JP2006164771A - Manufacturing method of organic light-emitting element - Google Patents

Manufacturing method of organic light-emitting element Download PDF

Info

Publication number
JP2006164771A
JP2006164771A JP2004354968A JP2004354968A JP2006164771A JP 2006164771 A JP2006164771 A JP 2006164771A JP 2004354968 A JP2004354968 A JP 2004354968A JP 2004354968 A JP2004354968 A JP 2004354968A JP 2006164771 A JP2006164771 A JP 2006164771A
Authority
JP
Japan
Prior art keywords
electrode
organic light
emitting element
manufacturing
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004354968A
Other languages
Japanese (ja)
Inventor
Shigemi Suzuki
成己 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004354968A priority Critical patent/JP2006164771A/en
Publication of JP2006164771A publication Critical patent/JP2006164771A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an organic light-emitting element capable of sufficiently removing an extraneous matter on a charge injection electrode surface, controlling the balance of a charge injection amount, and providing an organic light-emitting element having a long life, high efficiency and high reliability by preventing leak and dark spots. <P>SOLUTION: This manufacturing method of an organic light-emitting element includes processes of: applying surface treatment to a first electrode 2 formed on a substrate 1; forming at least one organic layer 3 on the first electrode 2; and forming a second electrode 4 on the organic layer 3. In the process of applying the surface treatment to the first electrode 2, the first electrode 2 is exposed in an ozone atmosphere and thereafter an ultraviolet ray is radiated to the first electrode 2 in a nitrogen gas atmosphere. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機発光素子の製造方法に関し、詳しくは、有機発光素子の電荷注入電極の表面処理を行う工程を改良した有機発光素子の製造方法に関する。   The present invention relates to a method for manufacturing an organic light-emitting element, and more particularly, to a method for manufacturing an organic light-emitting element in which a process for performing a surface treatment of a charge injection electrode of the organic light-emitting element is improved.

有機発光素子(有機エレクトロルミネッセンス(EL)素子)は、陽極と陰極との間に蛍光性有機化合物を含む薄膜を挟持させて、各電極から電子およびホール(正孔)を注入することにより、蛍光性化合物の励起子を生成させ、この励起子が基底状態にもどる際に放射される光を利用する素子である。   Organic light-emitting devices (organic electroluminescence (EL) devices) are fluorescent by injecting electrons and holes from each electrode by sandwiching a thin film containing a fluorescent organic compound between an anode and a cathode. It is an element that generates light excitons of the active compound and uses light emitted when the excitons return to the ground state.

1987年のコダック社の研究(非特許文献1)では、陽極にITO、陰極にマグネシウム銀の合金をそれぞれ用い、電子輸送材料および発光材料としてアルミニウムキノリノール錯体を用い、ホール輸送材料にトリフェニルアミン誘導体を用いた機能分離型2層構成の素子で、10V程度の印加電圧において1000cd/m2程度の発光が報告されている。 In 1987, Kodak Research (Non-patent Document 1) used ITO as the anode and magnesium silver alloy as the cathode, an aluminum quinolinol complex as the electron transport material and the light emitting material, and a triphenylamine derivative as the hole transport material. It has been reported that the device has a function-separated two-layer structure using a luminescence of about 1000 cd / m 2 at an applied voltage of about 10V.

また、蛍光性有機化合物の種類を変えることにより、紫外から赤外までの発光が可能であり、最近では様々な化合物の研究が活発に行われている。   In addition, by changing the type of the fluorescent organic compound, light emission from ultraviolet to infrared is possible, and recently, various compounds have been actively researched.

さらに、上記のような低分子材料を用いた有機発光素子の他にも、共役系高分子を用いた有機発光素子が、ケンブリッジ大学のグループ(非特許文献2)により報告されている。この報告ではポリフェニレンビニレン(PPV)を塗工系で成膜することにより、単層で発光を確認している。   Furthermore, in addition to the organic light emitting device using the low molecular material as described above, an organic light emitting device using a conjugated polymer has been reported by a group of Cambridge University (Non-Patent Document 2). In this report, light emission was confirmed in a single layer by forming a film of polyphenylene vinylene (PPV) in a coating system.

