JP2006159123A - Purification agent for organic arsenic compound contamination water and purification method - Google Patents

Purification agent for organic arsenic compound contamination water and purification method Download PDF

Info

Publication number
JP2006159123A
JP2006159123A JP2004356454A JP2004356454A JP2006159123A JP 2006159123 A JP2006159123 A JP 2006159123A JP 2004356454 A JP2004356454 A JP 2004356454A JP 2004356454 A JP2004356454 A JP 2004356454A JP 2006159123 A JP2006159123 A JP 2006159123A
Authority
JP
Japan
Prior art keywords
organic arsenic
purification
water
arsenic compound
arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004356454A
Other languages
Japanese (ja)
Inventor
Shuzo Tokunaga
修三 徳永
Noriyuki Honma
憲之 本間
Yoichi Kato
洋一 加藤
Koji Onuki
公司 大貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004356454A priority Critical patent/JP2006159123A/en
Publication of JP2006159123A publication Critical patent/JP2006159123A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purification technique capable of purifying organic arsenic compound contaminated water so that an environmental standard value of the residual arsenic concentration is ≤0.01 mg/L by using a dedicated purification agent having high arsenic purification treatment performance. <P>SOLUTION: In the purification method for the organic arsenic compound contamination water, the organic arsenic compound contamination water is purified by using a purification agent for the organic arsenic compound contamination water, consisting mainly of active carbon having a micropore content of ≥85.7%, so that the concentration of residual arsenic in the water is ≤0.01 mg/L. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機ヒ素化合物で汚染された水の浄化に係り、特に不適切に処分された旧式の化学兵器等に由来するジフェニルアルシン酸を主成分とする混合物である有機ヒ素化合物で汚染された水の浄化に関するものである。   The present invention relates to purification of water contaminated with an organic arsenic compound, and in particular, water contaminated with an organic arsenic compound which is a mixture containing diphenylarsinic acid as a main component derived from an old chemical weapon or the like that has been inappropriately disposed of. It is about purification.

2002年8月に茨城県神栖町の住民の間に、有機ヒ素化合物で汚染された井戸水の継続的摂取による健康被害が発生した(非特許文献1)。井戸水からは、有機ヒ素化合物であるジフェニルアルシン酸、ビスジフェニルアルシンオキサイド、フェニルアルソン酸が検出された(非特許文献2)。これらの化合物は、いずれもヒ素原子(As)にフェニル基(C−)が結合したものであり、ヒ酸(HAsO)、亜ヒ酸(HAsO)などの無機ヒ素化合物とは性質を全く異にするものである。以下に代表的な有機ヒ素化合物および無機ヒ素化合物の構造式を記載する。 In August 2002, health damage occurred due to continuous intake of well water contaminated with organic arsenic compounds among residents in Kamisu-cho, Ibaraki Prefecture (Non-patent Document 1). Diphenylarsinic acid, bisdiphenylarsine oxide, and phenylarsonic acid, which are organic arsenic compounds, were detected from the well water (Non-patent Document 2). Each of these compounds is a compound in which a phenyl group (C 6 H 5 —) is bonded to an arsenic atom (As), and inorganic compounds such as arsenic acid (H 3 AsO 4 ) and arsenous acid (H 3 AsO 3 ). Arsenic compounds have completely different properties. The structural formulas of typical organic arsenic compounds and inorganic arsenic compounds are described below.

Figure 2006159123
[ここで、(I)はジフェニルアルシン酸、(II)はビスジフェニルアルシンオキサイド、(III)はフェニルアルソン酸、(IV)はヒ酸、(V)は亜ヒ酸を示す]
Figure 2006159123
[Wherein (I) represents diphenylarsinic acid, (II) represents bisdiphenylarsine oxide, (III) represents phenylarsonic acid, (IV) represents arsenic acid, and (V) represents arsenous acid]

有機ヒ素化合物は、親油性を有し、無機ヒ素化合物は親水性を示す。汚染原因となった有機ヒ素化合物はくしゃみ作用や嘔吐作用を催す旧式の化学兵器に由来するものとされている。つまり、第二次世界大戦終結時に不適切に埋立て処分された化学剤が地中で加水分解、酸化などの反応を経て生成したものと考えられている。   The organic arsenic compound has lipophilicity, and the inorganic arsenic compound exhibits hydrophilicity. The organic arsenic compounds that cause pollution are said to be derived from older chemical weapons that sneeze and vomit. In other words, it is believed that chemical agents that were improperly landfilled at the end of World War II were generated through reactions such as hydrolysis and oxidation in the ground.

こうした有機ヒ素化合物に係る環境問題を根本的に解決するためには、地中の化学剤を掘り出して二次汚染を引き起こさないよう適宜処分するとともに、有機ヒ素化合物で汚染された土壌や地下水を確実に浄化する必要がある。   In order to fundamentally solve the environmental problems related to these organic arsenic compounds, we will excavate chemical agents in the ground and dispose of them appropriately so as not to cause secondary contamination, and ensure that soil and groundwater contaminated with organic arsenic compounds are also removed. Need to be purified.

ヒ素で汚染された土壌の浄化には、これまでにいくつかの方法が提案されているが(例えば、特許文献1〜3)、それらは全て無機ヒ素化合物を対象としたものであり、有機ヒ素化合物で汚染された水の浄化技術はこれまでに開発されていない。   Several methods have been proposed so far for the purification of soil contaminated with arsenic (for example, Patent Documents 1 to 3), all of which are directed to inorganic arsenic compounds. No purification technology for water contaminated with compounds has been developed so far.

特開平11−156338号公報JP-A-11-156338 特開2001−225052号公報Japanese Patent Laid-Open No. 2001-225052 特許第3407039号公報Japanese Patent No. 3407039 石井一弘、玉岡晃、大塚藤男「ジフェニルアルシン酸等による井戸水汚染と健康影響」第11回ヒ素シンポジウム講演要旨集(2003年10月)Kazuhiro Ishii, Atsushi Tamaoka, Fujio Otsuka “The Well Water Contamination and Health Effects of Diphenylarsinic Acid, etc.” Proceedings of the 11th Arsenic Symposium (October 2003) 石崎睦雄「井戸水中から検出されたフェニル化ヒ素化合物について」第11回ヒ素シンポジウム講演要旨集(2003年10月)Ikuo Ishizaki “Phenylated Arsenic Compounds Detected in Well Water” Proceedings of the 11th Arsenic Symposium (October 2003)

本発明の目的は、有機ヒ素化合物汚染水をヒ素浄化処理能力の高い専用の浄化剤を用いて残留ヒ素濃度の環境基準値0.01mg/L以下に浄化することが可能な浄化技術を提供することにある。更には、残留ヒ素濃度0.001mg/L以下という高度の浄化を可能にすることにある。   An object of the present invention is to provide a purification technique capable of purifying organic arsenic compound-contaminated water to an environmental standard value of 0.01 mg / L or less of a residual arsenic concentration using a dedicated purifier having a high arsenic purification treatment capability. There is. Furthermore, it is to enable a high degree of purification with a residual arsenic concentration of 0.001 mg / L or less.

