JP2006156609A - Radio wave absorption case and its manufacturing method - Google Patents

Radio wave absorption case and its manufacturing method Download PDF

Info

Publication number
JP2006156609A
JP2006156609A JP2004343334A JP2004343334A JP2006156609A JP 2006156609 A JP2006156609 A JP 2006156609A JP 2004343334 A JP2004343334 A JP 2004343334A JP 2004343334 A JP2004343334 A JP 2004343334A JP 2006156609 A JP2006156609 A JP 2006156609A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
outer shell
radio wave
parts
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004343334A
Other languages
Japanese (ja)
Inventor
Eiji Hirose
英治 廣瀬
Masato Tadokoro
眞人 田所
Satoru So
宗  哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2004343334A priority Critical patent/JP2006156609A/en
Publication of JP2006156609A publication Critical patent/JP2006156609A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave absorption case which is superior in workability and productivity and can be manufactured at low cost, and which is higher in strength than hot melt and can be made as a one body, and to provide its manufacturing method. <P>SOLUTION: An outer shell 1 is integrally molded by injection-molding a resin compound mixed with conductive oxide titanium of 5 to 60 pts.wt. to a base material of 100 pts.wt. made of a thermoplastic resin such as polybutylene terephthalate (PBT) or the like. The thermoplastic resin comprising the resin compound uses the polybutylene terephthalate or the like, polyethylene, polyolefin resin such as polypropylene or the like, nylon 6, polyamide resin such as nylon 66 or the like, polyethylene terephthalate or the like, polyester resin or the like, or their mixture, a reflection layer X with a given thickness is formed on the outer surface of the outer shell 1 so that electromagnetic wave transmission parts Da and Db may not be affected by an electromagnetic wave Q from the outside, and the reflection layer X selectively uses either of a metal plate, a conductive paint and metal plating. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電波吸収筐体及びその製造方法に関し、さらに詳しくは、電磁波発信部品を内部に配設した電波吸収筐体内の電磁界における電磁波障害を防止するための電波吸収筐体及びその製造方法に関するものである。   The present invention relates to a radio wave absorption casing and a method for manufacturing the same, and more particularly, to a radio wave absorption casing for preventing electromagnetic interference in an electromagnetic field in a radio wave absorption casing in which an electromagnetic wave transmitting component is disposed, and a method for manufacturing the same. It is about.

近年のマイクロ波帯やミリ波帯における電子機器の実用化に伴い、電波吸収筐体内に配置されたIC等の電磁波発信部品間での電磁結合や、これらから放射された電磁波が電波吸収筐体内で共振現象を起こすことにより、他の電磁波発信部品に悪影響を及ぼすことが指摘されるようになってきた。   With the practical application of electronic devices in the microwave band and millimeter wave band in recent years, electromagnetic coupling between electromagnetic wave transmitting parts such as ICs arranged in the radio wave absorption housing, and electromagnetic waves radiated from these in the radio wave absorption housing It has been pointed out that a resonance phenomenon is adversely affected on other electromagnetic wave transmission components.

この対策として出願人は、自らの開発した平面波用の電波吸収体の組成物(特願2000−164931号)が、電波吸収体の厚さを調整することにより近傍電磁界における電波吸収構造体としても有効であることを見出した(例えば、特許文献1参照)。そして、図8に例示するように、かかる電波吸収組成物Rを電波吸収筐体Pを構成する基板B上に設置された電磁波発信部品Da、Dbを覆い、かつ収納する金属ケースSの内面に塗布又はシート貼りすることにより初期の目的を達成してきた。
然しながら、このような方法には以下に述べるような種々の課題が残されていた。即ち、(1).電波吸収筐体として、金属等の導電性の構造体(金属ケース)の使用が前提となるため、形態上の自由度が少なく、生産性が悪い。
(2).電波吸収体の組成物の塗布時の塗布厚さ、または電波吸収体の組成物のシート貼り時のシート厚さの制御を必要とし、特に、塗布厚さの制御が難しい。
(3).電波吸収体の組成物の塗布時、または電波吸収体の組成物のシート貼り時の作業性が悪く、作業や乾燥に多くの時間を要する。
(4).電波吸収筐体内に外部と受発信する電磁波発信部品を備える場合には金属ケースに電磁波の通過孔を形成する必要がある、等の問題であった。
As a countermeasure, the applicant has developed a radio wave absorber composition for plane waves (Japanese Patent Application No. 2000-164931) as a radio wave absorption structure in a near electromagnetic field by adjusting the thickness of the radio wave absorber. Is also effective (see, for example, Patent Document 1). Then, as illustrated in FIG. 8, the radio wave absorbing composition R is applied to the inner surface of the metal case S that covers and accommodates the electromagnetic wave transmitting parts Da and Db installed on the substrate B constituting the radio wave absorbing housing P. Early objectives have been achieved by coating or sheeting.
However, such methods still have various problems as described below. That is, (1). Since it is premised on the use of a conductive structure (metal case) such as metal as the radio wave absorbing casing, the degree of freedom in form is small and productivity is poor.
(2). It is necessary to control the coating thickness when the radio wave absorber composition is applied, or the sheet thickness when the radio wave absorber composition is applied, and it is particularly difficult to control the coating thickness.
(3). Workability at the time of application of the composition of the radio wave absorber or pasting of the sheet of the composition of the radio wave absorber is poor, and much time is required for work and drying.
(4). In the case where an electromagnetic wave transmitting / receiving component that transmits / receives to / from the outside is provided in the radio wave absorbing housing, it is necessary to form an electromagnetic wave passage hole in the metal case.