このように有機発光素子における最近の進歩は著しく、その特徴は低印加電圧で高輝度であり、発光波長の多様性、高速応答性に優れ、薄型、軽量の発光デバイス化が可能であることから、広汎な用途への可能性を示唆されており、特に表示デバイス用途として注目されている。   As described above, recent advances in organic light-emitting elements are remarkable, and their features are high luminance at low applied voltage, excellent emission wavelength diversity and high-speed response, and thin and lightweight light-emitting devices can be realized. This suggests the possibility of a wide range of uses, and is particularly attracting attention as a display device.

ところが、このような特長を充分に生かした有機発光素子の製造には、リークやダークスポットと呼ばれる非発光部の発生防止、発光効率の向上、長寿命化といった課題がまだ残されている。これらの課題に対して、電荷注入電極の表面処理の検討が行われている。   However, the manufacture of an organic light emitting device that makes full use of such features still has problems such as prevention of non-light emitting portions called leaks and dark spots, improvement of light emission efficiency, and longer life. In consideration of these problems, surface treatment of the charge injection electrode has been studied.

従来から用いられている電荷注入電極の表面処理方法としては、UV/O3処理が広く知られており、紫外線によりオゾンと活性酸素を発生させるこの方法は、表面の付着物を除去し、電極表面の仕事関数を増加させる。特許文献1においては、活性酸素を多く導入することにより仕事関数を増大させている。その他の表面処理方法としては、特許文献2〜4に開示された真空紫外域の紫外線を照射する方法や、特許文献5に開示された窒素酸化物を修飾する方法が挙げられる。 As a surface treatment method of a charge injection electrode used conventionally, UV / O 3 treatment is widely known. This method of generating ozone and active oxygen by ultraviolet rays removes surface deposits, Increase the work function of the surface. In Patent Document 1, the work function is increased by introducing a large amount of active oxygen. Examples of other surface treatment methods include a method of irradiating ultraviolet rays in the vacuum ultraviolet region disclosed in Patent Documents 2 to 4, and a method of modifying nitrogen oxide disclosed in Patent Document 5.

特開2001−284059号公報JP 2001-284059 A 特開2001−035668号公報JP 2001-035668 A 特開2001−028296号公報JP 2001-028296 A 特開2001−223076号公報Japanese Patent Laid-Open No. 2001-223076 特開2000−340367号公報JP 2000-340367 A Appl.Phys.Lett.51,913(1987)Appl. Phys. Lett. 51,913 (1987) Nature347,539(1990)Nature 347, 539 (1990)

しかし、有機層の膜厚が高々100nm程度である有機発光素子においては、電極上の微小な不純物により容易にリークやダークスポットが発生するため、オゾンや活性酸素の発生を伴わない表面処理方法では洗浄効果が低く不十分である。また、有機発光素子の寿命や発光効率はホール及び電子の注入性、即ち、電荷注入電極の仕事関数によって大きく変化し、両電極からの電荷注入量のバランスをとる必要があるため、電極表面の仕事関数を増大させるだけでは逆に素子性能を低下させる原因となる。   However, in an organic light emitting device having an organic layer thickness of about 100 nm at most, leaks and dark spots are easily generated due to minute impurities on the electrode. Therefore, in the surface treatment method without generation of ozone or active oxygen, The cleaning effect is low and insufficient. In addition, the lifetime and luminous efficiency of the organic light-emitting element vary greatly depending on the hole and electron injection properties, that is, the work function of the charge injection electrode, and it is necessary to balance the amount of charge injection from both electrodes. If only the work function is increased, the device performance is reduced.

