizers such as tricresyl phosphate, dioctyl phthalate, butyl benzyl phthalate, and dibutyltin dilaurate, and compounds of the following formulas D6 and D7 may be mentioned.

Figure 2006018112
Figure 2006018112

本発明のフォトリフラクティブ材料において、可塑剤の配合量は他の成分との相溶性を考慮し、通常5〜70重量%が好ましく、10〜65重量%がより好ましい。可塑剤の配合量がこの範囲をはずれると相分離が生じ得る。   In the photorefractive material of the present invention, the blending amount of the plasticizer is usually preferably 5 to 70% by weight and more preferably 10 to 65% by weight in consideration of compatibility with other components. Phase separation may occur if the plasticizer content is outside this range.

(フォトリフラクティブ成形体の調製)
つぎに前記の各成分を用いてフォトリフラクティブ成形体を製造する方法について説明する。本発明のフォトリフラクティブ材料は無印可電圧でもフォトリフラクティブ特性が発現する。なお、成形にあたっては、最終的に透明均一なフィルムが得られるよう留意する。
(Preparation of photorefractive molding)
Next, a method for producing a photorefractive molded body using each of the above components will be described. The photorefractive material of the present invention exhibits photorefractive characteristics even when there is no applied voltage. It should be noted that in forming, a transparent and uniform film is finally obtained.

(均一混合方法)
フォトリフラクティブ成形体中の固形分は均一に混合する必要がある。したがって、固形分を高極性溶媒に溶解し、均一になるまで充分に攪拌、混合する。溶媒中の固形分濃度は、均一な溶解が可能な濃度であればよいが、混合時における溶液粘度やフィルム作成時に必要な乾燥などの操作が容易なよう、固形分濃度1〜20重量%となるよう溶解するのが好ましい。
(Uniform mixing method)
The solid content in the photorefractive molded body needs to be mixed uniformly. Therefore, the solid content is dissolved in a highly polar solvent and sufficiently stirred and mixed until uniform. The solid content concentration in the solvent may be a concentration that enables uniform dissolution, but the solid content concentration is 1 to 20% by weight so that operations such as solution viscosity at the time of mixing and drying necessary for film formation are easy. It is preferable to dissolve.

(成形方法)
このようにして得られた混合溶液を用いてキャスト法などによりフィルムを作成し実用可能なフォトリフラクティブ材料を製造する。なお、本発明のフォトリフラクティブ材料の形態はフィルムに限定されず、使用目的に応じて適宜変更することができる。
例えば、キャスト法によりフィルムを作成するには、ガラス板などの基材上にスピンコート、滴下などにより直接塗布して、目的の膜厚、形状に応じて溶液を流延し、平滑なフィルム表面を得る。ついで、減圧下、加温などによりキャストされた溶液から溶媒を除去しフィルムを作成する。
(Molding method)
Using the mixed solution thus obtained, a film is produced by a casting method or the like to produce a practical photorefractive material. In addition, the form of the photorefractive material of this invention is not limited to a film, It can change suitably according to the intended purpose.
For example, in order to create a film by a casting method, a smooth film surface is obtained by directly applying a film on a substrate such as a glass plate by spin coating or dripping, and casting a solution according to a desired film thickness and shape. Get. Next, the solvent is removed from the cast solution by heating or the like under reduced pressure to form a film.

つぎに、本発明を実施例及び比較例によりさらに具体的に説明する。
[実施例1〜7、比較例1]
下記の各群の成分を表1に示す割合にて配合し有機フォトリフラクティブ材料を作製した。
Next, the present invention will be described more specifically with reference to examples and comparative examples.
[Examples 1 to 7, Comparative Example 1]
The components of the following groups were blended in the proportions shown in Table 1 to prepare organic photorefractive materials.

(試料の準備)
(A)有機光導電性化合物
ポリ(N-ビニルカルバゾール)(式A1)はアルドリッチ社製のものを購入し,再沈殿作製した。
(Sample preparation)
(A) Organic photoconductive compound Poly (N-vinylcarbazole) (formula A1) was purchased from Aldrich and re-precipitated.