そこで、本願出願人は、成形可能な電波吸収体として、ホットメルトを基材とした「電波吸収筐体及びその製造方法」を出願している(特願2003-176812 号) 。ホットメルトを基材とした場合、成形性と言う面では簡易な金型、簡易な成形機にて加工することが出来る点では利点があるが、実際に使用すると、更に次のような課題があることが判った。即ち、
(a)耐熱性が低い、
(b)筐体としては、剛性が低い、
(c)ホットメルトの成形機を保有している会社が少ない、
等である。
特開2002−151884号公報
Therefore, the applicant of the present application has applied for “radio wave absorption casing and manufacturing method thereof” using hot melt as a base material as a moldable radio wave absorber (Japanese Patent Application No. 2003-176812). When hot melt is used as a base material, there is an advantage in terms of moldability in that it can be processed with a simple mold and a simple molding machine. However, when actually used, there are the following problems. It turns out that there is. That is,
(A) low heat resistance,
(B) The casing has low rigidity.
(C) few companies have hot melt molding machines,
Etc.
JP 2002-151844 A

この発明はかかる従来の問題点に着目し、加工性、生産性に優れ、安価に製造することが出来ると共に、ホットメルトに比べて強度が高く、筐体化も可能な電波吸収筐体及びその製造方法を提供することを目的とするものである。   The present invention pays attention to such conventional problems, and is excellent in processability and productivity, can be manufactured at a low cost, has a strength higher than that of hot melt, and can be made into a casing, and its The object is to provide a manufacturing method.

この発明は上記目的を達成するため、この発明の電波吸収筐体は、外殻を、熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを5〜60重量部配合した樹脂組成物により一体的に形成したことを要旨とするものである。   In order to achieve the above object, the radio wave absorbing casing of the present invention is a resin in which an outer shell is blended with 5 to 60 parts by weight of conductive titanium oxide with respect to 100 parts by weight of a base material made of a thermoplastic resin. The gist is that it is formed integrally with the composition.

ここで、前記熱可塑性樹脂が、ポリブチレンテレフタレートであり、外殻を射出成形により一体的に成形するものである。また、金属板、導電性塗料、または金属メッキのいずれか一つを選択して反射層とし、この反射層により前記外殻の外壁面を被覆することも可能である。   Here, the thermoplastic resin is polybutylene terephthalate, and the outer shell is integrally formed by injection molding. It is also possible to select any one of a metal plate, a conductive paint, and metal plating as a reflection layer, and to cover the outer wall surface of the outer shell with this reflection layer.

また、前記電磁波発信部品が複数であり、かつ発信する電磁波の周波数が異なる場合、前記外殻を、前記各電磁波発信部品の対応する位置に、前記電磁波の周波数に対応した樹脂組成物により構成することも可能であり、更に前記電磁波発信部品が複数であり、かつ発信する電磁波の周波数が異なる場合の前記外殻を、前記電磁波発信部品が発信する電磁波の周波数に対応した厚さの樹脂組成物により構成することも可能である。   Further, when there are a plurality of the electromagnetic wave transmitting parts and the frequency of the electromagnetic waves to be transmitted is different, the outer shell is configured with a resin composition corresponding to the frequency of the electromagnetic waves at a corresponding position of each of the electromagnetic wave transmitting parts. Further, the outer shell in the case where there are a plurality of the electromagnetic wave transmitting components and the frequency of the electromagnetic waves to be transmitted is different, the resin composition having a thickness corresponding to the frequency of the electromagnetic waves transmitted by the electromagnetic wave transmitting components. It is also possible to configure by.

このように、外殻をポリブチレンテレフタレートから成る熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを5〜60重量部配合した樹脂組成物を射出成形により一体的に形成することで、加工性、生産性に優れ、安価に製造することが出来るものである。   Thus, a resin composition in which 5 to 60 parts by weight of conductive titanium oxide is blended with 100 parts by weight of a base material made of a thermoplastic resin made of polybutylene terephthalate is integrally formed by injection molding. Therefore, it is excellent in workability and productivity, and can be manufactured at low cost.

また、この発明の電波吸収筐体の製造方法は、熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを5〜60重量部配合した樹脂組成物を射出成形により所定形状の外殻を成形し、この成形した外殻を、前記基板上の電磁波発信部品に対して所定の空間を隔てて覆うように固定するので、従来の金属ケース内面に電波吸収組成物の塗布又はシート貼りをして基板上に固定する方法に比較して生産性及び作業性に優れ、またホットメルトに比べて強度が高く、筐体化が可能である。   In addition, in the method for manufacturing a radio wave absorption casing according to the present invention, a resin composition in which 5 to 60 parts by weight of conductive titanium oxide is blended with 100 parts by weight of a base material made of a thermoplastic resin has a predetermined shape by injection molding. Since the outer shell is molded and the molded outer shell is fixed so as to cover the electromagnetic wave transmitting component on the substrate with a predetermined space therebetween, the application or sheet of the radio wave absorbing composition is applied to the inner surface of the conventional metal case. It is superior in productivity and workability compared to the method of pasting and fixing on the substrate, and it has higher strength than hot melt and can be made into a housing.

