JP2006165066A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
JP2006165066A
JP2006165066A JP2004350350A JP2004350350A JP2006165066A JP 2006165066 A JP2006165066 A JP 2006165066A JP 2004350350 A JP2004350350 A JP 2004350350A JP 2004350350 A JP2004350350 A JP 2004350350A JP 2006165066 A JP2006165066 A JP 2006165066A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric element
thermoelectric
endothermic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004350350A
Other languages
Japanese (ja)
Inventor
Yasuhiko Niimi
康彦 新美
Akio Matsuoka
彰夫 松岡
Isao Azeyanagi
功 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004350350A priority Critical patent/JP2006165066A/en
Publication of JP2006165066A publication Critical patent/JP2006165066A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion device capable of improving surface density by configuring the device so that a gap between each of heat absorption/dissipation conversion units and each of heat absorption/dissipation electrode units which are adjacent may be reduced. <P>SOLUTION: The heat absorption heat conversion section 20b and the heat dissipation heat conversion section 30b are formed and disposed on a thermoelectric conversion module 10 so that a heat conversion medium can flow in a direction along thermoelectric element groups. An insulating member 15 made of an insulating material is disposed in the same direction as the direction of flow of the heat conversion medium, between the heat absorption heat conversion section 20b and the heat dissipation heat conversion section 30b which are adjacent. With this configuration, the surface density can be improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、N型熱電素子、P型熱電素子からなる直列回路に直流電流を流通させることで吸熱、放熱が得られる熱電変換装置に関するものであり、特に、隣接する熱電素子の面密度に関する。   The present invention relates to a thermoelectric conversion device that can absorb and dissipate heat by passing a direct current through a series circuit composed of an N-type thermoelectric element and a P-type thermoelectric element, and particularly relates to the surface density of adjacent thermoelectric elements.

従来、この種の熱電変換装置として、例えば、特許文献1に示すように、N型熱電素子、P型熱電素子をこの順序で複数個、略碁盤目状に配列し、隣接する熱電素子の一方面に吸熱電極部、他方面に放熱電極部を配設するとともに、吸熱電極部に伝熱可能に形成されたな吸熱熱交換部および放熱電極部に伝熱可能に形成された放熱熱交換部を設けて全ての熱電素子が直列接続するように構成している。   Conventionally, as this type of thermoelectric conversion device, for example, as shown in Patent Document 1, a plurality of N-type thermoelectric elements and P-type thermoelectric elements are arranged in a substantially grid pattern in this order, and one of the adjacent thermoelectric elements is arranged. An endothermic electrode part is disposed on the side, a heat dissipating electrode part is disposed on the other side, a heat absorbing heat exchanging part formed so as to be able to transfer heat to the heat absorbing electrode part, and a heat dissipating heat exchanging part formed so that heat can be transferred to the heat dissipating electrode part And all the thermoelectric elements are connected in series.

そして、図示しない端子間に直流電圧を印加して通電することで、ペルチェ効果により吸熱電極部と隣接する熱電素子との界面で吸熱が生じ吸熱熱交換部で吸熱が行なわれ、放熱電極部と隣接する熱電素子との界面で発熱を生じ放熱熱交換部で放熱が行なわれるようにしている(例えば、特許文献1参照)。
特開平09−097930号公報
Then, by applying a DC voltage between terminals (not shown) and energizing, the Peltier effect causes heat absorption at the interface between the heat absorption electrode portion and the adjacent thermoelectric element, and heat absorption is performed at the endothermic heat exchange portion. Heat is generated at the interface with the adjacent thermoelectric element, and heat is radiated at the heat radiating heat exchanging section (see, for example, Patent Document 1).
JP 09-097930 A

この種の装置では、全ての熱電素子が直列接続するために、吸熱/放熱熱交換部、吸熱/放熱電極部および熱電素子の各相互間が電気的な絶縁を得るように構成することが必要である。つまり、隣接する各相互間に電気的絶縁のための間隙を設けるとともに、その間隙を狭めることで熱電素子の面密度を高めることができる。   In this type of device, since all the thermoelectric elements are connected in series, it is necessary to configure the heat absorption / radiation heat exchange section, the heat absorption / radiation electrode section, and the thermoelectric elements to be electrically insulated from each other. It is. In other words, it is possible to increase the surface density of the thermoelectric element by providing a gap for electrical insulation between adjacent ones and narrowing the gap.

しかしながら、上記特許文献1によれば、熱電素子と吸熱/放熱電極部とを半田付けで接合するようにしている。そのため、接合時における半田のはみ出し分を考慮した必要最小限の間隙を確保することが必要となるため間隙を狭めることが困難であって、その結果熱電素子の面密度を高めることが困難である。   However, according to Patent Document 1, the thermoelectric element and the heat absorption / radiation electrode portion are joined by soldering. For this reason, it is necessary to secure a necessary minimum gap in consideration of the protrusion of solder at the time of joining, so it is difficult to narrow the gap, and as a result, it is difficult to increase the surface density of the thermoelectric element. .

なお、ここで面密度は単位面積あたりの熱電素子の配設個数を示すものであって、面密度が高ければ熱電素子の配設個数が多くなることで熱電素子の出力を高めることが可能となる。ところで、上記特許文献1のように熱電素子を碁盤目状に配設するときは、熱電素子群に沿う方向と、その方向に直交する方向に必要最小限の間隙を設けることになる。   Here, the surface density indicates the number of thermoelectric elements arranged per unit area, and if the surface density is high, it is possible to increase the number of thermoelectric elements to increase the output of the thermoelectric elements. Become. By the way, when the thermoelectric elements are arranged in a grid pattern as in Patent Document 1, a necessary minimum gap is provided in the direction along the thermoelectric element group and in the direction orthogonal to the direction.

また、図11(a)および図11(b)に示すように、吸熱電極部140、P型熱電素子120、放熱電極部150、およびN型熱電素子130の順に複数組積層してなる熱電素子群を列設させて熱電素子モジュール100を構成した場合は、熱電素子群に沿った方向において、熱電素子120、130を碁盤目状に配列よりも面密度を高めることが可能だが、熱電素子群に直交する方向においては必要最小限の間隙が必要となって間隙を狭めることが困難である。   Further, as shown in FIGS. 11A and 11B, a thermoelectric element formed by laminating a plurality of sets in the order of a heat absorbing electrode part 140, a P-type thermoelectric element 120, a heat radiating electrode part 150, and an N-type thermoelectric element 130. When the thermoelectric element module 100 is configured by arranging groups in a row, it is possible to increase the surface density of the thermoelectric elements 120 and 130 in a grid pattern in a direction along the thermoelectric element group. It is difficult to narrow the gap because a minimum necessary gap is required in the direction perpendicular to.

