JP2006169095A - Method for immobilizing co2 using microwave - Google Patents

Method for immobilizing co2 using microwave Download PDF

Info

Publication number
JP2006169095A
JP2006169095A JP2005325770A JP2005325770A JP2006169095A JP 2006169095 A JP2006169095 A JP 2006169095A JP 2005325770 A JP2005325770 A JP 2005325770A JP 2005325770 A JP2005325770 A JP 2005325770A JP 2006169095 A JP2006169095 A JP 2006169095A
Authority
JP
Japan
Prior art keywords
carbon dioxide
reaction
catalyst
gas
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005325770A
Other languages
Japanese (ja)
Other versions
JP5205693B2 (en
Inventor
Koichi Ito
鉱一 伊藤
Tetsutaro Furuhashi
鉄太郎 古橋
Hitoshi Ogawa
仁 小川
Kazuo Manome
一生 馬目
Masayuki Yui
雅之 油井
Hiroko Tezuka
裕子 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2005325770A priority Critical patent/JP5205693B2/en
Publication of JP2006169095A publication Critical patent/JP2006169095A/en
Application granted granted Critical
Publication of JP5205693B2 publication Critical patent/JP5205693B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method for immobilizing carbon dioxide where the immobilizing reaction of carbon dioxide can be accelerated with low energy. <P>SOLUTION: The mixture of carbon dioxide and hydrogen is irradiated with microwaves in the presence of a catalyst, thus the carbon dioxide is immobilized. By allowing the catalyzing reaction to be caused in a heated state by the microwaves, the immobilizing reaction of the carbon dioxide can be accelerated with reduced energy. Further, by irradiating the mixture of the carbon dioxide and hydrogen with the microwaves in the presence of the catalyst, the carbon dioxide can be converted into carbon monoxide and methanol. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発電所、製鉄分野、石油化学産業分野、一般化学工業分野等において利用できる二酸化炭素(CO)の固定化方法に関する。 TECHNICAL FIELD The present invention relates to a method for immobilizing carbon dioxide (CO 2 ) that can be used in a power plant, steelmaking field, petrochemical industry field, general chemical industry field, and the like.

発電所、工場、自動車等の人間の社会的活動に伴って大気中に排出される二酸化炭素は地球温暖化の主たる原因であることが知られており、近年、この二酸化炭素の排出量を削減することが地球環境の保護の大きな課題となっている。これに対し、従来より、発電所等の排煙や大気中の二酸化炭素を固定化し除去するためのシステムが種々提案されている。   It is known that carbon dioxide emitted into the atmosphere due to human social activities such as power plants, factories and automobiles is the main cause of global warming. In recent years, this carbon dioxide emission has been reduced. Doing so has become a major issue in protecting the global environment. In contrast, various systems for fixing and removing flue gas from a power plant or the like and carbon dioxide in the atmosphere have been proposed.

二酸化炭素の固定化方法は、概ね生物的方法、物理的方法、化学的方法の3種類に分けられる。光合成を利用する生物的方法はかなりの量のCOの固定が期待でき、しかも熱帯林の保護や砂漠化防止にも役立つので、現在広範な植樹と微細藻類の多量かつ連続的な培養、増殖を行う研究開発が行われている。しかし、微細藻類による固定化反応は、微細藻類の表面で進行するため、微細藻類でCOを固定化するためには広大な面積の微細藻類が必要となる問題がある。 Carbon dioxide immobilization methods are roughly divided into three types: biological methods, physical methods, and chemical methods. Biological methods using photosynthesis can be expected to fix a considerable amount of CO 2 , and also help to protect tropical forests and prevent desertification. Research and development is underway. However, since the immobilization reaction by the microalgae proceeds on the surface of the microalgae, there is a problem that a large area of microalgae is required to immobilize CO 2 with the microalgae.

物理的方法は、COの特殊な媒体への溶解、吸着を利用する分離・濃縮法であり、例えば、COをアルカリ溶液に溶解、反応後、炭酸塩として分離する方法、或いは、COをゼオライト媒体等に吸着させた後、脱着、濃縮する方法などが開発研究されている。しかし、吸着法ではCOの吸脱着に膨大なエネルギーを要する問題点がある。吸収法では大掛かりな装置が必要である。 The physical method is a separation / concentration method using dissolution and adsorption of CO 2 in a special medium. For example, a method in which CO 2 is dissolved in an alkaline solution and reacted and then separated as a carbonate, or CO 2 Development and research have been conducted on the method of desorption and concentration after adsorbing to a zeolite medium. However, there is a problem that requires enormous energy to adsorption and desorption of CO 2 in the adsorption method. The absorption method requires a large device.

3番目の化学的方法は、電気化学法(電気化学的還元、電気化学的固定)、触媒反応を利用する方法、光反応を利用する方法に分けられる。電気化学法によるCOの還元としては、特殊な電極を使用して電解溶液中のCOを分解し、ギ酸、メタン等を常温で生成する方法等が知られているが、大規模な反応槽が必要であり、反応を促進させるためには大量の電気エネルギーを供給する必要がある。 The third chemical method is divided into an electrochemical method (electrochemical reduction, electrochemical fixation), a method using a catalytic reaction, and a method using a photoreaction. As a method for reducing CO 2 by an electrochemical method, there is known a method in which a special electrode is used to decompose CO 2 in an electrolytic solution to produce formic acid, methane, etc. at room temperature. A tank is required and a large amount of electrical energy needs to be supplied to promote the reaction.