(B)電界応答光学機能化合物
N−(4−ニトロフェニル)−L−プロリノール(式B1)
(s)−(−)−N−(5−ニトロ−2−ピリジル)プロリノール(式B3)
東京化成工業社製のものを購入しそのまま使用した。
(B) Electric field response optical functional compound
N- (4-Nitrophenyl) -L-prolinol (formula B1)
(s)-(−)-N- (5-nitro-2-pyridyl) prolinol (formula B3)
A product made by Tokyo Chemical Industry Co., Ltd. was purchased and used as it was.

[[4−(ヘキサヒドロ−1H−アゼピン−1−イル)フェニル]メチレン]プロパンジニトリル(式B4)は、下記方法に従い合成したものを用いた:
炭酸リチウム25.1g(340 mmol),4-フルオロベンズアルデヒド8.9g(72mmol),ヘキサヒドロアゼピン7.2g(72mmol)を無水DMF200mlに加えて50℃で24時間攪拌した。反応溶液に水300mlを加えてクロロホルムで抽出し,有機層を飽和食塩水で洗浄した。溶媒を留去して得られる反応混合物をカラムクロマトグラフィー(充填剤ワコーゲルC300(和光純薬社製),展開溶媒ヘキサン:酢酸エチル混合溶媒)で生成して1−ホルミル−4−(ヘキサヒドロ-1H-アゼピン-1-イル)ベンゼンを4.53g得た。
上記1−ホルミル−4−(ヘキサヒドロ−1H−アゼピン−1−イル)ベンゼン4.53g(22mmol),マロニトリル2.3g(34mmol),ジメチルアミノピリジン1.37gをメタノール(15ml)に加えて40℃で24時間攪拌した。溶媒を留去して得られる反応混合物を塩化メチレンで再結晶精製し,目的物を得た。収率78%
[[4- (Hexahydro-1H-azepin-1-yl) phenyl] methylene] propanedinitrile (formula B4) was synthesized according to the following method:
25.1 g (340 mmol) of lithium carbonate, 8.9 g (72 mmol) of 4-fluorobenzaldehyde and 7.2 g (72 mmol) of hexahydroazepine were added to 200 ml of anhydrous DMF and stirred at 50 ° C. for 24 hours. 300 ml of water was added to the reaction solution, extracted with chloroform, and the organic layer was washed with saturated brine. The reaction mixture obtained by distilling off the solvent was produced by column chromatography (filler Wakogel C300 (manufactured by Wako Pure Chemical Industries, Ltd.), developing solvent hexane: ethyl acetate mixed solvent) to produce 1-formyl-4- (hexahydro-1H -Azepin-1-yl) benzene (4.53 g) was obtained.
1-Formyl-4- (hexahydro-1H-azepin-1-yl) benzene (4.53 g, 22 mmol), malonitrile (2.3 g, 34 mmol) and dimethylaminopyridine (1.37 g) were added to methanol (15 ml) at 40 ° C. for 24 hours. Stir. The reaction mixture obtained by distilling off the solvent was recrystallized and purified with methylene chloride to obtain the desired product. Yield 78%