そこで、隣接する熱電素子群との間に、絶縁材料からなるシート状の絶縁部材200を配設すると間隙を最も小さくできるが、吸熱熱交換部140bおよび放熱熱交換部150bを流通する空気の流れ方向に対して遮るように配設しているので熱交換が不能となってしまう問題がある。   Therefore, when the sheet-like insulating member 200 made of an insulating material is disposed between adjacent thermoelectric element groups, the gap can be minimized, but the flow of air flowing through the endothermic heat exchange unit 140b and the radiant heat exchange unit 150b Since it arrange | positions so that it may interrupt | block with respect to a direction, there exists a problem that heat exchange becomes impossible.

そこで、本発明の目的は、上記点に鑑みたものであり、隣接する吸熱/放熱熱交換部、吸熱/放熱電極部の各相互間の間隙を小さくするように構成させることで面密度の向上が図れる熱電変換装置を提供することにある。   In view of the above, the object of the present invention is to improve the surface density by making the gap between adjacent heat absorption / radiation heat exchange parts and heat absorption / radiation electrode parts small. It is in providing the thermoelectric conversion apparatus which can plan.

上記、目的を達成するために、請求項1ないし請求項4に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、吸熱電極部(20a)、P型熱電素子(12)、放熱電極部(30a)、およびN型熱電素子(13)を前記の順番に複数組配列してなる熱電素子群を列設して、全ての熱電素子(12、13)を直列接続して構成された熱電素子モジュール(10)と、この熱電素子モジュール(10)の一方面に配設され、吸熱電極部(20a)に伝熱可能に接続された吸熱熱交換部(20b)と、熱電素子モジュール(10)の他方面に配設され、放熱電極部(30a)に伝熱可能に接続された放熱熱交換部(30b)とを備える熱電変換装置において、
吸熱熱交換部(20b)および放熱熱交換部(30b)は、熱電素子群に沿う方向に熱交換媒体が流れるように形成して熱電素子モジュール(10)に配設されていることを特徴としている。
In order to achieve the above object, the technical means described in claims 1 to 4 are employed. That is, in the first aspect of the present invention, a plurality of heat absorbing electrode portions (20a), P-type thermoelectric elements (12), heat radiating electrode portions (30a), and N-type thermoelectric elements (13) are arranged in the above order. A thermoelectric element module (10) configured by connecting all the thermoelectric elements (12, 13) in series, and a thermoelectric element module (10) arranged on one side of the thermoelectric element module (10). An endothermic heat exchange part (20b) connected to the endothermic electrode part (20a) so as to be capable of transferring heat, and disposed on the other surface of the thermoelectric element module (10) and connected to the heat radiating electrode part (30a) so that heat can be transferred In the thermoelectric conversion device comprising the radiated heat exchange part (30b),
The endothermic heat exchanging part (20b) and the radiating heat exchanging part (30b) are formed in such a way that the heat exchange medium flows in a direction along the thermoelectric element group, and are arranged in the thermoelectric element module (10). Yes.

請求項1に記載の発明によれば、この種の装置では、隣り合う吸熱熱交換部(20b)および放熱熱交換部(30b)の相互間には電気的絶縁のためにある程度の間隙を設けるようにしているが、この間隙が狭いと、例えば、吸熱熱交換部(20b)相互間に凝縮水で水ブリッジを形成して絶縁不良を起こす恐れがある。   According to the first aspect of the present invention, in this type of apparatus, a certain amount of gap is provided between the adjacent endothermic heat exchanger (20b) and the radiant heat exchanger (30b) for electrical insulation. However, if the gap is narrow, for example, a water bridge may be formed with condensed water between the endothermic heat exchange parts (20b), which may cause insulation failure.

そこで、本発明では、熱電素子群に沿う方向、つまり、吸熱熱交換部(20b)相互間の間隙に熱交換媒体が流れるように吸熱熱交換部(20b)を形成していることにより、凝縮水が熱交換媒体により押し流されることでその間隙に水ブリッジが形成しにくくなる。   Therefore, in the present invention, the endothermic heat exchange part (20b) is formed in a direction along the thermoelectric element group, that is, the heat exchange medium flows in the gap between the endothermic heat exchange parts (20b). When water is washed away by the heat exchange medium, it becomes difficult to form a water bridge in the gap.

これにより、吸熱熱交換部(20b)および放熱熱交換部(30b)の相互間の間隙を最小にすることができる。従って、熱交換媒体の流れ方向に対して直交する方向に数多くの熱電素子(12、13)が配設可能となり熱電素子(12、13)の面密度が向上できる。   Thereby, the clearance gap between the endothermic heat exchange part (20b) and the radiant heat exchange part (30b) can be minimized. Therefore, a large number of thermoelectric elements (12, 13) can be arranged in a direction orthogonal to the flow direction of the heat exchange medium, and the surface density of the thermoelectric elements (12, 13) can be improved.

請求項2に記載の発明では、隣接する吸熱熱交換部(20b)および放熱熱交換部(30b)の相互間には、絶縁材からなる絶縁部材(15)が熱交換媒体の流れ方向と同じ方向に向けて配設されていることを特徴としている。   In the invention according to claim 2, the insulating member (15) made of an insulating material is the same as the flow direction of the heat exchange medium between the adjacent endothermic heat exchange portions (20b) and the radiant heat exchange portions (30b). It is characterized by being arranged in the direction.

請求項2に記載の発明によれば、吸熱熱交換部(20b)および放熱熱交換部(30b)の相互間に絶縁層が形成できるため間隙を上述の請求項1よりもさらに最小にすることができる。これにより、熱電素子(12、13)の面密度が向上できる。   According to the second aspect of the present invention, since the insulating layer can be formed between the endothermic heat exchanging portion (20b) and the radiant heat exchanging portion (30b), the gap is further minimized as compared with the first aspect described above. Can do. Thereby, the surface density of the thermoelectric elements (12, 13) can be improved.

請求項3に記載の発明では、熱電素子モジュール(10)は、吸熱電極部(20a)、P型熱電素子(12)、放熱電極部(30a)、およびN型熱電素子(13)が複数組積層していることを特徴としている。   In the invention according to claim 3, the thermoelectric element module (10) includes a plurality of sets of endothermic electrode portions (20a), P-type thermoelectric elements (12), heat radiation electrode portions (30a), and N-type thermoelectric elements (13). It is characterized by being laminated.

請求項3に記載の発明によれば、熱電素子(12、13)を碁盤目状に配設したときと比べて、積層させるほうが隣り合う吸熱熱交換部(20b)および放熱熱交換部(30b)の相互間の間隙を小さくすることができる。   According to the third aspect of the present invention, compared to the case where the thermoelectric elements (12, 13) are arranged in a grid pattern, the endothermic heat exchanging portion (20b) and the radiating heat exchanging portion (30b) that are adjacent to each other are stacked. ) Can be reduced.