触媒反応を利用するCOの還元は、COを一酸化炭素、メタノール等に転化してそれを利用するという手段等が知られており、このような化学的方法は、生物的方法や物理的方法に比べて、エネルギーの低減が図れる可能性があるが、基礎研究の段階である。 The reduction of CO 2 using a catalytic reaction is known as a means of converting CO 2 into carbon monoxide, methanol, etc. and using it, and such chemical methods include biological methods and physical methods. There is a possibility that energy can be reduced compared with the conventional method, but it is in the basic research stage.

例えば、特許文献1には、二酸化炭素と水素の混合物を熱反応器に供給し、該熱反応器中で加圧しながら温度を220〜250℃に維持し、かつCu系触媒の存在下にメタノールに変換する際に、前記水素をマイクロ波を用いる硫化水素の分解によって取得する方法が提案されている。
CO + 3H → CHOH + H
特開平7−173088号公報(請求項1〜2、請求項8、第4頁の図1等)
For example, in Patent Document 1, a mixture of carbon dioxide and hydrogen is supplied to a thermal reactor, the temperature is maintained at 220 to 250 ° C. while pressurizing in the thermal reactor, and methanol is present in the presence of a Cu-based catalyst. A method has been proposed in which the hydrogen is obtained by decomposition of hydrogen sulfide using microwaves.
CO 2 + 3H 2 → CH 3 OH + H 2 O
JP-A-7-173088 (Claims 1-2, Claim 8, FIG. 1 on page 4)

しかしながら、特許文献1記載の二酸化炭素の固定化方法は、二酸化炭素を燃料として利用可能なメタノールに変換するために、低温・低圧力で実施可能で、かつ高いメタノール収量を実現するメタノール製造法を得ることを課題とするものであり、水素の産出にマイクロ波を利用しているが、二酸化炭素の固定化反応自体にマイクロ波を利用することにより低エネルギー化を図ったものではない。   However, the method for immobilizing carbon dioxide described in Patent Document 1 is a methanol production method that can be carried out at low temperature and low pressure and realizes a high methanol yield in order to convert carbon dioxide into methanol that can be used as fuel. It is a problem to be obtained, and microwaves are used to produce hydrogen, but the energy is not reduced by using microwaves for the carbon dioxide immobilization reaction itself.

一方、触媒化学的な方法は反応速度が遅く、気相で還元する方法を用いれば火力発電所の煙道等から排出される大量の二酸化炭素を短時間で処理することができると考えられているが、メタノール等の液状炭化水素に直接転化するためには、高圧下での反応が必要であるため、短時間の処理が難しくなるという問題点があった。   On the other hand, the catalytic chemical method has a slow reaction rate, and it is considered that a large amount of carbon dioxide discharged from the flue of a thermal power plant can be processed in a short time by using a method of reducing in the gas phase. However, in order to directly convert to liquid hydrocarbons such as methanol, a reaction under high pressure is required, so that there has been a problem that it is difficult to process in a short time.

二酸化炭素を水素を用いて気相で還元する方法としては、常圧下で反応が促進する反応として、下記の反応が知られている。
CO + H → CO+ H
As a method of reducing carbon dioxide in the gas phase using hydrogen, the following reactions are known as reactions that promote the reaction under normal pressure.
CO 2 + H 2 → CO + H 2 O

この反応は吸熱反応であるため、一般には高温になればなるほど平衡が右側にシフトして、二酸化炭素が一酸化炭素に転化する比率が増加する。しかし、高温を維持するためにはエネルギーを投入する必要があり、このエネルギー源として化石燃料を使用すれば、二酸化炭素の排出量を低減したことにはならなくなる。   Since this reaction is an endothermic reaction, in general, the higher the temperature, the more the equilibrium shifts to the right, and the rate at which carbon dioxide is converted to carbon monoxide increases. However, in order to maintain a high temperature, it is necessary to input energy. If fossil fuel is used as this energy source, the amount of carbon dioxide emission cannot be reduced.

従って、できるだけ低エネルギーで、化学平衡状態の転化率に近い転化特性を得られるかが、二酸化炭素排出量削減対策として実用化できるかを決定する重要な要素であるといえる。   Therefore, it can be said that it is an important factor to determine whether the conversion characteristic close to the conversion rate in the chemical equilibrium state can be obtained with the lowest possible energy as a measure for reducing carbon dioxide emissions.

これまで検討されてきた二酸化炭素の触媒水素化反応では、触媒活性を研究することにより二酸化炭素の固定化効率の向上を検討してきたものであり、熱エネルギーの低減という観点から検討された例は殆どない。   In the catalytic hydrogenation reaction of carbon dioxide that has been studied so far, the improvement of carbon dioxide immobilization efficiency has been studied by studying the catalytic activity, and examples examined from the viewpoint of reducing thermal energy include Almost no.

本発明は、上記課題に鑑み、低エネルギーで二酸化炭素の固定化反応を加速できる新規な二酸化炭素の固定化方法を提供することを目的とする。   An object of this invention is to provide the novel fixing method of a carbon dioxide which can accelerate the fixing reaction of a carbon dioxide with low energy in view of the said subject.

前記課題を解決するため、本発明者らは鋭意検討した結果、化学的固定化方法における触媒反応をマイクロ波による加熱状態で行わせることにより、より少ないエネルギーで二酸化炭素の固定化反応を加速できることを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, by performing the catalytic reaction in the chemical immobilization method in a heated state by microwaves, the carbon dioxide immobilization reaction can be accelerated with less energy. And reached the present invention.

すなわち、本発明は、二酸化炭素と水素との混合物に、触媒存在下でマイクロ波を照射することを特徴とする二酸化炭素の固定化方法を提供する。   That is, the present invention provides a method for immobilizing carbon dioxide, which comprises irradiating a mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst.