4−(2,2−ジシアノビニル)−N,N−ビス(2−メトキシエチル)アニリン(式B6)は下記に従い合成を行ったものを用いた:
無水ジメチルホルムアミドに氷冷下オキシ塩化リン5.8mlを加えて30分攪拌し室温にしたものに、N,N−ビス(2−メトキシエチル)アニリン13.9g(55.5mmol)を加え、90℃で20時間攪拌した。反応溶液に水600mlを注ぎ、エーテル、クロロホルムの順で抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去して得た反応混合物をカラムクロマトグラフィーで精製することによりN,N−ビス(2−メトキシエチル)−4−ホルミルアニリン11.8gを得た。収率77%
最後にジシアノマロン酸3.3g(50mmol)、N,N―ビス(2−メトキシエチル)−4−ホルミルアニリン10.8g(45.6mmol)、N,N−ジメチルアミノピリジン0.7g(4.3mmol)をイソプロパール60mlに加え、40℃で3日間攪拌した。溶媒を留去して得られる反応混合物をエーテルに加え、水で洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を留去し、さらにカラムクロマトグラフィーで精製することにより、目的物質を12.5g得た。収率67%
4- (2,2-dicyanovinyl) -N, N-bis (2-methoxyethyl) aniline (formula B6) was synthesized according to the following:
N, N-bis (2-methoxyethyl) aniline (13.9 g, 55.5 mmol) was added to anhydrous dimethylformamide, which was added with 5.8 ml of phosphorus oxychloride under ice-cooling and stirred at room temperature for 30 minutes. Stir at 20 ° C. for 20 hours. 600 ml of water was poured into the reaction solution, and extracted with ether and chloroform in this order. After drying the organic layer over anhydrous magnesium sulfate, the solvent was distilled off and the reaction mixture obtained was purified by column chromatography to obtain 11.8 g of N, N-bis (2-methoxyethyl) -4-formylaniline. It was. Yield 77%
Finally, 3.3 g (50 mmol) of dicyanomalonic acid, 10.8 g (45.6 mmol) of N, N-bis (2-methoxyethyl) -4-formylaniline, and 0.7 g (4. 4 of N, N-dimethylaminopyridine). 3 mmol) was added to 60 ml of isopropyl and stirred at 40 ° C. for 3 days. The reaction mixture obtained by distilling off the solvent was added to ether and washed with water. The organic layer was dried over magnesium sulfate, the solvent was distilled off, and the residue was further purified by column chromatography to obtain 12.5 g of the target substance. Yield 67%

N−(4−ニトロフェニル)−L−プロリノールメチルエーテル(式B2)は下記合成法に従い合成したものを用いた:
油状の水素化ナトリウム(0.53g,13.5mmol)をヘキサンで洗浄し真空乾燥にて乾燥させた。窒素雰囲気にした後、N−(4−ニトロフェニル)−L−プロリノール(1.0g,4.5mmol)、ヨードメタン(1.1ml,2.55g,18mmol)、無水テトラヒドロフランを30ml加え室温で1時間攪拌した。反応後食塩水を加え水相をテトラヒドロフランで抽出した。有機相を硫酸マグネシウムで乾燥した後、ジクロロメタンを展開溶媒としたシリカゲルカラムクロマトグラフィーを用い黄色粉末1.0g(収率94%)を得た。さらにメタノールで再結晶を行い、黄色の結晶を0.65g得た。
N- (4-nitrophenyl) -L-prolinol methyl ether (formula B2) was synthesized according to the following synthesis method:
Oily sodium hydride (0.53 g, 13.5 mmol) was washed with hexane and dried by vacuum drying. After making the atmosphere nitrogen, 30 ml of N- (4-nitrophenyl) -L-prolinol (1.0 g, 4.5 mmol), iodomethane (1.1 ml, 2.55 g, 18 mmol) and anhydrous tetrahydrofuran was added, and 1 at room temperature. Stir for hours. After the reaction, brine was added and the aqueous phase was extracted with tetrahydrofuran. After drying the organic phase with magnesium sulfate, 1.0 g (yield 94%) of yellow powder was obtained by silica gel column chromatography using dichloromethane as a developing solvent. Further, recrystallization was performed with methanol to obtain 0.65 g of yellow crystals.