これにより、熱交換媒体の流れ方向、つまり、熱電素子群に沿う方向と同じ方向に数多くの熱電素子(12、13)が配設可能となる。従って、熱電素子(12、13)の面密度が向上できる。さらに、熱交換媒体の流れ方向に対して遮る方向に絶縁部材(15)を配設しなくても面密度を高めることができる。   Thereby, a large number of thermoelectric elements (12, 13) can be arranged in the same direction as the flow direction of the heat exchange medium, that is, the direction along the thermoelectric element group. Therefore, the surface density of the thermoelectric elements (12, 13) can be improved. Furthermore, it is possible to increase the surface density without providing the insulating member (15) in a direction blocking the flow direction of the heat exchange medium.

請求項4に記載の発明では、熱電素子モジュール(10)は、P型熱電素子(12)、およびN型熱電素子(13)が交互に略碁盤目状に配列され、一方の隣接する熱電素子(12、13)の端面に吸熱電極部(20a)が配設され、他方の隣接する熱電素子(12、13)の端面に放熱電極部(30a)が配設されていることを特徴としている。   In the invention according to claim 4, in the thermoelectric element module (10), P-type thermoelectric elements (12) and N-type thermoelectric elements (13) are alternately arranged in a substantially grid pattern, and one adjacent thermoelectric element The endothermic electrode portion (20a) is disposed on the end face of (12, 13), and the heat dissipating electrode portion (30a) is disposed on the end face of the other adjacent thermoelectric element (12, 13). .

請求項4に記載の発明によれば、熱電素子(12、13)が碁盤目状に配設する熱電素子モジュール(10)であっても、熱交換媒体の流れ方向に対して直交する方向に数多くの熱電素子(12、13)が配設可能となる。   According to the fourth aspect of the present invention, even in the thermoelectric module (10) in which the thermoelectric elements (12, 13) are arranged in a grid pattern, the thermoelectric elements (12, 13) are orthogonal to the flow direction of the heat exchange medium. Many thermoelectric elements (12, 13) can be arranged.

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態における熱電変換装置を図1ないし図3に基づいて説明する。図1は本実施形態における熱電変換装置の全体構成を示す模式図、図2は図1に示すA矢視図、図3は熱電変換装置の主要部の概略形状を示す斜視図である。
(First embodiment)
Hereinafter, a thermoelectric conversion device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic diagram showing an overall configuration of a thermoelectric conversion device according to the present embodiment, FIG. 2 is a view taken along arrow A shown in FIG. 1, and FIG. 3 is a perspective view showing a schematic shape of a main part of the thermoelectric conversion device.

本実施形態の熱電変換装置は、吸熱電極部20a、P型熱電素子12、放熱電極部30a、およびN型熱電素子13の順に複数個積層してなる熱電素子群を列設して全ての熱電素子12、13を直列接続するように構成している。   In the thermoelectric conversion device of this embodiment, a thermoelectric element group formed by laminating a plurality of layers in the order of the endothermic electrode portion 20a, the P-type thermoelectric element 12, the heat radiation electrode portion 30a, and the N-type thermoelectric element 13 is arranged in a row. The elements 12 and 13 are configured to be connected in series.

具体的には、図1および図2に示すように、平板状の絶縁材料(例えば、ガラスエポキシ、PPS樹脂、LCP樹脂、もしくはPET樹脂など)からなる第1絶縁基板11に、吸熱電極部20a、P型熱電素子12、放熱電極部30aおよびN型熱電素子13を交互に複数個積層してなる熱電素子群を列設して構成された熱電素子モジュール10と、その熱電素子モジュール10の一方面に配設する吸熱熱交換部20bと、熱電素子モジュール10の他方面に配設する放熱熱交換部30bと、隣り合う熱電素子群を電気的に接続する接続部16とから構成している。   Specifically, as shown in FIGS. 1 and 2, a heat-absorbing electrode portion 20a is formed on a first insulating substrate 11 made of a flat insulating material (for example, glass epoxy, PPS resin, LCP resin, or PET resin). , A thermoelectric element module 10 configured by arranging a thermoelectric element group in which a plurality of P-type thermoelectric elements 12, heat radiation electrode portions 30a, and N-type thermoelectric elements 13 are alternately stacked, and one of the thermoelectric element modules 10 The heat absorption heat exchange part 20b arrange | positioned in the direction, the thermal radiation heat exchange part 30b arrange | positioned in the other surface of the thermoelectric element module 10, and the connection part 16 which electrically connects an adjacent thermoelectric element group are comprised. .

まず、P型熱電素子12はBi−Te系化合物からなるP型半導体により構成され、N型熱電素子13はBi−Te系化合物からなるN型半導体により構成された極小部品である。また、第1絶縁基板11は、上記積層された熱電素子群を嵌合する図示しない基板穴が複数個形成されており、その複数個の基板穴にそれぞれの熱電素子群を嵌合させて一体に構成している。   First, the P-type thermoelectric element 12 is composed of a P-type semiconductor made of a Bi—Te-based compound, and the N-type thermoelectric element 13 is a minimal component composed of an N-type semiconductor made of a Bi—Te-based compound. The first insulating substrate 11 is formed with a plurality of substrate holes (not shown) for fitting the stacked thermoelectric element groups, and the thermoelectric element groups are fitted into the plurality of substrate holes to be integrated. It is configured.

なお、第1絶縁基板11に形成された基板穴は、図1に示すように、後述するが吸熱/放熱熱交換部20b、30bに流通する熱交換媒体である空気の流れ方向と同じ方向に熱電素子群を配設するように形成してある。   As shown in FIG. 1, the substrate hole formed in the first insulating substrate 11 is in the same direction as the flow direction of air, which is a heat exchange medium flowing through the heat absorption / radiation heat exchange portions 20b and 30b, as will be described later. A thermoelectric element group is formed.

次に、吸熱電極部20aおよび放熱電極部30aは、図2および図3に示すように、P型熱電素子12とN型熱電素子13とを電気的に接続するために平面状に形成された電極板であって、本実施形態では、吸熱電極部材20および放熱電極部材30に形成して熱電素子12、13との間に配設されている。   Next, as shown in FIGS. 2 and 3, the heat absorbing electrode portion 20a and the heat radiating electrode portion 30a were formed in a planar shape in order to electrically connect the P-type thermoelectric element 12 and the N-type thermoelectric element 13. In this embodiment, the electrode plate is formed on the heat-absorbing electrode member 20 and the heat-dissipating electrode member 30 and is disposed between the thermoelectric elements 12 and 13.

この吸熱電極部材20および放熱電極部材30は、銅材などの導電性材料により形成され、上述した吸熱電極部20aおよび放熱電極部30aと、これらの吸熱電極部20aおよび放熱電極部30aから伝熱された熱を吸熱/放熱するための吸熱/放熱熱交換部20b、30bとを一体に形成している。   The endothermic electrode member 20 and the radiating electrode member 30 are formed of a conductive material such as a copper material, and transfer heat from the above-described endothermic electrode portion 20a and the radiating electrode portion 30a, and the endothermic electrode portion 20a and the radiating electrode portion 30a. The heat absorption / radiation heat exchange portions 20b, 30b for absorbing / dissipating the generated heat are integrally formed.