上記目的を達成するため、本発明に係る第1の態様は、水中の有機ヒ素化合物を除去して所定の濃度以下に浄化するための有機ヒ素化合物汚染水の浄化剤であって、該浄化剤は、ミクロポア含有率が85.7%以上の活性炭を主成分とするものであることを特徴とする有機ヒ素化合物汚染水の浄化剤である。   In order to achieve the above object, a first aspect according to the present invention is a purifier of organic arsenic compound-contaminated water for removing an organic arsenic compound in water and purifying it to a predetermined concentration or less, the purifier Is a purifier for organic arsenic compound contaminated water, characterized in that the main component is activated carbon having a micropore content of 85.7% or more.

ここで、「ミクロポア含有率が85.7%以上の活性炭」とは、孔径が2nm以下の細孔であるミクロポアの割合が全体の細孔の85.7%以上を占める活性炭を意味する。また、そのような「活性炭を主成分とする」とは、ミクロポア含有率が85.7%以上の活性炭と不可避的不純物だけからなるものと、当該活性炭の有機ヒ素浄化能力を阻害しない範囲で他の機能剤が添加されたものも含む意味である。   Here, “activated carbon having a micropore content of 85.7% or more” means activated carbon in which the proportion of micropores having pores having a pore diameter of 2 nm or less accounts for 85.7% or more of the entire pores. In addition, such “mainly composed of activated carbon” includes only activated carbon having a micropore content of 85.7% or more and inevitable impurities, as long as it does not impair the ability of the activated carbon to purify organic arsenic. It is also meant to include those to which the functional agent is added.

ミクロポア含有率の測定は、窒素ガス吸着法(ユアサアイオニクス社販売、Quantachrome社製の全自動ガス吸着量測定装置「Autosorb-1MP」を使用)による。この測定で得られる吸着等温線から、物質の比表面積、細孔容積および細孔径分布等の情報を得ることができる。これらを複数種の解析方法(BJH法、HK法、NLDFT法)によって細孔分布曲線を求める。その細孔分布曲線からミクロポア含有率が求められる。   The micropore content is measured by a nitrogen gas adsorption method (sold by Yuasa Ionics Co., Ltd., using a fully automatic gas adsorption measuring device “Autosorb-1MP” manufactured by Quantachrome). From the adsorption isotherm obtained by this measurement, information such as the specific surface area, pore volume and pore size distribution of the substance can be obtained. A pore distribution curve is obtained from these using a plurality of types of analysis methods (BJH method, HK method, NLDFT method). The micropore content is determined from the pore distribution curve.

ミクロポア含有率が85.7%以上の活性炭を主成分とする浄化剤は、有機ヒ素化合物汚染水に対して、ヒ素を高度に浄化する能力を有することを本発明者等は発見した。すなわち、同じ活性炭であっても、上記ミクロポア含有率が85.7%以上の条件を満たさないものは、水中の残留ヒ素濃度の環境基準値である0.01mg/L以下までの浄化能力が見られないが、ミクロポア含有率が85.7%以上の活性炭は、残留ヒ素濃度0.01mg/L以下にまで浄化する能力があることを発見した。本発明は、この発見により完成するに至ったものである。ここで、人の健康の保護及び生活環境の保全のうえで維持されることが望ましい基準として、地下水中のヒ素濃度について0.01mg/Lという基準値(以下「環境基準」という)が設定されている。   The present inventors have found that a purification agent mainly composed of activated carbon having a micropore content of 85.7% or more has the ability to highly purify arsenic against organic arsenic compound contaminated water. That is, even if the same activated carbon does not satisfy the above condition that the micropore content is 85.7% or more, the purification ability of 0.01 mg / L or less, which is the environmental standard value of residual arsenic concentration in water, is observed. However, it has been discovered that activated carbon having a micropore content of 85.7% or more has the ability to purify to a residual arsenic concentration of 0.01 mg / L or less. The present invention has been completed by this discovery. Here, a standard value of 0.01 mg / L (hereinafter referred to as “environmental standard”) is set for the arsenic concentration in groundwater as a standard that is desirable to be maintained for the protection of human health and the preservation of the living environment. ing.

本発明によれば、ミクロポア含有率が85.7%以上の活性炭を主成分とする浄化剤であるため、有機ヒ素化合物汚染水に適量添加して浄化処理をすることにより該浄化剤に有機ヒ素化合物が吸着され、水中の残留ヒ素濃度を環境基準値である0.01mg/L以下まで浄化することができ、以て有機ヒ素化合物に汚染された水を環境基準を満たした状態にすることが可能になる。   According to the present invention, since it is a purifying agent mainly composed of activated carbon having a micropore content of 85.7% or more, an appropriate amount is added to the organic arsenic compound contaminated water, and the purifying agent is treated with organic arsenic. The compound is adsorbed, and the residual arsenic concentration in water can be purified to an environmental standard value of 0.01 mg / L or less, so that water contaminated with an organic arsenic compound satisfies the environmental standard. It becomes possible.

本発明に係る第2の態様は、第1の態様において、前記有機ヒ素化合物は、フェニルアルソン酸、ジフェニルアルシン酸、ビスジフェニルアルシンオキサイド、またはジフェニルアルシン酸を主成分とする混合物であることを特徴とする有機ヒ素化合物汚染水の浄化剤である。   According to a second aspect of the present invention, in the first aspect, the organic arsenic compound is phenylarsonic acid, diphenylarsinic acid, bisdiphenylarsine oxide, or a mixture containing diphenylarsinic acid as a main component. Arsenic compound contaminated water purification agent.

ここで列挙されたジフェニルアルシン酸等の各有機ヒ素化合物は、2002年8月に茨城県神栖町の住民の間で発生した健康被害の原因物質と言われているものである。実際の汚染地下水は、ジフェニルアルシン酸を主成分とし、それにフェニルアルソン酸およびビスジフェニルアルシンオキサイドが僅かに混ざった混合物の状態でヒ素汚染されていることが確認されている。   Each of the organic arsenic compounds such as diphenylarsinic acid listed here is said to be a causative substance of health damage that occurred among residents in Kamisu-cho, Ibaraki Prefecture in August 2002. It has been confirmed that the actual contaminated groundwater is contaminated with arsenic in the form of a mixture in which diphenylarsinic acid is the main component and phenylarsonic acid and bisdiphenylarsine oxide are mixed slightly.

本発明によれば、ジフェニルアルシン酸を主成分とする汚染地下水に対して高い浄化処理を実現することができる。従って、茨城県神栖町のジフェニルアルシン酸等で汚染された井戸水等の水を環境基準を満たすところまで浄化することができ、その井戸水の健全な利用を可能ならしめることができる。   ADVANTAGE OF THE INVENTION According to this invention, a high purification process is realizable with respect to the contaminated groundwater which has a diphenylarsinic acid as a main component. Therefore, water such as well water contaminated with diphenylarsinic acid or the like in Kamisu-cho, Ibaraki can be purified to a level that satisfies the environmental standards, and the well water can be used safely.