また、本発明は、二酸化炭素と水素との混合物に、触媒存在下でマイクロ波を照射することにより、二酸化炭素を一酸化炭素及びメタノールに転化することを特徴とする二酸化炭素の固定化方法を提供する。   Further, the present invention provides a method for immobilizing carbon dioxide, characterized in that carbon dioxide is converted into carbon monoxide and methanol by irradiating a mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst. provide.

また、本発明は、二酸化炭素と水素との混合物に、触媒存在下でマイクロ波を照射することにより、二酸化炭素を一酸化炭素、メタン及びメタノールに転化することを特徴とする二酸化炭素の固定化方法を提供する。   In addition, the present invention is a carbon dioxide immobilization characterized by converting carbon dioxide into carbon monoxide, methane and methanol by irradiating a mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst. Provide a method.

上記本発明の二酸化炭素固定化方法においては、触媒は、Cu、Zn、Cr、Al、Au、Zrのいずれかの元素を1種類以上含むものであることが好ましい。   In the carbon dioxide fixing method of the present invention, the catalyst preferably contains one or more elements of any one of Cu, Zn, Cr, Al, Au, and Zr.

上記本発明の二酸化炭素固定化方法においては、二酸化炭素及び水素を含む触媒充填層へマイクロ波を照射することが好ましい。   In the carbon dioxide fixing method of the present invention, it is preferable to irradiate the catalyst packed bed containing carbon dioxide and hydrogen with microwaves.

本発明の二酸化炭素固定化方法によれば、二酸化炭素と水素との混合物に触媒存在下でマイクロ波を照射し、触媒反応をマイクロ波による加熱状態で行わせることにより、マイクロ波と触媒との相乗効果によって、より少ないエネルギーで二酸化炭素の固定化反応を加速できる。   According to the carbon dioxide immobilization method of the present invention, a mixture of carbon dioxide and hydrogen is irradiated with microwaves in the presence of a catalyst, and the catalytic reaction is performed in a heated state by microwaves. The synergistic effect can accelerate the carbon dioxide fixation reaction with less energy.

本発明の二酸化炭素固定化方法によれば、二酸化炭素と水素との混合物に触媒存在下でマイクロ波を照射することにより、より少ないエネルギーで二酸化炭素からメタノールを製造することができる。   According to the carbon dioxide fixing method of the present invention, methanol can be produced from carbon dioxide with less energy by irradiating a mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst.

本発明の二酸化炭素固定化方法によれば、二酸化炭素と水素との混合物に触媒存在下でマイクロ波を照射することにより、より少ないエネルギーで二酸化炭素からメタン及びメタノールを製造することができる。   According to the carbon dioxide immobilization method of the present invention, methane and methanol can be produced from carbon dioxide with less energy by irradiating a mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst.

本発明の二酸化炭素固定化方法においては、二酸化炭素は少なくとも二酸化炭素を含むガス等であればよい。二酸化炭素ガスは勿論のこと、石炭、石油、LNG、プラスチックの燃焼により生じた燃焼排ガスや、熱風炉排ガス、高炉排ガス、転炉排ガス、燃焼排ガス等の製鉄所副生ガスのように、二酸化炭素を1〜40容量%含有する排ガス処理を行う場合、或いは、自動車のエンジンの排気ガス処理を行う場合でも本発明は適用できる。   In the carbon dioxide fixing method of the present invention, the carbon dioxide may be a gas containing at least carbon dioxide. Carbon dioxide gas, as well as combustion exhaust gas generated by combustion of coal, petroleum, LNG, plastics, and by-product gas of steelworks such as hot blast furnace exhaust gas, blast furnace exhaust gas, converter exhaust gas, combustion exhaust gas, etc. The present invention can be applied even when exhaust gas treatment containing 1 to 40% by volume is performed, or when exhaust gas treatment of an automobile engine is performed.

二酸化炭素と水素の比率は、50/50〜5/95(モル比)、好ましくは30/70〜8/92(モル比)、より好ましくは20/80〜10/90(モル比)とするのがよい。二酸化炭素に対する水素の混合比が高いほど、メタノール生成量が多くなるが、二酸化炭素の固定化効率を考慮すると上記範囲が好ましい。   The ratio of carbon dioxide to hydrogen is 50/50 to 5/95 (molar ratio), preferably 30/70 to 8/92 (molar ratio), more preferably 20/80 to 10/90 (molar ratio). It is good. The higher the mixing ratio of hydrogen to carbon dioxide, the larger the amount of methanol produced, but the above range is preferable in view of the fixation efficiency of carbon dioxide.

本発明の固定化方法では、触媒存在下において上記の二酸化炭素と水素との混合物にマイクロ波を照射することが重要であり、触媒が存在しない状態で該混合物にマイクロ波を照射しても、反応系の温度上昇が期待できず、また、反応速度は著しく遅くなる。二酸化炭素、水素及び触媒が十分接触するように、触媒充填層を形成した触媒充填装置内に二酸化炭素及び水素を導入し、二酸化炭素及び水素を含む触媒充填層へマイクロ波を照射する方法が、エネルギー効率的に好ましい。この方法によれば、ヒーター等の加熱手段と異なり、マイクロ波が触媒に当ることによって触媒表面が優先的に活性化されるので、エネルギー利用効率を著しく高めることが可能となる。   In the immobilization method of the present invention, it is important to irradiate the above mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst, and even if the mixture is irradiated with microwaves in the absence of a catalyst, The temperature rise of the reaction system cannot be expected, and the reaction rate becomes extremely slow. A method in which carbon dioxide and hydrogen are introduced into a catalyst filling device in which a catalyst packed bed is formed so that carbon dioxide, hydrogen and the catalyst are in sufficient contact, and the catalyst packed bed containing carbon dioxide and hydrogen is irradiated with microwaves. Energy efficient. According to this method, unlike the heating means such as a heater, the catalyst surface is preferentially activated by the microwaves striking the catalyst, so that the energy utilization efficiency can be remarkably increased.

