JP2006167600A - Micromixer, micromixer chip and micro sensor - Google Patents

Micromixer, micromixer chip and micro sensor Download PDF

Info

Publication number
JP2006167600A
JP2006167600A JP2004363806A JP2004363806A JP2006167600A JP 2006167600 A JP2006167600 A JP 2006167600A JP 2004363806 A JP2004363806 A JP 2004363806A JP 2004363806 A JP2004363806 A JP 2004363806A JP 2006167600 A JP2006167600 A JP 2006167600A
Authority
JP
Japan
Prior art keywords
fluid
micromixer
mixing tank
mixing
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004363806A
Other languages
Japanese (ja)
Inventor
Mitsunori Shimada
光功 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2004363806A priority Critical patent/JP2006167600A/en
Publication of JP2006167600A publication Critical patent/JP2006167600A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a micromixer which is a kind of micromachine mixing efficiently and continuously a micro flow of fluid, and a micromixer chip, and a micro sensor utilizing them. <P>SOLUTION: The continuous mixer of a plurality of microfluids is provided. The mixer is provided with a fluid induction port producing a rotating flow of the same direction in a mixing tank by the introduction of the fluids, each fluid induction port being substantially on a rotating flow surface of a first circuit which the inducted fluid into the mixing tank makes. Preferably, a fluid outlet is provided on a position different from the rotating flow surface of the first circuit, and a vibration type stirrer comprising a diaphragm and electrostatic actuator in the mixing tank. Thus, the micromixer, the micromixer chip, and the micro sensor utilizing them are provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はマイクロミキサー、マイクロミキサーチップおよびマイクロセンサーに関し、詳しくは微少流量の流体を簡便に確実に混合することのできるマイクロミキサー、マイクロミキサーチップおよびこれらを備えたマイクロセンサーに関する。   The present invention relates to a micromixer, a micromixer chip, and a microsensor, and more particularly, to a micromixer, a micromixer chip, and a microsensor equipped with these capable of easily and reliably mixing a small flow rate of fluid.

従来、マイクロマシン分野の中でも流体を取り扱うマイクロマシンは特別の注意が必要であった。流体の壁面との摩擦、表面の性状などの影響が通常スケールの流体の取扱いとは異なったものとなる場合があるからである。特に流体の移送や混合は通常スケールの化学工学的操作方法が適用できない場合があった。しかし、まずは微少流量の流体を移送したり、混合したりする装置、設備の製造方法の開発に重点が置かれ、これらの問題にはあまり注意が払われていなかった。例えば、特許文献1にはマイクロポンプ、マイクロミキサー、マイクロ機械デバイスなどが開示されているが、その効率のよい製造方法についての発明が要旨となっており、それぞれの機械の構造を微少流体の挙動に対応して特別の考慮をしている記載はない。例えば、マイクロミキサーは上下二つの流体流路の交差部に微小な孔を多数配列する構造としてミキサー部としているのみである。   Conventionally, special attention has been required for micromachines that handle fluids in the field of micromachines. This is because the influence of the friction with the wall surface of the fluid, the surface properties, and the like may be different from the handling of the fluid on the normal scale. In particular, the transfer and mixing of fluids may not be applicable to chemical engineering operating methods on a normal scale. However, first, the emphasis was placed on the development of devices and equipment manufacturing methods that transport and mix very small flow rates, and little attention has been paid to these problems. For example, Patent Document 1 discloses a micropump, a micromixer, a micromechanical device, etc., but the gist of the invention is its efficient manufacturing method. There is no mention of special consideration in response to. For example, the micromixer is merely a mixer section having a structure in which a large number of minute holes are arranged at the intersection of two upper and lower fluid flow paths.

ところが、最近は微少流体の混合現象に対する制御の必要性が認識され各種の試みがなされている。例えば、特許文献2にはマイクロ化学チップとして微少2流体の混合に多数の屈曲部を有する流路の利用が開示されている。特許文献3では混合流体の流路を多段にした後これを連結して混合効率を上げている。特許文献4には微少液体をパルス化して交互に導入して混合液体を製造する装置が開示されている。特許文献5には流路の形状とじゃま板の組み合わせによるマイクロチャンネルチップが開示されている。特許文献6には電気浸透法を利用した混合装置が開示されている。   Recently, however, various attempts have been made in recognition of the necessity of controlling the microfluid mixing phenomenon. For example, Patent Document 2 discloses the use of a flow path having a large number of bent portions for mixing two micro fluids as a microchemical chip. In Patent Document 3, the flow of the mixed fluid is made multistage and then connected to increase the mixing efficiency. Patent Document 4 discloses an apparatus for producing a mixed liquid by pulsing a micro liquid and introducing the liquid alternately. Patent Document 5 discloses a microchannel chip having a combination of a flow path shape and a baffle plate. Patent Document 6 discloses a mixing apparatus using an electroosmosis method.

特開2002−355798号公報JP 2002-355798 A 特開2004−317439号公報JP 2004-317439 A 特開2004−294417号公報JP 2004-294417 A 特開2004−531369号公報JP 2004-53369 A 特開2004−202613号公報JP 2004-202613 A 特開2004−156964号公報JP 2004-156964 A

上述のように流体を扱うマイクロマシン、特にマイクロミキサーにおいては流体の確実な混合を目指して各種の方法が検討されている。しかし、混合効率、装置の構造や製作上の簡便性、適用範囲、信頼性などの点からすべてを満足できるものはなかった。本発明では簡単な構造で耐久性があり、混合効率のよい、また多種類の微少流体をも混合できるマイクロミキサー、マイクロミキサーチップおよびこれらを利用したマイクロセンサーの提供を目的としている。   As described above, in a micromachine that handles a fluid, particularly a micromixer, various methods have been studied with the aim of reliable mixing of fluids. However, none of them satisfies all of the requirements in terms of mixing efficiency, device structure, manufacturing simplicity, application range, and reliability. An object of the present invention is to provide a micromixer, a micromixer chip, and a microsensor using these, which have a simple structure, are durable, have a good mixing efficiency, and can mix many kinds of microfluids.