この発明は、上記のように構成したので以下のような優れた効果を奏するものである。(a).従来の電波吸収筐体は、セラミックに磁性粉を配合し焼結して筐体を製作しているためコストが高いが、これに比べて本願発明の電波吸収筐体は、汎用の射出成形用材料、即ち、ポリブチレンテレフタレート等の熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを5〜60重量部配合した樹脂組成物を射出成形で一体的に成形するので安価に製造出来る。
(b).電波吸収筐体の基材として、汎用の射出成形用材料を使用しているので、汎用の射出成形機が可能であり、また電磁波損失材料として針状結晶の酸化チタンを使用しており、磁性粉(金属酸化物)に比較して金型摩耗が少なく、更に耐熱性は、セラミックより劣るが(300°C以上)、電子部品を半田付けする条件(260°C、20sec)を満足するものであり、ホットメルトの基材に比べて良好である。
(c).ホットメルトに比べて強度が高く、筐体化が可能である。
Since the present invention is configured as described above, the following excellent effects can be obtained. (a) The conventional radio wave absorption case is expensive because the case is manufactured by mixing magnetic powder in ceramic and sintering, but the radio wave absorption case of the present invention is more general than this. A resin composition containing 5 to 60 parts by weight of conductive titanium oxide to 100 parts by weight of a base material made of a thermoplastic resin such as polybutylene terephthalate is integrally molded by injection molding. Can be manufactured at low cost.
(b) Since a general-purpose injection molding material is used as the base material of the radio wave absorption housing, a general-purpose injection molding machine is possible, and needle-shaped crystal titanium oxide is used as the electromagnetic wave loss material. Compared to magnetic powder (metal oxide), the mold wear is less, and the heat resistance is inferior to ceramic (300 ° C or higher), but the conditions for soldering electronic components (260 ° C, 20 sec) It is satisfactory as compared with a hot-melt base material.
(c) It has higher strength than hot melt and can be made into a housing.

以下、添付図面に基づき、この発明の実施形態を説明する。
なお、以下の説明において、従来例と同一構成要素は同一符号を付して説明は省略する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the following description, the same components as those in the conventional example are denoted by the same reference numerals, and description thereof is omitted.

図1はこの発明による電波吸収筐体の構造の第1実施形態を示す断面図であって、電波吸収筐体Pは、基板B上に設置された少なくとも一個以上(この実施形態では2個設置してあるが、数には限定されない)の電磁波発信部品Da及びDbを配設し、この電磁波発信部品Da及びDbを所定の空間Yを隔てて囲むように設置された断面箱状の外殻1により構成されている。なお、外殻1の形状は、箱状に限定されず、ドーム状に構成することも可能である。   FIG. 1 is a cross-sectional view showing a first embodiment of the structure of a radio wave absorption housing according to the present invention. At least one radio wave absorption housing P is installed on a substrate B (two in this embodiment are installed). However, the number of the electromagnetic wave transmitting parts Da and Db is not limited, and the outer shell having a cross-sectional box shape is disposed so as to surround the electromagnetic wave transmitting parts Da and Db with a predetermined space Y therebetween. 1. In addition, the shape of the outer shell 1 is not limited to a box shape, and may be configured in a dome shape.

前記外殻1は、ポリブチレンテレフタレート(PBT)等の熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを5〜60重量部配合した樹脂組成物を射出成形により一体的に成形したものである。樹脂組成物を構成する熱可塑性樹脂としては、上記のポリブチレンテレフタレート他、ポリエチレン、ポリプロピレン等ポリオレフィン樹脂、ナイロン6、ナイロン66等ポリアミド樹脂、ポリエチレンテレフタレート等、ポリエステル樹脂等、またはこれらの混合物が使用される。   The outer shell 1 is integrally formed by injection molding with a resin composition in which 5 to 60 parts by weight of conductive titanium oxide is blended with 100 parts by weight of a base material made of a thermoplastic resin such as polybutylene terephthalate (PBT). Molded. As the thermoplastic resin constituting the resin composition, the above-mentioned polybutylene terephthalate, polyolefin resin such as polyethylene and polypropylene, polyamide resin such as nylon 6 and nylon 66, polyethylene terephthalate, polyester resin and the like, or a mixture thereof is used. The

外殻1の外表面には、収納している電磁波発信部品Da及びDbが外部からの電磁波Qの影響を受けないように所定厚さの反射層Xが形成してあり、この反射層Xとしては、金属板、導電性塗料、または金属メッキのいずれか一つを選択して使用するものである。   A reflection layer X having a predetermined thickness is formed on the outer surface of the outer shell 1 so that the housed electromagnetic wave transmission parts Da and Db are not affected by the electromagnetic wave Q from the outside. Is to select and use any one of a metal plate, a conductive paint, and a metal plating.