本発明に係る第3の態様は、ミクロポア含有率が85.7%以上の活性炭を主成分とする有機ヒ素化合物汚染水の浄化剤を用いて有機ヒ素化合物汚染水を浄化処理することにより水中の残留ヒ素濃度を0.01mg/L以下に浄化することを特徴とする有機ヒ素化合物汚染水の浄化方法である。
本発明に係る浄化方法により、前記第1の態様のところで説明したように、有機ヒ素化合物汚染水に対して高い浄化処理を実現することができる。
According to a third aspect of the present invention, an organic arsenic compound-contaminated water is purified by using an organic arsenic compound-contaminated water purifier mainly composed of activated carbon having a micropore content of 85.7% or more. A method for purifying organic arsenic compound-contaminated water, wherein the residual arsenic concentration is purified to 0.01 mg / L or less.
By the purification method according to the present invention, as described in the first aspect, high purification treatment can be realized for organic arsenic compound contaminated water.

本発明に係る第4の態様は、有機ヒ素化合物汚染水に対して、残留ヒ素濃度を環境基準値の0.01mg/L以下にはならないが環境基準値に近づける一次浄化処理をし、次いで二次浄化処理としてミクロポア含有率が85.7%以上の活性炭を主成分とする有機ヒ素化合物専用の浄化剤を用いて浄化処理することにより水中の残留ヒ素濃度を0.01mg/L以下に浄化することを特徴とする有機ヒ素化合物汚染水の浄化方法である。   According to a fourth aspect of the present invention, the organic arsenic compound contaminated water is subjected to a primary purification treatment in which the residual arsenic concentration does not fall below the environmental standard value of 0.01 mg / L but approaches the environmental standard value. As the next purification treatment, the residual arsenic concentration in the water is reduced to 0.01 mg / L or less by purification using an organic arsenic compound purification agent mainly composed of activated carbon having a micropore content of 85.7% or more. This is a method for purifying organic arsenic compound contaminated water.

有機ヒ素化合物汚染水は、通常、有機ヒ素化合物だけを含んでいるということはほとんど無く、有機ヒ素化合物以外の他の有機体炭素(TOC)も含んでいる。この有機体炭素を一次浄化処理によって予め浄化することにより、有機ヒ素化合物も一緒にある程度まで浄化される。一次浄化処理の方法の違いによって有機ヒ素化合物が浄化される程度は異なるが、このように、一次浄化処理を行って、有機体炭素と共に有機ヒ素化合物の含有量を予め低下させておくことにより、本発明に係る当該浄化剤への負荷を大幅に軽減することが可能になる。すなわち、当該浄化剤を有機ヒ素化合物専用の浄化剤としてその浄化能力を効果的に発揮させることができる。一次浄化処理の具体的方法としては、塩化第二鉄による凝集沈殿処理や他の活性炭による吸着処理等が挙げられるが、これらについての詳細は後述する。   Organic arsenic compound-contaminated water rarely contains only organic arsenic compounds, and also contains organic carbon (TOC) other than organic arsenic compounds. By purifying the organic carbon in advance by the primary purification treatment, the organic arsenic compound is also purified to some extent. Although the degree to which the organic arsenic compound is purified varies depending on the method of the primary purification treatment, in this way, by performing the primary purification treatment and reducing the content of the organic arsenic compound together with the organic carbon in advance, It becomes possible to significantly reduce the load on the purifier according to the present invention. That is, the purification agent can be effectively exhibited as a purification agent dedicated to the organic arsenic compound. Specific methods of the primary purification treatment include a coagulation precipitation treatment with ferric chloride, an adsorption treatment with other activated carbon, and the like, details of which will be described later.

本発明に係る第5の態様は、第3の態様または第4の態様において、前記有機ヒ素化合物汚染水のpHが2〜5の範囲で浄化処理が行われることを特徴とする有機ヒ素化合物汚染水の浄化方法である。
当該浄化剤はその浄化能力においてpH依存性があることが確認された。本発明によれば、pHが2〜5の範囲で浄化処理を行うことにより、当該浄化剤の高い浄化能力を確実に発揮させることができる。
According to a fifth aspect of the present invention, in the third aspect or the fourth aspect, the organic arsenic compound contamination is characterized in that the purification treatment is performed in a range of pH 2 to 5 of the organic arsenic compound contamination water. Water purification method.
It was confirmed that the purification agent has pH dependency in its purification ability. According to the present invention, by performing the purification treatment in the range of pH 2 to 5, the high purification ability of the purification agent can be surely exhibited.

本発明に係る第6の態様は、第3から第5の態様のいずれかの態様において、前記有機ヒ素化合物は、フェニルアルソン酸、ジフェニルアルシン酸、ビスジフェニルアルシンオキサイド、またはジフェニルアルシン酸を主成分とする混合物であることを特徴とする有機ヒ素化合物汚染水の浄化方法である。
本発明によれば、第2の態様と同様の作用効果が得られる。
According to a sixth aspect of the present invention, in any one of the third to fifth aspects, the organic arsenic compound is a mixture containing phenylarsonic acid, diphenylarsinic acid, bisdiphenylarsine oxide, or diphenylarsinic acid as a main component. This is a method for purifying organic arsenic compound contaminated water.
According to the present invention, the same effect as the second aspect can be obtained.

本発明によれば、有機ヒ素化合物汚染水に当該浄化剤を適量添加して浄化処理をすることにより有機ヒ素化合物が該浄化剤に吸着され、水中の残留ヒ素濃度の環境基準値である0.01mg/L以下まで浄化することができ、以て有機ヒ素化合物に汚染された水を環境基準を満たした状態にすることが可能になる。   According to the present invention, the organic arsenic compound is adsorbed by the purifying agent by adding an appropriate amount of the purifying agent to the organic arsenic compound-contaminated water and performing the purification treatment, and the environmental standard value of the residual arsenic concentration in water is 0. It is possible to purify to 01 mg / L or less, and thus water contaminated with an organic arsenic compound can be brought into a state satisfying environmental standards.

〈浄化剤としての活性炭〉
本発明に係る浄化剤は、ミクロポア含有率が85.7%以上の活性炭を主成分とする。既述したように、ミクロポア含有率が85.7%以上の活性炭を主成分とする浄化剤は、有機ヒ素化合物汚染水に対して、ヒ素を高度に浄化する能力を有することを本発明者等は実験の結果発見した。同じ活性炭であっても、上記ミクロポア含有率が85.7%以上の条件を満たさない活性炭は、水中の残留ヒ素濃度の環境基準値である0.01mg/L以下までの浄化能力が見られないが、ミクロポア含有率が85.7%以上の活性炭は、残留ヒ素濃度0.01mg/L以下にまで浄化する能力があるという事実を発見した。本発明はこの発見により完成するに至ったものである。この点の詳細は、後述する実施例1−3と比較例1,2により明らかになる。
<Activated carbon as a purification agent>
The purifier according to the present invention is mainly composed of activated carbon having a micropore content of 85.7% or more. As described above, the present inventors have found that a purification agent mainly composed of activated carbon having a micropore content of 85.7% or more has the ability to highly purify arsenic against organic arsenic compound contaminated water. Discovered as a result of experiments. Even if it is the same activated carbon, the activated carbon which does not satisfy the condition that the micropore content is 85.7% or more does not show purification ability to 0.01 mg / L or less which is an environmental standard value of residual arsenic concentration in water. However, the inventors have found the fact that activated carbon having a micropore content of 85.7% or more has the ability to purify the residual arsenic concentration to 0.01 mg / L or less. The present invention has been completed by this discovery. Details of this point will become clear from Example 1-3 and Comparative Examples 1 and 2 described later.