本発明の課題を解決するための手段は以下のとおりである。
(1)複数の微少流体の連続混合装置であって、流体の導入によって混合槽内に同一方向の旋回流を生じる流体導入口を備え、それぞれの流体導入口は混合槽への導入流体が作る実質的に第1周目の旋回流面上にあるマイクロミキサーである。
(2)複数の微少流体の連続混合装置であって、それぞれの流体導入口は混合槽内の実質的に同一平面上にあり、それぞれの流体導入方向が該平面上の中心に向かう方向に対して同じ側へずれているマイクロミキサーである。
(3)混合槽に攪拌機を備えた(1)または(2)に記載のマイクロミキサーである。
(4)攪拌機が静電アクチエーターとダイアフラムからなる振動型攪拌機である(3)に記載のマイクロミキサーである。
(5)攪拌機が超音波振動型攪拌機である(3)に記載のマイクロミキサーである。
(6)基盤上に流体導入用マイクロポンプ、流体導入路、(1)〜(5)のいずれかに記載のマイクロミキサーおよび流体導出路を順次接続して形成したマイクロミキサーチップである。
(7)流体導入路、混合槽および流体導出路の少なくともいずれかひとつにセンサー素子、および/または温度制御装置を備えた(6)に記載のマイクロミキサーチップである。
(8) (6)または(7)に記載のマイクロミキサーチップを備えたマイクロセンサーである。
Means for solving the problems of the present invention are as follows.
(1) A device for continuously mixing a plurality of microfluids, comprising fluid inlets that generate a swirling flow in the same direction in the mixing tank by the introduction of the fluid, and each fluid inlet is formed by a fluid introduced into the mixing tank The micromixer is substantially on the swirl flow surface of the first round.
(2) A device for continuously mixing a plurality of microfluids, wherein each fluid introduction port is substantially on the same plane in the mixing tank, and each fluid introduction direction is in a direction toward the center on the plane. The micromixer is shifted to the same side.
(3) The micromixer according to (1) or (2), wherein the mixing tank includes a stirrer.
(4) The micromixer according to (3), wherein the stirrer is a vibration type stirrer including an electrostatic actuator and a diaphragm.
(5) The micromixer according to (3), wherein the stirrer is an ultrasonic vibration type stirrer.
(6) A micromixer chip formed by sequentially connecting a micropump for fluid introduction, a fluid introduction path, the micromixer according to any one of (1) to (5), and a fluid lead-out path on a base.
(7) The micromixer chip according to (6), wherein a sensor element and / or a temperature control device is provided in at least one of the fluid introduction path, the mixing tank, and the fluid outlet path.
(8) A microsensor comprising the micromixer chip according to (6) or (7).

本発明のマイクロミキサーは簡単な構造で耐久性がある微小のミキサーであり、とくに攪拌機を備えれば混合効率が非常によい、また多種類の微少流体をも混合できる装置である。このような混合装置は反応装置としても利用が可能である。反応原料である流体の混合が十分に行われれば、反応も効率よく行われる。その意味ではマイクロリアクターとも言える。特に、微少量の反応物の反応装置なので温度制御が容易で、大きな発熱や吸熱を伴う反応には好適な反応装置である。また、基盤上への作成が容易なマイクロミキサーであるのでマイクロミキサーチップとして使用でき、これを利用したマイクロセンサーとしても好適なものである。被測定流体を吸入して測定用試薬等を混合してセンサー素子により必要な性状等を測定することがチップひとつで可能となる。   The micromixer of the present invention is a minute mixer having a simple structure and durability. Particularly, if a stirrer is provided, the mixing efficiency is very good, and a device capable of mixing many kinds of microfluids. Such a mixing apparatus can also be used as a reaction apparatus. If the fluid as the reaction raw material is sufficiently mixed, the reaction can be performed efficiently. In that sense, it can be said to be a microreactor. In particular, since it is a reaction device for a very small amount of reactants, it is easy to control the temperature, and it is suitable for reactions involving large exotherms and endotherms. Further, since it is a micromixer that can be easily formed on a substrate, it can be used as a micromixer chip, and is also suitable as a microsensor using this. It is possible with a single chip to inhale the fluid to be measured, mix the reagent for measurement, etc., and measure the necessary properties and the like with the sensor element.

マイクロマシンの厳密な定義はないが、広義の定義ではおよそ10mm以下の要素部品で構成された機械を指している。最近は10〜1mmの要素部品で構成されているものをミリマシン、1mm未満の要素部品で構成されているものをマイクロマシンと区分けしている場合もある。本発明のマイクロミキサー等は、およそ10mm以下の要素部品で構成された機械であり、広義の定義であるマイクロマシンのひとつである。   Although there is no strict definition of a micromachine, in a broad definition, it refers to a machine composed of element parts of approximately 10 mm or less. Recently, what is composed of 10 to 1 mm element parts may be classified as a millimachine and one composed of less than 1 mm element parts from a micromachine. The micromixer or the like of the present invention is a machine composed of component parts of approximately 10 mm or less, and is one of the micromachines defined in a broad sense.