このように外殻1を構成することで、電磁波発信部品Da及びDbが発信した電磁波Qが周囲を取り囲む上記樹脂組成物から成る外殻1に入射し、外殻1内を通過する過程で外殻1の材料に配合された導電性酸化チタンにより吸収されて外部への放射を防いでいる。   By configuring the outer shell 1 in this manner, the electromagnetic wave Q transmitted from the electromagnetic wave transmitting parts Da and Db is incident on the outer shell 1 made of the resin composition surrounding the periphery and passes through the outer shell 1 in the course of passing through the outer shell 1. It is absorbed by the conductive titanium oxide blended in the material of the shell 1 to prevent radiation to the outside.

また、外殻1の外表面に形成した反射層Xにより、外殻1の内部の電磁界が外部からの電磁波Qの影響を受けることがなくなると共に、電磁波発信部品Da及びDbが発信した電磁波が外殻1内を通過する過程で、吸収しきれなかった電磁波の外部への放射を防ぐことが出来るものである。   Further, the reflection layer X formed on the outer surface of the outer shell 1 prevents the electromagnetic field inside the outer shell 1 from being affected by the electromagnetic wave Q from the outside, and the electromagnetic waves transmitted from the electromagnetic wave transmitting parts Da and Db In the process of passing through the outer shell 1, it is possible to prevent radiation of electromagnetic waves that could not be absorbed to the outside.

また、電波吸収筐体Pを構成する外殻1は、内部に配設する電磁波発信部品Da及びDbが発信する電磁波Qの波長に応じてその厚さtを異にする多種のものが用意される。外殻1の厚さtは電磁波発信部品Da及びDbが発信する電磁波Qの波長の0.1〜0.2倍の厚さtになるように調整することが好ましい。このような厚さtの範囲内にすることによって、電磁波の吸収効果がより得られるために好ましいのである。   In addition, the outer shell 1 constituting the radio wave absorbing housing P is prepared in a variety of thicknesses t different depending on the wavelength of the electromagnetic wave Q transmitted from the electromagnetic wave transmitting parts Da and Db disposed therein. The It is preferable to adjust the thickness t of the outer shell 1 so that the thickness t is 0.1 to 0.2 times the wavelength of the electromagnetic wave Q transmitted by the electromagnetic wave transmitting parts Da and Db. By making the thickness t in such a range, an electromagnetic wave absorption effect can be further obtained, which is preferable.

電波吸収筐体Pを構成する外殻1の組成は、樹脂の種類やこれに添加する導電性酸化チタンの種類と配合量により左右される材料の複素比誘電率の変動要素を考慮すると、導電性酸化チタンの配合量を樹脂100重量部に対して5〜60重量部、好ましくは10〜35重量部とする。   The composition of the outer shell 1 constituting the radio wave absorption casing P is determined by considering the variable factors of the complex relative permittivity of the material that depends on the type of resin and the type and amount of conductive titanium oxide added to the resin. The compounding amount of the characteristic titanium oxide is 5 to 60 parts by weight, preferably 10 to 35 parts by weight with respect to 100 parts by weight of the resin.

導電性酸化チタンは吸収性能の広帯域化に効果があるが、その配合量が樹脂100重量部に対して5重量部未満であると材料の複素比誘電率が実部、虚部共に低くなり過ぎてミリ波帯域の電波に整合できなくなり、60重量部超となると逆に複素比誘電率の実部、虚部が共に高くなり過ぎてミリ波帯域の電波に整合できなくなる。   Conductive titanium oxide is effective in broadening the absorption performance, but if the blending amount is less than 5 parts by weight relative to 100 parts by weight of the resin, the complex relative permittivity of the material becomes too low for both the real part and the imaginary part. Therefore, when it exceeds 60 parts by weight, both the real part and the imaginary part of the complex relative permittivity become too high and cannot match the millimeter wave band.

また、上述する樹脂に導電性酸化チタンに加えて導電性カ−ボンブラックを配合してもよい。導電性カ−ボンブラックは複素比誘電率の虚部を高くして電波吸収性能に影響を及ぼすことなく外殻1の厚さを薄くすることを可能にする。導電性カ−ボンブラックの配合量は樹脂100重量部に対して4重量部以下とするとよい。このように、導電性カ−ボンブラックの配合量を4重量部以下にすることによって、材料の粘度を適度に保つ事が可能となり、良好な施工性が得られるため好ましい。   In addition to the conductive titanium oxide, conductive carbon black may be blended with the resin described above. The conductive carbon black increases the imaginary part of the complex relative permittivity, thereby making it possible to reduce the thickness of the outer shell 1 without affecting the radio wave absorption performance. The amount of conductive carbon black is preferably 4 parts by weight or less with respect to 100 parts by weight of the resin. Thus, by making the compounding quantity of conductive carbon black 4 parts by weight or less, it becomes possible to keep the viscosity of the material moderately and good workability is obtained, which is preferable.