本発明は、上記の課題に鑑みて創案されたものであり、その目的は、電荷注入電極表面の付着物を充分に除去し、且つ、電荷注入量のバランスを制御でき、リークやダークスポットを防止して長寿命及び高効率で信頼性の高い有機発光素子を得ることができる有機発光素子の製造方法を提供することにある。   The present invention was devised in view of the above problems, and its purpose is to sufficiently remove the deposits on the surface of the charge injection electrode and to control the balance of the charge injection amount, thereby preventing leakage and dark spots. An object of the present invention is to provide a method for manufacturing an organic light emitting device capable of preventing and obtaining an organic light emitting device having a long life, high efficiency and high reliability.

上記の目的を達成すべく、本発明に係る有機発光素子の製造方法は、基板に形成された第1の電極の表面処理を行う工程と、前記電極上に少なくとも1層の有機層を形成する工程と、前記有機層上に第2の電極を形成する工程とを有し、前記第1の電極の表面処理を行う工程は、前記第1の電極をオゾン雰囲気中に曝露した後、窒素ガス雰囲気中で前記第1の電極に紫外線を照射することを特徴とする。   In order to achieve the above object, an organic light emitting device manufacturing method according to the present invention includes a step of performing a surface treatment of a first electrode formed on a substrate, and forming at least one organic layer on the electrode. And a step of forming a second electrode on the organic layer, and the step of performing a surface treatment on the first electrode includes exposing the first electrode to an ozone atmosphere, and then applying nitrogen gas. The first electrode is irradiated with ultraviolet rays in an atmosphere.

本発明に係る有機発光素子の製造方法によれば、電荷注入電極の表面洗浄と電荷注入量の最適化とを連続して行うことができ、リークやダークスポットなどの異常の無い、長寿命及び高効率で信頼性の高い有機発光素子を製造することができる。   According to the method for manufacturing an organic light emitting device according to the present invention, the surface cleaning of the charge injection electrode and the optimization of the charge injection amount can be performed continuously, there is no abnormality such as a leak or a dark spot, a long life and A highly efficient and highly reliable organic light emitting device can be manufactured.

以下、本発明を実施するための最良の形態を図面に基づいて詳細に説明するが、本発明は本実施形態に限るものではない。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings, but the present invention is not limited to this embodiment.

図1は、本発明の製造方法を用いて作製される有機発光素子の断面図である。図1において、1は基板、2は陽極、3は有機層、4は陰極である。   FIG. 1 is a cross-sectional view of an organic light emitting device manufactured using the manufacturing method of the present invention. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is an organic layer, and 4 is a cathode.

図示するように、本発明の製造方法を用いて作製される有機発光素子は、基板1上に、第1の電極としての陽極2、有機層3及び第2の電極としての陰極4を順次形成して構成される。ここで、有機層はホール及び電子輸送機能と発光機能とを併せもつ単層構成としても良いし、いずれか又は双方が発光機能をもつホール輸送層と電子輸送層との積層構造としたり、或いは、機能分離させたホール輸送層、発光層及び電子輸送層の積層構造としても良い。また、陽極側にホール注入層を挿入した構成や、陰極側に電子注入層を挿入した構成としても良い。さらに、基板上に補助電極を形成し、その上に陽極を形成した構造であっても良い。同様に陰極も一層構成だけでなく、多層構成であっても良い。   As shown in the figure, an organic light-emitting device manufactured using the manufacturing method of the present invention sequentially forms an anode 2 as a first electrode, an organic layer 3 and a cathode 4 as a second electrode on a substrate 1. Configured. Here, the organic layer may have a single layer structure having both a hole and electron transport function and a light emitting function, or a layered structure of a hole transport layer and an electron transport layer in which either or both have a light emitting function, or Alternatively, a stacked structure of a hole transport layer, a light emitting layer, and an electron transport layer that are functionally separated may be used. Further, a configuration in which a hole injection layer is inserted on the anode side or a configuration in which an electron injection layer is inserted on the cathode side may be employed. Furthermore, a structure in which an auxiliary electrode is formed on a substrate and an anode is formed thereon may be used. Similarly, the cathode may have a multilayer structure as well as a single layer structure.