〈残留ヒ素濃度0.001mg/L以下までの浄化〉
ミクロポア含有率が85.7%以上より高い98.3%以上の活性炭は、更に浄化能力が高く、残留ヒ素濃度0.001mg/L以下までの浄化する能力を有することを発見した。これにより、有機ヒ素化合物汚染水を環境基準値の0.01mg/Lより更に1桁小さい0.001mg/L以下にまで高度に浄化することができる。この点の詳細も、後述する実施例1により明らかになる。
<Purification to a residual arsenic concentration of 0.001 mg / L or less>
It has been discovered that activated carbon having a micropore content of 98.3% or higher, which is higher than 85.7% or higher, has an even higher purification ability and a purification ability to a residual arsenic concentration of 0.001 mg / L or less. Thereby, the organic arsenic compound-contaminated water can be highly purified to 0.001 mg / L or less, which is one digit smaller than the environmental standard value of 0.01 mg / L. Details of this point are also clarified by Example 1 described later.

〈処理対象の有機ヒ素化合物汚染水〉
本発明で処理対象となる有機ヒ素化合物汚染水は、有機ヒ素化合物で汚染された水であれば、特に制限はない。また、有機ヒ素化合物の種類としては、フェニルアルソン酸、ジフェニルアルシン酸、ビスジフェニルアルシンオキサイド、またはジフェニルアルシン酸を主成分とする混合物が例示される。これらは既述したように、2002年8月に茨城県神栖町の住民の間で発生した健康被害の原因物質と言われているものである。
<Treatment water contaminated with organic arsenic compounds>
The organic arsenic compound contaminated water to be treated in the present invention is not particularly limited as long as it is water contaminated with an organic arsenic compound. Examples of the organic arsenic compound include phenylarsonic acid, diphenylarsinic acid, bisdiphenylarsine oxide, and a mixture mainly composed of diphenylarsinic acid. As already mentioned, these are said to be the causative substances of health damage that occurred among the residents of Kamisu Town in Ibaraki Prefecture in August 2002.

〈浄化能力とpH〉
当該浄化剤はその浄化能力においてpH依存性があることが確認された。すなわち、有機ヒ素化合物汚染水のpHが2〜5の範囲で浄化処理を行うことにより、当該浄化剤の高い浄化能力を確実に発揮させることができる。この点の詳細も後述される。
<Purification capacity and pH>
It was confirmed that the purification agent has pH dependency in its purification ability. That is, by performing the purification treatment in the range where the pH of the organic arsenic compound contaminated water is 2 to 5, the high purification ability of the purification agent can be reliably exhibited. Details of this point will also be described later.

[実施例1]
《浄化処理対象の有機ヒ素化合物汚染水》
茨城県神栖町の汚染現場において採取した地下水(以下「実汚染地下水」と言う)を定性ろ紙2でろ過したものを用いた。ろ液の組成及び性状は、以下の通りである。
全ヒ素 :25.3 mg/L(ppm)
鉄 :<5.5 mg/L
アルミニウム:<2.7 mg/L
マグネシウム:20.0 mg/L
カルシウム :61.2 mg/L
有機体炭素 :59.2 mg/L
pH :7.41
濁度 :1.5NTU
[Example 1]
<Organic arsenic compound contaminated water to be purified>
The groundwater collected at the contaminated site in Kamisu-cho, Ibaraki Prefecture (hereinafter referred to as “actually contaminated groundwater”) was filtered with qualitative filter paper 2. The composition and properties of the filtrate are as follows.
Total arsenic: 25.3 mg / L (ppm)
Iron: <5.5 mg / L
Aluminum: <2.7 mg / L
Magnesium: 20.0 mg / L
Calcium: 61.2 mg / L
Organic carbon: 59.2 mg / L
pH: 7.41
Turbidity: 1.5 NTU

ここで、全ヒ素濃度は電気加熱原子吸光装置を用いて測定した。鉄、アルミニウム、マグネシウム、カルシウムの濃度はICP発光分光装置、有機体炭素はTOC分析装置、pHはpHメータ、濁度は積分球濁度計を用いて測定した。この地下水中の有機ヒ素化合物は、ジフェニルアルシン酸を主成分とし、それにフェニルアルソン酸およびビスジフェニルアルシンオキサイドが僅かに混ざった混合物であることが確認されている。   Here, the total arsenic concentration was measured using an electric heating atomic absorption device. The concentrations of iron, aluminum, magnesium and calcium were measured using an ICP emission spectrometer, organic carbon was measured using a TOC analyzer, pH was measured using a pH meter, and turbidity was measured using an integrating sphere turbidimeter. It has been confirmed that the organic arsenic compound in the groundwater is a mixture containing diphenylarsinic acid as a main component and slightly mixed with phenylarsonic acid and bisdiphenylarsine oxide.

《浄化処理》
35ml容ポリカーボネート製遠心沈殿管に上記の浄化処理対象水(実汚染地下水)25mLを入れ、ミクロポア含有率98.3%の活性炭よりなる浄化剤を1g添加し、そのpHは元々の実汚染地下水のpH7.41のまま、20℃に保持した恒温槽中で振とう器にて横方向(振幅10cm)に16時間振とうした。次いで、浄化処理対象水を孔径0.45μmのメンブレンフィルタでろ過した。得られたろ液について、残留ヒ素濃度を電気加熱原子吸光装置で測定した結果、0.0004mg/Lであった。ヒ素除去率は99.999%であった。
<Purification treatment>
Put 25 mL of the above purification target water (actually contaminated groundwater) into a 35 ml polycarbonate centrifugal sedimentation tube, add 1 g of a purification agent made of activated carbon with a micropore content of 98.3%, and the pH is the original actual contaminated groundwater. While maintaining the pH of 7.41, the mixture was shaken for 16 hours in a horizontal direction (amplitude: 10 cm) with a shaker in a constant temperature bath maintained at 20 ° C. Subsequently, the purification target water was filtered through a membrane filter having a pore diameter of 0.45 μm. With respect to the obtained filtrate, the residual arsenic concentration was measured with an electric heating atomic absorption device and found to be 0.0004 mg / L. The arsenic removal rate was 99.999%.

[実施例2]
浄化剤をミクロポア含有率85.7%の活性炭に変え、その他は実施例1と同様の条件で浄化処理をした結果、残留ヒ素濃度は0.0023mg/Lであった。
[Example 2]
The purification agent was changed to activated carbon having a micropore content of 85.7%, and the others were purified under the same conditions as in Example 1. As a result, the residual arsenic concentration was 0.0023 mg / L.

[実施例3]
浄化剤をミクロポア含有率96.5%の活性炭に変え、その他は実施例1と同様の条件で浄化処理をした結果、残留ヒ素濃度は0.0056mg/Lであった。
[Example 3]
The purification agent was changed to activated carbon having a micropore content of 96.5%, and the others were purified under the same conditions as in Example 1. As a result, the residual arsenic concentration was 0.0056 mg / L.