本発明のマイクロミキサーは複数の微少流体の連続混合装置である。ここで言う微少流体とは上述のマイクロマシンの範疇の要素部品に通常導入できる程度の流量である。例えば、水のような適度な粘度の液体であればおよそ10ml/分以下好ましくは1ml/分以下である。線速度にして10m/秒以下、好ましくは0.1m/秒以下で取り扱う場合が多い。流体がガスの場合は適用流量および線速度は水の場合の10倍程度まで増やすことができる。粘性の高い液体の場合は流量は少なくすべきである。レイノルズ数ではおよそ100以下、通常は10以下となる場合が多い。このような領域では流体は乱流状態になることはなく、層流としての挙動を示す。このため通常は二つの流体を一つの流路に合流しても内部の流体は2層流のまま流れていく場合が多い。従来は、図3に示すように第1の導入流体流路9と第2の導入流体流路10を合流する部分を細くして流速を上げたり、合流した下流の混合槽3に邪魔板11やオリフィスなどを設置して2流体の混合を図っていた。これは、合流する部分の流路を細くすることにより、流速を上げて流れを乱流としたり、邪魔板やオリフィスの下流に発生する流れの乱れの効果を利用して混合しようとするものである。しかし、微小流量を扱う流路の太さは通常は数mm以下、多くは数百μm程度である。このような流路中で乱流となる流速にするためには流速を非常に大きくせねばならず流路抵抗が膨大になり現実的ではない。したがってこのような方法では効果的な混合が難しかった。   The micromixer of the present invention is a continuous mixing device for a plurality of microfluids. The micro fluid referred to here is a flow rate that can be normally introduced into component parts of the above-mentioned micromachine category. For example, in the case of a liquid having an appropriate viscosity such as water, it is about 10 ml / min or less, preferably 1 ml / min or less. In many cases, the linear velocity is 10 m / sec or less, preferably 0.1 m / sec or less. When the fluid is gas, the applied flow rate and the linear velocity can be increased up to about 10 times those of water. For highly viscous liquids, the flow rate should be low. In many cases, the Reynolds number is about 100 or less, usually 10 or less. In such a region, the fluid does not enter a turbulent state and behaves as a laminar flow. For this reason, usually, even when two fluids merge into one flow path, the internal fluid often flows in a two-layer flow. Conventionally, as shown in FIG. 3, the portion where the first introduction fluid flow path 9 and the second introduction fluid flow path 10 are merged is narrowed to increase the flow velocity, or the baffle plate 11 is added to the merged downstream mixing tank 3. And an orifice were installed to mix the two fluids. This is intended to make the flow turbulent by increasing the flow velocity by narrowing the flow path of the joining part, or to mix using the effect of the turbulent flow generated downstream of the baffle plate or orifice. is there. However, the thickness of the flow path that handles a minute flow rate is usually several mm or less, and most is about several hundreds μm. In order to obtain a turbulent flow velocity in such a flow path, the flow speed must be very large, and the flow path resistance becomes enormous, which is not realistic. Therefore, effective mixing was difficult by such a method.

本発明のマイクロミキサーはこのような微少流量で層流領域の流体を効果的に混合する連続混合装置である。図1に示すように本発明のマイクロミキサーは複数(図1では2箇所、図4では3箇所)の流体導入口がある。   The micromixer of the present invention is a continuous mixing device that effectively mixes the fluid in the laminar flow region at such a small flow rate. As shown in FIG. 1, the micromixer of the present invention has a plurality of fluid inlets (two in FIG. 1 and three in FIG. 4).

混合槽では流体の導入によって混合槽内に同一方向の旋回流を生じるように流体導入口が設置されている。それぞれの流体導入口は混合槽への導入流体が作る実質的に第1周目の旋回流面上にある。例えば図5の説明図に示すように、円筒形の混合槽3の最下端にほぼ対向してふたつの流体導入口1,2がそれぞれ円周方向に向かって流体を導入する構造に設置されている構造ならばよい。それぞれの流体は混合槽3の底面に沿って第1周目の旋回流13,14を発生する。それぞれの第1周目の旋回流13,14は実質的に平面を作る(実際には、上方への渦巻流となっており厳密な平面ではないが平面とみなす。)。これを仮想的に第1周目の旋回流面と呼んでいる。そしてこれらふたつの旋回流13,14の作る旋回流面は重なっていることになる。すなわち複数の流体導入口から混合槽内に流体を導入する際、これらの流体の導入口は流体の流入方向を示す直線が実質的に互いに同一平面上にあり、混合槽とその平面が作る断面の形状の実質的な中心方向に対して同じ方向にずれた流体の流れ方向があるような構造をしていることが好ましい。少なくともひとつの導入流体が十分な旋回流を形成しておれば、他の流体導入口はこの旋回流を妨げない程度の流体導入方向であればどのような構造でもよい。   In the mixing tank, a fluid inlet is provided so that a swirling flow in the same direction is generated in the mixing tank by introduction of the fluid. Each fluid inlet is substantially on the swirl flow surface of the first circumference created by the fluid introduced into the mixing tank. For example, as shown in the explanatory diagram of FIG. 5, two fluid introduction ports 1 and 2 are installed in a structure that introduces fluids in the circumferential direction substantially opposite to the lowermost end of the cylindrical mixing tank 3. Any structure can be used. The respective fluids generate swirl flows 13 and 14 in the first circumference along the bottom surface of the mixing tank 3. Each of the swirl flows 13 and 14 in the first round substantially forms a plane (actually, it is an upward spiral flow and is not a strict plane but is regarded as a plane). This is virtually called the swirl flow surface in the first round. The swirl flow surfaces formed by the two swirl flows 13 and 14 are overlapped. That is, when fluid is introduced into the mixing tank from a plurality of fluid inlets, the fluid inlets have substantially straight lines indicating the inflow direction of the fluid on the same plane, and the cross section formed by the mixing tank and the plane. It is preferable that the fluid flow direction is shifted in the same direction with respect to the substantially central direction of the shape. As long as at least one introduction fluid forms a sufficient swirling flow, the other fluid introduction port may have any structure as long as it does not disturb the swirling flow.