有機発光素子の基板としては、特に限定するものではないが、金属製基板、セラミックス製基板等の不透明性基板の他、ガラス、石英等の透明性基板を用いることができる。   Although it does not specifically limit as a board | substrate of an organic light emitting element, Transparent substrates, such as glass and quartz other than opaque substrates, such as a metal board | substrate and a ceramic board | substrate, can be used.

陽極には、酸化錫、酸化亜鉛、酸化錫インジウム(ITO)、酸化亜鉛インジウム等の金属酸化物を使用することができる。また、例えば、金、白金、ニッケル、パラジウム、コバルト、セレン、バナジウム等の他、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、インジウム、銀、鉛、錫、クロム等の金属単体あるいは複数の合金を用いても良い。これらの物質は単独で用いるだけでなく、複数併用することもでき、例えば、金属あるいは合金を補助電極として金属酸化物との積層構造であっても良い。陽極の形成は、真空蒸着法、スパッタ法、イオンプレーティング法などを用いて行うことができる。   A metal oxide such as tin oxide, zinc oxide, indium tin oxide (ITO), or indium zinc oxide can be used for the anode. In addition, for example, gold, platinum, nickel, palladium, cobalt, selenium, vanadium, etc., or a single metal or a plurality of alloys such as lithium, sodium, potassium, calcium, magnesium, aluminum, indium, silver, lead, tin, chromium May be used. These substances can be used not only alone but also in combination. For example, a laminated structure with a metal oxide using a metal or an alloy as an auxiliary electrode may be used. The anode can be formed using a vacuum deposition method, a sputtering method, an ion plating method, or the like.

有機層には、有機発光素子に従来から用いられている有機材料を用いることができ、例えば、ホール輸送層に関しては下記化1と化5、電子輸送層及び発光層に関しては下記化2に示す材料などを用いることができる。また、下記化3に示すようなドーパント色素をホール輸送層や電子輸送層にドーピング、或いは発光層として、これらの材料を例えば下記化4に示すような電子輸送性材料、或いはホール輸送性材料にドーピングしても良い。また、下記化6に示すようなポリマー系材料を用いることもできる。以上に挙げた材料はあくまでも代表的なものであり、これらに限定されるものではない。有機層の形成は、真空蒸着法、スピンコーティング法などを用いて行うことができる。有機層の膜厚は50〜150nm程度が好ましい。   For the organic layer, organic materials conventionally used for organic light emitting devices can be used. For example, the hole transport layer is represented by the following chemical formulas 1 and 5, and the electron transport layer and the light emitting layer are represented by chemical formula 2 below. A material etc. can be used. Further, a dopant dye as shown in the following chemical formula 3 is doped in the hole transport layer or the electron transport layer, or a light emitting layer, and these materials are converted into an electron transport material or a hole transport material as shown in the chemical formula 4 below. Doping may be performed. Also, a polymer material as shown in the following chemical formula 6 can be used. The materials listed above are merely representative and are not limited to these. The organic layer can be formed using a vacuum deposition method, a spin coating method, or the like. The thickness of the organic layer is preferably about 50 to 150 nm.

Figure 2006164771
Figure 2006164771

Figure 2006164771
Figure 2006164771

Figure 2006164771
Figure 2006164771

Figure 2006164771
Figure 2006164771

Figure 2006164771
Figure 2006164771

Figure 2006164771
Figure 2006164771

陰極には、仕事関数の小さい材料を用いるのが良く、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、インジウム、銀、鉛、錫、クロム等の金属単体、或いは複数の合金として用いることができる。これらは真空蒸着法などを用いて形成することができる。また、発光の取り出し方向に応じて透明電極を用いる場合など、ITO等の金属酸化物等を用いても良い。   A material having a small work function is preferably used for the cathode, and can be used as a single metal such as lithium, sodium, potassium, calcium, magnesium, aluminum, indium, silver, lead, tin, or chromium, or as a plurality of alloys. . These can be formed using a vacuum deposition method or the like. Moreover, you may use metal oxides, such as ITO, etc., when using a transparent electrode according to the taking-out direction of light emission.