触媒としては、Cu、Zn、Cr、Al、Au、Zrのいずれかの元素を1種類以上含む触媒を使用することが好ましく、該触媒と酸化チタンなどを担体とするパラジウム触媒等を併用してもよい。メタノール製造用触媒としては、例えばCuO−ZnO等が挙げられ、又、メタン及びメタノール製造用触媒としては、例えばCuO−ZnO−Cr等が挙げられる。これらの触媒をSiO、Al、MgOなどの担体に担持したものでも良い。 As the catalyst, it is preferable to use a catalyst containing one or more elements of any one of Cu, Zn, Cr, Al, Au, and Zr. The catalyst is used in combination with a palladium catalyst using titanium oxide or the like as a carrier. Also good. Examples of the catalyst for methanol production include CuO-ZnO, and examples of the catalyst for methane and methanol production include CuO-ZnO-Cr 2 O 3 . These catalysts may be supported on a carrier such as SiO 2 , Al 2 O 3 , or MgO.

照射するマイクロ波の出力や周波数、照射方法は、特に限定されるものではなく、反応温度が所定の範囲に保持できるよう電気的に制御すればよい。出力が低すぎる場合は固定化反応の進行が遅くとなり、出力が高すぎる場合はマイクロ波の利用率が悪くなる。マイクロ波の周波数は、通常、1GHz〜300GHzである。1GHz未満又は300GHzを超える周波数範囲では、反応促進効果が不十分となる。   The output, frequency, and irradiation method of the microwave to be irradiated are not particularly limited, and may be electrically controlled so that the reaction temperature can be maintained within a predetermined range. When the output is too low, the progress of the immobilization reaction is slow, and when the output is too high, the utilization rate of the microwave is deteriorated. The frequency of the microwave is usually 1 GHz to 300 GHz. In the frequency range below 1 GHz or above 300 GHz, the reaction promoting effect is insufficient.

マイクロ波の照射は連続照射、間欠照射のいずれの方法であってもよい。照射時間及び照射停止時間は、反応に供する二酸化炭素の濃度、又は反応触媒の種類等に応じて適宜に決定することができる。   Microwave irradiation may be either continuous irradiation or intermittent irradiation. The irradiation time and the irradiation stop time can be appropriately determined according to the concentration of carbon dioxide to be subjected to the reaction, the type of reaction catalyst, or the like.

固定化反応における反応温度は使用する触媒の種類によっても異なるが、反応温度120〜300℃、好ましくは150〜250℃、より好ましくは170〜220℃で行うのがよい。   The reaction temperature in the immobilization reaction varies depending on the type of catalyst used, but the reaction temperature is 120 to 300 ° C, preferably 150 to 250 ° C, more preferably 170 to 220 ° C.

固定化反応における反応圧力は、常圧、加圧の何れでもかまわないが、通常、0.1MPa(常圧)〜30MPa、好ましくは0.1MPa(常圧)〜20MPa、より好ましくは常圧である。   The reaction pressure in the immobilization reaction may be either normal pressure or pressurized, but is usually 0.1 MPa (normal pressure) to 30 MPa, preferably 0.1 MPa (normal pressure) to 20 MPa, more preferably normal pressure. is there.

固定化反応における反応時間は、触媒量と反応温度に左右されて一定しないが、通常は反応進行状況を見ながら適宜に決定すればよい。   The reaction time in the immobilization reaction depends on the amount of catalyst and the reaction temperature and is not constant, but it is usually determined appropriately while observing the progress of the reaction.

以下、本発明の実施例について図面を参照して説明するが、本発明は以下の実施例にのみ限定されるものではない。なお、以下において示す%はことわりのない限り容量%である。   Hereinafter, examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples. In addition,% shown below is a capacity% unless there is particular notice.

(実施例1)
図1は本発明の固定化反応で用いるマイクロ波反応装置全体を示す概略構成図である。図1において、10はマイクロ波反応装置全体のフロー、1は反応装置、2はCOガスとHガスの混合ガスを収容するテドラーパック、3はガス配管、4は循環ポンプ、5は排気ガスの排気口、6はインピンジャー、7はNボンベ、8は生成ガスを随時サンプリングして分析するためのパージサンプリングパックである。反応装置には、ガス流量計、圧力計、及び調整弁が設けてある。
Example 1
FIG. 1 is a schematic configuration diagram showing the entire microwave reactor used in the immobilization reaction of the present invention. In FIG. 1, 10 is a flow of the whole microwave reactor, 1 is a reactor, 2 is a Tedlar pack that contains a mixed gas of CO 2 gas and H 2 gas, 3 is a gas pipe, 4 is a circulation pump, and 5 is an exhaust gas. , 6 is an impinger, 7 is an N 2 cylinder, and 8 is a purge sampling pack for sampling and analyzing the generated gas as needed. The reaction apparatus is provided with a gas flow meter, a pressure gauge, and a regulating valve.