混合槽3の第1周目の旋回流面と異なる位置に流体出口を設けることにより、旋回流は旋回を続けながら渦巻流となって流体出口方向に向かっていく。図5では混合槽3の最上部に流体出口8を設けてある。このようにすることにより、複数の流体は互いに同じ旋回流を作りながら流速を落とすことなく流体出口に向かっていく。これにより複数の流体は効果的な混合をすることができる。混合槽は旋回流ができ易く、旋回流の抵抗になり難い形状が好ましい。具体的には図5に示したような円筒形が優れた構造である。楕円筒や球、円錐、円錐台、卵型なども流体の性質、量比などによっては好適な形状である。また、混合槽中央部は旋回流の流速が遅くなるので中空円筒状の混合槽も好適な形状である。この中空部分を流体出口の流路として利用してもよい。混合槽の大きさおよび流体導入口の構造は導入流量および流体の粘度等との関係で決める必要がある。少なくとも第1周目の旋回流が形成される構造とする必要がある。流体流量に対して混合槽があまり大きすぎたり、小さすぎると旋回流が形成されないで出口方向に流体が直接流れてしまう恐れがある。   By providing the fluid outlet at a position different from the swirl flow surface in the first circumference of the mixing tank 3, the swirl flow becomes a spiral flow while continuing the swirl toward the fluid outlet. In FIG. 5, a fluid outlet 8 is provided at the top of the mixing tank 3. By doing so, the plurality of fluids move toward the fluid outlet without reducing the flow velocity while making the same swirl flow. Thereby, a plurality of fluids can be mixed effectively. The mixing tank is preferably shaped so that it is easy to make a swirling flow and hardly resists the swirling flow. Specifically, a cylindrical shape as shown in FIG. 5 is an excellent structure. An elliptic cylinder, a sphere, a cone, a truncated cone, an egg shape, and the like are also suitable shapes depending on the properties and quantity ratio of the fluid. Moreover, since the flow velocity of a swirl flow becomes slow in the central portion of the mixing tank, a hollow cylindrical mixing tank is also a suitable shape. You may utilize this hollow part as a flow path of a fluid exit. The size of the mixing tank and the structure of the fluid introduction port must be determined in relation to the introduction flow rate, the fluid viscosity, and the like. It is necessary to have a structure in which a swirl flow of at least the first circumference is formed. If the mixing tank is too large or too small relative to the fluid flow rate, a swirling flow may not be formed and the fluid may flow directly in the outlet direction.

流体導入口は図5では混合槽の円周方向に向けて配管を設置した構造を示しているが、混合槽の中心や上方へ向けて流体が流入する構造の配管として混合槽内部の流体導入部で流体方向ガイド板等により流体の方向を所望の方向に転換する構造でもよい。また、混合槽の形状として流体が滞留してしまう所謂デッドスペースが生ずる構造は好ましくない。よって流体出口の位置は流体導入口から遠い位置とすることが好ましい。図5のような構造はこの点から好ましい形態である。円錐や円錐台形の混合槽で底面側に流体導入口があり、頂点側の中心に流体出口がある構造も好ましい形態である。また、混合槽3の第1周目の旋回流面と同じ面の実質的に中央位置に流体出口を設けることにより、旋回流は旋回を続けながら渦巻流となって流体出口方向に向かっていく。この場合は、混合槽3は第1周目の旋回流面より上の通常出口配管と見える部分で第2回目の旋回流の部分をも含んでいるものとみなし、本発明で言う流体出口はさらにその下流であると考えてもよい。   In FIG. 5, the fluid introduction port shows a structure in which a pipe is installed in the circumferential direction of the mixing tank. However, the fluid introduction inside the mixing tank is a pipe having a structure in which the fluid flows into the center or upward of the mixing tank. Alternatively, the fluid direction guide plate or the like may be used to change the fluid direction to a desired direction. Moreover, a structure in which a so-called dead space in which a fluid stays as a shape of the mixing tank is not preferable. Therefore, the position of the fluid outlet is preferably a position far from the fluid inlet. The structure shown in FIG. 5 is a preferable form from this point. A conical or frustoconical mixing tank having a fluid inlet on the bottom side and a fluid outlet in the center on the apex side is also a preferred form. In addition, by providing the fluid outlet substantially at the center of the same surface as the swirling flow surface of the first circumference of the mixing tank 3, the swirling flow becomes a spiral flow while continuing swirling and moves toward the fluid outlet. . In this case, the mixing tank 3 is considered to include a portion of the second swirl flow in a portion that can be seen as a normal outlet pipe above the swirl flow surface of the first round, and the fluid outlet referred to in the present invention is Further, it may be considered downstream.