4−(2,2−ジシアノビニル)−N−エチル−N−(5−ヒドロキシペンチル)アニリン(式B5)は下記方法に従い合成したものを用いた:
N−エチルアニリン16ml、酢酸(5−ブロモ)ペンチル20ml(119.6mmol)、トリエチルアミン20mlをトルエン125mlに加えて120℃で19時間攪拌した。反応混合物に含まれる沈殿物を濾別後、低沸点生成物を留去し、さらにカラムクロマトグラフィーで精製することにより、N−エチル−N−(5−アセチルオキシ)ペンチルアニリン14.8gを得た。収率50%
次に無水ジメチルホルムアミドに氷冷下オキシ塩化リン5.8mlを加えて30分攪拌し室温にしたものに、N−エチル−N−(5−アセチルオキシ)ペンチルアニリン13.9g(55.5mmol)を加え、90℃で20時間攪拌した。反応溶液に水600mlを注ぎ、エーテル、クロロホルムの順で抽出した。有機層を無水硫酸マグネシウムで乾燥後、溶媒を留去して得た反応混合物をカラムクロマトグラフィーで精製することによりN−エチル−N−(5−アセチルオキシ)ペンチル−4−ホルミルアニリン11.8gを得た。収率77%
最後にジシアノマロン酸3.3g(50mmol)、N−エチル−N−(5−アセチルオキシ)ペンチル−4−ホルミルアニリン10.8g(45.6mmol)、N,N−ジメチルアミノピリジン0.7g(4.3mmol)をイソプロパール60mlに加え、40℃で3日間攪拌した。溶媒を留去して得られる反応混合物をエーテルに加え、水で洗浄した。有機層を硫酸マグネシウムで乾燥後、溶媒を留去し、さらにカラムクロマトグラフィーで精製することにより、目的物質を12.5g得た。収率67%
4- (2,2-dicyanovinyl) -N-ethyl-N- (5-hydroxypentyl) aniline (formula B5) was synthesized according to the following method:
N-ethylaniline (16 ml), acetic acid (5-bromo) pentyl (20 ml, 119.6 mmol) and triethylamine (20 ml) were added to toluene (125 ml), and the mixture was stirred at 120 ° C. for 19 hours. After the precipitate contained in the reaction mixture is filtered off, the low-boiling product is distilled off and further purified by column chromatography to obtain 14.8 g of N-ethyl-N- (5-acetyloxy) pentylaniline. It was. Yield 50%
Next, 5.8 ml of phosphorus oxychloride was added to anhydrous dimethylformamide and the mixture was stirred for 30 minutes at room temperature, and then 13.9 g (55.5 mmol) of N-ethyl-N- (5-acetyloxy) pentylaniline was added. And stirred at 90 ° C. for 20 hours. 600 ml of water was poured into the reaction solution, and extracted with ether and chloroform in this order. After drying the organic layer over anhydrous magnesium sulfate, the solvent was distilled off and the resulting reaction mixture was purified by column chromatography to obtain 11.8 g of N-ethyl-N- (5-acetyloxy) pentyl-4-formylaniline. Got. Yield 77%
Finally, 3.3 g (50 mmol) of dicyanomalonic acid, 10.8 g (45.6 mmol) of N-ethyl-N- (5-acetyloxy) pentyl-4-formylaniline, 0.7 g of N, N-dimethylaminopyridine ( 4.3 mmol) was added to 60 ml of isopropyl and stirred at 40 ° C. for 3 days. The reaction mixture obtained by distilling off the solvent was added to ether and washed with water. The organic layer was dried over magnesium sulfate, the solvent was distilled off, and the residue was further purified by column chromatography to obtain 12.5 g of the target substance. Yield 67%

(C) 増感剤
2,4,7−トリニトロ−9−フルオレノン(式C1)は東京化成工業社製のものを購入し、そのまま使用した。
(C) Sensitizer 2,4,7-trinitro-9-fluorenone (formula C1) was purchased from Tokyo Chemical Industry Co., Ltd. and used as it was.

(D) 可塑剤
2−(1,2−シクロヘキサンジカルボキシイミド)エチルピロピオネート(式D1)は下記方法に従い合成したものを用いた。
フタル酸無水物149g(967mmol)にトルエン200mlとエタノールアミン62g(1000mmol)を加えて80℃で2時間攪拌した後、チタンブタネートを15g(44mmol)を加えて還流を19時間行った。冷却後反応溶液に水100mlを加えることで析出する白色沈殿物を濾別して有機層を回収した。溶媒を留去して得られる反応混合物をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:n−ヘキサンと酢酸エチルの混合溶媒)で精製してN−(2−ヒドロキシエチル)シクロヘキサンジカルボキシイミドを得た(200g)。
(D) Plasticizer 2- (1,2-cyclohexanedicarboximido) ethyl pyropionate (formula D1) was synthesized according to the following method.
To 149 g (967 mmol) of phthalic anhydride, 200 ml of toluene and 62 g (1000 mmol) of ethanolamine were added and stirred at 80 ° C. for 2 hours, and then 15 g (44 mmol) of titanium butanate was added and refluxed for 19 hours. After cooling, 100 ml of water was added to the reaction solution, and the white precipitate precipitated was separated by filtration to recover the organic layer. The reaction mixture obtained by distilling off the solvent was purified by column chromatography (filler: silica gel, developing solvent: mixed solvent of n-hexane and ethyl acetate) to obtain N- (2-hydroxyethyl) cyclohexanedicarboximide. Obtained (200 g).