図2は、図1に示す反応装置1を拡大した断面図である。11は触媒を充填するための触媒仕切り板、12はボールフィルター、13は触媒、14は光ファイバー温度計、21は反応装置へ導入される入口ガス、22は反応装置から排出される出口ガスである。図2に示すように、反応装置1の上部よりガス21を反応装置内に送り込む。導入されたガスは、反応装置1の下部に設けられたボールフィルター12の微細孔を通じてフィルター内部から外部へ流れ出し、流れ出たガスが反応装置1内を上昇する間に触媒付近で反応が起きるようになっている。反応生成ガス22は、反応装置1の上部に設けられたガス出口から排出される。   FIG. 2 is an enlarged cross-sectional view of the reaction apparatus 1 shown in FIG. 11 is a catalyst partition for filling the catalyst, 12 is a ball filter, 13 is a catalyst, 14 is an optical fiber thermometer, 21 is an inlet gas introduced into the reactor, and 22 is an outlet gas discharged from the reactor. . As shown in FIG. 2, a gas 21 is fed into the reactor from the upper part of the reactor 1. The introduced gas flows out from the inside of the filter through the fine holes of the ball filter 12 provided in the lower part of the reaction apparatus 1 so that the reaction takes place near the catalyst while the flowing out gas rises in the reaction apparatus 1. It has become. The reaction product gas 22 is discharged from a gas outlet provided in the upper part of the reaction apparatus 1.

反応装置内にCuO−ZnO系触媒(日揮化学社製 N211)71gを加え、図1に示すマイクロ波反応装置内に設置した。窒素ボンベより装置内に窒素を供給し、装置内を窒素雰囲気にした。CO/H=30/70(モル比)の混合ガスを充填した容量10リットルのテドラーパックを、反応装置の配管内に設置した。循環ポンプを起動させ、テドラーパック内のガスを流しながら排気口に排気を行った。テドラーパック内のガスが全て排気された後、排気、循環ポンプを停止させた。 71 g of CuO—ZnO-based catalyst (N2C manufactured by JGC Chemical Co., Ltd.) was added to the reaction apparatus and installed in the microwave reaction apparatus shown in FIG. Nitrogen was supplied into the apparatus from a nitrogen cylinder, and the inside of the apparatus was put into a nitrogen atmosphere. A 10 liter Tedlar pack filled with a mixed gas of CO 2 / H 2 = 30/70 (molar ratio) was installed in the piping of the reactor. The circulation pump was activated, and the exhaust gas was exhausted while flowing the gas in the Tedlar pack. After all the gas in the Tedlar pack was exhausted, the exhaust and circulation pumps were stopped.

再度、CO/H=30/70(モル比)の混合ガスを充填した容量10リットルのテドラーパックを、反応装置の配管内に設置し、循環ポンプを起動させ1.0L/minの流速でガスを流しながら、周波数2.45GHzのマイクロ波を反応装置に照射して250℃まで昇温させた後、常圧、温度250℃で60分間加熱を行いCOの固定化反応を行った。反応中のマイクロ波の平均照射出力は272.3Wであった。 Again, a 10 liter Tedlar pack filled with a mixed gas of CO 2 / H 2 = 30/70 (molar ratio) was installed in the reactor piping, the circulation pump was started, and the flow rate was 1.0 L / min. While flowing the gas, the reactor was irradiated with microwaves having a frequency of 2.45 GHz to raise the temperature to 250 ° C., and then heated at normal pressure and a temperature of 250 ° C. for 60 minutes to perform CO 2 fixation reaction. The average irradiation power of microwaves during the reaction was 272.3 W.

反応後、配管中のガス及びインピンジャー内の液体をガスクロマトグラフィーを用いてそれぞれ分析し、同定・定量した。その結果、ガス中にCOが17%、CHが106ppm、液層中にメタノールが1.16mg生成した。 After the reaction, the gas in the pipe and the liquid in the impinger were analyzed and identified and quantified using gas chromatography. As a result, CO was 17% in the gas, CH 4 was 106 ppm, and methanol was 1.16 mg in the liquid layer.

(実施例2)
触媒をCuO−ZnO−Cr系触媒(日揮化学社製 N211B)58gとPd−TiO触媒1gを用い、反応温度を150℃、ガスの循環流量を1.5L/minにした以外は、実施例1と同様な方法によりCOの固定化反応を行った。反応中のマイクロ波の平均照射出力:104W。反応後、実施例1同様、生成ガスと液体を分析し、同定・定量した。その結果、ガス中にCOが0.87%、液層中にメタノールが1.16mg生成した。
(Example 2)
Except for using 58 g of a CuO—ZnO—Cr 2 O 3 catalyst (N211B manufactured by JGC Chemical Co., Ltd.) and 1 g of Pd—TiO 2 catalyst as the catalyst, the reaction temperature was 150 ° C., and the gas circulation flow rate was 1.5 L / min Then, the CO 2 immobilization reaction was carried out in the same manner as in Example 1. Average irradiation power of microwave during reaction: 104W. After the reaction, the product gas and liquid were analyzed, identified and quantified as in Example 1. As a result, CO was 0.87% in the gas and 1.16 mg of methanol was produced in the liquid layer.

(実施例3)
反応温度を200℃にした以外は、実施例2と同様な方法によりCOの固定化反応を行った。反応中のマイクロ波の平均照射出力:121W。その結果、ガス中にCOが7.6%、液層中にメタノールが3.77mg生成した。
(Example 3)
A CO 2 immobilization reaction was carried out in the same manner as in Example 2 except that the reaction temperature was 200 ° C. Average irradiation power of microwave during reaction: 121 W. As a result, CO was 7.6% in the gas, and 3.77 mg of methanol was produced in the liquid layer.

(実施例4)
反応温度を250℃にした以外は、実施例2と同様な方法によりCOの固定化反応を行った。反応中のマイクロ波の平均照射出力:155W。その結果、ガス中にCOが14.4%、液層中にメタノールが2.56mg生成した。
Example 4
A CO 2 immobilization reaction was carried out in the same manner as in Example 2 except that the reaction temperature was 250 ° C. Average irradiation power of microwave during reaction: 155 W. As a result, 14.4% CO was generated in the gas, and 2.56 mg of methanol was generated in the liquid layer.