[比較例1]
浄化剤をミクロポア含有率50.2%の活性炭に変え、その他は実施例1と同様の条件で浄化処理をした結果、残留ヒ素濃度は0.0191mg/Lであった。
[Comparative Example 1]
The purification agent was changed to activated carbon having a micropore content of 50.2%, and the others were purified under the same conditions as in Example 1. As a result, the residual arsenic concentration was 0.0191 mg / L.

[比較例2]
浄化剤をミクロポア含有率35.2%の活性炭に変え、その他は実施例1と同様の条件で浄化処理をした結果、残留ヒ素濃度は0.0309mg/Lであった。
[Comparative Example 2]
The purification agent was changed to activated carbon having a micropore content of 35.2%, and the others were purified under the same conditions as in Example 1. As a result, the residual arsenic concentration was 0.0309 mg / L.

図1は、活性炭のミクロポア含有率(%)と残留ヒ素濃度(mg/L)との関係について、実施例1−3および比較例1,2の結果をプロットしたものである。この図から、ミクロポア含有率85.7%以上の活性炭を主成分とする浄化剤を、有機ヒ素化合物汚染水に適量添加して浄化処理をすることにより、水中の残留ヒ素濃度を環境基準値である0.01mg/L以下まで浄化することができ、以て有機ヒ素化合物に汚染された水を環境基準を満たした状態にすることが可能になることが解る。   FIG. 1 is a plot of the results of Example 1-3 and Comparative Examples 1 and 2 regarding the relationship between the micropore content (%) of activated carbon and the residual arsenic concentration (mg / L). From this figure, by adding an appropriate amount of a purification agent mainly composed of activated carbon having a micropore content of 85.7% or more to organic arsenic compound-contaminated water and performing purification treatment, the residual arsenic concentration in the water can be reduced to the environmental standard value. It can be seen that it can be purified to a certain 0.01 mg / L or less, so that it becomes possible to make the water contaminated with the organic arsenic compound satisfy the environmental standard.

表1は、前記実施例1−3及び比較例1,2の活性炭の他に、有機系汚染物質の吸着に有効な炭素質材料として知られている骨炭、木炭、泥炭土、石炭について、各特性(含水率、比表面積、粒度)と、実施例1と同様の浄化処理をした場合の残留ヒ素濃度及びヒ素除去率を示したものである。ここで、含水率は試料を105℃で乾燥したときの質量減から求めた。比表面積はBET法で測定した。粒度は標準篩を用いて測定した。
活性炭以外の炭素質吸着剤はヒ素除去率において活性炭に比して劣ることが解る。
Table 1 shows, in addition to the activated carbons of Examples 1-3 and Comparative Examples 1 and 2, bone carbon, charcoal, peat soil, and coal known as carbonaceous materials effective for adsorption of organic pollutants. The characteristics (water content, specific surface area, particle size) and residual arsenic concentration and arsenic removal rate when the same purification treatment as in Example 1 is performed are shown. Here, the moisture content was determined from the weight loss when the sample was dried at 105 ° C. The specific surface area was measured by the BET method. The particle size was measured using a standard sieve.
It can be seen that carbonaceous adsorbents other than activated carbon are inferior to activated carbon in the arsenic removal rate.

活性炭の総て(実施例1−3及び比較例1,2)が99%以上の高いヒ素除去率を示している。この点(99%以上の高いヒ素除去率)で有機ヒ素汚染水の浄化剤として、単独では環境基準値の0.01mg/L以下にまで浄化する能力のないものが含まれるが、全体として有効であると言える。活性炭が他の炭素質吸着剤と異なる特性は比表面積である。ここの5種類に限っても最小の比表面積は382m/gであり、この値は他の炭素質吸着剤に比して桁違いに大きな値であることは注目すべき事実であると言える。 All the activated carbons (Examples 1-3 and Comparative Examples 1 and 2) show a high arsenic removal rate of 99% or more. With this point (high arsenic removal rate of 99% or more), organic arsenic contaminated water purifiers include those that are not capable of purifying to an environmental standard value of 0.01 mg / L or less, but are effective as a whole. It can be said that. The characteristic that activated carbon differs from other carbonaceous adsorbents is the specific surface area. It can be said that it is a remarkable fact that the minimum specific surface area is 382 m 2 / g even if limited to these five types, and this value is an order of magnitude larger than that of other carbonaceous adsorbents. .

Figure 2006159123
表2は、無機ヒ素イオンの吸着に有効な無機吸着剤、有機系汚染物質の吸着に有効な合成吸着剤、イオン性汚染物質の吸着に有効な陰イオン交換樹脂について、各特性(含水率、比表面積、粒度)と、実施例1と同様の浄化処理をした場合の残留ヒ素濃度及びヒ素除去率を示したものである。
Figure 2006159123
Table 2 shows the characteristics (water content, moisture content, and inorganic adsorbent effective for adsorbing inorganic arsenic ions, synthetic adsorbent effective for adsorbing organic pollutants, and anion exchange resin effective for adsorbing ionic pollutants. (Specific surface area, particle size) and residual arsenic concentration and arsenic removal rate when the same purification treatment as in Example 1 is performed.

無機吸着剤は、いずれもヒ素除去率が低く、有機ヒ素化合物汚染水の浄化には有効では無いことが認められる。特に、水中の無機ヒ素イオンの吸着に有効であることが知られている2種類の活性アルミナによるヒ素除去率は低い。このことから、水中の有機ヒ素は無機ヒ素と性質を異にしていることが解る。   It is recognized that all inorganic adsorbents have a low arsenic removal rate and are not effective in purifying organic arsenic compound contaminated water. In particular, the arsenic removal rate by two types of activated alumina known to be effective for adsorption of inorganic arsenic ions in water is low. From this, it can be seen that organic arsenic in water has different properties from inorganic arsenic.

有機系汚染物質の吸着に有効な合成吸着剤では、合成吸着剤2を除いて、85%以上の比較的高いヒ素除去率が得られた。   In the synthetic adsorbent effective for the adsorption of organic pollutants, except for the synthetic adsorbent 2, a relatively high arsenic removal rate of 85% or more was obtained.

陰イオン交換樹脂を用いることにより、93%以上の高いヒ素除去率が得られた。特に、最強塩基性陰イオン交換樹脂1及び2は、約99%のヒ素除去率を示し、有機ヒ素化合物汚染水の浄化に有効な材料であることが認められた。このように最強塩基性陰イオン交換樹脂が有効であることから、地下水中の有機ヒ素は弱酸性陰イオンとして存在しているものと考えられる。   By using an anion exchange resin, a high arsenic removal rate of 93% or more was obtained. In particular, the strongest basic anion exchange resins 1 and 2 showed an arsenic removal rate of about 99%, and were found to be effective materials for the purification of organic arsenic compound contaminated water. Thus, since the strongest basic anion exchange resin is effective, it is considered that organic arsenic in groundwater exists as weakly acidic anions.