N−(2−ヒドロキシエチル)シクロヘキサンジカルボキシイミド52g(272mmol)にピリジン57ml、トルエン200ml、プロピオン酸クロライド30ml(347mmol)を加えて90℃で19時間攪拌した。反応混合物を希塩酸水、炭酸水素ナトリウム水溶液、食塩水の順で洗浄し有機層を回収した。溶媒を留去して得られる反応混合物をカラムクロマトグラフィー(充填剤:シリカゲル、展開溶媒:n−ヘキサンと酢酸エチルの混合溶媒)で精製し目的物を得た。収量45g、収率65%   To 52 g (272 mmol) of N- (2-hydroxyethyl) cyclohexanedicarboximide, 57 ml of pyridine, 200 ml of toluene and 30 ml (347 mmol) of propionic acid chloride were added and stirred at 90 ° C. for 19 hours. The reaction mixture was washed with dilute aqueous hydrochloric acid, aqueous sodium hydrogen carbonate solution and brine in this order to recover the organic layer. The reaction mixture obtained by distilling off the solvent was purified by column chromatography (filler: silica gel, developing solvent: mixed solvent of n-hexane and ethyl acetate) to obtain the desired product. Yield 45g, Yield 65%

(フォトリフラクティブ特性の評価方法)
本発明にて得られた有機材料のフォトリフラクティブ効果を評価するには、電圧印加をしないでコヒーレント光の照射を行った。これらの評価には図1に示す測定装置を用いた。すなわち、得られた材料1をガラス板2に、粒径100μmガラスビーズ(ユニオン社製SPM−100)のスペーサー3と共に挟み込み、加熱、減圧処理するなどして材料中の微小気泡などを除去した。
(Method for evaluating photorefractive characteristics)
In order to evaluate the photorefractive effect of the organic material obtained in the present invention, irradiation with coherent light was performed without applying voltage. The evaluation apparatus shown in FIG. 1 was used for these evaluations. That is, the obtained material 1 was sandwiched between a glass plate 2 and a spacer 3 of glass beads having a particle diameter of 100 μm (SPM-100 manufactured by Union), heated, and depressurized to remove microbubbles in the material.