その吸熱/放熱熱交換部20b、30bの形状は、図3に示すように、平面状に形成された吸熱電極部20aおよび放熱電極部30aから延びた平面に略U字状になるように折り曲げて、外方に延出する平面に切り起こしなどの成形加工によりルーバー状のフィンを熱交換媒体である空気の流れ方向に沿って複数個形成している。このフィンに空気が流れることで吸熱電極部20aおよび放熱電極部30aから伝熱された熱と熱交換される。   As shown in FIG. 3, the endothermic / radiative heat exchanging portions 20b and 30b are bent so that the endothermic electrode portion 20a is formed in a planar shape and the plane extending from the radiating electrode portion 30a is substantially U-shaped. Thus, a plurality of louver-like fins are formed along the flow direction of the air that is the heat exchange medium by molding such as cutting and raising in a plane extending outward. When air flows through the fin, heat exchange is performed with the heat transferred from the heat absorbing electrode portion 20a and the heat radiating electrode portion 30a.

そして、図2に示すように、一方の吸熱熱交換部20bが第1絶縁基板11の一方面に配設され、他方の放熱熱交換部30bが第1絶縁基板11の他方面に配設されるように、熱電素子12、13間に吸熱電極部20aおよび放熱電極部30aを積層して構成している。   As shown in FIG. 2, one endothermic heat exchanging portion 20 b is disposed on one surface of the first insulating substrate 11, and the other heat dissipating heat exchanging portion 30 b is disposed on the other surface of the first insulating substrate 11. As shown, the heat absorbing electrode portion 20a and the heat radiating electrode portion 30a are laminated between the thermoelectric elements 12 and 13.

なお、図3中に示す実線は、吸熱/放熱熱交換部20b、30bに流通する空気の流れ方向を示す矢印であり、切り起こされたフィンに空気が流通するように吸熱/放熱熱交換部20b、30bが形成している。また、図3中に示す破線は、熱電素子群に沿って積層された熱電素子12、13間に流れる電流の流れ方向を示す矢印である。つまり、空気の流れ方向と電流の流れ方向とが同じ方向に流れている。   In addition, the solid line shown in FIG. 3 is an arrow which shows the flow direction of the air which distribute | circulates to the heat absorption / radiation heat exchange part 20b, 30b, and the heat absorption / radiation heat exchange part so that air may distribute | circulate to the cut and raised fin 20b and 30b are formed. Moreover, the broken line shown in FIG. 3 is an arrow which shows the flow direction of the electric current which flows between the thermoelectric elements 12 and 13 laminated | stacked along the thermoelectric element group. That is, the air flow direction and the current flow direction flow in the same direction.

ところで、この種の熱電変換装置では、吸熱電極部材20および放熱電極部材30相互間には、電気的絶縁のために必要以上の寸法の隙間(以下、間隙と称する)を設けるようにしている。因みに、本実施形態では、熱電素子12、13の面密度を高めるためにこの間隙をさらに狭めるようにしたものである。   By the way, in this type of thermoelectric conversion device, a gap (hereinafter referred to as a gap) having a dimension larger than necessary is provided between the heat absorbing electrode member 20 and the heat radiating electrode member 30 for electrical insulation. Incidentally, in this embodiment, this gap is further narrowed in order to increase the surface density of the thermoelectric elements 12 and 13.

具体的には、図1に示すように、隣り合う熱電素子群との間にその熱電素子群に沿った方向に向けて絶縁材料からなるシート状の絶縁部材15を配設するとともに、その熱電素子群に沿った方向に対して略直交方向に形成される吸熱電極部材20および放熱電極部材30相互間の間隙をできるだけ小さく(例えば、1mm程度)するように設定している。   Specifically, as shown in FIG. 1, a sheet-like insulating member 15 made of an insulating material is disposed between adjacent thermoelectric element groups in a direction along the thermoelectric element group, and the thermoelectric elements are arranged. The gap between the heat absorbing electrode member 20 and the heat radiating electrode member 30 formed in a direction substantially orthogonal to the direction along the element group is set to be as small as possible (for example, about 1 mm).

さらに、熱電素子群に沿った方向に形成される吸熱電極部材20および放熱電極部材30相互間の間隙を必要最小寸法(例えば、2〜3mm程度)になるように設定している。ここで、面密度とは、第1絶縁基板11に配設される単位面積あたりの熱電素子12、13の収容個数を表す密度であって、この面密度が高いほど、収容個数が多くなって高出力を得ることができる。   Further, the gap between the heat absorbing electrode member 20 and the heat radiating electrode member 30 formed in the direction along the thermoelectric element group is set to have a necessary minimum dimension (for example, about 2 to 3 mm). Here, the surface density is a density representing the number of thermoelectric elements 12 and 13 accommodated per unit area disposed on the first insulating substrate 11, and the higher the surface density, the larger the number of accommodation. High output can be obtained.

これにより、熱電素子群に沿った方向に対して略直交方向に形成される間隙を狭くすることで熱電素子12、13の面密度を高めることができる。なお、熱電素子群に沿った方向に形成される間隙を必要最小寸法としているが、熱電素子12、13、吸熱電極部20aおよび放熱電極部30aを複数個積層することで、熱電素子12、13を碁盤目状に配設する方法よりも面密度を高めることができる。   Thereby, the surface density of the thermoelectric elements 12 and 13 can be increased by narrowing the gap formed in a direction substantially orthogonal to the direction along the thermoelectric element group. Note that the gap formed in the direction along the thermoelectric element group has a minimum required size, but the thermoelectric elements 12, 13 can be formed by stacking a plurality of thermoelectric elements 12, 13, the heat absorbing electrode portion 20a, and the heat radiating electrode portion 30a. The surface density can be increased as compared with the method of arranging the in a grid pattern.

また、図1中に示す16は、隣り合う熱電素子群と電気的接続する接続部材である。さらに、図1中に示す左右端に配設される吸熱電極部20aには、それぞれ端子24a、24bが設けられ、その端子24a、24bには、図示しない直流電源の正側端子を端子24aに接続し、負側端子を端子24bに接続するようにしている。   Moreover, 16 shown in FIG. 1 is a connection member electrically connected to the adjacent thermoelectric element group. Further, the endothermic electrode portions 20a disposed at the left and right ends shown in FIG. 1 are provided with terminals 24a and 24b, respectively, and a positive side terminal of a DC power source (not shown) is connected to the terminal 24a as the terminals 24a and 24b. The negative terminal is connected to the terminal 24b.