Figure 2006159123
[浄化能力とpHの関係]
試料として実汚染地下水ではなくヒ素濃度が25mg/Lのジフェニルアルシン酸水溶液を、所定量のジフェニルアルシン酸試薬を水に溶解して作成した。塩酸または水酸化ナトリウム溶液でpHを調整した、異なるpH値のジフェニルアルシン酸水溶液25mLを、35ml容ポリカーボネート製遠心沈殿管に入れた。これに実施例1の活性炭(ミクロポア含有率98.3%)を1g添加し、20℃に保持した恒温槽中で振とう器にて横方向(振幅10cm)に16時間振とうした。次いで、試料溶液を孔径0.45μmのメンブレンフィルタでろ過した。得られたろ液について、残留ヒ素濃度を電気加熱原子吸光装置で測定した。
Figure 2006159123
[Relationship between purification capacity and pH]
A diphenylarsinic acid aqueous solution having an arsenic concentration of 25 mg / L was prepared as a sample by dissolving a predetermined amount of diphenylarsinic acid reagent in water instead of actual contaminated groundwater. 25 mL of diphenylarsinic acid aqueous solutions having different pH values, the pH of which was adjusted with hydrochloric acid or sodium hydroxide solution, were placed in a 35 ml polycarbonate centrifugal sedimentation tube. 1 g of the activated carbon (micropore content: 98.3%) of Example 1 was added thereto, and the mixture was shaken in the horizontal direction (amplitude 10 cm) for 16 hours in a constant temperature bath maintained at 20 ° C. Next, the sample solution was filtered through a membrane filter having a pore size of 0.45 μm. About the obtained filtrate, the residual arsenic density | concentration was measured with the electric heating atomic absorption apparatus.

図2は上記の測定結果を示したものである。ジフェニルアルシン酸の活性炭による吸着除去処理、すなわち浄化処理はpHに依存することが認められた。すなわち、有機ヒ素化合物汚染水のpHが2〜5の範囲で当該浄化処理を行うことにより、当該浄化剤の高い浄化能力を確実に発揮させることができることが認められた。高pH領域ではヒ素除去率が大きく低下することが認められた。   FIG. 2 shows the above measurement results. It was recognized that the adsorption removal treatment of activated carbon with diphenylarsinic acid, that is, the purification treatment, depends on pH. That is, it was recognized that the high purification ability of the purification agent can be reliably exhibited by performing the purification treatment in the range of pH 2 to 5 of the organic arsenic compound contaminated water. It was observed that the arsenic removal rate was greatly reduced in the high pH region.

尚、実汚染地下水の活性炭による吸着除去処理では、後述するように、元々の実汚染地下水のpH7.41のままで行っても、ねらいとする高い浄化能力の発揮が見られた。   In addition, in the adsorption removal process by the activated carbon of the actual contaminated groundwater, as described later, even when the original actual contaminated groundwater was kept at pH 7.41, the intended high purification ability was observed.

[浄化剤の必要量]
35ml容ポリカーボネート製遠心沈殿管に上記の浄化処理対象水(実汚染地下水)25mLを入れ、実施例1の活性炭(ミクロポア含有率98.3%)よりなる浄化剤の量を変化させて添加し、そのpHは元々の実汚染地下水のpH7.41のまま、20℃に保持した恒温槽中で振とう器にて横方向(振幅10cm)に16時間振とうした。次いで、浄化処理対象水を孔径0.45μmのメンブレンフィルタでろ過した。得られたろ液について、残留ヒ素濃度を電気加熱原子吸光装置で測定した。
[Required amount of purifier]
Put 25 mL of the above purification target water (actually contaminated groundwater) into a 35 ml polycarbonate centrifugal sedimentation tube, and add by changing the amount of the purification agent consisting of the activated carbon of Example 1 (micropore content 98.3%), The pH of the actual contaminated groundwater remained at the original pH of 7.41, and was shaken in the horizontal direction (amplitude: 10 cm) for 16 hours in a thermostatic bath maintained at 20 ° C. Subsequently, the purification target water was filtered through a membrane filter having a pore diameter of 0.45 μm. About the obtained filtrate, the residual arsenic density | concentration was measured with the electric heating atomic absorption apparatus.

図3は上記の測定結果を示したものである。僅か0.1gの活性炭(ミクロポア含有率98.3%)を上記の浄化処理対象水(実汚染地下水)25mLに添加することにより、残留ヒ素濃度は0.159mg/Lまで低下し、ヒ素除去率は99%以上を達成した。そして、環境基準値の0.01mg/Lを満たすためには、この場合の浄化処理対象水(実汚染地下水)25mLに対しては、約0.3g以上添加すれば足りることが認められた。   FIG. 3 shows the above measurement results. By adding only 0.1 g of activated carbon (micropore content: 98.3%) to 25 mL of the purification target water (actually contaminated groundwater), the residual arsenic concentration is reduced to 0.159 mg / L, and the arsenic removal rate Achieved over 99%. In order to satisfy the environmental standard value of 0.01 mg / L, it was confirmed that it was sufficient to add about 0.3 g or more to 25 mL of purification target water (actually contaminated groundwater) in this case.

[浄化処理に要する時間]
500mL容積のビーカーに上記の浄化処理対象水(実汚染地下水)400mLを入れ、実施例1の活性炭(ミクロポア含有率98.3%)16gを添加し、マグネチックスターラを用いて600rpmの速度で連続撹拌した。そのpHは元々の実汚染地下水のpH7.41のまま行った。所定時間毎に浄化処理対象水の一部を採取し、孔径0.45μmのメンブレンフィルタでろ過した。得られたろ液について、残留ヒ素濃度を電気加熱原子吸光装置で測定した。
[Time required for purification treatment]
Into a 500 mL beaker, 400 mL of the above purification target water (actually contaminated groundwater) is added, 16 g of activated carbon (micropore content 98.3%) of Example 1 is added, and continuously at a speed of 600 rpm using a magnetic stirrer. Stir. The pH was kept at pH 7.41 of the actual actual contaminated groundwater. A part of the water to be purified was collected every predetermined time and filtered with a membrane filter having a pore diameter of 0.45 μm. About the obtained filtrate, the residual arsenic density | concentration was measured with the electric heating atomic absorption apparatus.

図4は上記の測定結果を示したものである。活性炭(ミクロポア含有率98.3%)による有機ヒ素の吸着除去速度は迅速であり、活性炭添加後の7分間で大部分の吸着反応は終了した。環境基準の0.01mg/L以下にまで浄化するには約100分間の反応時間を要した。   FIG. 4 shows the above measurement results. The adsorption removal rate of organic arsenic by activated carbon (micropore content 98.3%) was rapid, and most of the adsorption reaction was completed in 7 minutes after addition of activated carbon. A reaction time of about 100 minutes was required to purify to an environmental standard of 0.01 mg / L or less.

[活性炭カラムを用いた浄化方法]
実施例1の活性炭(ミクロポア含有率98.3%)20gをガラスカラム(内径14mm×高さ240mm)に充填し、上記の浄化処理対象水(実汚染地下水)を流速0.19L/時間で通液した。そのpHは元々の実汚染地下水のpH7.41のまま行った。通過液について残留ヒ素濃度を電気加熱原子吸光装置で測定した。
[Purification method using activated carbon column]
20 g of activated carbon (micropore content: 98.3%) in Example 1 is packed in a glass column (inner diameter: 14 mm × height: 240 mm), and the purification target water (actually contaminated groundwater) is passed at a flow rate of 0.19 L / hour. Liquid. The pH was kept at pH 7.41 of the actual actual contaminated groundwater. The residual arsenic concentration of the passing liquid was measured with an electric heating atomic absorption device.