フォトリフラクティブ成形体の評価特性として、下記の方法により回折効率、応答時間および相安定性を評価した。
(回折効率)
回折効率とは、フォトリフラクティブ効果によって成形される回折格子に対し、光束を入射した場合に、透過する光と回折する光の強度の割合を示すものである。回折効率は縮退4光波混合法により10mWヘリウム−ネオンレーザーを光源として、P偏光書き込み、S偏光読み出しによって行った。このとき書き込み光はサンプル平面の法線に対して±9.6°で入射させた。所定時間の測定の後、回折光強度が最大となる点を求め、このときの透過光強度との比から回折効率(%)を下記の数式1より算出した。
回折効率={回折光強度/(回折光強度+透過光強度)}×100(数式1)
(応答時間)
応答時間とは回折光強度が最大となるまでの時間を意味する。
(相安定性評価)
試料を60℃に保存し、目視観察で、2ヶ月を超えて放置後も結晶析出がなかった場合を◎、1〜2ヶ月程度○、1ヶ月程度で結晶析出した場合を×として評価した。
(結果)
表1より明らかなように、電界応答光学機能化合物を2種以上を用いた本発明のフォトリフラクティブ材料は1種類を用いた比較例のフォトリフラクティブ材料と異なり相安定性が高い。また、当該化合物のうち、N−(4−ニトロフェニル)−L−プロリノールの配合量の多いものは、高いフォトリフラクティブ特性が得られ、特に実施例1、3では従来の優れたフォトリフラクティブ材料なみの特性が得られた。
As evaluation characteristics of the photorefractive molded article, diffraction efficiency, response time, and phase stability were evaluated by the following methods.
(Diffraction efficiency)
The diffraction efficiency indicates the ratio of the intensity of transmitted light and diffracted light when a light beam is incident on a diffraction grating formed by the photorefractive effect. Diffraction efficiency was determined by degenerate four-wave mixing using a 10 mW helium-neon laser as a light source and P-polarized writing and S-polarized reading. At this time, the writing light was incident at ± 9.6 ° with respect to the normal of the sample plane. After the measurement for a predetermined time, the point at which the diffracted light intensity was maximum was determined, and the diffraction efficiency (%) was calculated from the following formula 1 from the ratio to the transmitted light intensity.
Diffraction efficiency = {diffracted light intensity / (diffracted light intensity + transmitted light intensity)} × 100 (Equation 1)
(Response time)
The response time means the time until the diffracted light intensity becomes maximum.
(Phase stability evaluation)
The sample was stored at 60 ° C., and when visually observed, the case where there was no crystal deposition after standing for more than 2 months was evaluated as “◎”, about 1 to 2 months ○, and the case where crystal deposition occurred in about 1 month was evaluated as “x”.
(result)
As is clear from Table 1, the photorefractive material of the present invention using two or more types of field response optical functional compounds has high phase stability unlike the photorefractive material of the comparative example using one type. Of these compounds, those containing a large amount of N- (4-nitrophenyl) -L-prolinol can provide high photorefractive characteristics. Particularly in Examples 1 and 3, conventional photorefractive materials are excellent. The same characteristics were obtained.

Figure 2006018112
Figure 2006018112

フォトリフラクティブ材料の特性評価を行う測定装置の概略図である。It is the schematic of the measuring apparatus which performs the characteristic evaluation of a photorefractive material.

符号の説明Explanation of symbols

1 フォトリフラクティブ材料
2 ガラス板
3 スペーサー
1 Photorefractive material 2 Glass plate 3 Spacer

Claims (4)

下記A、B、C並びにD群の成分を含んでなる有機フォトリフラクティブ材料。
A:有機光導電性化合物
B:電界応答光学機能化合物として、N−(4−ニトロフェニル)−L−プロリノールと、 下記の化合物群から選ばれた少なくとも1種の化合物との組合せ:
N−(4−ニトロフェニル)−L−プロリノールメチルエーテル、(s)−(−)−N−(5−ニトロ−2−ピリジル)プロリノール、[[4−(ヘキサヒドロ−1H−アゼピン−1−イル)フェニル]メチレン]プロパンジニトリル、4−(2,2−ジシアノビニル)−N−エチル−N−(5−ヒドロキシペンチル)アニリン、及び4−(2,2−ジシアノビニル)−N,N−ビス(2−メトキシエチル)アニリン
C:増感剤
D:可塑剤
An organic photorefractive material comprising the following A, B, C and D group components.
A: Organic photoconductive compound B: Combination of N- (4-nitrophenyl) -L-prolinol as an electric field responsive optical functional compound and at least one compound selected from the following compound group:
N- (4-nitrophenyl) -L-prolinol methyl ether, (s)-(−)-N- (5-nitro-2-pyridyl) prolinol, [[4- (hexahydro-1H-azepine-1 -Yl) phenyl] methylene] propanedinitrile, 4- (2,2-dicyanovinyl) -N-ethyl-N- (5-hydroxypentyl) aniline, and 4- (2,2-dicyanovinyl) -N, N-bis (2-methoxyethyl) aniline C: sensitizer D: plasticizer
前記の有機光導電性化合物がポリ(N−ビニルカルバゾール)であり、増感剤が2,4,7−トリニトロ−9−フルオレノンであり、可塑剤が2−(1,2−シクロヘキサンジカルボキシイミド)エチルプロピオネートである請求項1の有機フォトリフラクティブ材料。 The organic photoconductive compound is poly (N-vinylcarbazole), the sensitizer is 2,4,7-trinitro-9-fluorenone, and the plasticizer is 2- (1,2-cyclohexanedicarboximide) 2. The organic photorefractive material of claim 1 which is ethyl propionate. 有機フォトリフラクティブ材料中におけるA、B、C及びD群の成分の各配合量が、有機光導電性化合物15〜70重量%、電界応答光学機能化合物10〜50重量%、増感剤0.01〜20重量%、可塑剤5〜70重量%である請求項1又は2の有機フォトリフラクティブ材料。 The compounding amounts of the components A, B, C and D in the organic photorefractive material are 15 to 70% by weight of the organic photoconductive compound, 10 to 50% by weight of the field response optical functional compound, and 0.01 to the sensitizer The organic photorefractive material according to claim 1 or 2, which is -20% by weight and a plasticizer is 5 to 70% by weight. 電界応答光学機能化合物中、N−(4−ニトロフェニル)−L−プロリノールの配合量が50〜90重量%である請求項1〜3いずれかの有機フォトリフラクティブ材料。 The organic photorefractive material according to any one of claims 1 to 3, wherein the compounding amount of N- (4-nitrophenyl) -L-prolinol in the electric field response optical functional compound is 50 to 90% by weight.
JP2004197217A 2004-07-02 2004-07-02 Organic photorefractive material Pending JP2006018112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004197217A JP2006018112A (en) 2004-07-02 2004-07-02 Organic photorefractive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004197217A JP2006018112A (en) 2004-07-02 2004-07-02 Organic photorefractive material