次に、本発明に係る有機発光素子の製造方法を、電極にITO膜を使用した場合を例にして詳細に説明する。   Next, the manufacturing method of the organic light emitting device according to the present invention will be described in detail by taking the case where an ITO film is used as an electrode as an example.

まず、基板上に形成されたITO膜を、アセトンやイソプロピルアルコール(IPA)等の有機溶剤を用いて、超音波洗浄や煮沸等により洗浄し、乾燥させる。   First, the ITO film formed on the substrate is cleaned by ultrasonic cleaning or boiling using an organic solvent such as acetone or isopropyl alcohol (IPA) and dried.

次に、ITO膜をオゾン雰囲気に曝し洗浄する。ここで、オゾンによる洗浄は、酸素含有雰囲気中のITO膜に紫外線を照射する通常のUV/O3洗浄方法でも良いし、外部で発生させたオゾンをITO膜上に流す方法などを用いても良い。有機発光素子はITO膜表面の残留水分により容易に劣化するため、UV/O3洗浄を行う際も、水分濃度10ppm以下の雰囲気で紫外線照射を行うのが好ましい。また、ITO膜の仕事関数は成膜後で4.5eV程度であるが、オゾン洗浄後には6eV以上にまで増加しているのが好ましく、効率的に洗浄効果を得るには、オゾン洗浄の際のオゾン濃度は500ppm以上であるのが適当である。 Next, the ITO film is cleaned by exposing it to an ozone atmosphere. Here, the cleaning with ozone may be a normal UV / O 3 cleaning method in which an ITO film in an oxygen-containing atmosphere is irradiated with ultraviolet rays, or a method of flowing ozone generated on the ITO film. good. Since the organic light-emitting element easily deteriorates due to residual moisture on the surface of the ITO film, it is preferable to perform UV irradiation in an atmosphere having a moisture concentration of 10 ppm or less when performing UV / O 3 cleaning. The work function of the ITO film is about 4.5 eV after the film formation, but it is preferable that the work function increases to 6 eV or more after the ozone cleaning. The ozone concentration is suitably 500 ppm or more.

続いて、オゾン洗浄したITO膜を、オゾン洗浄の際の水分濃度よりも高い水分濃度の雰囲気に曝すことなく、窒素雰囲気に置き、紫外線照射を行う。この場合の窒素雰囲気の水分濃度は1ppm以下であることが好ましい。窒素雰囲気中で紫外線照射を行うことにより、UV/O3洗浄で増加したITO膜表面の仕事関数を低下させることができる。紫外線照射の条件は、有機層の構成や陰極の仕事関数によって異なり、ITO膜表面の仕事関数が最適になるように数回の実験を行い、照度または照射時間の条件を決定する。ITO膜表面の仕事関数のばらつきを抑えるため、オゾン洗浄の際のオゾン濃度と洗浄時間、及び、窒素雰囲気での紫外線照度や照射時間は正確に制御する必要があり、例えば、UV/O3洗浄から紫外線照射を行ったまま雰囲気を窒素ガスに置換するなど、連続的に雰囲気を変化させる操作は好ましくない。 Subsequently, the ozone-cleaned ITO film is placed in a nitrogen atmosphere without being exposed to an atmosphere having a moisture concentration higher than that at the time of ozone cleaning, and ultraviolet irradiation is performed. In this case, the moisture concentration in the nitrogen atmosphere is preferably 1 ppm or less. By performing ultraviolet irradiation in a nitrogen atmosphere, the work function of the ITO film surface increased by UV / O 3 cleaning can be reduced. The conditions of ultraviolet irradiation differ depending on the configuration of the organic layer and the work function of the cathode, and several experiments are performed so as to optimize the work function of the ITO film surface, and the conditions of illuminance or irradiation time are determined. In order to suppress variations in the work function on the surface of the ITO film, it is necessary to accurately control the ozone concentration and the cleaning time in the ozone cleaning, and the ultraviolet illuminance and the irradiation time in a nitrogen atmosphere. For example, UV / O 3 cleaning The operation of continuously changing the atmosphere, such as replacing the atmosphere with nitrogen gas while being irradiated with ultraviolet rays, is not preferable.