図5は上記の測定結果を示したものである。有機ヒ素化合物汚染水の活性炭による上記浄化処理は、既述の35ml容ポリカーボネート製遠心沈殿管を用いたバッチ法のみならず、当該カラム法によっても非常に有効であり、残留ヒ素濃度が環境基準の0.01mg/L以下を満たせなくなるまで、僅か20gの活性炭(ミクロポア含有率98.3%)で約6.3Lもの上記実汚染地下水を効果的に処理することができた。   FIG. 5 shows the above measurement results. The above purification treatment with activated carbon of organic arsenic compound contaminated water is very effective not only by the batch method using the 35 ml polycarbonate centrifugal sedimentation tube described above, but also by the column method. Until the concentration of 0.01 mg / L or less could not be satisfied, about 6.3 L of the actual contaminated groundwater could be effectively treated with only 20 g of activated carbon (micropore content: 98.3%).

[凝集沈殿法による有機ヒ素化合物の除去]
ヒ素濃度が25mg/Lのジフェニルアルシン酸水溶液(上記した[浄化能力とpHの関係]のところで説明したもの)50mLに、各種のアルミニウム塩または鉄塩水溶液を添加して撹拌した。塩酸または水酸化ナトリウム溶液を加えてpHを調整し、15分間撹拌した後、孔径0.45μmのメンブレンフィルタでろ過した。得られたろ液について、残留ヒ素濃度を電気加熱原子吸光装置で測定した。
[Removal of organic arsenic compounds by coagulation sedimentation]
Various aluminum salt or iron salt aqueous solutions were added to 50 mL of an aqueous diphenylarsinic acid solution having an arsenic concentration of 25 mg / L (described in the above-mentioned [Relationship between purification capacity and pH]) and stirred. Hydrochloric acid or sodium hydroxide solution was added to adjust the pH, and the mixture was stirred for 15 minutes and then filtered through a membrane filter having a pore size of 0.45 μm. About the obtained filtrate, the residual arsenic density | concentration was measured with the electric heating atomic absorption apparatus.

図6は上記の測定結果を示したものである。ここで用いた塩のうち、塩化鉄(III)の添加により残留ヒ素濃度は、pH3〜5の範囲で0.1mg/L以下まで低下し、その利用可能性が認められた。   FIG. 6 shows the above measurement results. Among the salts used here, the residual arsenic concentration decreased to 0.1 mg / L or less in the range of pH 3 to 5 by addition of iron (III) chloride, and its availability was recognized.

[実施例4]
上記の浄化処理対象水(実汚染地下水)7Lに5.5%塩化鉄(III)水溶液0.5Lを加え、撹拌した。更に1N水酸化ナトリウム溶液を添加してpHを4.1に調整した。15分後、浄化処理対象水を定性ろ紙2を用いてろ過した。得られたろ液を10gの活性炭(ミクロポア含有率98.3%)を充填したガラスカラム(内径14mm×240mm)に流速0.13L/時間で通液した。通過液について残留ヒ素濃度を電気加熱原子吸光装置で測定した。
[Example 4]
0.5 L of 5.5% iron chloride (III) aqueous solution was added to 7 L of the purification target water (actually contaminated groundwater) and stirred. Further, 1N sodium hydroxide solution was added to adjust the pH to 4.1. After 15 minutes, the purification target water was filtered using qualitative filter paper 2. The obtained filtrate was passed through a glass column (inner diameter 14 mm × 240 mm) packed with 10 g of activated carbon (micropore content 98.3%) at a flow rate of 0.13 L / hour. The residual arsenic concentration of the passing liquid was measured with an electric heating atomic absorption device.

図7は上記の測定結果を示したものである。塩化鉄(III)による凝集沈殿処理により、浄化対象処理水中の残留ヒ素濃度は約0.11mg/Lまで低下した。更にこのものを前記ガラスカラムに通液した結果、6L通液後も処理液中の残留ヒ素濃度は環境基準の0.01mg/L以下であり、更に有機ヒ素化合物汚染水の通液が可能であった。このように、安価な塩化鉄(III)で一次浄化処理をしてヒ素濃度を予め低下させた後、当該浄化剤である活性炭により浄化処理をすることで、該活性炭への負荷を大幅に軽減することが可能になった。   FIG. 7 shows the above measurement results. As a result of the coagulation sedimentation treatment with iron (III) chloride, the residual arsenic concentration in the treated water to be purified decreased to about 0.11 mg / L. Furthermore, as a result of passing this through the glass column, the residual arsenic concentration in the processing solution is 0.01 mg / L or less of the environmental standard even after passing through 6 L, and further organic arsenic compound contaminated water can be passed. there were. In this way, after the primary purification treatment with inexpensive iron chloride (III) to reduce the arsenic concentration in advance, the purification treatment with activated carbon as the purification agent significantly reduces the load on the activated carbon. It became possible to do.

尚、一次浄化処理の方法としては、上記塩化鉄(III)による凝集沈殿法の他に、前記比較例で用いた他の活性炭、表2の陰イオン交換樹脂、更には合成吸着剤2を除いた他の合成吸着剤も利用可能であることは容易に理解できることである。   As the primary purification method, in addition to the coagulation precipitation method using iron chloride (III), the other activated carbon used in the comparative example, the anion exchange resin shown in Table 2, and the synthetic adsorbent 2 were excluded. It is easy to understand that other synthetic adsorbents can also be used.

また、上記の各説明では、浄化剤としてミクロポア含有率98.3%の活性炭を用いたが、他の活性炭(ミクロポア含有率96.5%または85.7%のもの)を用いても同様の効果が得られる。   In each of the above explanations, activated carbon having a micropore content of 98.3% was used as a cleaning agent. However, the same effect can be obtained by using other activated carbon (having a micropore content of 96.5% or 85.7%). An effect is obtained.

本発明は、有機ヒ素化合物で汚染された水の浄化に係り、特に不適切に処分された旧式の化学兵器等に由来するジフェニルアルシン酸を主成分とする混合物である有機ヒ素化合物で汚染された水の浄化に利用可能である。   The present invention relates to purification of water contaminated with an organic arsenic compound, and in particular, water contaminated with an organic arsenic compound which is a mixture containing diphenylarsinic acid as a main component derived from an old chemical weapon or the like that has been inappropriately disposed of. It can be used for purification.

活性炭のミクロポア含有率と残留ヒ素濃度との関係について、実施例1−3および比較例1,2の結果をプロットした図である。It is the figure which plotted the result of Example 1-3 and Comparative Examples 1 and 2 about the relationship between the micropore content rate of activated carbon, and residual arsenic density | concentration. 活性炭の浄化能力とpHの関係についての測定結果をプロットした図である。It is the figure which plotted the measurement result about the purification | cleaning capability of activated carbon, and pH. 浄化剤の必要量についての測定結果をプロットした図である。It is the figure which plotted the measurement result about the required amount of a cleaning agent. 浄化処理に要する時間についての測定結果をプロットした図である。It is the figure which plotted the measurement result about the time which purification processing requires. 活性炭カラムを用いた浄化方法についての測定結果をプロットした図である。It is the figure which plotted the measurement result about the purification method using an activated carbon column. 凝集沈殿法による有機ヒ素化合物の除去についての測定結果をプロットした図である。It is the figure which plotted the measurement result about the removal of the organic arsenic compound by the aggregation precipitation method. 一次浄化処理をした場合についての測定結果をプロットした図である。It is the figure which plotted the measurement result about the case where a primary purification process is carried out.