(実施例5)
原料ガスの組成をCO/H=10/90(モル比)にした以外は、実施例3と同様な方法によりCOの固定化反応を行った。反応中のマイクロ波の平均照射出力:136W。その結果、ガス中にCOが4.6%、液層中にメタノールが3.40mg生成した。
(Example 5)
A CO 2 immobilization reaction was performed in the same manner as in Example 3 except that the composition of the source gas was changed to CO 2 / H 2 = 10/90 (molar ratio). Average irradiation power of microwave during reaction: 136W. As a result, 4.6% of CO was produced in the gas and 3.40 mg of methanol was produced in the liquid layer.

(実施例6)
原料ガスの組成をCO/H=20/80(モル比)にした以外は、実施例3と同様な方法によりCOの固定化反応を行った。反応中のマイクロ波の平均照射出力:128W。その結果、ガス中にCOが7.4%、液層中にメタノールが4.08mg生成した。
(Example 6)
A CO 2 immobilization reaction was carried out in the same manner as in Example 3 except that the composition of the source gas was changed to CO 2 / H 2 = 20/80 (molar ratio). Average irradiation power of microwave during reaction: 128W. As a result, 7.4% of CO was produced in the gas, and 4.08 mg of methanol was produced in the liquid layer.

(実施例7)
ガスの循環流量を0.5L/minにした以外は、実施例3と同様な方法によりCOの固定化反応を行った。その結果、ガス中にCOが4.5%、液層中にメタノールが2.73mg生成した。
(Example 7)
A CO 2 immobilization reaction was carried out in the same manner as in Example 3 except that the gas circulation flow rate was changed to 0.5 L / min. As a result, 4.5% of CO was produced in the gas and 2.73 mg of methanol was produced in the liquid layer.

(実施例8〜11)
原料ガスの組成をCO/H=10/90(モル比)とし、触媒としてCuO−ZnO−Al系触媒20gを用い、反応温度を120〜250℃、ガスの循環流量を1.1L/minにした以外は、実施例1と同様な方法によりCOの固定化反応を行った。反応中のマイクロ波の平均照射出力は114W〜205Wであった。反応後、実施例1同様、生成ガスと液体を分析し、同定・定量した。その結果、ガス中にCO、液層中にメタノールが生成した。
(Examples 8 to 11)
The composition of the raw material gas is CO 2 / H 2 = 10/90 (molar ratio), 20 g of a CuO—ZnO—Al 2 O 3 catalyst is used as the catalyst, the reaction temperature is 120 to 250 ° C., and the gas circulation flow rate is 1. The CO 2 immobilization reaction was carried out in the same manner as in Example 1 except that the rate was changed to 1 L / min. The average irradiation power of the microwave during the reaction was 114W to 205W. After the reaction, the product gas and liquid were analyzed, identified and quantified as in Example 1. As a result, CO was produced in the gas and methanol was produced in the liquid layer.

(実施例12)
原料ガスの組成をCO/H=20/80(モル比)にした以外は、実施例9と同様な方法によりCOの固定化反応を行った。その結果、ガス中にCO、液層中にメタノールが生成した。
(Example 12)
A CO 2 immobilization reaction was performed in the same manner as in Example 9 except that the composition of the source gas was changed to CO 2 / H 2 = 20/80 (molar ratio). As a result, CO was produced in the gas and methanol was produced in the liquid layer.

(実施例13〜16)
原料ガスの組成をCO/H=10/90(モル比)とし、触媒としてCuO−ZnO−Cr系触媒50gを用い、反応温度を150〜300℃、ガスの循環流量を1.5L/minにした以外は、実施例1と同様な方法によりCOの固定化反応を行った。反応中のマイクロ波の平均照射出力は131W〜222Wであった。反応後、実施例1同様、生成ガスと液体を分析し、同定・定量した。その結果、ガス中にCO、液層中にメタノールが生成した。
(Examples 13 to 16)
The composition of the raw material gas is CO 2 / H 2 = 10/90 (molar ratio), a CuO—ZnO—Cr 2 O 3 catalyst 50 g is used as a catalyst, the reaction temperature is 150 to 300 ° C., and the gas circulation flow rate is 1. The CO 2 immobilization reaction was carried out in the same manner as in Example 1 except that the rate was changed to 5 L / min. The average irradiation power of the microwave during the reaction was 131 W to 222 W. After the reaction, the product gas and liquid were analyzed, identified and quantified as in Example 1. As a result, CO was produced in the gas and methanol was produced in the liquid layer.

実施例1〜16の結果を表1にまとめて示した。なお、表中のメタノール転化率は下記式より求めた値である。
メタノール転化率(%)=メタノール生成量(mol)/CO(mol)×100
The results of Examples 1 to 16 are summarized in Table 1. In addition, the methanol conversion rate in a table | surface is the value calculated | required from the following formula.
Methanol conversion (%) = methanol production (mol) / CO 2 (mol) × 100

Figure 2006169095
Figure 2006169095

本発明の実施例に係るマイクロ波反応装置全体を示す概略構成図である。It is a schematic block diagram which shows the whole microwave reactor based on the Example of this invention. 同反応装置の断面図である。It is sectional drawing of the reaction apparatus.