続いて、最適な仕事関数に調整されたITO膜上に有機層の成膜を行う。紫外線照射の終了時から成膜開始までの間は、ITO膜表面の仕事関数の変化を防ぐため、水分濃度1ppm以上の雰囲気に曝さないようにすることが好ましい。これは、ITO膜を紫外線照射時と同様の窒素雰囲気、または、減圧下に置くことにより可能である。有機層成膜後、陰極の成膜を行い、有機発光素子を形成する。   Subsequently, an organic layer is formed on the ITO film adjusted to an optimum work function. In order to prevent a change in the work function of the ITO film surface from the end of ultraviolet irradiation to the start of film formation, it is preferable not to expose to an atmosphere having a moisture concentration of 1 ppm or more. This can be done by placing the ITO film under a nitrogen atmosphere similar to that during ultraviolet irradiation or under reduced pressure. After the organic layer is formed, a cathode is formed to form an organic light emitting device.

以下、本発明の好適な実施例を詳細に説明するが、本発明はこれらの実施例に限るものではない。   Hereinafter, preferred examples of the present invention will be described in detail, but the present invention is not limited to these examples.

<実施例1>
ガラス基板上に、ITO膜をスパッタ法により120nmの膜厚で形成し、これをアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、IPAで煮沸洗浄の後、乾燥させた。このITO膜に、水分濃度約3ppmの乾燥空気中で低圧水銀ランプにより紫外線照射を行い、UV/O3洗浄を施した。このときのオゾン濃度は約600ppmで、20分間洗浄を行い、ITO膜表面の仕事関数を6.1eVまで増加させた。その後、水分濃度1ppm以下の窒素ガス中に搬送し、再び紫外線を照射して仕事関数の調整を行った。このときの紫外線照度は約30mW/cm2で、照射時間を調整して5.7、5.4、5.0eVの3通りのサンプルを作製した。これにUV/O3洗浄のみの6.1eVを加えて、4条件のITO膜を用意した。
<Example 1>
An ITO film having a film thickness of 120 nm was formed on a glass substrate by sputtering, and this was ultrasonically washed successively with acetone and isopropyl alcohol (IPA), boiled and washed with IPA, and then dried. This ITO film was irradiated with ultraviolet rays by a low-pressure mercury lamp in dry air having a moisture concentration of about 3 ppm to perform UV / O 3 cleaning. The ozone concentration at this time was about 600 ppm, and cleaning was performed for 20 minutes to increase the work function of the ITO film surface to 6.1 eV. Then, it conveyed in nitrogen gas with a moisture concentration of 1 ppm or less, and the work function was adjusted by irradiating ultraviolet rays again. The ultraviolet illuminance at this time was about 30 mW / cm 2 , and three types of samples of 5.7, 5.4, and 5.0 eV were prepared by adjusting the irradiation time. To this, 6.1 eV of only UV / O 3 cleaning was added to prepare an ITO film under four conditions.