また、第1絶縁基板11を区画壁として、第1絶縁基板11の一方面と多方面とをそれぞれ図示しないケース部材により送風通路を形成し、その送風通路に熱電素子群に沿う方向に空気を流通することで、吸熱熱交換部20bおよび放熱熱交換部30bと空気とが熱交換され、吸熱熱交換部20bが配設される側では空気を冷却することができ、放熱熱交換部30bが配設される側では空気を加熱することができる。   In addition, with the first insulating substrate 11 as a partition wall, one surface and multiple surfaces of the first insulating substrate 11 are formed by a case member (not shown) to form an air passage, and air is supplied to the air passage in a direction along the thermoelectric element group. By circulating, heat is exchanged between the endothermic heat exchanger 20b and the radiant heat exchanger 30b and the air, and the air can be cooled on the side where the endothermic heat exchanger 20b is disposed. Air can be heated on the side where it is disposed.

次に、以上の構成による熱電変換装置の作動を説明する。図1に示すように、端子24aから入力された直流電源は、図中に示す左端上のP型熱電素子12から熱電素子群に沿って電流が流れて図中に示す右端上のN型熱電素子13まで直列的に流れる。つまり、全ての熱電素子12、13に直流電流が熱電素子群に沿って流れている。   Next, the operation of the thermoelectric converter having the above configuration will be described. As shown in FIG. 1, the DC power source input from the terminal 24a has a current flowing from the P-type thermoelectric element 12 on the left end along the thermoelectric element group shown in the figure and the N-type thermoelectric on the right end shown in the figure. It flows in series up to the element 13. That is, a direct current flows through all the thermoelectric elements 12 and 13 along the thermoelectric element group.

具体的には、P型熱電素子12→放熱電極部30a→N型熱電素子13→吸熱電極部32a→P型熱電素子12の順に電流が流れる。ここで、PN接合部を構成する放熱電極部30aはペルチェ効果によって高温の状態となり、NP接合部を構成する吸熱電極部20aは低温の状態となる。   Specifically, current flows in the order of P-type thermoelectric element 12 → radiation electrode portion 30 a → N-type thermoelectric element 13 → heat-absorbing electrode portion 32 a → P-type thermoelectric element 12. Here, the heat dissipation electrode portion 30a constituting the PN junction portion is in a high temperature state due to the Peltier effect, and the heat absorption electrode portion 20a constituting the NP junction portion is in a low temperature state.

つまり、第1絶縁基板11の一方面に配設された吸熱熱交換部2Obは低温の熱が伝達されて被冷却流体が接触され、他方面に配設された放熱熱交換部3Obは高温の熱が伝達されて冷却流体が接触される。   That is, the endothermic heat exchanging part 2Ob disposed on one surface of the first insulating substrate 11 is transmitted with low-temperature heat and contacted with the fluid to be cooled, and the radiant heat exchanging part 3Ob disposed on the other surface is heated. Heat is transferred to contact the cooling fluid.

これにより、吸熱熱交換部2Obでは被冷却流体が冷却され、放熱熱交換部3Obでは冷却流体が加熱されることになる。なお、このときに、それぞれの吸熱電極部材20および放熱電極部材30は、電位を有しているが、絶縁層を形成する絶縁部材15や必要最小寸法の間隙によって電気的に絶縁されている。   As a result, the fluid to be cooled is cooled in the endothermic heat exchanging section 2Ob, and the cooling fluid is heated in the heat dissipating heat exchanging section 3Ob. At this time, each of the heat absorbing electrode member 20 and the heat radiating electrode member 30 has an electric potential, but is electrically insulated by the insulating member 15 forming the insulating layer and the gap of the minimum required size.

なお、本実施形態では、熱電素子群に沿った方向に対して略直交方向に形成される間隙を絶縁部材15によりできるだけ小さく(例えば、1mm程度)するように設定したが、これに限らず、この間隙に絶縁部材15を設けることなく、かつ本実施形態よりも隙間の大きい必要最小寸法で設定しても、この間隙に向けて空気が流通することで凝縮水が押し流されて吸熱熱交換部2Ob相互間に水ブリッジが形成しにくい。   In the present embodiment, the gap formed in a direction substantially orthogonal to the direction along the thermoelectric element group is set to be as small as possible (for example, about 1 mm) by the insulating member 15, but the present invention is not limited to this. Even if the insulating member 15 is not provided in the gap and the required minimum dimension is set larger than that of the present embodiment, the condensed water is pushed away by the air flowing toward the gap, so that the endothermic heat exchanging portion. It is difficult to form a water bridge between 2Obs.

また、本実施形態では、図示しない直流電源の正側端子を端子24a側に接続し、負側端子を端子24b側に接続して端子24aに直流電源を入力させたが、これに限らず、図示しない直流電源の正側端子を端子24b側に接続し、負側端子を端子24a側に接続して端子24bに直流電源を入力させても良い。   In the present embodiment, the positive terminal of a DC power source (not shown) is connected to the terminal 24a side, the negative terminal is connected to the terminal 24b side, and the DC power source is input to the terminal 24a. A positive terminal of a DC power source (not shown) may be connected to the terminal 24b side, a negative terminal may be connected to the terminal 24a side, and the DC power source may be input to the terminal 24b.

ただし、このときには、下側に吸熱電極部材20が吸熱熱交換部を形成し、上側の放熱電極部材30側が放熱熱交換部を形成するようになる。   However, at this time, the endothermic electrode member 20 forms the endothermic heat exchange part on the lower side, and the upper side radiant electrode member 30 side forms the radiant heat exchange part.

以上の第1実施形態による熱電変換装置によれば、隣り合う吸熱熱交換部20bおよび放熱熱交換部30bの相互間には、絶縁材からなる絶縁部材15が空気の流れ方向と同じ方向に向けて配設されていることにより、熱電素子群に沿った方向に対して略直交方向に形成される間隙を最小にすることができる。これにより、熱電素子群に沿った方向に対して略直交方向に数多くの熱電素子12、13が配設可能となる。従って、熱電素子12、13の面密度が向上できる。   According to the thermoelectric conversion device according to the first embodiment described above, the insulating member 15 made of an insulating material is directed in the same direction as the air flow direction between the adjacent endothermic heat exchanging portions 20b and the radiating heat exchanging portions 30b. The gap formed in a direction substantially orthogonal to the direction along the thermoelectric element group can be minimized. As a result, a large number of thermoelectric elements 12 and 13 can be arranged in a direction substantially orthogonal to the direction along the thermoelectric element group. Therefore, the surface density of the thermoelectric elements 12 and 13 can be improved.