他の態様の本発明のマイクロミキサーは、複数の微少流体の連続混合装置であって、それぞれの流体導入口は混合槽内の実質的に同一平面上にあり、それぞれの流体導入方向が該平面上の中心に向かう方向に対して同じ側へずれている構造でもよい。流体導入口のある実質的に平面上の中心に向かって流体を導入すれば、流体はほとんど旋回流を生じない。しかし、導入流体の導入方向が中心に向かって例えば右側にずれていれば、流体はまず混合槽内の右側に流れ込み、該平面上で左向きの旋回流となる。それぞれの導入口の流体導入方向が同じように中心に向かって例えば右側にずれていれば同じ方向の旋回流を作る。このようにすれば、上述の旋回流と同じ効果を持つ混合槽となり、すなわち同じ効果を持つマイクロミキサーとなる。なお、流体出口については、上述同様流体導入口の平面から遠い位置とすることが好ましい。図1,2,4,5,6は本態様の発明の説明図でもある。   The micromixer according to another aspect of the present invention is a continuous mixing apparatus for a plurality of microfluids, wherein each fluid introduction port is substantially on the same plane in the mixing tank, and each fluid introduction direction is the plane. The structure may be shifted to the same side with respect to the direction toward the upper center. If the fluid is introduced toward a substantially plane center where the fluid introduction port is present, the fluid hardly generates a swirling flow. However, if the introduction direction of the introduced fluid is deviated to the right, for example, toward the center, the fluid first flows into the right side in the mixing tank, and turns leftward on the plane. If the direction of fluid introduction at each inlet is similarly shifted toward the center, for example, to the right, a swirling flow in the same direction is created. If it does in this way, it will become a mixing tank with the same effect as the above-mentioned swirl flow, ie, it will become a micromixer with the same effect. Note that the fluid outlet is preferably located far from the plane of the fluid inlet as described above. 1, 2, 4, 5 and 6 are also explanatory diagrams of the invention of this embodiment.

上述のマイクロミキサーは混合槽に攪拌機を設けることが好ましい。特に、高粘度の流体や混合槽内の旋回流の流速が遅くなる場合には攪拌機は有効な混合補助手段となる。撹拌機としては、混合槽内に邪魔板や撹拌翼などを設置したものでもよいが、静電アクチエーター(ピエゾ素子)を作動源としたダイアフラムによる振動を利用したり、超音波発生装置による超音波振動を利用する方法が好ましい。このような方法は小型化が容易で所要電力も少なくマイクロマシンに利用されることが多い。特に、静電アクチエーターとダイアフラムを組み合わせたマイクロポンプはすでに多くの使用例があり、これを応用すれば容易に攪拌機ができる。   The above-described micromixer is preferably provided with a stirrer in the mixing tank. In particular, the stirrer becomes an effective mixing assisting means when the flow velocity of the highly viscous fluid or the swirling flow in the mixing tank becomes slow. The stirrer may be a baffle plate or a stirring blade installed in the mixing tank. However, the agitator can use vibration caused by a diaphragm using an electrostatic actuator (piezo element) as an operating source, A method using sonic vibration is preferred. Such a method is easy to miniaturize and requires less power, and is often used in a micromachine. In particular, micropumps that combine electrostatic actuators and diaphragms have already been used in many cases, and if this is applied, a stirrer can be easily formed.

十分な混合が難しい高粘度流体などは混合槽内で旋回流を作っても、それぞれ十分に混ざり合わないで旋回しながら流れていく可能性がある。すなわち捻じり飴のような状態で流体出口方向に流れていく。これを攪拌機により撹拌して混合を補助すれば十分な混合ができる。この場合、流体の旋回流面と垂直に、すなわち捻じり飴の縦方向から振動を与えてやることが効果的である。図5で説明すれば、攪拌機4は混合機3の下部に設置した静電アクチエーターとダイアフラムからなる振動型攪拌機または超音波振動型攪拌機が好適である。攪拌機を備えれば撹拌効果が高まるので混合槽を小さくすることができる。   Even if a highly viscous fluid that is difficult to mix sufficiently creates a swirling flow in the mixing tank, it may flow while swirling without mixing sufficiently. That is, it flows in the direction of the fluid outlet in a state like a twisted wrinkle. If this is stirred with a stirrer to assist mixing, sufficient mixing can be achieved. In this case, it is effective to apply vibrations perpendicular to the swirling flow surface of the fluid, that is, from the longitudinal direction of the twisted rod. Referring to FIG. 5, the agitator 4 is preferably a vibration type agitator or an ultrasonic vibration type agitator comprising an electrostatic actuator and a diaphragm installed at the lower part of the mixer 3. If a stirrer is provided, the stirring effect is enhanced, so that the mixing tank can be made smaller.

上述のマイクロミキサーはこれを単独の部品とするよりは、基盤上に流体導入用マイクロポンプ、流体導入路、上述のマイクロミキサー、流体導出路を順次接続してマイクロミキサーチップとすれば使い易い。マイクロミキサーには攪拌機を備えていればさらに好ましいものとなる。図2および図6にマイクロミキサーチップの例を示す。このようにして、微少流体の混合装置や反応装置として各種目的に使用できる。また、基盤上にこのようなマイクロミキサーチップを複数搭載し混合流体の量を確保することもできる。特に、混合流体が混合や反応により大きな発熱や吸熱を伴う場合は有効な装置である。   Rather than using the above-mentioned micromixer as a single component, it is easy to use a micromixer chip by sequentially connecting a micropump for fluid introduction, a fluid introduction path, the above-described micromixer, and a fluid lead-out path on a base. The micromixer is more preferably provided with a stirrer. 2 and 6 show examples of the micromixer chip. In this way, it can be used for various purposes as a microfluidic mixing device or reaction device. Also, a plurality of such micromixer chips can be mounted on the substrate to ensure the amount of mixed fluid. In particular, this is an effective device when the mixed fluid is accompanied by a large exotherm or endotherm due to mixing or reaction.

図6に示すようなマイクロミキサーチップとする場合、ポンプとしてはピエゾ素子とダイアフラムを組み合わせたダイアフラムポンプを使用するとよい。導入流体に脈流が発生してミキサーでの混合に好影響がある場合がある。また、混合槽はできるだけ薄くして流体出口から流出した流体の流路は基盤上に接するようにすれば非常に薄いチップとすることができる。図6では混合効果を上げるために混合槽3の上にダイアフラム式攪拌機4を設置している。   When a micromixer chip as shown in FIG. 6 is used, a diaphragm pump in which a piezo element and a diaphragm are combined may be used as the pump. There may be a case where a pulsating flow is generated in the introduced fluid and the mixing in the mixer is positively affected. Further, if the mixing tank is made as thin as possible and the flow path of the fluid flowing out from the fluid outlet is in contact with the base, the chip can be made very thin. In FIG. 6, a diaphragm type agitator 4 is installed on the mixing tank 3 in order to increase the mixing effect.