外殻1内に配設される電磁波発信部品Da及びDbが、上記第1実施形態の図1に示すように、複数である場合には、各々が発信する電磁波Qの周波数に対応した電波吸収性能を備えるために、例えば、図2に示す第2実施形態のように、電磁波発信部品Daに対応する1aの部分と電磁波発信部品Dbに対応する1bの部分とで外殻1の組成を変化させるか、または、図3に示す第3実施形態のように、電磁波発信部品Daに対応する外殻1の厚さtaと電磁波発信部品Dbに対応する外殻1の厚さtbを変化させることが好ましい。これにより、単一の成形体により周波数が異なる複数の電磁波Qの吸収を可能にすることが出来る。   When there are a plurality of electromagnetic wave transmission parts Da and Db disposed in the outer shell 1 as shown in FIG. 1 of the first embodiment, the radio wave absorption corresponding to the frequency of the electromagnetic wave Q transmitted from each of them. In order to provide performance, for example, as in the second embodiment shown in FIG. 2, the composition of the outer shell 1 is changed between the portion 1a corresponding to the electromagnetic wave transmission component Da and the portion 1b corresponding to the electromagnetic wave transmission component Db. Or changing the thickness ta of the outer shell 1 corresponding to the electromagnetic wave transmission component Da and the thickness tb of the outer shell 1 corresponding to the electromagnetic wave transmission component Db as in the third embodiment shown in FIG. Is preferred. Thereby, absorption of several electromagnetic waves Q from which a frequency differs with a single molded object can be enabled.

また、外殻1内に配備される複数の電磁波発信部品Da及びDbのうち、例えば電磁波発信部品が受発信アンテナ等のように外部との受発信を行なう必要のある電磁波発信部品Dxである場合には、図4に示す第4実施形態のように、外殻1の電磁波発信部品Dxに対応する部分に電磁波Qを通過させるための透過領域1cを形成しておく。   In addition, among the plurality of electromagnetic wave transmission parts Da and Db provided in the outer shell 1, for example, the electromagnetic wave transmission part is an electromagnetic wave transmission part Dx that needs to perform transmission / reception with the outside, such as a reception / transmission antenna. As in the fourth embodiment shown in FIG. 4, a transmission region 1 c for allowing the electromagnetic wave Q to pass through is formed in a portion corresponding to the electromagnetic wave transmission component Dx of the outer shell 1.

そして、透過領域1cにおける外殻1の組成物として導電性酸化チタンを配合しない樹脂を使用し、導電性酸化チタンを配合した樹脂からなる非透過領域1dと組み合わせて一体的に成形するとよい。これにより、外殻1に電磁波通過孔を形成することなしに、電磁波発信部品Daが透過領域1cを通して外部との受発信を行なうことができる。   Then, as a composition of the outer shell 1 in the transmissive region 1c, a resin that does not contain conductive titanium oxide is used, and it is preferably molded in combination with the non-transmissive region 1d made of a resin containing conductive titanium oxide. Thereby, the electromagnetic wave transmission component Da can perform transmission / reception with the outside through the transmission region 1 c without forming an electromagnetic wave passage hole in the outer shell 1.

更に、外殻1に収容されている電磁波発信部品Dbが外部からの電磁波Qの影響を受けないように、非透過領域1dの外壁を所定厚さの導電性塗料または金属メッキで被覆した反射層Xで形成することが好ましい。
〔実施例〕
図5は、ポリブチレンテレフタレート(PBT)等の熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを30重量部配合した実施例である。
Further, a reflection layer in which the outer wall of the non-transmissive region 1d is covered with a conductive paint or metal plating having a predetermined thickness so that the electromagnetic wave transmitting component Db accommodated in the outer shell 1 is not affected by the electromagnetic wave Q from the outside. X is preferably formed.
〔Example〕
FIG. 5 shows an example in which 30 parts by weight of conductive titanium oxide is blended with 100 parts by weight of a base material made of a thermoplastic resin such as polybutylene terephthalate (PBT).

この配合については、ホットメルトに配合した時の25.8重量部よりも酸化チタンを多く配合しており、これはポリブチレンテレフタレート(PBT)と酸化チタンとをコンパウンド化する際に酸化チタンの形状(針状結晶)が変形(折れる)ため、誘電率が下がる事を捕捉する為である。   This compound contains more titanium oxide than 25.8 parts by weight when blended with hot melt, and this is the form of titanium oxide when compounded with polybutylene terephthalate (PBT) and titanium oxide. This is to capture the decrease in dielectric constant due to deformation (breaking) of the (acicular crystal).

図5から明らかなように、誘電率は、26.5GHz〜110GHzまで、20dB吸収曲線上にあるので、20dBの電波吸収体が出来ることが判った。実際に上記のポリブチレンテレフタレート(PBT)から成る熱可塑性樹脂で外殻1を形成した時の電波吸収性能の結果を図7に示す。   As is clear from FIG. 5, since the dielectric constant is on the 20 dB absorption curve from 26.5 GHz to 110 GHz, it was found that a 20 dB radio wave absorber can be formed. FIG. 7 shows the result of the radio wave absorption performance when the outer shell 1 is actually formed of the thermoplastic resin composed of the above polybutylene terephthalate (PBT).