なお、吸熱熱交換部20bおよび放熱熱交換部30bは、熱電素子群に沿う方向に熱交換媒体である空気が流れるように形成して熱電素子モジュール10に配設されていることにより、吸熱熱交換部20b相互間に凝縮水が空気によって押し流されることで水ブリッジが形成しにくいので間隙を小さくすることができる。これにより熱電素子12、13の面密度を高めることができる。   The endothermic heat exchanging portion 20b and the radiating heat exchanging portion 30b are disposed in the thermoelectric element module 10 so that air as a heat exchanging medium flows in a direction along the thermoelectric element group. Since the condensed water is pushed away by the air between the exchange parts 20b, it is difficult to form a water bridge, so that the gap can be reduced. Thereby, the surface density of the thermoelectric elements 12 and 13 can be increased.

また、吸熱電極部20a、P型熱電素子12、放熱電極部30a、およびN型熱電素子13の順に複数組積層していることにより、熱電素子12、13、吸熱/放熱電極部20a、30aを碁盤目状に配設する方法に比べて、積層する方が熱電素子群に沿う方向に形成する間隙を小さくすることができる。これにより、空気の流れ方向と同じ方向に数多くの熱電素子12、13が配設可能となる。従って、熱電素子12、13の面密度が向上できる。さらに、空気の流れ方向に遮る方向に絶縁部材15を配設しなくても面密度を高めることができる。   Further, by stacking a plurality of sets of the endothermic electrode portion 20a, the P-type thermoelectric element 12, the heat dissipation electrode portion 30a, and the N-type thermoelectric element 13, the thermoelectric elements 12, 13, and the heat absorption / heat dissipation electrode portions 20a, 30a are arranged. Compared with the method of arranging in a grid pattern, the stacking can reduce the gap formed in the direction along the thermoelectric element group. Thereby, many thermoelectric elements 12 and 13 can be arrange | positioned in the same direction as the flow direction of air. Therefore, the surface density of the thermoelectric elements 12 and 13 can be improved. Furthermore, it is possible to increase the surface density without providing the insulating member 15 in a direction blocking the air flow direction.

(第2実施形態)
以上の第1実施形態では、熱電素子群を吸熱電極部20a、P型熱電素子12、放熱電極部30a、およびN型熱電素子13の順に複数組積層して構成したが、第1絶縁基板11に平面状に、熱電素子12、13、吸熱/放熱電極部20a、30aが碁盤目状になるように熱電素子群を列設させても良い。
(Second Embodiment)
In the first embodiment described above, the thermoelectric element group is configured by laminating a plurality of sets of the heat absorbing electrode portion 20a, the P-type thermoelectric element 12, the heat radiating electrode portion 30a, and the N-type thermoelectric element 13 in this order. Alternatively, the thermoelectric element groups may be arranged in a row so that the thermoelectric elements 12 and 13 and the heat absorption / radiation electrode portions 20a and 30a are in a grid pattern.

より具体的には、図4および図5に示すように、第1絶縁基板11に熱電素子12、13を交互に複数個配列してなる熱電素子群を列設させて構成している。そして、熱電素子12、13の両端に吸熱電極部20aおよび放熱電極部30aを直列的に接続するように吸熱電極部材20および放熱電極部材30を配設したものである。   More specifically, as shown in FIGS. 4 and 5, a thermoelectric element group in which a plurality of thermoelectric elements 12 and 13 are alternately arranged is arranged on the first insulating substrate 11. Then, the endothermic electrode member 20 and the radiating electrode member 30 are arranged so that the endothermic electrode portion 20a and the radiating electrode portion 30a are connected in series to both ends of the thermoelectric elements 12 and 13, respectively.

そして、隣接する吸熱電極部材20および放熱電極部材30相互間には、熱電素子群に沿う方向に絶縁材料からなる絶縁部材15を配設するとともに、その熱電素子群に沿った方向に対して略直交方向に形成される吸熱電極部材20および放熱電極部材30相互間の間隙をできるだけ小さく(例えば、1mm程度)するように設定している。   An insulating member 15 made of an insulating material is disposed between the adjacent heat absorbing electrode member 20 and the heat radiating electrode member 30 in a direction along the thermoelectric element group, and substantially in the direction along the thermoelectric element group. The gap between the heat absorbing electrode member 20 and the heat radiating electrode member 30 formed in the orthogonal direction is set to be as small as possible (for example, about 1 mm).

そして、熱電素子群に沿った方向に形成される吸熱電極部材20および放熱電極部材30相互間の間隙を必要最小寸法(例えば、2〜3mm程度)になるように設定している。   The gap between the heat absorbing electrode member 20 and the heat radiating electrode member 30 formed in the direction along the thermoelectric element group is set to have a necessary minimum dimension (for example, about 2 to 3 mm).

以上の第2実施形態による熱電変換装置によれば、熱電素子12、13が交互に略碁盤目状に配列され、一方の隣接する熱電素子12、13の端面に吸熱電極部20aが配設され、他方の隣接する熱電素子12、13の端面に放熱電極部30aが配設されていることにより、熱電素子12、13が碁盤目状に配設する熱電素子モジュール10であっても、熱電素子群に沿った方向に対して略直交方向に数多くの熱電素子12、13が配設可能となる。   According to the thermoelectric conversion device according to the second embodiment, the thermoelectric elements 12 and 13 are alternately arranged in a substantially grid pattern, and the endothermic electrode portion 20a is disposed on the end face of one of the adjacent thermoelectric elements 12 and 13. Even if the thermoelectric elements 12 and 13 are arranged in a grid pattern by disposing the heat radiation electrode portions 30a on the end faces of the other adjacent thermoelectric elements 12 and 13, the thermoelectric elements Many thermoelectric elements 12 and 13 can be arranged in a direction substantially orthogonal to the direction along the group.

なお、以上の実施形態では、吸熱電極部20aおよび放熱電極部30aを直接熱電素子12、13の両端面に接合させたが、図6に示すように、吸熱電極部20aおよび放熱電極部30aと略同等の平面状の電極部材20c、30cを介して吸熱電極部20aおよび放熱電極部30aを直列的に接続させても良い。   In the above embodiment, the endothermic electrode portion 20a and the heat radiating electrode portion 30a are directly joined to both end faces of the thermoelectric elements 12 and 13, but as shown in FIG. 6, the endothermic electrode portion 20a and the radiating electrode portion 30a The heat absorbing electrode portion 20a and the heat radiating electrode portion 30a may be connected in series via substantially equivalent planar electrode members 20c, 30c.

これによれば、許容電流値を確保することが可能な板厚で電極部材20c、30cを形成することで、吸熱電極部材20および放熱電極部材30側の板厚を薄くすることができる。これにより、吸熱電極部材20および放熱電極部材30の成形加工が簡素にできるので製造コストを低減できる。   According to this, the plate | board thickness by the side of the thermal absorption electrode member 20 and the thermal radiation electrode member 30 can be made thin by forming the electrode members 20c and 30c by the plate | board thickness which can ensure an allowable current value. Thereby, since the shaping | molding process of the thermal absorption electrode member 20 and the thermal radiation electrode member 30 can be simplified, manufacturing cost can be reduced.