さらに、このようなマイクロミキサーチップを利用して小型の反応器としたり、センサーとしたりすることができる。例えば、被測定溶液のPHを調整してから化学物質の濃度測定をする場合、被測定溶液とPH調整用緩衝液を吸入混合し、流体導出路中に化学物質測定用の濃度センサー素子を備えておれば溶液の化学物質測定用センサーとして使用できる。必要に応じて混合槽等にヒーターや冷却用の金属フィンを設置すれば温度制御も可能である。   Further, such a micromixer chip can be used to make a small reactor or a sensor. For example, when measuring the concentration of a chemical substance after adjusting the pH of the solution to be measured, the solution to be measured and the pH adjustment buffer are sucked and mixed, and a concentration sensor element for measuring the chemical substance is provided in the fluid outlet path. If so, it can be used as a sensor for measuring chemical substances in a solution. If necessary, the temperature can be controlled by installing a heater or a cooling metal fin in the mixing tank or the like.

本発明のマイクロミキサーおよびマイクロミキサーチップは微少流量の流体を扱う各種の装置部品として利用できる。特に、微少量の反応を定量的に測定する必要のある反応器やセンサー、生体関連物質測定器などには好適である。   The micromixer and the micromixer chip of the present invention can be used as various apparatus parts that handle a small flow rate of fluid. In particular, it is suitable for a reactor, a sensor, a biological substance measuring device, etc. that need to measure a minute amount of reaction quantitatively.

図1は本発明のマイクロミキサーの説明図で、Aは平面図、Bは正面図である。FIG. 1 is an explanatory view of a micromixer of the present invention, in which A is a plan view and B is a front view. 図2は本発明のマイクロミキサーチップの説明図で、Aは平面図、Bは正面図である。FIG. 2 is an explanatory view of the micromixer chip of the present invention, in which A is a plan view and B is a front view. 図3は従来のマイクロミキサーの説明図である。FIG. 3 is an explanatory diagram of a conventional micromixer. 図4は本発明のマイクロミキサーの他の例の説明図で、Aは平面図、Bは正面図である。FIG. 4 is an explanatory view of another example of the micromixer of the present invention, in which A is a plan view and B is a front view. 図5は本発明のマイクロミキサーの流体の流れ状態を示す説明図である。FIG. 5 is an explanatory view showing a fluid flow state of the micromixer of the present invention. 図6は本発明のマイクロミキサーチップの説明用斜視図である。FIG. 6 is a perspective view for explaining the micromixer chip of the present invention.

符号の説明Explanation of symbols

1:第1の流体導入口 2:第2の流体導入口 3:混合槽 4:攪拌機
5:マイクロポンプ 6:静電アクチエーター 7:第3の流体導入口
8:流体出口 9:第1の導入流体流路 10:第2の導入流体流路
11:邪魔板 12:第3の導入流体流路 13:第1の流体による第1周目の旋回流 14:第2の流体による第1周目の旋回流
15:第2周目の旋回流 16:流体導出路 17:マイクロミキサーチップ
18:基盤
1: First fluid introduction port 2: Second fluid introduction port 3: Mixing tank 4: Stirrer 5: Micro pump 6: Electrostatic actuator 7: Third fluid introduction port 8: Fluid outlet 9: First Introduction fluid channel 10: Second introduction fluid channel 11: Baffle plate 12: Third introduction fluid channel 13: First round swirl flow by the first fluid 14: First round by the second fluid Eye swirl flow 15: Second swirl swirl flow 16: Fluid outlet path 17: Micromixer chip 18: Base

Claims (8)

複数の微少流体の連続混合装置であって、流体の導入によって混合槽内に同一方向の旋回流を生じる流体導入口を備え、それぞれの流体導入口は混合槽への導入流体が作る実質的に第1周目の旋回流面上にあるマイクロミキサー。   A device for continuously mixing a plurality of microfluids, comprising fluid inlets for generating a swirling flow in the same direction in the mixing tank by introduction of the fluid, each of the fluid inlets being substantially formed by the fluid introduced into the mixing tank A micromixer on the swirling flow surface of the first round. 複数の微少流体の連続混合装置であって、それぞれの流体導入口は混合槽内の実質的に同一平面上にあり、それぞれの流体導入方向が該平面の中心に向かう方向に対して同じ側へずれているマイクロミキサー。   A device for continuously mixing a plurality of microfluids, wherein each fluid introduction port is substantially on the same plane in the mixing tank, and each fluid introduction direction is on the same side with respect to the direction toward the center of the plane. Misaligned micromixer. 混合槽に攪拌機を備えた請求項1または2に記載のマイクロミキサー。   The micromixer according to claim 1 or 2, wherein the mixing tank includes a stirrer. 攪拌機が静電アクチエーターとダイアフラムからなる振動型攪拌機である請求項3に記載のマイクロミキサー。   The micromixer according to claim 3, wherein the stirrer is a vibration stirrer composed of an electrostatic actuator and a diaphragm. 攪拌機が超音波振動型攪拌機である請求項3に記載のマイクロミキサー。   The micromixer according to claim 3, wherein the agitator is an ultrasonic vibration type agitator. 基盤上に流体導入用マイクロポンプ、流体導入路、請求項1〜5のいずれかに記載のマイクロミキサーおよび流体導出路を順次接続して形成したマイクロミキサーチップ。   A micromixer chip formed by sequentially connecting a micropump for fluid introduction, a fluid introduction path, the micromixer according to any one of claims 1 to 5 and a fluid lead-out path on a substrate. 流体導入路、混合槽および流体導出路の少なくともいずれかひとつにセンサー素子、および/または温度制御装置を備えた請求項6に記載のマイクロミキサーチップ。   The micromixer chip according to claim 6, wherein a sensor element and / or a temperature control device is provided in at least one of the fluid introduction path, the mixing tank, and the fluid outlet path. 請求項6または7に記載のマイクロミキサーチップを備えたマイクロセンサー。
A microsensor comprising the micromixer chip according to claim 6.
JP2004363806A 2004-12-16 2004-12-16 Micromixer, micromixer chip and micro sensor Pending JP2006167600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363806A JP2006167600A (en) 2004-12-16 2004-12-16 Micromixer, micromixer chip and micro sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363806A JP2006167600A (en) 2004-12-16 2004-12-16 Micromixer, micromixer chip and micro sensor