図7から明らかなように、60GHzにて約40dBの吸収性能を得ることが出来た。図6は、ポリブチレンテレフタレート(PBT)の熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを30重量部配合して形成した電波吸収筐体(外殻1)の電波吸収性能を測定した測定治具を示し、断面凹状に形成した電波吸収筐体(外殻1)に入射波Pxと反射波Pzとの導波管2a,2bを備えた金属ケース3を被せ、電波吸収筐体(外殻1)内に導波管2aから入射波Pxを入射し、導波管2bから反射波Pzを測定して電波吸収性能を測定したものである。   As is apparent from FIG. 7, an absorption performance of about 40 dB could be obtained at 60 GHz. FIG. 6 shows the radio wave absorption of a radio wave absorption housing (outer shell 1) formed by blending 30 parts by weight of conductive titanium oxide with 100 parts by weight of a base material made of a polybutylene terephthalate (PBT) thermoplastic resin. The measurement jig which measured the performance is shown, and the metal case 3 provided with the waveguides 2a and 2b of the incident wave Px and the reflected wave Pz is put on the radio wave absorption housing (outer shell 1) formed in the concave section, and the radio wave In this case, the incident wave Px is incident from the waveguide 2a into the absorption housing (outer shell 1), and the reflected wave Pz is measured from the waveguide 2b to measure the radio wave absorption performance.

次に、この発明の電波吸収筐体Pの製造方法としては、先ず外殻1を、ポリブチレンテレフタレート(PBT)から成る基材100重量部に対して、導電性酸化チタンを30重量部配合した樹脂組成物を射出成形により所定の形状に一体的に成形しておく。   Next, as a method for manufacturing the radio wave absorbing casing P of the present invention, first, the outer shell 1 is blended with 30 parts by weight of conductive titanium oxide with respect to 100 parts by weight of a base material made of polybutylene terephthalate (PBT). The resin composition is integrally molded into a predetermined shape by injection molding.

そして、外殻1を基板B上に、電磁波発信部品Da、Dbと所定の空間Yを隔てて覆うように固定する。これにより得られた外殻1は、必要に応じてその外表面に所定厚さの導電性塗料または金属メッキで被覆した反射層Xを形成する。   Then, the outer shell 1 is fixed on the substrate B so as to cover the electromagnetic wave transmitting parts Da and Db with a predetermined space Y therebetween. The outer shell 1 obtained in this way forms the reflective layer X covered with a conductive paint or metal plating having a predetermined thickness on the outer surface as necessary.

また、外殻1内に収容する電磁波発信部品Daの中に外部との受発信を必要とする電磁波発信部品Daが含まれる場合には、熱可塑性樹脂100重量部に対して導電性酸化チタンを5〜60重量部配合した組成物からなる非透過領域1dと、熱可塑性樹脂に導電性酸化チタンを配合しない樹脂組成物からなる透過領域1cとを射出成形により一体的に成形するとよい。   When the electromagnetic wave transmitting component Da that needs to be received and transmitted with the outside is included in the electromagnetic wave transmitting component Da housed in the outer shell 1, conductive titanium oxide is added to 100 parts by weight of the thermoplastic resin. A non-permeable region 1d made of a composition containing 5 to 60 parts by weight and a transmissive region 1c made of a resin composition not containing conductive titanium oxide in a thermoplastic resin may be integrally formed by injection molding.

これにより得られた外殻1は、必要に応じて透過領域1cを除いた非透過領域1dの外表面に所定厚さの導電性塗料または金属メッキで被覆した反射層Xを形成する。   The outer shell 1 obtained in this way forms the reflective layer X covered with a conductive paint or metal plating of a predetermined thickness on the outer surface of the non-transmissive region 1d excluding the transmissive region 1c as necessary.

上述したこの発明による電波吸収筐体Pを構成する外殻1は、熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを5〜60重量部配合した樹脂組成物を射出成形により所定形状の外殻を成形し、この成形した外殻を、前記基板上の電磁波発信部品に対して所定の空間を隔てて覆うように固定するので、従来の金属ケース内面に電波吸収組成物の塗布又はシート貼りをして基板上に固定する方法に比較して生産性及び作業性に優れ、またホットメルトに比べて強度が高く、筐体化が可能である。   The outer shell 1 constituting the radio wave absorbing casing P according to the present invention described above is injection molded with a resin composition in which 5 to 60 parts by weight of conductive titanium oxide is blended with 100 parts by weight of a base material made of a thermoplastic resin. The outer shell having a predetermined shape is molded by the above-described method, and the molded outer shell is fixed to the electromagnetic wave transmitting component on the substrate so as to cover the predetermined space with a predetermined space therebetween. Compared with the method of applying or coating the sheet and fixing it on the substrate, it is excellent in productivity and workability, and has higher strength than hot melt, and can be made into a housing.