(他の実施形態)
以上の実施形態では、絶縁部材15をシート状に形成したが、これに限らず、絶縁樹脂フィルムもしくは絶縁紙で形成しても良い。また、以上の実施形態では、吸熱熱交換部20bおよび放熱熱交換部30bを平面状に形成された吸熱電極部20aおよび放熱電極部30aから延びた平面に略U字状になるように折り曲げて形成したが、これに限らず、図7に示すように、A面とB面との間で捻じれさせてB面にルーバー状のフィンを形成するようにしても良い。これによれば簡素な形状の吸熱熱交換部20bおよび放熱熱交換部30bとすることができる。
(Other embodiments)
In the above embodiment, the insulating member 15 is formed in a sheet shape, but is not limited thereto, and may be formed of an insulating resin film or insulating paper. In the above embodiment, the endothermic heat exchanging portion 20b and the radiating heat exchanging portion 30b are bent so as to be substantially U-shaped on the flat surface extending from the endothermic electrode portion 20a and the radiating electrode portion 30a. However, the present invention is not limited to this, and as shown in FIG. 7, a louver-like fin may be formed on the B surface by twisting between the A surface and the B surface. According to this, it can be set as the endothermic heat exchange part 20b and the heat radiation heat exchange part 30b of a simple shape.

また、図8に示すように、吸熱電極部材20および放熱電極部材30を少なくとも熱電素子群相当の複数個まとめて連結するように連結部材25、35で連結させて、吸熱電極部20aおよび放熱電極部30aを熱電素子12、13に結合した後に、連結部材25、35を切断するように構成しても良い。これによれば、吸熱電極部材20および放熱電極部材30を単品で形成するよりも製造工数の低減が図れる。   Further, as shown in FIG. 8, the endothermic electrode member 20 and the radiating electrode member 20 and the radiating electrode member 30 are connected by connecting members 25 and 35 so that at least a plurality of thermoelectric element groups corresponding to each other are connected together. After connecting the part 30a to the thermoelectric elements 12 and 13, the connecting members 25 and 35 may be cut off. According to this, the number of manufacturing steps can be reduced as compared with the case where the heat absorbing electrode member 20 and the heat radiating electrode member 30 are formed separately.

また、以上の第1実施形態では、熱電素子群を第1絶縁基板11に形成された基板穴に配列して一体構成させたが、これに限らず、図9に示すように、吸熱電極部20aおよび放熱電極部30aが貫通する貫通孔(図示せず)を形成した平板状の支持部材26、36を設け、その支持部材26、36を熱電素子12、13の両端に配設する。   Further, in the first embodiment described above, the thermoelectric element group is arranged in the substrate hole formed in the first insulating substrate 11 and integrally configured. However, the present invention is not limited thereto, and as shown in FIG. Flat support members 26 and 36 each having a through hole (not shown) through which 20a and the heat radiation electrode portion 30a pass are provided, and the support members 26 and 36 are disposed at both ends of the thermoelectric elements 12 and 13, respectively.

そして、その支持部材26、36の貫通孔に吸熱電極部20aおよび放熱電極部30aを貫通させて熱電素子12、13間に吸熱電極部材20および放熱電極部材30を積層するように構成しても良い。これによれば、吸熱電極部材20および放熱電極部材30が所定の位置に固定できることで間隙が狭められることがない。   Further, the heat absorbing electrode member 20 and the heat radiating electrode member 30 may be stacked between the thermoelectric elements 12 and 13 by passing the heat absorbing electrode portion 20a and the heat radiating electrode portion 30a through the through holes of the support members 26 and 36. good. According to this, since the heat absorption electrode member 20 and the heat radiation electrode member 30 can be fixed at predetermined positions, the gap is not narrowed.

また、以上の実施形態では、吸熱/放熱熱交換部20b、30bを吸熱電極部20aおよび放熱電極部30aから延びた平面に略U字状になるように折り曲げて、外方に延出する平面にルーバー状のフィンを形成したが、これに限らず、図10に示すように、吸熱/放熱熱交換部20b、30bを吸熱電極部20aおよび放熱電極部30aから外方に延出した複数個の棒状からなるピン部材で形成しても良い。   Further, in the above embodiment, the heat absorption / radiation heat exchange portions 20b, 30b are bent so as to be substantially U-shaped on the plane extending from the heat absorption electrode portion 20a and the heat dissipation electrode portion 30a, and are extended outward. Although a louver-like fin is formed on the heat sink / heat radiating heat exchanging portions 20b and 30b as shown in FIG. 10, the heat absorbing / radiating heat exchanging portions 20b and 30b extend outwardly from the heat absorbing electrode portions 20a and 30a. You may form with the pin member which consists of a rod shape.

また、以上の実施形態では、本発明をペルチェ効果によって、一方の電極部に低温状態の熱を伝熱させ、他方の電極部に高温の熱を伝達するように構成した熱電素子モジュール10に適用したが、これに限らず、ゼーベック効果(電極部に温度差を与えると電流が流れる。)による熱電素子モジュール10にも適用しても良い。   Further, in the above embodiment, the present invention is applied to the thermoelectric element module 10 configured to transfer low-temperature heat to one electrode portion and transfer high-temperature heat to the other electrode portion by the Peltier effect. However, the present invention is not limited to this, and the present invention may also be applied to the thermoelectric element module 10 based on the Seebeck effect (current flows when a temperature difference is applied to the electrode portion).

本発明の第1実施形態における熱電変換装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in 1st Embodiment of this invention. 図1に示すA矢視図である。It is A arrow directional view shown in FIG. 本発明の第1実施形態における熱電変換装置の主要部の概略形状を示す斜視図である。It is a perspective view which shows schematic shape of the principal part of the thermoelectric conversion apparatus in 1st Embodiment of this invention. 本発明の第2実施形態における熱電変換装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in 2nd Embodiment of this invention. 本発明の第2実施形態における熱電変換装置の主要部の概略形状を示す斜視図である。It is a perspective view which shows schematic shape of the principal part of the thermoelectric conversion apparatus in 2nd Embodiment of this invention. 本発明の第2実施形態の変形例における熱電変換装置の主要部の概略形状を示す斜視図である。It is a perspective view which shows schematic shape of the principal part of the thermoelectric conversion apparatus in the modification of 2nd Embodiment of this invention. 他の実施形態における吸熱電極部材20および放熱電極部材30の概略形状を示す斜視図である。It is a perspective view which shows the schematic shape of the heat absorption electrode member 20 and the thermal radiation electrode member 30 in other embodiment. 他の実施形態における吸熱電極部材20および放熱電極部材30の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the thermal absorption electrode member 20 and the thermal radiation electrode member 30 in other embodiment. 他の実施形態の変形例における吸熱電極部材20および放熱電極部材30の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the thermal absorption electrode member 20 and the thermal radiation electrode member 30 in the modification of other embodiment. 他の実施形態における吸熱電極部材20および放熱電極部材30の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the thermal absorption electrode member 20 and the thermal radiation electrode member 30 in other embodiment. (a)は従来技術における熱電変換装置の全体構成を示す模式図、(b)は(a)に示すA−A断面図である。(A) is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in a prior art, (b) is AA sectional drawing shown to (a).