Publications (1)

Publication Number Publication Date
JP2006167600A true JP2006167600A (en) 2006-06-29

Family

ID=36668903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363806A Pending JP2006167600A (en) 2004-12-16 2004-12-16 Micromixer, micromixer chip and micro sensor

Country Status (1)

Country Link
JP (1) JP2006167600A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008229432A (en) * 2007-03-19 2008-10-02 Yamaguchi Univ Swirling flow producing device without mechanical operation part
WO2009019984A1 (en) * 2007-08-07 2009-02-12 Honda Motor Co., Ltd. Coating device
US20090086572A1 (en) * 2007-09-28 2009-04-02 Fujifilm Corporation Microdevice and fluid mixing method
JPWO2007125642A1 (en) * 2006-04-05 2009-09-10 日機装株式会社 Mixer, mixing device and medical component measurement unit
WO2010024123A1 (en) * 2008-08-25 2010-03-04 株式会社日立製作所 Reactor and reaction plant
EP2168671A2 (en) 2008-09-29 2010-03-31 Fujifilm Corporation Micro device and liquid mixing method
JP2011011124A (en) * 2009-06-30 2011-01-20 Yoshino Kogyosho Co Ltd Spray nozzle
WO2011027569A1 (en) * 2009-09-04 2011-03-10 日曹エンジニアリング株式会社 Tubular flow reactor
JP2011067741A (en) * 2009-09-25 2011-04-07 Konica Minolta Holdings Inc Micromixer, and microfluid chip
EP2338869A1 (en) 2009-12-28 2011-06-29 Hitachi Plant Technologies, Ltd. Method for synthesizing acrolein
WO2011125318A1 (en) 2010-04-01 2011-10-13 日曹エンジニアリング株式会社 Pipe type circulation-based reaction apparatus
JP2013232395A (en) * 2012-04-30 2013-11-14 Global Battery Co Ltd Mixing apparatus for battery electrolyte
JP2018103064A (en) * 2016-12-22 2018-07-05 敏彦 小野 Turbid water treatment device and turbid water treatment method
JP2018158291A (en) * 2017-03-22 2018-10-11 国立大学法人横浜国立大学 Mixer and mixing method
WO2018190423A1 (en) * 2017-04-13 2018-10-18 国立大学法人北海道大学 Flow channel structure and lipid particle or micelle formation method using same
CN113842824A (en) * 2021-10-15 2021-12-28 西安交通大学 Passive micro mixer based on composite side wall microstructure enhanced mixing efficiency
KR20220010174A (en) * 2020-07-17 2022-01-25 한국기계연구원 Micro mixer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639121U (en) * 1979-08-29 1981-04-13
JPS5949829A (en) * 1982-09-14 1984-03-22 Matsushita Electric Ind Co Ltd Fluid mixer and thin film device using said mixer
JP2001252897A (en) * 2000-03-10 2001-09-18 Ritsumeikan Microanalysis chip, and method of manufacturing the same
JP2002542014A (en) * 1999-04-16 2002-12-10 シュヴェジンガー、ノルベルト Modular chemical microsystem
JP2003047839A (en) * 2001-08-06 2003-02-18 Yamatake Corp Micro reactor
JP2003220322A (en) * 2002-01-31 2003-08-05 Minolta Co Ltd Liquid mixing mechanism
JP2004321063A (en) * 2003-04-24 2004-11-18 Yaskawa Electric Corp Microreactor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639121U (en) * 1979-08-29 1981-04-13
JPS5949829A (en) * 1982-09-14 1984-03-22 Matsushita Electric Ind Co Ltd Fluid mixer and thin film device using said mixer
JP2002542014A (en) * 1999-04-16 2002-12-10 シュヴェジンガー、ノルベルト Modular chemical microsystem
JP2001252897A (en) * 2000-03-10 2001-09-18 Ritsumeikan Microanalysis chip, and method of manufacturing the same
JP2003047839A (en) * 2001-08-06 2003-02-18 Yamatake Corp Micro reactor
JP2003220322A (en) * 2002-01-31 2003-08-05 Minolta Co Ltd Liquid mixing mechanism
JP2004321063A (en) * 2003-04-24 2004-11-18 Yaskawa Electric Corp Microreactor