このITO膜上に、まず、ホール輸送層としてトリフェニルジアミン(TPD)をスピンコートにより30nmの膜厚で成膜した。次に、真空蒸着法により、発光層としてアルミキノリノール錯体(Alq3)にクマリン6を1wt%ドープした膜を20nmの膜厚で、電子輸送層としてAlq3を40nmの膜厚で成膜した。続いて、同様に真空蒸着法により、電子注入層として、AlとLi(Li濃度1原子%)からなる蒸着材料を用いて金属層膜を3nmの膜厚で、陰極としてAl膜を100nmの膜厚で形成した。 On this ITO film, first, triphenyldiamine (TPD) was formed as a hole transport layer to a thickness of 30 nm by spin coating. Then, by a vacuum deposition method, the light-emitting layer and an aluminum quinolinol complex (Alq 3) to membranes of coumarin 6 was 1 wt% doped with a film thickness of 20nm as was deposited Alq 3 with a thickness of 40nm as an electron transport layer. Subsequently, in the same manner, by vacuum deposition, a metal layer film having a thickness of 3 nm is used as an electron injection layer and an Al film having a thickness of 100 nm as a cathode using a deposition material composed of Al and Li (Li concentration 1 atom%). Formed with thickness.

作製したサンプルの陽極と陰極に端子を接続し、通電による発光状態を確認したところ、ダークスポットの発生は見られず、リークなどの異常も見られなかった。これらのITO膜表面の仕事関数が異なるサンプルを、初期輝度5000cd/m2で連続通電耐久試験を行ったところ、寿命は図2に示すように、ITO膜表面の仕事関数が5.4eVあたりで最も長くなった。これにより、窒素雰囲気中での紫外線照射量によって有機発光素子の最適化が可能であることを確認した。ここで、この最適条件は有機層や陰極の構成などにより異なるものであり、上述の値は本実施例における最適値である。 When a terminal was connected to the anode and cathode of the produced sample and the light emission state by energization was confirmed, the generation of dark spots was not observed, and no abnormality such as leakage was observed. When the samples with different work functions on the surface of the ITO film were subjected to a continuous energization endurance test at an initial luminance of 5000 cd / m 2 , the lifetime was about 5.4 eV as shown in FIG. It became the longest. As a result, it was confirmed that the organic light emitting device can be optimized by the ultraviolet irradiation amount in a nitrogen atmosphere. Here, this optimum condition differs depending on the organic layer and the configuration of the cathode, and the above-mentioned values are optimum values in this embodiment.

<比較例1>
実施例1の比較として、窒素雰囲気での紫外線照射を行わず、UV/O3洗浄時のオゾン濃度と処理時間を調整することで、ITO膜表面の仕事関数が実施例1の最適値である5.4eVのサンプルを作製した。このときのオゾン濃度は100ppm、処理時間は10分である。有機発光素子の構成は実施例1と全く同じである。このサンプルで初期輝度5000cd/m2の連続通電耐久試験を行ったところ、途中でリークの発生により発光しなくなった。また、初期の発光状態も、ダークスポットが数箇所発生し、品質の悪いものとなった。
<Comparative Example 1>
As a comparison with Example 1, the work function on the surface of the ITO film is the optimum value of Example 1 by adjusting the ozone concentration and processing time during UV / O 3 cleaning without performing ultraviolet irradiation in a nitrogen atmosphere. A sample of 5.4 eV was produced. At this time, the ozone concentration is 100 ppm, and the treatment time is 10 minutes. The configuration of the organic light emitting device is exactly the same as that of the first embodiment. When this sample was subjected to a continuous energization endurance test with an initial luminance of 5000 cd / m 2 , no light was emitted due to the occurrence of a leak on the way. In the initial light emission state, several dark spots were generated and the quality was poor.

実施例及び比較例により、リークやダークスポットの発生が無く、長寿命な有機発光素子を作製するには、ITO膜のオゾン洗浄のみでは不十分であり、ITO膜のオゾン洗浄後に窒素雰囲気で紫外線照射を行う本発明が非常に有効であることを確認した。   According to the examples and comparative examples, ozone cleaning of the ITO film alone is not enough to produce a long-life organic light emitting device without occurrence of leaks or dark spots, and ultraviolet light in a nitrogen atmosphere after ozone cleaning of the ITO film. It was confirmed that the present invention for performing irradiation is very effective.