この発明の電波吸収筐体の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the electromagnetic wave absorption housing | casing of this invention. この発明の電波吸収筐体の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the electromagnetic wave absorption housing | casing of this invention. この発明の電波吸収筐体の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the electromagnetic wave absorption housing | casing of this invention. この発明の電波吸収筐体の第4実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the electromagnetic wave absorption housing | casing of this invention. この発明の電波吸収筐体の電波吸収性能を示すグラフ説明図である。It is graph explanatory drawing which shows the electromagnetic wave absorption performance of the electromagnetic wave absorption housing | casing of this invention. 電波吸収性能を測定する測定治具の説明図である。It is explanatory drawing of the measuring jig which measures electromagnetic wave absorption performance. この発明の電波吸収筐体における電波吸収性能の結果を示すグラフ説明図である。It is graph explanatory drawing which shows the result of the electromagnetic wave absorption performance in the electromagnetic wave absorption housing | casing of this invention. 従来の電波吸収筐体の構造を示す断面図である。It is sectional drawing which shows the structure of the conventional electromagnetic wave absorption housing | casing.

符号の説明Explanation of symbols

1 外殻
2a,2b 導波管
Px 入射波 Pz 反射波
3 金属ケース
B 基板
D、Da、Db、Dx 電磁波発信部品
P 電波吸収筐体
R 電波吸収組成物
S 金属ケース
Y 空間部
Q 電磁波
X 反射層
DESCRIPTION OF SYMBOLS 1 Outer shell 2a, 2b Waveguide Px Incident wave Pz Reflected wave 3 Metal case B Board | substrate D, Da, Db, Dx Electromagnetic wave transmission component
P radio wave absorbing housing R radio wave absorbing composition S metal case Y space Q electromagnetic wave X reflective layer

Claims (7)

基板上に電磁波を発信する少なくとも1個以上の電磁波発信部品を配設し、該電磁波発信部品を所定の空間を隔てて外殻により覆うようにした電波吸収筐体において、
前記外殻を、熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを5〜60重量部配合した樹脂組成物により一体的に形成して成る電波吸収筐体。
In the radio wave absorption housing in which at least one electromagnetic wave transmitting component that transmits electromagnetic waves is disposed on a substrate, and the electromagnetic wave transmitting component is covered with an outer shell with a predetermined space therebetween,
An electromagnetic wave absorbing casing formed by integrally forming the outer shell with a resin composition in which 5 to 60 parts by weight of conductive titanium oxide is blended with 100 parts by weight of a base material made of a thermoplastic resin.
前記熱可塑性樹脂が、ポリブチレンテレフタレートである請求項1に記載の電波吸収筐体。 The radio wave absorbing casing according to claim 1, wherein the thermoplastic resin is polybutylene terephthalate. 前記外殻を射出成形により一体的に成形した請求項1または2に記載の電波吸収筐体。 The radio wave absorption casing according to claim 1 or 2, wherein the outer shell is integrally formed by injection molding. 金属板、導電性塗料、または金属メッキのいずれか一つを選択して反射層とし、この反射層により前記外殻の外壁面を被覆した請求項1,2または3に記載の電波吸収筐体。 4. The radio wave absorption casing according to claim 1, wherein any one of a metal plate, a conductive paint, and metal plating is selected as a reflection layer, and the outer wall surface of the outer shell is covered with the reflection layer. . 前記電磁波発信部品が複数であり、かつ発信する電磁波の周波数が異なる場合の前記外殻を、前記各電磁波発信部品の対応する位置に、前記電磁波の周波数に対応した樹脂組成物により構成した請求項1,2,3または4に記載の電波吸収筐体。 A plurality of the electromagnetic wave transmitting parts, and the outer shell when the frequency of the electromagnetic waves to be transmitted is different is configured by a resin composition corresponding to the frequency of the electromagnetic waves at a corresponding position of each electromagnetic wave transmitting part. The radio wave absorption housing according to 1, 2, 3, or 4. 前記電磁波発信部品が複数であり、かつ発信する電磁波の周波数が異なる場合、前記外殻を、前記電磁波発信部品が発信する電磁波の周波数に対応した厚さの樹脂組成物により構成した請求項1,2,3,4または5に記載の電波吸収筐体。 When the electromagnetic wave transmitting component is plural and the frequency of the electromagnetic wave to be transmitted is different, the outer shell is constituted by a resin composition having a thickness corresponding to the frequency of the electromagnetic wave transmitted by the electromagnetic wave transmitting component. The radio wave absorption housing according to 2, 3, 4 or 5. 基板上に電磁波を発信する少なくとも1個以上の電磁波発信部品を配設し、該電磁波発信部品を所定の空間を隔てて外殻により覆う電波吸収筐体の製造方法において、
熱可塑性樹脂から成る基材100重量部に対して、導電性酸化チタンを5〜60重量部配合した樹脂組成物を射出成形により所定形状の外殻を成形し、この成形した外殻を、前記基板上の電磁波発信部品に対して所定の空間を隔てて覆うように固定する電波吸収筐体の製造方法。
In a method for manufacturing a radio wave absorption casing, wherein at least one electromagnetic wave transmitting component that transmits electromagnetic waves is disposed on a substrate, and the electromagnetic wave transmitting component is covered by an outer shell with a predetermined space therebetween,
A resin composition in which 5 to 60 parts by weight of conductive titanium oxide is blended with respect to 100 parts by weight of a base material made of a thermoplastic resin is molded into a shell having a predetermined shape by injection molding. A method for manufacturing a radio wave absorption housing, wherein the electromagnetic wave transmission component on a substrate is fixed so as to cover a predetermined space.
JP2004343334A 2004-11-29 2004-11-29 Radio wave absorption case and its manufacturing method Pending JP2006156609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004343334A JP2006156609A (en) 2004-11-29 2004-11-29 Radio wave absorption case and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004343334A JP2006156609A (en) 2004-11-29 2004-11-29 Radio wave absorption case and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006156609A true JP2006156609A (en) 2006-06-15