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467767B2 (en) * 2006-04-05 2014-04-09 日機装株式会社 Mixer, mixing device and medical component measurement unit
JPWO2007125642A1 (en) * 2006-04-05 2009-09-10 日機装株式会社 Mixer, mixing device and medical component measurement unit
JP2008229432A (en) * 2007-03-19 2008-10-02 Yamaguchi Univ Swirling flow producing device without mechanical operation part
WO2009019984A1 (en) * 2007-08-07 2009-02-12 Honda Motor Co., Ltd. Coating device
JP2009039622A (en) * 2007-08-07 2009-02-26 Honda Motor Co Ltd Coater
US20090086572A1 (en) * 2007-09-28 2009-04-02 Fujifilm Corporation Microdevice and fluid mixing method
JP2009082833A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Microdevice and fluid mixing method
WO2010024123A1 (en) * 2008-08-25 2010-03-04 株式会社日立製作所 Reactor and reaction plant
JP2010046634A (en) * 2008-08-25 2010-03-04 Hitachi Ltd Reactor and reaction plant
US8551417B2 (en) 2008-08-25 2013-10-08 Hitachi Plant Technologies, Ltd. Reactor and reaction plant
EP2168671A2 (en) 2008-09-29 2010-03-31 Fujifilm Corporation Micro device and liquid mixing method
JP2011011124A (en) * 2009-06-30 2011-01-20 Yoshino Kogyosho Co Ltd Spray nozzle
WO2011027569A1 (en) * 2009-09-04 2011-03-10 日曹エンジニアリング株式会社 Tubular flow reactor
JP2011050937A (en) * 2009-09-04 2011-03-17 Nisso Engineering Co Ltd Circulation type tubular reaction apparatus
JP2011067741A (en) * 2009-09-25 2011-04-07 Konica Minolta Holdings Inc Micromixer, and microfluid chip
JP2011136943A (en) * 2009-12-28 2011-07-14 Hitachi Plant Technologies Ltd Synthesis method of acrolein
US8450531B2 (en) 2009-12-28 2013-05-28 Hitachi Plant Technologies, Ltd. Method for synthesizing acrolein
EP2338869A1 (en) 2009-12-28 2011-06-29 Hitachi Plant Technologies, Ltd. Method for synthesizing acrolein
WO2011125318A1 (en) 2010-04-01 2011-10-13 日曹エンジニアリング株式会社 Pipe type circulation-based reaction apparatus
JP2013232395A (en) * 2012-04-30 2013-11-14 Global Battery Co Ltd Mixing apparatus for battery electrolyte
JP2018103064A (en) * 2016-12-22 2018-07-05 敏彦 小野 Turbid water treatment device and turbid water treatment method
JP2018158291A (en) * 2017-03-22 2018-10-11 国立大学法人横浜国立大学 Mixer and mixing method
WO2018190423A1 (en) * 2017-04-13 2018-10-18 国立大学法人北海道大学 Flow channel structure and lipid particle or micelle formation method using same
CN110520214A (en) * 2017-04-13 2019-11-29 国立大学法人北海道大学 Fluid path structure and using its lipid particle or micella forming method
JPWO2018190423A1 (en) * 2017-04-13 2020-03-05 国立大学法人北海道大学 Channel structure and method for forming lipid particles or micelles using the same
JP2022008314A (en) * 2017-04-13 2022-01-13 国立大学法人北海道大学 Channel structure and formation method of lipid particles or micelle using the same
JP7261504B2 (en) 2017-04-13 2023-04-20 国立大学法人北海道大学 Channel structure and method for forming lipid particles or micelles using the same
KR20220010174A (en) * 2020-07-17 2022-01-25 한국기계연구원 Micro mixer
KR102389390B1 (en) * 2020-07-17 2022-04-21 한국기계연구원 Micro mixer
CN113842824A (en) * 2021-10-15 2021-12-28 西安交通大学 Passive micro mixer based on composite side wall microstructure enhanced mixing efficiency
CN113842824B (en) * 2021-10-15 2023-10-10 西安交通大学 Passive micromixer for enhancing mixing efficiency based on composite side wall microstructure

Similar Documents

Publication Publication Date Title
JP2006167600A (en) Micromixer, micromixer chip and micro sensor
Capretto et al. Micromixing within microfluidic devices
Kumar et al. Single-phase fluid flow and mixing in microchannels
JP5604038B2 (en) Reaction apparatus and reaction plant
Sudarsan et al. Fluid mixing in planar spiral microchannels
Hossain et al. Investigation of mixing performance of two-dimensional micromixer using Tesla structures with different shapes of obstacles
Wang et al. Flow regime transition for cocurrent gas–liquid flow in micro-channels
AU2013220890B2 (en) Centrifugal microfluidic mixing apparatus and method
JP3974531B2 (en) Microchannel mixing method and microchannel apparatus
KR20190043725A (en) Three-dimensional flow structure microfluidic mixer
KR20150105856A (en) Micro Mixer Using Taylor Gortler Vortex and Manufacturing Method Thereof
Green et al. A review of passive and active mixing systems in microfluidic devices
Ma et al. Effect of viscosity on liquid–liquid slug flow in a step T-junction microchannel
Ghosh et al. Mixing enhancement of newtonian liquids in a curvature induced split and recombine micromixer
JP2006205080A (en) Micromixer
Vagner et al. Flow structure and mixing efficiency of viscous fluids in microchannel with a striped superhydrophobic wall
Tesař Oscillator micromixer
Vijayanandh et al. Design and simulation of passive micromixers with ridges for enhanced efficiency
Jaiswal et al. Vibration in Microchannel Causes Greater Enhancement of Mass Transfer in Toluene–Acetic Acid–Water System
Yu et al. Insight into the effects of smooth channels, sharp channels and channel bending angles on intra-droplet mass transfer behavior
Jani et al. A microgrooved membrane based gas–liquid contactor
Chen et al. Mixing Enhancement in a Chaotic Micromixer with Reversed Ridges and Grooves
Mahmud et al. A review of enhanced micromixing techniques in microfluidics for the application in wastewater analysis
JP4454431B2 (en) plate
Zhang et al. Spontaneous Formation Mechanisms of Droplets in Step Emulsification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120824