Publications (1)

Publication Number Publication Date
JP2006018112A true JP2006018112A (en) 2006-01-19

Family

ID=35792439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004197217A Pending JP2006018112A (en) 2004-07-02 2004-07-02 Organic photorefractive material

Country Status (1)

Country Link
JP (1) JP2006018112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262845A1 (en) * 2008-10-20 2011-10-27 Nitto Denko Corporation Method for modulating light of photorefractive composition without external bias voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110262845A1 (en) * 2008-10-20 2011-10-27 Nitto Denko Corporation Method for modulating light of photorefractive composition without external bias voltage

Similar Documents

Publication Publication Date Title
JP5584471B2 (en) System and method for improving the performance of photorefractive devices
US6653421B1 (en) Photorefractive composition
JP5774104B2 (en) Photorefractive composition responsive to multiple laser wavelengths in the visible light spectrum
US6610809B1 (en) Polymer, producing method thereof, and photorefractive composition
JP5421772B2 (en) Nonlinear optical device with long grating persistence
JP5421773B2 (en) Nonlinear optical device sensitive to green laser
US6809156B2 (en) Fullerene-containing polymer, producing method thereof, and photorefractive composition
US20060235163A1 (en) Photorefractive composition
JP2011514914A (en) Optical element responsive to blue laser and method of modulating light
JP4456603B2 (en) Photorefractive composition
JP2012506068A (en) Method for modulating light of a photorefractive composition without an external bias voltage
JP2012506067A (en) Optical device for modulating light of photorefractive composition by thermal control
JP2006018113A (en) Organic photorefractive material and optical recording material using same
JP2006018112A (en) Organic photorefractive material
JP2005258377A (en) Organic photorefractive material
JP2006171320A (en) Organic photorefractive material
JP2006171321A (en) Organic photorefractive material
EP2261270B1 (en) Polymer, producing method thereof, and photorefractive composition
JP2007041324A (en) Organic photorefractive material
JP2006091721A (en) Organic photorefractive material
JP2000319234A (en) Photorefractive material composition and compound for the composition
JP2003322886A (en) Photorefractive material and method for manufacturing the same, and hologram using the same
JPH04199135A (en) Nonlinear optical element material
Angelone et al. An indole-based low molecular weight glass-former giving materials with high cooperative photorefractive optical gain
Zelichenok New photochromic systems based on spirooxazines and naphthacenequinones