Family

ID=36634518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004343334A Pending JP2006156609A (en) 2004-11-29 2004-11-29 Radio wave absorption case and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006156609A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189765A1 (en) 2008-10-29 2010-05-26 VEGA Grieshaber KG High frequency module for measuring fill levels in the w frequency
KR101095489B1 (en) * 2011-04-13 2011-12-16 (주)한비메탈텍 Plate of shield can for smd process, manufacturing method for the plate and shield can using the plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220496A (en) * 1989-02-22 1990-09-03 Hitachi Ltd High-frequency amplification module
JP2001217785A (en) * 2000-01-31 2001-08-10 Hitachi Ltd High frequency communication apparatus and producing method therefor
JP2002151884A (en) * 2000-11-15 2002-05-24 Yokohama Rubber Co Ltd:The Radio wave absorbing structure
JP2004022685A (en) * 2002-06-14 2004-01-22 Mitsui Chemicals Inc Radio wave absorption cap

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220496A (en) * 1989-02-22 1990-09-03 Hitachi Ltd High-frequency amplification module
JP2001217785A (en) * 2000-01-31 2001-08-10 Hitachi Ltd High frequency communication apparatus and producing method therefor
JP2002151884A (en) * 2000-11-15 2002-05-24 Yokohama Rubber Co Ltd:The Radio wave absorbing structure
JP2004022685A (en) * 2002-06-14 2004-01-22 Mitsui Chemicals Inc Radio wave absorption cap

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2189765A1 (en) 2008-10-29 2010-05-26 VEGA Grieshaber KG High frequency module for measuring fill levels in the w frequency
CN101726342A (en) * 2008-10-29 2010-06-09 Vega格里沙贝两合公司 High frequency module for measuring fill levels at frequencies of more than 75 GHz
US8269666B2 (en) 2008-10-29 2012-09-18 Vega Grieshaber Kg High frequency module for filling level measurements in the W-band
CN101726342B (en) * 2008-10-29 2013-12-04 Vega格里沙贝两合公司 High frequency module for measuring fill levels at frequencies of more than 75 GHz
EP3351910A3 (en) * 2008-10-29 2018-09-05 VEGA Grieshaber KG High frequency module for measuring fill levels in the w band
KR101095489B1 (en) * 2011-04-13 2011-12-16 (주)한비메탈텍 Plate of shield can for smd process, manufacturing method for the plate and shield can using the plate
WO2012141394A1 (en) * 2011-04-13 2012-10-18 Song Min Hwa Plate for a shield can for an smd process, manufacturing method thereof, and shield can using the plate

Similar Documents

Publication Publication Date Title
CA2234564C (en) Lens antenna
JP7159049B2 (en) Cover for millimeter wave radar
US7126525B2 (en) Millimeter wave-radar and method for manufacturing the same
US9263799B2 (en) Antenna device and electronic device with the same
US5841067A (en) Housing for electronic apparatus and method of damping unwanted radiation of electromagnetic waves
FI110394B (en) Combination antenna
JP2000196346A (en) Directional transmitter-receiver of electromagnetic wave
TWI811264B (en) Printed circuit board for a radar level measurement device with waveguide coupling
US7358919B2 (en) Feedhorn, radio wave receiving converter and antenna
JP2776753B2 (en) Plastic shielded housing
JP3041295B1 (en) Composite radio wave absorber and its construction method
JP2015213285A (en) Radio unit
EP0895257B1 (en) Electromagnetic noise-suppressing component
CN104271039A (en) Electromagnetic (EM) probes, methods of using such EM probes and systems which use such electromagnetic EM probes
JP2006156609A (en) Radio wave absorption case and its manufacturing method
JP2000013081A (en) Electronic part
EP2045285A1 (en) Roll-type composite sheet having improved heat-releasing, electromagnetic wave-absorbing, and impact-absorbing properties, and method of manufacturing the same
US20030117786A1 (en) Electromagnetic interference waveguide shield with absorber layer
JP6314732B2 (en) Wireless communication module
JP2005192089A (en) Feed horn, radio wave receiving converter and antenna
JP2005012103A (en) Radio wave absorption housing and its manufacturing method
GB2389236A (en) Feed horn for statellite communication
KR100708906B1 (en) A dual structure for shielding and absorbing electromagnetic wave and manufacturing method thereof
JP2007201113A (en) High intensity wave absorber
JP2002151884A (en) Radio wave absorbing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Effective date: 20091225

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A02