符号の説明Explanation of symbols

10…熱電素子モジュール
12…P型熱電素子、熱電素子
13…N型熱電素子、熱電素子
15…絶縁部材
20a…吸熱電極部
20b…吸熱熱交換部
30a…放熱電極部
30b…放熱熱交換部
DESCRIPTION OF SYMBOLS 10 ... Thermoelectric element module 12 ... P-type thermoelectric element, thermoelectric element 13 ... N-type thermoelectric element, thermoelectric element 15 ... Insulation member 20a ... Endothermic electrode part 20b ... Endothermic heat exchange part 30a ... Radiation electrode part 30b ... Radiation heat exchange part

Claims (4)

吸熱電極部(20a)、P型熱電素子(12)、放熱電極部(30a)、およびN型熱電素子(13)を前記の順番に複数組配列してなる熱電素子群を列設して、全ての前記熱電素子(12、13)を直列接続して構成された熱電素子モジュール(10)と、
前記熱電素子モジュール(10)の一方面に配設され、前記吸熱電極部(20a)に伝熱可能に接続された吸熱熱交換部(20b)と、
前記熱電素子モジュール(10)の他方面に配設され、前記放熱電極部(30a)に伝熱可能に接続された放熱熱交換部(30b)とを備える熱電変換装置において、
前記吸熱熱交換部(20b)および前記放熱熱交換部(30b)は、前記熱電素子群に沿う方向に熱交換媒体が流れるように形成して前記熱電素子モジュール(10)に配設されていることを特徴とする熱電変換装置。
A thermoelectric element group formed by arranging a plurality of sets of the endothermic electrode portion (20a), the P-type thermoelectric element (12), the heat dissipation electrode portion (30a), and the N-type thermoelectric element (13) in the order described above, A thermoelectric element module (10) configured by connecting all the thermoelectric elements (12, 13) in series;
An endothermic heat exchange part (20b) disposed on one surface of the thermoelectric element module (10) and connected to the endothermic electrode part (20a) so as to be capable of transferring heat;
In the thermoelectric conversion device including the heat dissipation element (30b) disposed on the other surface of the thermoelectric element module (10) and connected to the heat dissipation electrode section (30a) so as to be capable of transferring heat,
The endothermic heat exchange part (20b) and the radiant heat exchange part (30b) are formed in the thermoelectric element module (10) so that a heat exchange medium flows in a direction along the thermoelectric element group. A thermoelectric conversion device characterized by that.
隣接する前記吸熱熱交換部(20b)および前記放熱熱交換部(30b)の相互間には、絶縁材からなる絶縁部材(15)が熱交換媒体の流れ方向と同じ方向に向けて配設されていることを特徴とする請求項1に記載の熱電変換装置。   An insulating member (15) made of an insulating material is disposed between the adjacent endothermic heat exchanging portion (20b) and the radiating heat exchanging portion (30b) in the same direction as the flow direction of the heat exchange medium. The thermoelectric conversion device according to claim 1, wherein 前記熱電素子モジュール(10)は、前記吸熱電極部(20a)、前記P型熱電素子(12)、前記放熱電極部(30a)、および前記N型熱電素子(13)が複数組積層していることを特徴とする請求項1または請求項2に記載の熱電変換装置。   In the thermoelectric module (10), a plurality of sets of the endothermic electrode part (20a), the P-type thermoelectric element (12), the heat radiation electrode part (30a), and the N-type thermoelectric element (13) are laminated. The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion device is provided. 前記熱電素子モジュール(10)は、前記P型熱電素子(12)、および前記N型熱電素子(13)が交互に略碁盤目状に配列され、一方の隣接する前記熱電素子(12、13)の端面に前記吸熱電極部(20a)が配設され、他方の隣接する前記熱電素子(12、13)の端面に前記放熱電極部(30a)が配設されていることを特徴とする請求項1または請求項2に記載の熱電変換装置。   In the thermoelectric element module (10), the P-type thermoelectric element (12) and the N-type thermoelectric element (13) are alternately arranged in a substantially grid pattern, and one adjacent thermoelectric element (12, 13) is arranged. The endothermic electrode portion (20a) is disposed on an end surface of the heat dissipation electrode, and the heat radiation electrode portion (30a) is disposed on an end surface of the other adjacent thermoelectric element (12, 13). The thermoelectric conversion apparatus of Claim 1 or Claim 2.
JP2004350350A 2004-12-02 2004-12-02 Thermoelectric conversion device Withdrawn JP2006165066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350350A JP2006165066A (en) 2004-12-02 2004-12-02 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350350A JP2006165066A (en) 2004-12-02 2004-12-02 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2006165066A true JP2006165066A (en) 2006-06-22

Family

ID=36666758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350350A Withdrawn JP2006165066A (en) 2004-12-02 2004-12-02 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2006165066A (en)

Similar Documents

Publication Publication Date Title
JP4581802B2 (en) Thermoelectric converter
US20200035898A1 (en) Thermoelectric device having circuitry that facilitates manufacture
JP4297060B2 (en) Thermoelectric converter
JP2012182449A (en) Photoelectromotive force junction box
CN101009272B (en) Cooling apparatus for memory module
JP4622577B2 (en) Cascade module for thermoelectric conversion
KR100663117B1 (en) Thermoelectric module
JP4968150B2 (en) Semiconductor element cooling device
JP2006287066A (en) Thermoelectric conversion apparatus and method of manufacturing the apparatus
JP2010021410A (en) Thermo-module
KR101177266B1 (en) Heat Exchanger using Thermoelectric Modules
JP4626263B2 (en) Thermoelectric conversion device and method for manufacturing the thermoelectric conversion device
JP2006165066A (en) Thermoelectric conversion device
JP2000091648A (en) Peltier module
JP4682756B2 (en) Thermoelectric conversion device and method of manufacturing the same
JP2006165273A (en) Thermoelectric conversion device
JP2007294548A (en) Thermoelectric conversion device
JP2007043075A (en) Thermoelectric conversion device
JP2007329349A (en) Thermoelectric conversion device and manufacturing method thereof
JP4788225B2 (en) Thermoelectric conversion device and method of manufacturing the same
JP2006108253A (en) Thermoelectric conversion apparatus
JP2006165067A (en) Thermoelectric conversion device and manufacturing method thereof
JP2006080228A (en) Thermoelectric converter and its manufacturing process
JP2011082272A (en) Thermoelectric cooling device
JP4288927B2 (en) Multistage thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081216