本発明の製造方法を用いて作製される有機発光素子の断面図である。It is sectional drawing of the organic light emitting element produced using the manufacturing method of this invention. 実施例の実験結果を示す説明図である。It is explanatory drawing which shows the experimental result of an Example.

符号の説明Explanation of symbols

1 基板
2 陽極
3 有機層
4 陰極
1 Substrate 2 Anode 3 Organic layer 4 Cathode

Claims (1)

基板に形成された第1の電極の表面処理を行う工程と、前記電極上に少なくとも1層の有機層を形成する工程と、前記有機層上に第2の電極を形成する工程とを有し、前記第1の電極の表面処理を行う工程は、前記第1の電極をオゾン雰囲気中に曝露した後、窒素ガス雰囲気中で前記第1の電極に紫外線を照射することを特徴とする有機発光素子の製造方法。   A step of performing a surface treatment of the first electrode formed on the substrate; a step of forming at least one organic layer on the electrode; and a step of forming a second electrode on the organic layer. The step of performing the surface treatment of the first electrode comprises exposing the first electrode to an ozone atmosphere and then irradiating the first electrode with ultraviolet rays in a nitrogen gas atmosphere. Device manufacturing method.
JP2004354968A 2004-12-08 2004-12-08 Manufacturing method of organic light-emitting element Withdrawn JP2006164771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004354968A JP2006164771A (en) 2004-12-08 2004-12-08 Manufacturing method of organic light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354968A JP2006164771A (en) 2004-12-08 2004-12-08 Manufacturing method of organic light-emitting element

Publications (1)

Publication Number Publication Date
JP2006164771A true JP2006164771A (en) 2006-06-22

Family

ID=36666534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354968A Withdrawn JP2006164771A (en) 2004-12-08 2004-12-08 Manufacturing method of organic light-emitting element

Country Status (1)

Country Link
JP (1) JP2006164771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368744B2 (en) 2010-04-01 2016-06-14 Samsung Display Co., Ltd. Organic light emitting diode device including multiple hole injection layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368744B2 (en) 2010-04-01 2016-06-14 Samsung Display Co., Ltd. Organic light emitting diode device including multiple hole injection layers

Similar Documents

Publication Publication Date Title
KR101707254B1 (en) Method for manufacturing organic light emitting element, organic light emitting element, light emitting device, display panel, and display device
JP2007005784A (en) Organic el device
JP2006032757A (en) Organic el element
JPH04255692A (en) Patterning method for organic electroluminescence element
JP5017820B2 (en) ELECTROLUMINESCENT DEVICE AND METHOD FOR MANUFACTURING THE SAME
JP2006352072A (en) Organic electroluminescence element
KR100844788B1 (en) Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method
JP2007096023A (en) Organic light emitting device
JP4810739B2 (en) Organic electroluminescence device and method for producing the same
JP6387547B2 (en) Organic EL device and method for producing the same, and method for forming metal oxide film
WO2013138550A1 (en) Plasma-chlorinated electrode and organic electronic devices using the same
JP3531680B2 (en) Manufacturing method of organic EL device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP2009238481A (en) Organic el display device
JP2006216924A (en) Organic electro-luminescent device and manufacturing method therefor
JP2011146610A (en) Organic electroluminescence display device and method of manufacturing the same
JP5729749B2 (en) Method for manufacturing organic electroluminescence element
JP2006164771A (en) Manufacturing method of organic light-emitting element
JP5173769B2 (en) Manufacturing method of organic EL element
JP2007234325A (en) Organic electroluminescent element and its manufacturing method
JP2007273573A (en) Organic light-emitting element
JP2002170670A (en) Organic elecroluminescent element and its manufacturing method as well as organic electroluminescent display
JP2006134660A (en) Manufacturing method of organic el element
CN114038947B (en) Method for processing functional layer of light-emitting device and light-emitting device
JP2004296234A (en) Organic el element and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304