Claims (6)

水中の有機ヒ素化合物を除去して所定の濃度以下に浄化するための有機ヒ素化合物汚染水の浄化剤であって、該浄化剤は、ミクロポア含有率が85.7%以上の活性炭を主成分とするものであることを特徴とする有機ヒ素化合物汚染水の浄化剤。   An organic arsenic compound-contaminated water purifier for removing organic arsenic compounds in water and purifying them to a predetermined concentration or less, the purifier comprising activated carbon having a micropore content of 85.7% or more as a main component An organic arsenic compound-contaminated water purifier, characterized by 請求項1において、前記有機ヒ素化合物は、フェニルアルソン酸、ジフェニルアルシン酸、ビスジフェニルアルシンオキサイド、またはジフェニルアルシン酸を主成分とする混合物であることを特徴とする有機ヒ素化合物汚染水の浄化剤。   2. The purifier for contaminated organic arsenic compound according to claim 1, wherein the organic arsenic compound is a mixture mainly composed of phenylarsonic acid, diphenylarsinic acid, bisdiphenylarsinic acid, or diphenylarsinic acid. ミクロポア含有率が85.7%以上の活性炭を主成分とする有機ヒ素化合物汚染水の浄化剤を用いて有機ヒ素化合物汚染水を浄化処理することにより水中の残留ヒ素濃度を0.01mg/L以下に浄化することを特徴とする有機ヒ素化合物汚染水の浄化方法。   By purifying the organic arsenic compound contaminated water using the purifier of the organic arsenic compound contaminated water mainly composed of activated carbon having a micropore content of 85.7% or more, the residual arsenic concentration in the water is 0.01 mg / L or less. A method for purifying water contaminated with organic arsenic compounds, characterized by: 有機ヒ素化合物汚染水に対して、残留ヒ素濃度を環境基準値の0.01mg/L以下にはならないが環境基準値に近づける一次浄化処理をし、次いで二次浄化処理としてミクロポア含有率が85.7%以上の活性炭を主成分とする有機ヒ素化合物専用の浄化剤を用いて浄化処理することにより水中の残留ヒ素濃度を0.01mg/L以下に浄化することを特徴とする有機ヒ素化合物汚染水の浄化方法。   The organic arsenic compound-contaminated water is subjected to a primary purification treatment in which the residual arsenic concentration does not become 0.01 mg / L or less of the environmental standard value but approaches the environmental standard value, and then the micropore content is 85. Organic arsenic compound-contaminated water characterized by purifying the residual arsenic concentration in water to 0.01 mg / L or less by purifying it with a purifier exclusive for organic arsenic compounds mainly composed of 7% or more of activated carbon Purification method. 請求項3または4において、前記有機ヒ素化合物汚染水のpHが2〜5の範囲で浄化処理が行われることを特徴とする有機ヒ素化合物汚染水の浄化方法。   The method for purifying organic arsenic compound contaminated water according to claim 3 or 4, wherein the purification treatment is performed in a range of pH 2 to 5 of the organic arsenic compound contaminated water. 請求項3から5のいずれか1項において、前記有機ヒ素化合物は、フェニルアルソン酸、ジフェニルアルシン酸、ビスジフェニルアルシンオキサイド、またはジフェニルアルシン酸を主成分とする混合物であることを特徴とする有機ヒ素化合物汚染水の浄化方法。   The organic arsenic compound contaminated water according to any one of claims 3 to 5, wherein the organic arsenic compound is a mixture containing phenylarsonic acid, diphenylarsinic acid, bisdiphenylarsine oxide, or diphenylarsinic acid as a main component. Purification method.
JP2004356454A 2004-12-09 2004-12-09 Purification agent for organic arsenic compound contamination water and purification method Pending JP2006159123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356454A JP2006159123A (en) 2004-12-09 2004-12-09 Purification agent for organic arsenic compound contamination water and purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356454A JP2006159123A (en) 2004-12-09 2004-12-09 Purification agent for organic arsenic compound contamination water and purification method

Publications (1)

Publication Number Publication Date
JP2006159123A true JP2006159123A (en) 2006-06-22

Family

ID=36661707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356454A Pending JP2006159123A (en) 2004-12-09 2004-12-09 Purification agent for organic arsenic compound contamination water and purification method

Country Status (1)

Country Link
JP (1) JP2006159123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566894A (en) * 2013-09-26 2014-02-12 蚌埠华纺滤材有限公司 Arsenic removal modified active carbon and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566894A (en) * 2013-09-26 2014-02-12 蚌埠华纺滤材有限公司 Arsenic removal modified active carbon and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4126399B2 (en) Iron oxyhydroxide production method and iron oxyhydroxide adsorbent
US8648008B2 (en) Arsenic adsorbing composition and methods of use
JP5482979B2 (en) Adsorbent
CN101119934A (en) Method for producing iron oxyhydroxide and adsorbing material comprising iron oxyhydroxide
JP7174967B2 (en) phosphorus adsorbent
MX2014003589A (en) Water purification compositions of magnesium oxide and applications thereof.
TWI672273B (en) Adsorption method
JP2005288363A (en) Arsenic adsorbent and production method therefor
JP2006159123A (en) Purification agent for organic arsenic compound contamination water and purification method
JP2006036995A (en) Soil conditioner and use thereof
KR101927288B1 (en) Manufacturing method of surface modified activated carbon and the surface modified activated carbon manufacturing by the method
JP2012254408A (en) Production of scavenger of phosphorus in wastewater, and method for treating phosphorus-containing wastewater
AU2010346584A1 (en) Silica remediation in water
Kano Biosorption of lanthanides using select marine biomass
RU2775549C1 (en) Method for sorption extraction of chromium (vi) from aqueous solutions on mechano-activated graphite
JP2006263603A (en) Method for treating boron-containing water
JP4182477B2 (en) Arsenic removal method
JP6950893B2 (en) Treatment method of boron-containing water
Sharain-Liew et al. EQUILIBRIUM STUDIES ON THE BIOSORPTION OF LEAD (Pb 2+) CONTAMINATED WASTEWATER USING CATTAILS LEAVES (Typha angustifolia).
Elhami et al. Phosphate Removal from Water and Wastewater using Sepia (Cuttlefish) Endoskeleton Powder as Adsorbent
JP4095877B2 (en) Humic substance adsorbent and humic substance removal method
JP2004089924A (en) Water-soluble selenium removing agent and process for removal of water-soluble selenium using it
JP2022029369A (en) Anion adsorbent, adsorbent bag, method for using anion adsorbent, and method for purifying well water
JPH10192845A (en) Phosphate ion removing agent, removing-recovering method thereof
Steinwinder et al. Minimizing arsenic leaching from water treatment process residuals

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070516

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20070516

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090624

A521 Written amendment

Effective date: 20090824

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090916

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100203

Free format text: JAPANESE INTERMEDIATE CODE: A02