符号の説明Explanation of symbols

1 反応装置
2 テドラーパック
3 配管
4 ポンプ
5 排気口
6 インピンジャー
7 窒素ボンベ
8 パージサンプリング
11 触媒仕切り板
12 ボールフィルター
13 触媒
14 光ファイバー温度計
21 入口ガス
22 出口ガス
DESCRIPTION OF SYMBOLS 1 Reactor 2 Tedlar pack 3 Piping 4 Pump 5 Exhaust port 6 Impinger 7 Nitrogen cylinder 8 Purge sampling 11 Catalyst partition plate 12 Ball filter 13 Catalyst 14 Optical fiber thermometer 21 Inlet gas 22 Outlet gas

Claims (5)

二酸化炭素と水素との混合物に、触媒存在下でマイクロ波を照射することを特徴とする二酸化炭素の固定化方法。   A method for immobilizing carbon dioxide, which comprises irradiating a mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst. 二酸化炭素と水素との混合物に、触媒存在下でマイクロ波を照射することにより、二酸化炭素を一酸化炭素及びメタノールに転化することを特徴とする二酸化炭素の固定化方法。   A method for immobilizing carbon dioxide, wherein carbon dioxide is converted into carbon monoxide and methanol by irradiating a mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst. 二酸化炭素と水素との混合物に、触媒存在下でマイクロ波を照射することにより、二酸化炭素を一酸化炭素、メタン及びメタノールに転化することを特徴とする二酸化炭素の固定化方法。   A method for immobilizing carbon dioxide, wherein carbon dioxide is converted into carbon monoxide, methane, and methanol by irradiating a mixture of carbon dioxide and hydrogen with microwaves in the presence of a catalyst. 触媒は、Cu、Zn、Cr、Al、Au、Zrのいずれかの元素を1種類以上含むものである請求項1〜3のいずれか1項に記載の二酸化炭素の固定化方法。   The method for immobilizing carbon dioxide according to any one of claims 1 to 3, wherein the catalyst contains one or more elements selected from Cu, Zn, Cr, Al, Au, and Zr. 二酸化炭素及び水素を含む触媒充填層へマイクロ波を照射する請求項1〜3のいずれか1項に記載の二酸化炭素の固定化方法。   The method for immobilizing carbon dioxide according to any one of claims 1 to 3, wherein the catalyst packed bed containing carbon dioxide and hydrogen is irradiated with microwaves.
JP2005325770A 2004-11-17 2005-11-10 Method for immobilizing CO2 using microwaves Expired - Fee Related JP5205693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325770A JP5205693B2 (en) 2004-11-17 2005-11-10 Method for immobilizing CO2 using microwaves

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004332797 2004-11-17
JP2004332797 2004-11-17
JP2005325770A JP5205693B2 (en) 2004-11-17 2005-11-10 Method for immobilizing CO2 using microwaves

Publications (2)

Publication Number Publication Date
JP2006169095A true JP2006169095A (en) 2006-06-29
JP5205693B2 JP5205693B2 (en) 2013-06-05

Family

ID=36670235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325770A Expired - Fee Related JP5205693B2 (en) 2004-11-17 2005-11-10 Method for immobilizing CO2 using microwaves

Country Status (1)

Country Link
JP (1) JP5205693B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216412A (en) * 2005-02-04 2006-08-17 Tokyo Electric Power Co Inc:The Microwave heating device and carbon dioxide decomposition method using it
JP2007261960A (en) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Method for continuously producing higher fatty acid methyl ester from co2
JP2009215263A (en) * 2008-03-12 2009-09-24 Tokyo Electric Power Co Inc:The Method for synthesizing methanol
JP2010037229A (en) * 2008-08-01 2010-02-18 Tokyo Electric Power Co Inc:The Method for synthesizing methanol from carbon dioxide
JP2010189350A (en) * 2009-02-20 2010-09-02 Tokyo Electric Power Co Inc:The Apparatus for converting carbon dioxide to methanol
JP2010254666A (en) * 2009-03-30 2010-11-11 Tokyo Electric Power Co Inc:The Method of methanol synthesis using microwave
WO2011136345A1 (en) * 2010-04-30 2011-11-03 三井化学株式会社 Process for producing methanol
JP2011241182A (en) * 2010-05-19 2011-12-01 Tokyo Gas Co Ltd Method for synthesizing methane from carbon dioxide and hydrogen
GB2484095A (en) * 2010-09-29 2012-04-04 Kristian La Vda Carbon dioxide recovery method
JP2012072080A (en) * 2010-09-28 2012-04-12 Tokyo Electric Power Co Inc:The Slurry floor type carbon dioxide fixed reactor
JP2012076028A (en) * 2010-10-01 2012-04-19 Tokyo Electric Power Co Inc:The Methanol synthesis catalyst and method for synthesizing methanol
JP2013252991A (en) * 2012-06-06 2013-12-19 Nippon Telegr & Teleph Corp <Ntt> Method for reducing carbon dioxide
JP2014181163A (en) * 2013-03-21 2014-09-29 Tokyo Electric Power Co Inc:The Carbon dioxide reduction system
CN104399466A (en) * 2014-11-13 2015-03-11 大连理工大学 Iron-containing natural ore loaded nickel methanation catalyst and preparation method thereof
JP2015142904A (en) * 2014-11-13 2015-08-06 マイクロ波化学株式会社 Chemical reaction device and chemical reaction method
KR20210015179A (en) * 2019-08-01 2021-02-10 성균관대학교산학협력단 Method for reduction of carbon dioxide
CN114307908A (en) * 2022-01-19 2022-04-12 华中科技大学 Device and method for synthesizing liquid fuel through carbon dioxide multi-field concerted catalytic hydrogenation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101885321B1 (en) * 2016-06-15 2018-08-29 한국과학기술원 Reduction method of carbon dioxide using zinc based catalyst particle having core-shell structure and apparatus therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027241A (en) * 2001-07-16 2003-01-29 Korona Kk Method for converting carbon dioxide to combustible gas by plasma gaseous phase reaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027241A (en) * 2001-07-16 2003-01-29 Korona Kk Method for converting carbon dioxide to combustible gas by plasma gaseous phase reaction

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216412A (en) * 2005-02-04 2006-08-17 Tokyo Electric Power Co Inc:The Microwave heating device and carbon dioxide decomposition method using it
JP4581721B2 (en) * 2005-02-04 2010-11-17 東京電力株式会社 Microwave heating apparatus and carbon dioxide decomposition method using the same
JP2007261960A (en) * 2006-03-01 2007-10-11 Tokyo Electric Power Co Inc:The Method for continuously producing higher fatty acid methyl ester from co2
JP2009215263A (en) * 2008-03-12 2009-09-24 Tokyo Electric Power Co Inc:The Method for synthesizing methanol
JP2010037229A (en) * 2008-08-01 2010-02-18 Tokyo Electric Power Co Inc:The Method for synthesizing methanol from carbon dioxide
JP2010189350A (en) * 2009-02-20 2010-09-02 Tokyo Electric Power Co Inc:The Apparatus for converting carbon dioxide to methanol
JP2010254666A (en) * 2009-03-30 2010-11-11 Tokyo Electric Power Co Inc:The Method of methanol synthesis using microwave
WO2011136345A1 (en) * 2010-04-30 2011-11-03 三井化学株式会社 Process for producing methanol
JP2011241182A (en) * 2010-05-19 2011-12-01 Tokyo Gas Co Ltd Method for synthesizing methane from carbon dioxide and hydrogen
JP2012072080A (en) * 2010-09-28 2012-04-12 Tokyo Electric Power Co Inc:The Slurry floor type carbon dioxide fixed reactor
WO2012044178A1 (en) 2010-09-29 2012-04-05 Loevdal Kristian Reaction of carbon dioxide with hydrogen to produce methane
GB2484095A (en) * 2010-09-29 2012-04-04 Kristian La Vda Carbon dioxide recovery method
JP2012076028A (en) * 2010-10-01 2012-04-19 Tokyo Electric Power Co Inc:The Methanol synthesis catalyst and method for synthesizing methanol
JP2013252991A (en) * 2012-06-06 2013-12-19 Nippon Telegr & Teleph Corp <Ntt> Method for reducing carbon dioxide
JP2014181163A (en) * 2013-03-21 2014-09-29 Tokyo Electric Power Co Inc:The Carbon dioxide reduction system
CN104399466A (en) * 2014-11-13 2015-03-11 大连理工大学 Iron-containing natural ore loaded nickel methanation catalyst and preparation method thereof
JP2015142904A (en) * 2014-11-13 2015-08-06 マイクロ波化学株式会社 Chemical reaction device and chemical reaction method
KR20210015179A (en) * 2019-08-01 2021-02-10 성균관대학교산학협력단 Method for reduction of carbon dioxide
KR102247536B1 (en) * 2019-08-01 2021-05-06 성균관대학교산학협력단 Method for reduction of carbon dioxide
CN114307908A (en) * 2022-01-19 2022-04-12 华中科技大学 Device and method for synthesizing liquid fuel through carbon dioxide multi-field concerted catalytic hydrogenation

Also Published As

Publication number Publication date
JP5205693B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5205693B2 (en) Method for immobilizing CO2 using microwaves
JP4905849B2 (en) Synthesis method of dimethyl ether using microwave
JP5075635B2 (en) System and method for reducing the sulfur content of a hydrocarbon stream
TWI495508B (en) Carbon monoxide conversion catalyst and the use of one of the carbon dioxide modification method
JP4581721B2 (en) Microwave heating apparatus and carbon dioxide decomposition method using the same
WO2010079726A1 (en) Ammonia synthesis method
WO2016076041A1 (en) Co2 recovery device of internal combustion engine
CN101045527A (en) Regeneration of complex metal oxides for the production of hydrogen
US20130181169A1 (en) Reforming of hydrocarbon gas with solar energy
US20070029264A1 (en) Processing biological waste materials to provide energy
CN101880214A (en) Method for non-thermal plasma and transition metal concerted catalysis CO2 hydrogenation
JP2011153245A (en) Treatment method and treatment system for gas mainly composed of methane
Chih et al. Statistical optimization of hydrogen production from bio-methanol steam reforming over Ni-Cu/Al2O3 catalysts
JP5374955B2 (en) Method for synthesizing methanol from carbon dioxide
JP2006241319A (en) Method and installation for removing co2 in mixture gas such as biogas
Abdallah et al. Laboratory aging of a dual function material (DFM) washcoated monolith for varying ambient direct air capture of CO2 and in situ catalytic conversion to CH4
JP2010189350A (en) Apparatus for converting carbon dioxide to methanol
JP2005068337A (en) Desulfurization apparatus for liquified petroleum gas and catalyst for decomposing carbonyl sulfide
JP2008247778A (en) Method for producing ethanol by using microwave
Álvarez et al. Upgrading of methane emissions via chemical looping over copper-zeolites: Experiments and modelling
JPH07136462A (en) Method for fixing carbon dioxide in exhaust gas and power plant conforming with environment using the same
JP2004359536A (en) Method for reducing metal oxide and method for manufacturing hydrogen
WO2005001976A1 (en) Processing biological waste materials to provide energy
JP3941571B2 (en) Method for desulfurization of liquefied petroleum gas
JP2014181163A (en) Carbon dioxide reduction system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees