JP2006156268A - Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery pack - Google Patents

Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery pack Download PDF

Info

Publication number
JP2006156268A
JP2006156268A JP2004348090A JP2004348090A JP2006156268A JP 2006156268 A JP2006156268 A JP 2006156268A JP 2004348090 A JP2004348090 A JP 2004348090A JP 2004348090 A JP2004348090 A JP 2004348090A JP 2006156268 A JP2006156268 A JP 2006156268A
Authority
JP
Japan
Prior art keywords
secondary battery
carbonate
electrolyte secondary
aqueous electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004348090A
Other languages
Japanese (ja)
Inventor
Atsushi Ueda
敦史 上田
Kunihiko Minetani
邦彦 峯谷
Shusaku Goto
周作 後藤
Yukishige Inaba
幸重 稲葉
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004348090A priority Critical patent/JP2006156268A/en
Publication of JP2006156268A publication Critical patent/JP2006156268A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte solution secondary battery composed of a cathode, an anode, nonaqueous electrolyte solution, and a current interruption mechanism operating by the increase of internal pressure inside the battery, with excellent charge/discharge characteristics, having a current interruption mechanism not causing malfunction even if a battery is left as it is for a constant period under high-temperature condition. <P>SOLUTION: The cathode consists of lithium-containing transition metal oxide expressed in formula: Li<SB>a</SB>(Co<SB>1-x-y</SB>Mg<SB>x</SB>M<SB>y</SB>)<SB>b</SB>O<SB>c</SB>(where, M is at least a kind selected from a group consisting of Mn, Ni, Y, Yb, Ca, Al, Ti, Cu, Zn, Sr, and Ba, satisfying:0≤a≤1.05, 0.005≤x≤0.15, 0≤y≤0.25, 0.85≤b≤1.1, 1.8≤c≤2.1), the anode consists of a carbon material, and the nonaqueous electrolyte solution consists of (A) a nonaqueous solvent containing cyclic carboxylate and a solute dissolved in the nonaqueous solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解液二次電池及び非水電解液二次電池パックに関する。   The present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery pack.

近年、パソコンおよび携帯電話等の電子機器の小型軽量化、コードレス化が急速に進んでおり、これらの駆動用電源として高エネルギー密度を有する二次電池が要求されている。中でもリチウムを活物質とする非水電解液二次電池は、高電圧、高エネルギー密度を有する電池として期待が大きい。   In recent years, electronic devices such as personal computers and mobile phones are rapidly becoming smaller and lighter, and cordless, and secondary batteries having high energy density are required as power sources for driving these devices. Among them, a nonaqueous electrolyte secondary battery using lithium as an active material is highly expected as a battery having a high voltage and a high energy density.

リチウムイオン二次電池の正極活物質には、LiCoO2、LiNiO2、LiMnO2、LiMn24などのリチウム含有複合酸化物が用いられている。これらの正極活物質は、充放電を行うことにより膨張・収縮を繰り返す。この際に結晶構造の破壊や粒子の割れ等が発生するため、充放電サイクルに伴う容量低下や内部抵抗の増加を生じる。このような問題に対し、コバルトまたはニッケルの一部を他の元素で置換することにより、結晶構造の安定化を図るという報告がある。例えば、正極活物質のコバルトの一部をマグネシウムなどの元素と置換することにより、サイクル特性や安全性を向上させるという報告がある(例えば、特許文献1〜3参照)。
特許第3162437号公報 特開平5−242891号公報 特開平6−168722号公報
Lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiMn 2 O 4 are used as positive electrode active materials for lithium ion secondary batteries. These positive electrode active materials repeat expansion and contraction by charging and discharging. At this time, destruction of the crystal structure, cracking of the particles, and the like occur, resulting in a decrease in capacity and an increase in internal resistance accompanying the charge / discharge cycle. In order to solve such a problem, there is a report that the crystal structure is stabilized by substituting a part of cobalt or nickel with another element. For example, there is a report that cycle characteristics and safety are improved by replacing a part of cobalt of the positive electrode active material with an element such as magnesium (for example, see Patent Documents 1 to 3).
Japanese Patent No. 3162437 Japanese Patent Laid-Open No. 5-242891 JP-A-6-168722

しかし、上記のような従来の技術では、充放電サイクル特性の劣化を抑制することができる反面、例えば、充電状態の電池を高温状態で保存した場合には、電池内におけるガス発生量が比較的多くなることが確認されている。特に、電池内部に電池の内圧上昇により作動する電流遮断機構を有する電池の場合、高温保存時のガス発生による誤作動が生じることがある。ガス発生量が増加する原因は現在のところ確かではないが、コバルトの一部をマグネシウムで置換した正極活物質は、電子伝導性が高く、活物質表面が活性なため、非水電解液との反応性が高まり、非水電解液の分解が促進されるためと考えられている。   However, in the conventional technology as described above, deterioration of charge / discharge cycle characteristics can be suppressed, but when a charged battery is stored at a high temperature, for example, the amount of gas generated in the battery is relatively low. It has been confirmed that it will increase. In particular, in the case of a battery having a current interruption mechanism that operates due to an increase in the internal pressure of the battery, a malfunction may occur due to gas generation during high temperature storage. The cause of the increased gas generation rate is not certain at present, but the positive electrode active material in which a part of cobalt is replaced with magnesium has high electron conductivity and the active material surface is active. It is considered that the reactivity is increased and the decomposition of the non-aqueous electrolyte is promoted.

本発明は、正極、負極、非水電解液および電池内部に電池の内圧上昇により作動する電流遮断機構を備えてなる非水電解液二次電池であって、前記正極が一般式:Lia(Co1-x-yMgxybc(Mは、Mn、Ni、Y、Yb、Ca、Al、Ti、Cu、Zn、SrおよびBaからなる群より選択される少なくとも一種、0≦a≦1.05、0.005≦x≦0.15、0≦y≦0.25、0.85≦b≦1.1、1.8≦c≦2.1)で表されるリチウム含有遷移金属酸化物、前記負極が炭素材料、前記非水電解液が、(A)環状カルボン酸エステルを含有する非水溶媒ならびに前記非水溶媒に溶解させた溶質からなる非水電解液二次電池に関する。 The present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a current interruption mechanism that operates when the internal pressure of the battery increases, and the positive electrode is represented by the general formula: Li a ( at least one Co 1-xy Mg x M y ) b O c (M is, Mn, Ni, Y, Yb , Ca, Al, Ti, Cu, Zn, is selected from the group consisting of Sr and Ba, 0 ≦ a ≦ 1.05, 0.005 ≦ x ≦ 0.15, 0 ≦ y ≦ 0.25, 0.85 ≦ b ≦ 1.1, 1.8 ≦ c ≦ 2.1) The present invention relates to a non-aqueous electrolyte secondary battery comprising a metal oxide, the negative electrode is a carbon material, and the non-aqueous electrolyte is composed of (A) a non-aqueous solvent containing a cyclic carboxylic acid ester and a solute dissolved in the non-aqueous solvent. .

さらに、前記非水溶媒は、(A)環状カルボン酸エステル、(B)炭素−炭素不飽和結合を少なくとも一つ有する環状炭酸エステルおよび(C)炭素−炭素不飽和結合を有しない環状炭酸エステルを含有する非水溶媒ならびに前記非水溶媒に溶解させた溶質からなることがより好ましい。   Further, the non-aqueous solvent comprises (A) a cyclic carboxylic acid ester, (B) a cyclic carbonate having at least one carbon-carbon unsaturated bond, and (C) a cyclic carbonate having no carbon-carbon unsaturated bond. More preferably, it comprises a nonaqueous solvent contained and a solute dissolved in the nonaqueous solvent.

前記環状カルボン酸エステル(A)が、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)、α−アセチル−γ−ブチロラクトン、α−メチル−γ−ブチロラクトン、β−メチル−γ−ブチロラクトン、α−アンゲリカラクトン、α−メチレン−γ−ブチロラクトン、γ−ヘキサノラクトン、γ−ノナノラクトン、γ−オクタノラクトン、γ−メチル−γ−デカノラクトンからなる群より選択される少なくとも一種であり、前記炭素−炭素不飽和結合を少なくとも一つ有する環状炭酸エステル(B)が、ビニレンカーボネート(VC)を始めとして、3−メチルビニレンカーボネート、3,4−ジメチルビニレンカーボネート、3−エチルビニレンカーボネート、3,4−ジエチルビニレンカーボネート、3−プロピルビニレンカーボネート、3,4−ジプロピルビニレンカーボネート、3−フェニルビニレンカーボネート、3,4−ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート(DVEC)からなる群より選択される少なくとも一種であり、前記炭素−炭素不飽和結合を有しない環状炭酸エステル(C)が、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)からなる群より選択される少なくとも一種であることが好ましい。   The cyclic carboxylic acid ester (A) is γ-butyrolactone (GBL), γ-valerolactone (GVL), α-acetyl-γ-butyrolactone, α-methyl-γ-butyrolactone, β-methyl-γ-butyrolactone, α -Angelica lactone, α-methylene-γ-butyrolactone, γ-hexanolactone, γ-nonanolactone, γ-octanolactone, γ-methyl-γ-decanolactone, at least one selected from the group consisting of carbon- Cyclic carbonates (B) having at least one carbon unsaturated bond are vinylene carbonate (VC), 3-methyl vinylene carbonate, 3,4-dimethyl vinylene carbonate, 3-ethyl vinylene carbonate, 3,4- Diethyl vinylene carbonate, 3-propyl vinylene carbonate , 3,4-dipropyl vinylene carbonate, 3-phenyl vinylene carbonate, 3,4-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), and divinyl ethylene carbonate (DVEC). The cyclic carbonate (C) having no carbon-carbon unsaturated bond is preferably at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate (BC).

前記非水溶媒が、さらに鎖状炭酸エステル(D)を含有することが好ましく、鎖状炭酸エステル(D)は、ジメチルカーボネート、エチルメチルカーボネートおよびジエチルカーボネートからなる群より選択される少なくとも一種であることがより好ましい。前記溶質は、LiPF6とLiBF4との混合物であることが好ましい。さらに前記非水溶媒が、フェニル基および前記フェニル基に隣接する環状化合物基からなるベンゼン誘導体を含有することが好ましい。本発明によれば、電流遮断機構を備えた高い安全性を有する非水電解液二次電池において、充放電サイクルに伴う容量低下を抑制するとともに、高温保存時に電流遮断機構の誤作動のない非水電解液二次電池を提供することができる。 The non-aqueous solvent preferably further contains a chain carbonate ester (D), and the chain carbonate ester (D) is at least one selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. It is more preferable. The solute is preferably a mixture of LiPF 6 and LiBF 4 . Furthermore, it is preferable that the non-aqueous solvent contains a benzene derivative composed of a phenyl group and a cyclic compound group adjacent to the phenyl group. According to the present invention, in a highly safe non-aqueous electrolyte secondary battery equipped with a current interruption mechanism, it is possible to suppress a decrease in capacity associated with a charge / discharge cycle and to prevent malfunction of the current interruption mechanism during high temperature storage. A water electrolyte secondary battery can be provided.

また、本発明の非水電解液二次電池は電流遮断機構に併せて、感熱性の保護素子を取り付けることにより、異常充電時の安全性をより高めることができる。感熱性の保護素子としては、PTC、温度ヒューズ、サーミスタ、サーモスタットを上げることができ、これらを単独で用いてもよく、組み合わせて用いても良い。   In addition, the nonaqueous electrolyte secondary battery of the present invention can be further improved in safety during abnormal charging by attaching a heat-sensitive protective element in addition to the current interruption mechanism. PTC, thermal fuse, thermistor, and thermostat can be raised as the heat-sensitive protective element, and these may be used alone or in combination.

さらに、本発明の非水電解液二次電池を単数または複数使用した電池パックに、感熱性の保護素子として、PTC、温度ヒューズ、サーミスタ、サーモスタットを単独や、組み合わせて取り付けることにより異常充電時の安全性を向上させることができる。   Furthermore, a battery pack using one or a plurality of the non-aqueous electrolyte secondary batteries of the present invention can be used as a heat-sensitive protective element by attaching a PTC, a thermal fuse, a thermistor, or a thermostat, alone or in combination, during abnormal charging. Safety can be improved.

以上のように、本発明では、正極、負極、非水電解液および電池内部に電池の内圧上昇により作動する電流遮断機構を備えてなる非水電解液二次電池において、前記正極が一般式:Lia(Co1-x-yMgxybc(Mは、Mn、Ni、Y、Yb、Ca、Al、Ti、Cu、Zn、SrおよびBaからなる群より選択される少なくとも一種、0≦a≦1.05、0.005≦x≦0.15、0≦y≦0.25、0.85≦b≦1.1、1.8≦c≦2.1)で表されるリチウム含有遷移金属酸化物からなり、前記負極が炭素材料からなり、前記非水電解液が、(A)環状カルボン酸エステルを含有する非水溶媒ならびに前記非水溶媒に溶解させた溶質からなることにより、充放電サイクル特性に優れ、且つ電池を高温条件下に一定時間放置しても電流遮断機構が誤作動を起こさない非水電解液二次電池を提供することができる。 As described above, in the present invention, in the non-aqueous electrolyte secondary battery including the positive electrode, the negative electrode, the non-aqueous electrolyte, and the current interruption mechanism that operates by increasing the internal pressure of the battery, the positive electrode has the general formula: at least one li a (Co 1-xy Mg x M y) b O c (M is, for Mn, Ni, Y, Yb, Ca, Al, Ti, Cu, Zn, is selected from the group consisting of Sr and Ba, 0 ≦ a ≦ 1.05, 0.005 ≦ x ≦ 0.15, 0 ≦ y ≦ 0.25, 0.85 ≦ b ≦ 1.1, 1.8 ≦ c ≦ 2.1) It consists of a lithium-containing transition metal oxide, the negative electrode is made of a carbon material, and the non-aqueous electrolyte is composed of (A) a non-aqueous solvent containing a cyclic carboxylic acid ester and a solute dissolved in the non-aqueous solvent. Therefore, it has excellent charge / discharge cycle characteristics and the battery is released under high temperature conditions for a certain period of time. It is possible to provide a nonaqueous electrolyte secondary battery which does not cause the operating current cut-off mechanism false be.

そして、電流遮断機構に併せて、感熱性の保護素子を取り付けることにより、異常充電時の安全性をより高めた非水電解液二次電池を提供することができる。   And the nonaqueous electrolyte secondary battery which improved safety | security at the time of abnormal charge more can be provided by attaching a heat-sensitive protective element in addition to the electric current interruption mechanism.

さらに、本発明の非水電解液二次電池を単数または複数使用した電池パックに、感熱性の保護素子を取り付けることにより異常充電時の安全性をより高めた非水電解液二次電池パックを提供することができる。   Furthermore, a non-aqueous electrolyte secondary battery pack that further improves safety during abnormal charging by attaching a heat-sensitive protective element to a battery pack that uses one or more non-aqueous electrolyte secondary batteries of the present invention. Can be provided.

本発明では、一般式:Lia(Co1-x-yMgxybc(Mは、Mn、Ni、Y、Yb、Ca、Al、Ti、Cu、Zn、SrおよびBaからなる群より選択される少なくとも一種、0≦a≦1.05、0.005≦x≦0.15、0≦y≦0.25、0.85≦b≦1.1、1.8≦c≦2.1)で表されるリチウム含有複合酸化物からなる正極活物質を用いる。前記複合酸化物の結晶においては、マグネシウムでコバルトの一部が置換されているため、結晶構造が安定であり、充放電サイクルに伴う結晶構造の破壊や粒子の割れが発生しにくい。従って、電池の容量低下が抑制され、サイクル寿命が向上する。 In the present invention, the general formula: Li a (Co 1-xy Mg x M y) b O c (M is, Mn, Ni, Y, Yb , Ca, Al, Ti, Cu, Zn, the group consisting of Sr and Ba At least one selected from 0 ≦ a ≦ 1.05, 0.005 ≦ x ≦ 0.15, 0 ≦ y ≦ 0.25, 0.85 ≦ b ≦ 1.1, 1.8 ≦ c ≦ 2. The positive electrode active material which consists of lithium containing complex oxide represented by .1) is used. In the complex oxide crystal, magnesium is partially substituted with magnesium, so that the crystal structure is stable, and the crystal structure is not easily broken or the particles are cracked due to the charge / discharge cycle. Therefore, the capacity reduction of the battery is suppressed and the cycle life is improved.

マグネシウムの含有率xが0.005未満の場合、複合酸化物の結晶構造の安定化が不十分となる。従って、充放電を繰り返すと、内部抵抗が増大し、サイクル特性が大きく劣化する。一方、含有率xが0.15をこえると、正極活物質の充放電容量が低下する。このことから、Mgの含有率xは、0.005≦x≦0.15を満たす必要がある。   When the magnesium content x is less than 0.005, stabilization of the crystal structure of the composite oxide becomes insufficient. Therefore, when charging / discharging is repeated, the internal resistance increases and the cycle characteristics are greatly degraded. On the other hand, when the content rate x exceeds 0.15, the charge / discharge capacity of the positive electrode active material decreases. Therefore, the Mg content x needs to satisfy 0.005 ≦ x ≦ 0.15.

また、前記複合酸化物は、元素Mを含むことにより耐熱性の向上やサイクル特性のさらなる改善が実現できる。ただし、元素Mの含有率yが、0.25より大きくなると、高温保存時のガス発生量が増加したり、活物質の充放電容量が低下したりする。このことから、Mの含有率yは、0≦y≦0.25を満たす必要がある。   Moreover, the complex oxide can realize improvement in heat resistance and further improvement in cycle characteristics by including the element M. However, when the content rate y of the element M becomes larger than 0.25, the amount of gas generated during high-temperature storage increases or the charge / discharge capacity of the active material decreases. Therefore, the M content y needs to satisfy 0 ≦ y ≦ 0.25.

aが1.05を超えると、LiOやLiCOなどが生成し、これが分解して、OやCOなどのガスが発生する。 When a exceeds 1.05, Li 2 O, Li 2 CO 3 and the like are generated and decomposed to generate gases such as O 2 and CO 2 .

bが0.85未満では、結晶構造の安定化が不十分となり、サイクル特性が低下する。逆に、bが1.1を超えると、CoCOが生成し、COなどのガスが発生する。 When b is less than 0.85, the crystal structure is not sufficiently stabilized and the cycle characteristics are deteriorated. On the contrary, when b exceeds 1.1, CoCO 3 is generated and gas such as CO 2 is generated.

cが1.8未満では、酸素欠損型の結晶構造になり、結晶構造の安定化が不十分となり、サイクル特性が低下する。逆に、cが2.1を超えるとOガスが発生する。 When c is less than 1.8, an oxygen deficient crystal structure is obtained, the crystal structure is not sufficiently stabilized, and the cycle characteristics are deteriorated. Conversely, when c exceeds 2.1, O 2 gas is generated.

本発明の非水電解液二次電池は、電池内のガス圧力が所定値以上になると作動する電流遮断機構を備えることにより、異常充電時の安全性を大幅に向上させることができる。   The non-aqueous electrolyte secondary battery of the present invention can significantly improve safety during abnormal charging by providing a current interrupt mechanism that operates when the gas pressure in the battery reaches a predetermined value or higher.

電流遮断機構は、電池が異常充電されると電池内で電解液が分解してガスが発生し、電池内の圧力が上昇することにより充電電流を遮断する機構である。   The current interruption mechanism is a mechanism that interrupts the charging current when the battery is abnormally charged and the electrolyte is decomposed in the battery to generate gas and the pressure in the battery rises.

電流遮断機構としては、電池内の圧力上昇で変形することにより充電電流接点が切れる機構、センサーで電池内の圧力を検知することにより充電を停止する外部回路、センサーで電池の変形を検知することにより充電を停止する外部回路などがあげられるが、電池内の圧力上昇で変形することにより充電電流接点が切れる機構が、最もシンプルで効果が高いので好ましい。   Current cut-off mechanism includes a mechanism that breaks the charging current contact by deformation due to pressure rise in the battery, an external circuit that stops charging by detecting the pressure in the battery with a sensor, and detection of battery deformation with a sensor Although an external circuit for stopping charging is given by the above, a mechanism in which the charging current contact is cut by deformation due to an increase in pressure in the battery is preferable because it is the simplest and most effective.

本発明の非水電解液二次電池には、(A)環状カルボン酸エステルを含有する非水溶媒に溶質を溶解させた非水電解液を用いることにより、前記正極を用いた電流遮断機構を備える非水電解液二次電池が高温状態に一定時間保存された場合の電池内におけるガス発生を大幅に減少させ、高温保存時に電流遮断機構が誤作動しない非水電解液二次電池を提供することが可能となる。   The non-aqueous electrolyte secondary battery of the present invention has a current blocking mechanism using the positive electrode by using a non-aqueous electrolyte solution in which a solute is dissolved in a non-aqueous solvent containing (A) a cyclic carboxylic acid ester. Provided is a non-aqueous electrolyte secondary battery that significantly reduces gas generation in the battery when the non-aqueous electrolyte secondary battery is stored in a high temperature state for a certain period of time and does not cause a malfunction of the current interruption mechanism during high temperature storage. It becomes possible.

上記非水電解液を用いることで高温保存時のガス発生を大幅に減少させ、電流遮断機構の誤作動を防止することができる理由を以下に示す。前述のようにコバルトの一部をマグネシウムで置換した正極活物質は、電子伝導性が高く、活物質表面が活性なため、電池を高温保存した場合に、非水電解液との反応性が高まり、非水電解液の分解が促進されてガス発生が多くなると考えられている。   The reason why the generation of gas during high-temperature storage can be greatly reduced by using the non-aqueous electrolyte and malfunction of the current interrupting mechanism can be prevented will be described below. As described above, the positive electrode active material in which a part of cobalt is substituted with magnesium has high electron conductivity and the active material surface is active, so that the reactivity with the non-aqueous electrolyte increases when the battery is stored at high temperature. It is considered that the decomposition of the non-aqueous electrolyte is promoted to increase gas generation.

環状カルボン酸エステル(A)を含有する非水電解液を用いた場合、環状カルボン酸エステルが正極表面で分解して分解生成物が正極表面に緻密な被膜を形成し、電解液と正極との直接の接触を抑制する結果、高温保存時のガス発生を大幅に抑制することができる。また、環状カルボン酸エステル(A)は一部が負極表面で分解されるため、それを抑制するために炭素−炭素不飽和結合を少なくとも一つ有する環状炭酸エステル(B)を併せて非水電解液に含有させることがより好ましい。炭素−炭素不飽和結合を少なくとも一つ有する環状炭酸エステル(B)は、不飽和結合部が非常に重合しやすいため、負極上で連鎖的に重合反応を起こし、迅速に負極上に緻密で強固な被膜を形成する。この負極上に形成された被膜がリチウムイオン周囲の溶媒分子の負極への接触を阻止する物理的バリアーとなる結果、負極での環状カルボン酸エステルの還元分解が抑制される。   When the non-aqueous electrolyte containing the cyclic carboxylic acid ester (A) is used, the cyclic carboxylic acid ester decomposes on the surface of the positive electrode, and the decomposition product forms a dense film on the surface of the positive electrode. As a result of suppressing direct contact, gas generation during high temperature storage can be significantly suppressed. Moreover, since a part of cyclic carboxylic acid ester (A) is decomposed | disassembled on the negative electrode surface, in order to suppress it, non-aqueous electrolysis is combined with cyclic carbonate (B) which has at least one carbon-carbon unsaturated bond. More preferably, it is contained in the liquid. In the cyclic carbonate (B) having at least one carbon-carbon unsaturated bond, since the unsaturated bond portion is very easily polymerized, a chain polymerization reaction occurs on the negative electrode, and the dense and strong on the negative electrode quickly. A smooth coating is formed. As a result of the coating formed on the negative electrode becoming a physical barrier that prevents contact of solvent molecules around lithium ions with the negative electrode, reductive decomposition of the cyclic carboxylic acid ester at the negative electrode is suppressed.

さらに、環状カルボン酸エステル(A)に炭素−炭素不飽和結合を少なくとも一つ有する環状炭酸エステル(B)を含有させた電解液を用いて作製した電池を高温条件下に一定時間放置した場合、前述のように熱により負極上での環状炭酸エステル(B)の分解が促進されて負極上に過剰の被膜が形成される。その結果、負極へのリチウムイオンの挿入、脱離がスムーズに行われなくなり、電池の充放電特性が低下する傾向にある。   Furthermore, when a battery prepared using an electrolytic solution in which the cyclic carbonate (A) contains a cyclic carbonate (B) having at least one carbon-carbon unsaturated bond is left under a high temperature condition for a certain period of time, As described above, the decomposition of the cyclic carbonate (B) on the negative electrode is accelerated by heat, and an excessive film is formed on the negative electrode. As a result, lithium ions are not smoothly inserted and removed from the negative electrode, and the charge / discharge characteristics of the battery tend to deteriorate.

そこで、さらに不飽和結合を有しない環状炭酸エステル(C)を電解液に含有させることにより、高温条件下での環状炭酸エステル(B)の過剰の重合反応を抑制することができるため、より好ましい。エチレンカーボネートやプロピレンカーボネート等の炭素−炭素不飽和結合を有しない環状炭酸エステル(C)も、ビニレンカーボネート等の炭素−炭素不飽和結合を有する環状炭酸エステル(B)と同様に負極上で還元分解されて分解生成物による被膜を形成する。ただし、エチレンカーボネートやプロピレンカーボネートは、炭素−炭素不飽和結合を有しないため、不飽和結合の重合反応で被膜を形成するビニレンカーボネート等に比べて被膜の形成が非常に遅い。   Therefore, it is more preferable that the cyclic carbonate (C) having no unsaturated bond is further contained in the electrolytic solution because excessive polymerization reaction of the cyclic carbonate (B) under high temperature conditions can be suppressed. . Cyclic carbonates (C) having no carbon-carbon unsaturated bonds such as ethylene carbonate and propylene carbonate are reduced and decomposed on the negative electrode in the same manner as cyclic carbonates (B) having carbon-carbon unsaturated bonds such as vinylene carbonate. As a result, a film is formed from the decomposition products. However, since ethylene carbonate and propylene carbonate do not have a carbon-carbon unsaturated bond, the formation of a film is very slow compared to vinylene carbonate or the like that forms a film by an unsaturated bond polymerization reaction.

ビニレンカーボネートの連鎖的な重合反応の途中において、エチレンカーボネートやプロピレンカーボネートが重合中間体に結合した場合、その部位の反応が非常に遅くなり、高温条件下でのビニレンカーボネートの過剰な重合反応が抑制される。その結果、高温条件下に一定時間放置した後も良好な充放電特性を有する電池が実現できる。   When ethylene carbonate or propylene carbonate is bonded to the polymerization intermediate during the chain polymerization reaction of vinylene carbonate, the reaction at that site becomes very slow, and excessive polymerization reaction of vinylene carbonate under high temperature conditions is suppressed. Is done. As a result, a battery having good charge / discharge characteristics can be realized even after being left for a certain period of time under high temperature conditions.

環状カルボン酸エステル(A)としては、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)、α−アセチル−γ−ブチロラクトン、α−メチル−γ−ブチロラクトン、β−メチル−γ−ブチロラクトン、α−アンゲリカラクトン、α−メチレン−γ−ブチロラクトン、γ−ヘキサノラクトン、γ−ノナノラクトン、γ−オクタノラクトン、γ−メチル−γ−デカノラクトン等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   Examples of the cyclic carboxylic acid ester (A) include γ-butyrolactone (GBL), γ-valerolactone (GVL), α-acetyl-γ-butyrolactone, α-methyl-γ-butyrolactone, β-methyl-γ-butyrolactone, α -Angelica lactone, α-methylene-γ-butyrolactone, γ-hexanolactone, γ-nonanolactone, γ-octanolactone, γ-methyl-γ-decanolactone and the like. These may be used alone or in combination of two or more.

炭素−炭素不飽和結合を少なくとも1つ有する環状炭酸エステル(B)としては、ビニレンカーボネート(VC)を始めとして、3−メチルビニレンカーボネート、3,4−ジメチルビニレンカーボネート、3−エチルビニレンカーボネート、3,4−ジエチルビニレンカーボネート、3−プロピルビニレンカーボネート、3,4−ジプロピルビニレンカーボネート、3−フェニルビニレンカーボネート、3,4−ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート(DVEC)等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの化合物は、その水素原子の一部がフッ素原子で置換されていてもよい。特に、ビニレンカーボネートとビニルエチレンカーボネートとを併用すると、ビニルエチレンカーボネートが高温におけるビニレンカーボネートの反応活性を抑制するため、電池の高温保存特性が向上する点で好ましい。   Examples of the cyclic carbonate (B) having at least one carbon-carbon unsaturated bond include vinylene carbonate (VC), 3-methyl vinylene carbonate, 3,4-dimethyl vinylene carbonate, 3-ethyl vinylene carbonate, 3 , 4-diethyl vinylene carbonate, 3-propyl vinylene carbonate, 3,4-dipropyl vinylene carbonate, 3-phenyl vinylene carbonate, 3,4-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), divinyl ethylene carbonate (DVEC), etc. Is mentioned. These may be used alone or in combination of two or more. In these compounds, part of the hydrogen atoms may be substituted with fluorine atoms. In particular, when vinylene carbonate and vinyl ethylene carbonate are used in combination, vinyl ethylene carbonate suppresses the reaction activity of vinylene carbonate at high temperatures, which is preferable in terms of improving the high-temperature storage characteristics of the battery.

炭素−炭素不飽和結合を有しない環状炭酸エステル(C)としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの化合物は、その水素原子の一部がフッ素原子で置換されていてもよい。   Examples of the cyclic carbonate (C) having no carbon-carbon unsaturated bond include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC) and the like. These may be used alone or in combination of two or more. In these compounds, part of the hydrogen atoms may be substituted with fluorine atoms.

前記非水溶媒における環状カルボン酸エステル(A)の含有量は、10体積%〜97体積%であることが好ましい。前記非水溶媒における炭素−炭素不飽和結合を少なくとも一つ有する環状炭酸エステル(B)の含有量は、0.5体積%〜20体積%であることが好ましい。前記非水溶媒における炭素−炭素不飽和結合を有しない環状炭酸エステル(C)の含有量は、40体積%以下であることが好ましく、0.1体積%〜30体積%がさらに好ましく、0.1体積%〜20体積%が最も好ましい。   The content of the cyclic carboxylic acid ester (A) in the non-aqueous solvent is preferably 10% by volume to 97% by volume. The content of the cyclic carbonate (B) having at least one carbon-carbon unsaturated bond in the non-aqueous solvent is preferably 0.5% by volume to 20% by volume. The content of the cyclic carbonate (C) having no carbon-carbon unsaturated bond in the non-aqueous solvent is preferably 40% by volume or less, more preferably 0.1% by volume to 30% by volume, and 1% by volume to 20% by volume is most preferable.

前記非水溶媒は、さらに、鎖状炭酸エステル(D)を含有することができる。非水溶媒が鎖状炭酸エステル(D)を含有する場合、非水溶媒の粘度が低下し、低温時の電池の充放電特性をさらに向上させることができる。鎖状炭酸エステル(D)としては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。前記非水溶媒における鎖状炭酸エステルの含有量は、50体積%以下であることが好ましく、0.1体積%〜30体積%がさらに好ましく、0.1体積%〜20体積%が最も好ましい。   The non-aqueous solvent can further contain a chain carbonate ester (D). When the non-aqueous solvent contains the chain carbonate ester (D), the viscosity of the non-aqueous solvent decreases, and the charge / discharge characteristics of the battery at low temperatures can be further improved. Examples of the chain carbonate ester (D) include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC). These may be used alone or in combination of two or more. The content of the chain carbonate in the non-aqueous solvent is preferably 50% by volume or less, more preferably 0.1% by volume to 30% by volume, and most preferably 0.1% by volume to 20% by volume.

また、過充電時に分解して電極上に被膜を形成し、電池を不活性化する従来からよく知られているベンゼン誘導体(F)を本発明にかかる非水溶媒に添加することも効果的である。ベンゼン誘導体(F)には、フェニル基および前記フェニル基に隣接する環状化合物基からなるベンゼン誘導体を用いることが好ましい。   It is also effective to add a well-known benzene derivative (F), which decomposes during overcharge to form a film on the electrode and inactivates the battery, to the non-aqueous solvent according to the present invention. is there. As the benzene derivative (F), a benzene derivative comprising a phenyl group and a cyclic compound group adjacent to the phenyl group is preferably used.

前記環状化合物基としては、フェニル基、環状エーテル基、環状エステル基、シクロアルキル基、フェノキシ基などが好ましい。ベンゼン誘導体(F)の具体例としては、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテルなどが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。前記非水溶媒におけるベンゼン誘導体(F)の含有量は、10体積%以下であることが好ましい。   As the cyclic compound group, a phenyl group, a cyclic ether group, a cyclic ester group, a cycloalkyl group, a phenoxy group, and the like are preferable. Specific examples of the benzene derivative (F) include cyclohexylbenzene, biphenyl, diphenyl ether and the like. These may be used alone or in combination of two or more. The content of the benzene derivative (F) in the non-aqueous solvent is preferably 10% by volume or less.

前記非水溶媒に溶解させる溶質は、本発明では特に限定されず、非水電解液二次電池で通常用いられているいずれの溶質でも使用できる。具体的には、LiClO4、LiAsF6、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiB[C63(CF32−3,5]4、LiPFa(Cb2b+16-a(aは1から5の整数、bは1以上の整数である)、LiPFc(Cd2d+1SO26-c(cは1から5の整数、dは1以上の整数である)、LiBFe(Cf2f+14-e(eは1から3の整数、fは1以上の整数である)、LiBFg(Ch2h+1SO24-g(gは1から3の整数、hは1以上の整数である)等が使用できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。中でも、LiPF6とLiBF4とを併用することが特に好ましい。LiPF6は、電気特性に優れる一方で、フッ酸を生成するため化学的に不安定である。特に、本発明にかかる電解液の成分である環状カルボン酸エステル(A)は、フッ酸により分解しやすいため、例えば電池のサイクル特性が阻害されるおそれがある。一方、LiBF4のみを使用した場合には、LiBF4の解離度が低い、あるいは負極に黒鉛を用いる場合に表面に形成される保護被膜が弱くなるなどの理由により、やはり電池のサイクル特性が阻害される。それに対し、LiBF4をLiPF6と併用すると、電池のサイクル特性が向上する。このLiBF4の添加効果は少量でも得ることができる。LiPF6の量は全溶質量の2モル%以上であることが好ましい。一方、LiBF4の量は、全溶質量の10モル%以上であることが好ましい。前記非水電解液における溶質濃度は、0.8モル/リットル〜2.5モル/リットルが好ましい。 The solute dissolved in the non-aqueous solvent is not particularly limited in the present invention, and any solute normally used in non-aqueous electrolyte secondary batteries can be used. Specifically, LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) ( C 4 F 9 SO 2), LiB [C 6 F 3 (CF 3) 2 -3,5] 4, LiPF a (C b F 2b + 1) 6-a (a is from 1 5 integers, b is LiPF c (C d F 2d + 1 SO 2 ) 6-c (c is an integer of 1 to 5, d is an integer of 1 or more), LiBF e (C f F 2f + 1 ) 4-e (e is an integer of 1 to 3, f is an integer of 1 or more), LiBF g (C h F 2h + 1 SO 2 ) 4-g (g is an integer of 1 to 3, h is Or an integer greater than or equal to 1). These may be used alone or in combination of two or more. Among these, it is particularly preferable to use LiPF 6 and LiBF 4 in combination. LiPF 6 is chemically unstable because it produces hydrofluoric acid while it has excellent electrical properties. In particular, the cyclic carboxylic acid ester (A), which is a component of the electrolytic solution according to the present invention, is easily decomposed by hydrofluoric acid, and thus, for example, the cycle characteristics of the battery may be hindered. On the other hand, when only LiBF 4 is used, the cycle characteristics of the battery are also hindered because the degree of dissociation of LiBF 4 is low or the protective film formed on the surface becomes weak when graphite is used for the negative electrode. Is done. On the other hand, when LiBF 4 is used in combination with LiPF 6 , the cycle characteristics of the battery are improved. The effect of adding LiBF 4 can be obtained even in a small amount. The amount of LiPF 6 is preferably 2 mol% or more of the total dissolved mass. On the other hand, the amount of LiBF 4 is preferably 10 mol% or more of the total dissolved mass. The solute concentration in the non-aqueous electrolyte is preferably 0.8 mol / liter to 2.5 mol / liter.

前記リチウム含有遷移金属酸化物Lia(Co1-x-yMgxybcは、例えば、リチウム塩と、マグネシウム塩と、Mで表される金属の塩と、コバルト塩とを酸化雰囲気下で高温で焼成することにより、得ることができる。正極活物質を合成するための原料としては、以下のものを用いることができる。リチウム塩としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、硫酸リチウム、酸化リチウム等を用いることができる。マグネシウム塩としては、酸化マグネシウム、塩基性炭酸マグネシウム、塩化マグネシウム、フッ化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、酢酸マグネシウム、蓚酸マグネシウム、硫化マグネシウム、水酸化マグネシウムを用いることができる。 The lithium-containing transition metal oxide Li a (Co 1-xy Mg x M y) b O c , for example, a lithium salt, a magnesium salt, a salt of the metal represented by M, oxidizing a cobalt salt atmosphere It can be obtained by firing at a high temperature under. As raw materials for synthesizing the positive electrode active material, the following can be used. As the lithium salt, lithium carbonate, lithium hydroxide, lithium nitrate, lithium sulfate, lithium oxide, or the like can be used. As the magnesium salt, magnesium oxide, basic magnesium carbonate, magnesium chloride, magnesium fluoride, magnesium nitrate, magnesium sulfate, magnesium acetate, magnesium oxalate, magnesium sulfide, and magnesium hydroxide can be used.

同様にMで表される金属の塩も既存のものが適宜使用できる。コバルト塩としては、酸化コバルト、水酸化コバルト等を用いることができる。また、共沈法により、マグネシウムや金属Mを含有する水酸化コバルトを作製した後、その水酸化コバルトとリチウム塩とを混合し、焼成することによっても前記リチウム含有遷移金属酸化物を得ることができる。
負極材料としては、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭素等の炭素材料が挙げられ、(002)面の面間隔が0.340nm以下であるようなグラファイトを用いる場合、電池のエネルギー密度が向上する。
Similarly, existing metal salts represented by M can be used as appropriate. As the cobalt salt, cobalt oxide, cobalt hydroxide or the like can be used. Moreover, after producing cobalt hydroxide containing magnesium and metal M by coprecipitation, the lithium-containing transition metal oxide can also be obtained by mixing and baking the cobalt hydroxide and lithium salt. it can.
As the negative electrode material, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic polymer compound fired bodies (phenol resin, furan resin, etc.) at an appropriate temperature. When the graphite having a (002) plane spacing of 0.340 nm or less is used, the energy density of the battery is improved.

正極材料は、例えば結着剤および導電剤と混練され、極板に加工される。また、負極材料は、例えば結着剤と混練され、極板に加工される。前記結着剤および導電剤には、従来公知のものをいずれも使用可能である。本発明の電池の形状等には、円筒型、角型、コイン型、ボタン型、大型等があり、正極、負極の態様をそれに応じて変更すればよい。   The positive electrode material is kneaded with, for example, a binder and a conductive agent and processed into an electrode plate. The negative electrode material is kneaded with, for example, a binder and processed into an electrode plate. Any conventionally known binder and conductive agent can be used. The shape and the like of the battery of the present invention include a cylindrical shape, a square shape, a coin shape, a button shape, a large size, and the like, and the aspect of the positive electrode and the negative electrode may be changed accordingly.

また、本発明の非水電解液二次電池は電流遮断機構に併せて、感熱性の保護素子が取り付けられていることで、異常充電時の安全性をより高めることが可能である。感熱性の保護素子としては、PTC、温度ヒューズ、サーミスタ、サーモスタットなどがあげられる。   In addition, the nonaqueous electrolyte secondary battery of the present invention can be further improved in safety during abnormal charging by attaching a heat-sensitive protective element in addition to the current interruption mechanism. Examples of the heat-sensitive protective element include a PTC, a thermal fuse, a thermistor, and a thermostat.

これらは単独で用いてもよく、組み合わせて用いても良い。特にPTC、サーミスタ、サーモスタットなどの復帰型の感熱性保護素子を電流遮断機構と併せて用いることが好ましい。この理由は以下の通りである。電流遮断機構のみを有する電池が異常充電された場合、電池の内圧上昇により電流遮断機構が作動するが、何らかの理由で電流遮断機構が作動する内圧に至るまでに時間がかかった場合、長時間に渡って異常充電が継続されることになる。   These may be used alone or in combination. In particular, it is preferable to use a reset type heat-sensitive protective element such as PTC, thermistor, thermostat or the like together with a current interruption mechanism. The reason is as follows. When a battery that has only a current interrupting mechanism is abnormally charged, the current interrupting mechanism operates due to an increase in the internal pressure of the battery, but if for some reason it takes time to reach the internal pressure at which the current interrupting mechanism operates, it takes a long time. Abnormal charging will continue across.

一方、復帰型の感熱性保護素子のみを有する電池が異常充電された場合、温度を感知することにより保護素子が作動し、充電電流は大幅に減少するが、時間が経つと充電電流が復帰するか、もしくは微小電流による充電が永遠と続くことになる。電流遮断機構と復帰型の感熱性保護素子が併せて用いられた電池の場合、異常充電時に何らかの理由で電流遮断機構が作動する内圧に至るまでに時間がかかった場合でも、感熱性保護素子が温度を感知することにより先行して作動し、充電電流は大幅に減少する。その後は微小電流で充電が継続されるために電池内部でのガス発生は継続して起こり、やがては電流遮断機構の作動圧力に到達して電流遮断機構が作動し、完全に充電電流を遮断することができる。   On the other hand, when a battery having only a reset-type heat-sensitive protection element is abnormally charged, the protection element is activated by sensing the temperature, and the charging current is greatly reduced, but the charging current is restored over time. Or charging with a minute current will last forever. In the case of a battery in which a current interrupting mechanism and a reset-type thermosensitive protective element are used in combination, even if it takes time to reach the internal pressure at which the current interrupting mechanism operates for some reason during abnormal charging, the thermosensitive protective element Operating in advance by sensing temperature, the charging current is greatly reduced. After that, since charging continues with a minute current, gas generation inside the battery continues, and eventually the operating pressure of the current interrupt mechanism is reached and the current interrupt mechanism operates to completely interrupt the charge current. be able to.

また、本発明の非水電解液二次電池を単数または複数使用した電池パックとすることも可能であり、その場合も上記と同様の感熱性の保護素子を取り付けることにより異常充電時の安全性を向上させた電池パックとすることができる。   In addition, a battery pack using one or a plurality of the non-aqueous electrolyte secondary batteries of the present invention can be used, and in that case, the safety during abnormal charging can be achieved by attaching a heat-sensitive protective element similar to the above. The battery pack can be improved.

以下、本発明を実施例に基づいて図面を参照しながら説明する。
《実施例1》
図1に本実施例で用いた円筒型非水電解液二次電池(直径18mm、総高65mm)の右半分断面正面図を示す。この電池は以下のように作製した。セパレータ1を介して、帯状正極板2と負極板3とを複数回渦巻状に捲回して、極板群を構成した。正極板2と負極板3にはそれぞれアルミニウム製正極リード4およびニッケル製負極リード5を溶接した。極板群の下にポリエチレン樹脂製底部絶縁板6を装着し、内面をニッケルメッキした鉄製電池ケース7内に収容し、負極リード5の他端を電池ケース7の内定面にスポット溶接した。極板群の上面にポリエチレン樹脂製上部絶縁板8を載置してから電池ケース7の開口部の所定位置に溝入れし、所定量の非水電解液を電池ケース7内に注入し、極板群に含浸させた。ポリプロピレン樹脂製ガスケット9を周縁部に装着させたステンレス鋼製の電流遮断機構内蔵封口板10を準備し、その下面に正極リード4の他端をスポット溶接した。その後、電池ケース7の開口部に封口板10装着し、電池ケース7の上縁部をガスケット9にかしめて開口部を封口し、電池を完成した。
Hereinafter, the present invention will be described based on examples with reference to the drawings.
Example 1
FIG. 1 shows a right half cross-sectional front view of a cylindrical nonaqueous electrolyte secondary battery (diameter 18 mm, total height 65 mm) used in this example. This battery was produced as follows. The strip-shaped positive electrode plate 2 and the negative electrode plate 3 were wound in a spiral shape through the separator 1 to constitute an electrode plate group. An aluminum positive electrode lead 4 and a nickel negative electrode lead 5 were welded to the positive electrode plate 2 and the negative electrode plate 3, respectively. A bottom insulating plate 6 made of polyethylene resin was mounted under the electrode plate group, the inner surface was accommodated in a nickel-plated iron battery case 7, and the other end of the negative electrode lead 5 was spot welded to the inner surface of the battery case 7. After placing the upper insulating plate 8 made of polyethylene resin on the upper surface of the electrode plate group, it is grooved at a predetermined position in the opening of the battery case 7, and a predetermined amount of nonaqueous electrolyte is injected into the battery case 7. The plate group was impregnated. A stainless steel sealing plate 10 with a built-in current interruption mechanism having a polypropylene resin gasket 9 attached to the peripheral edge thereof was prepared, and the other end of the positive electrode lead 4 was spot welded to the lower surface thereof. Thereafter, the sealing plate 10 was attached to the opening of the battery case 7, the upper edge of the battery case 7 was crimped to the gasket 9, and the opening was sealed to complete the battery.

正極板2は以下のように作製した。0.95mol/リットルの濃度で硫酸コバルトを含み、0.05mol/リットルの濃度で硫酸マグネシウムを含む水溶液を、反応槽に連続供給し、水のpHが10〜13になるように反応槽に水酸化ナトリウムを滴下しながら、活物質の前駆体を合成した。その結果、Co0.95Mg0.05(OH)2からなる水酸化物を得た。
この前駆体と炭酸リチウムとを、リチウムとコバルトとマグネシウムとのモル比が、1:0.95:0.05になるように混合し、混合物を600℃で10時間仮焼成し、粉砕した。次いで、粉砕された焼成物を900℃で再度10時間焼成し、粉砕、分級し、一般式Li(Co0.95Mg0.05)O2で表される正極活物質を得た。100質量部のLi(Co0.95Mg0.05)O2に、導電剤としてアセチレンブラック1.5質量部、結着剤として分子量300000のポリフッ化ビニリデン(PVdF)のN−メチル−2−ピロリドン溶液を樹脂分で2質量部加え、攪拌・混合してペースト状正極合剤を得た。そして、厚さ15μmのアルミニウム箔製集電体の両面に前記ペースト状正極合剤を塗布し、乾燥後、圧延ローラーを用いて圧延を行い、所定寸法に裁断して正極板2とした。
The positive electrode plate 2 was produced as follows. An aqueous solution containing cobalt sulfate at a concentration of 0.95 mol / liter and containing magnesium sulfate at a concentration of 0.05 mol / liter is continuously supplied to the reaction vessel, and water is added to the reaction vessel so that the pH of the water becomes 10-13. While adding sodium oxide dropwise, an active material precursor was synthesized. As a result, a hydroxide composed of Co 0.95 Mg 0.05 (OH) 2 was obtained.
This precursor and lithium carbonate were mixed so that the molar ratio of lithium, cobalt and magnesium was 1: 0.95: 0.05, and the mixture was calcined at 600 ° C. for 10 hours and pulverized. Next, the pulverized fired product was fired again at 900 ° C. for 10 hours, pulverized, and classified to obtain a positive electrode active material represented by the general formula Li (Co 0.95 Mg 0.05 ) O 2 . 100 parts by mass of Li (Co 0.95 Mg 0.05 ) O 2 was resinized with 1.5 parts by mass of acetylene black as a conductive agent and an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride (PVdF) having a molecular weight of 300,000 as a binder. 2 parts by mass were added, and the mixture was stirred and mixed to obtain a paste-like positive electrode mixture. And the said paste-form positive mix was apply | coated to both surfaces of the 15-micrometer-thick aluminum foil collector, and after drying, it rolled using the rolling roller, it cut | judged to the predetermined dimension, and was set as the positive electrode plate 2. FIG.

負極板3は以下のように作製した。平均粒径が約20μmになるように粉砕・分級した鱗片状黒鉛100質量部と、結着剤のスチレン−ブタジエンゴム3質量部とを混合した後、1質量%カルボキシメチルセルロース水溶液100質量部を加え、攪拌・混合してペースト状負極合剤を得た。そして、厚さ10μmの銅箔製集電体の両面に前記ペースト状負極合剤を塗布し、乾燥後、圧延ローラーを用いて圧延を行い、所定寸法に裁断して負極板3とした。   The negative electrode plate 3 was produced as follows. After mixing 100 parts by mass of flaky graphite pulverized and classified so that the average particle size becomes about 20 μm and 3 parts by mass of styrene-butadiene rubber as a binder, 100 parts by mass of 1% by mass carboxymethylcellulose aqueous solution was added. The mixture was stirred and mixed to obtain a paste-like negative electrode mixture. And the said paste-form negative electrode mixture was apply | coated on both surfaces of the 10-micrometer-thick copper foil collector, and after drying, it rolled using the rolling roller, it cut | judged to the predetermined dimension, and was set as the negative electrode plate 3.

前述のように作製した帯状の正極板2、負極板3および厚さ25μmの微多孔性ポリエチレン樹脂製セパレータ1を用いて上記極板群を構成した。非水電解液としてγ−ブチロラクトンとビニレンカーボネートとエチレンカーボネートの体積比80:2:18の混合溶媒に1.0mol/リットルの濃度でLiPFを溶解したものを用いた。このようにして作製した電池を本発明の電池1とした。 The above-described electrode plate group was configured using the strip-like positive electrode plate 2, the negative electrode plate 3 and the microporous polyethylene resin separator 1 having a thickness of 25 μm prepared as described above. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / liter in a mixed solvent of γ-butyrolactone, vinylene carbonate, and ethylene carbonate in a volume ratio of 80: 2: 18 was used. The battery thus produced was designated as battery 1 of the present invention.

《実施例2》
非水電解液としてγ−ブチロラクトンとビニレンカーボネートとエチレンカーボネートとジエチルカーボネートの体積比70:2:18:10の混合溶媒に1.0mol/リットルの濃度でLiPFを溶解したものを用いたこと以外実施例1と同様に本発明の電池2を作製した。
Example 2
Other than using non-aqueous electrolyte solution in which LiPF 6 was dissolved at a concentration of 1.0 mol / liter in a mixed solvent of γ-butyrolactone, vinylene carbonate, ethylene carbonate and diethyl carbonate in a volume ratio of 70: 2: 18: 10 A battery 2 of the present invention was produced in the same manner as in Example 1.

《実施例3》
非水電解液としてγ−ブチロラクトンとビニレンカーボネートとエチレンカーボネートとジエチルカーボネートとシクロヘキシルベンゼンの体積比68:2:18:10:2の混合溶媒に1.0mol/リットルの濃度でLiPFを溶解したものを用いたこと以外実施例1と同様に本発明の電池3を作製した。
Example 3
LiPF 6 dissolved in a mixed solvent of γ-butyrolactone, vinylene carbonate, ethylene carbonate, diethyl carbonate, and cyclohexylbenzene in a volume ratio of 68: 2: 18: 10: 2 at a concentration of 1.0 mol / liter as a non-aqueous electrolyte A battery 3 of the present invention was produced in the same manner as in Example 1 except that was used.

《実施例4》
非水電解液としてγ−ブチロラクトンとビニレンカーボネートとエチレンカーボネートとジエチルカーボネートとジフェニルエーテルの体積比68:2:18:10:2の混合溶媒に1.0mol/リットルの濃度でLiPFを溶解したものを用いたこと以外実施例1と同様に本発明の電池4を作製した。
Example 4
A nonaqueous electrolytic solution in which LiPF 6 is dissolved at a concentration of 1.0 mol / liter in a mixed solvent of γ-butyrolactone, vinylene carbonate, ethylene carbonate, diethyl carbonate, and diphenyl ether in a volume ratio of 68: 2: 18: 10: 2 A battery 4 of the present invention was produced in the same manner as in Example 1 except that it was used.

《実施例5》
非水電解液としてγ−ブチロラクトンとビニレンカーボネートとエチレンカーボネートの体積比80:2:18の混合溶媒に合計1.0mol/リットルの濃度でLiPFとLiBFを1:1の比率で溶解したものを用いたこと以外実施例1と同様に本発明の電池5を作製した。
Example 5
LiPF 6 and LiBF 4 dissolved at a ratio of 1: 1 in a mixed solvent of γ-butyrolactone, vinylene carbonate and ethylene carbonate in a volume ratio of 80: 2: 18 at a total concentration of 1.0 mol / liter as a non-aqueous electrolyte A battery 5 of the present invention was produced in the same manner as in Example 1 except that was used.

《実施例6》
平均粒径20μmの燐片状黒鉛を、石油ピッチと混合し、800℃で焼成し、燐片状黒鉛の表面の少なくとも一部を非晶質炭素で被覆した。こうして得られた炭素材料(平均粒径22μm)を、鱗片状黒鉛の代わりに用いたこと以外実施例1と同様に本発明の電池6を作製した。
Example 6
The flake graphite having an average particle diameter of 20 μm was mixed with petroleum pitch and fired at 800 ° C., and at least a part of the surface of the flake graphite was coated with amorphous carbon. A battery 6 of the present invention was produced in the same manner as in Example 1 except that the carbon material (average particle size 22 μm) thus obtained was used instead of scaly graphite.

《実施例7》
非水電解液としてγ−ブチロラクトンに1.0mol/リットルの濃度でLiPFを溶解したものを用いたこと以外実施例1と同様に本発明の電池7を作製した。
Example 7
A battery 7 of the present invention was produced in the same manner as in Example 1 except that a non-aqueous electrolyte solution using LiPF 6 dissolved in γ-butyrolactone at a concentration of 1.0 mol / liter was used.

《比較例1》
マグネシウムを含まない一般式LiCoO2で示される正極活物質を用いたこと以外実施例1と同様に比較例の電池1を作製した。
<< Comparative Example 1 >>
A comparative battery 1 was prepared in the same manner as in Example 1 except that the positive electrode active material represented by the general formula LiCoO 2 not containing magnesium was used.

《比較例2》
非水電解液としてエチルメチルカーボネートとエチレンカーボネートの体積比80:20の混合溶媒に1.0mol/リットルの濃度でLiPFを溶解したものを用いたこと以外実施例1と同様に比較例の電池2を作製した。
<< Comparative Example 2 >>
A battery of a comparative example as in Example 1 except that a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / liter in a mixed solvent of ethyl methyl carbonate and ethylene carbonate in a volume ratio of 80:20. 2 was produced.

《比較例3》
実施例1に準じて、前駆体としてCo0.998Mg0.002(OH)2からなる水酸化物を合成した。この前駆体と炭酸リチウムとを、リチウムとコバルトとマグネシウムとのモル比が、1:0.998:0.002になるように混合したこと以外、実施例1と同様の操作を行って、一般式Li(Co0.998Mg0.002)O2で表される正極活物質を得た。次いで、この正極活物質を用いたこと以外、実施例1と同様にして、比較例の電池3を作製した。
<< Comparative Example 3 >>
In accordance with Example 1, a hydroxide composed of Co 0.998 Mg 0.002 (OH) 2 as a precursor was synthesized. The same procedure as in Example 1 was performed except that this precursor and lithium carbonate were mixed so that the molar ratio of lithium, cobalt, and magnesium was 1: 0.998: 0.002. A positive electrode active material represented by the formula Li (Co 0.998 Mg 0.002 ) O 2 was obtained. Next, a comparative battery 3 was produced in the same manner as in Example 1 except that this positive electrode active material was used.

《比較例4》
実施例1に準じて、前駆体としてCo0.80Mg0.20(OH)2からなる水酸化物を合成した。この前駆体と炭酸リチウムとを、リチウムとコバルトとマグネシウムとのモル比が、1:0.80:0.20になるように混合したこと以外、実施例1と同様の操作を行って、一般式Li(Co0.80Mg0.20)O2で表される正極活物質を得た。次いで、この正極活物質を用いたこと以外、実施例1と同様にして、比較例の電池4を作製した。
<< Comparative Example 4 >>
According to Example 1, a hydroxide composed of Co 0.80 Mg 0.20 (OH) 2 as a precursor was synthesized. The same procedure as in Example 1 was performed except that this precursor and lithium carbonate were mixed so that the molar ratio of lithium, cobalt, and magnesium was 1: 0.80: 0.20. A positive electrode active material represented by the formula Li (Co 0.80 Mg 0.20 ) O 2 was obtained. Subsequently, the battery 4 of the comparative example was produced like Example 1 except having used this positive electrode active material.

[電池の評価]
実施例1〜8および比較例1〜4で作製した電池、各10セルを用いて、充放電サイクル特性、低温放電特性、高温保存時の電流遮断機構の作動までの時間測定、過充電特性、高温保存特性を下記の評価方法により評価したときの平均値を算出し、比較を行った。
[Battery evaluation]
Using the batteries prepared in Examples 1 to 8 and Comparative Examples 1 to 4 and 10 cells each, charge and discharge cycle characteristics, low temperature discharge characteristics, time measurement until operation of the current interruption mechanism during high temperature storage, overcharge characteristics, An average value when the high temperature storage characteristics were evaluated by the following evaluation method was calculated and compared.

(1)充放電サイクル特性
電池の充放電サイクルを繰り返し、3サイクル目の容量を100%として容量が50%になった時点のサイクル数をサイクル寿命とみなした。なお、充電は、環境温度20℃で、上限電圧を4.2Vに設定して、最大電流1050mAで2時間30分間定電流・定電圧充電を行った。放電は、この充電状態の電池を環境温度20℃で、放電電流1500mA、放電終止電位3.0Vの定電流放電を行った。その結果を表1に示す。
(1) Charging / discharging cycle characteristics The charging / discharging cycle of the battery was repeated, and the capacity at the third cycle was defined as 100%, and the cycle number when the capacity reached 50% was regarded as the cycle life. The charging was performed at a constant current / constant voltage for 2 hours and 30 minutes at a maximum current of 1050 mA at an environmental temperature of 20 ° C. and an upper limit voltage of 4.2 V. For discharging, the charged battery was subjected to constant current discharge at an environmental temperature of 20 ° C., a discharge current of 1500 mA, and a discharge end potential of 3.0 V. The results are shown in Table 1.

(2)低温放電特性
電池の低温環境下における放電特性を比較した。この試験において、充電は、環境温度20℃で、上限電圧を4.2Vに設定して、最大電流1050mAで2時間30分間定電流・定電圧充電を行った。放電は、この充電状態の電池を環境温度20℃と−20℃で、放電電流1500mA、放電終止電位3.0Vの定電流放電を行った。20℃における放電容量に対する−20℃における放電容量の割合を百分率(%)で求め、低温環境下での容量維持率とした。その結果を表1に示す。
(2) Low temperature discharge characteristics The discharge characteristics of the batteries in a low temperature environment were compared. In this test, charging was performed at a constant current / constant voltage at an environmental temperature of 20 ° C., an upper limit voltage of 4.2 V, and a maximum current of 1050 mA for 2 hours 30 minutes. For discharging, the charged battery was subjected to constant current discharge at an environmental temperature of 20 ° C. and −20 ° C. with a discharge current of 1500 mA and a discharge end potential of 3.0V. The ratio of the discharge capacity at −20 ° C. to the discharge capacity at 20 ° C. was obtained as a percentage (%), and was defined as the capacity maintenance rate under a low temperature environment. The results are shown in Table 1.

(3)高温保存時の電流遮断機構の作動までの時間測定
環境温度20℃で上限電圧を4.2Vに設定して、最大電流1050mAで2時間30分間定電流・定電圧充電を行った電池を、85℃の環境下に保存し、ガス発生により電流遮断機構が誤作動するまでの時間を測定した。最長240時間まで試験を継続した。その結果を表1に示す。
(3) Time measurement until operation of current interruption mechanism during high temperature storage Battery with constant current / constant voltage charging for 2 hours 30 minutes at maximum temperature of 1050 mA with upper limit voltage set to 4.2 V at 20 ° C Was stored in an environment of 85 ° C., and the time until the current interruption mechanism malfunctioned due to gas generation was measured. The test was continued for up to 240 hours. The results are shown in Table 1.

(4)過充電特性
環境温度20℃で電流値1500mAの条件で5時間連続して充電を行い、電池表面の最大温度を測定した。その結果を表1に示す。
(4) Overcharge characteristics The battery was continuously charged for 5 hours under the condition of an ambient temperature of 20 ° C. and a current value of 1500 mA, and the maximum temperature of the battery surface was measured. The results are shown in Table 1.

(5)高温保存特性
環境温度20℃で、上限電圧を4.2Vに設定して、最大電流1050mAで2時間30分間定電流・定電圧充電を行った後、電流1500mAh、放電終止電圧3.0Vの放電を行う条件の充放電を2サイクル行い、2サイクル目の放電容量を確認した。その後、充電状態の電池を60℃で3日間保存した。次いで、保存後の電池を再び20℃で、上記と同一条件で2サイクル充放電し、高温保存後の容量維持率を求めた。保存前の放電容量を100とした場合の、高温保存後2サイクル目の放電容量の割合を百分率(%)で求め、それを容量維持率とした。その結果を表1に示す。
(5) High temperature storage characteristics After setting the upper limit voltage to 4.2 V at an environmental temperature of 20 ° C. and performing constant current / constant voltage charging at a maximum current of 1050 mA for 2 hours and 30 minutes, a current of 1500 mAh and a discharge end voltage of 3. Two cycles of charging / discharging under the condition of discharging at 0 V were performed, and the discharge capacity at the second cycle was confirmed. Thereafter, the charged battery was stored at 60 ° C. for 3 days. Next, the battery after storage was charged and discharged for 2 cycles again at 20 ° C. under the same conditions as described above, and the capacity retention rate after storage at high temperature was determined. When the discharge capacity before storage was set to 100, the ratio of the discharge capacity at the second cycle after high-temperature storage was obtained as a percentage (%), and this was used as the capacity maintenance ratio. The results are shown in Table 1.

表1において、本発明の電池1〜7と、比較例の電池1の充放電サイクル特性の比較より、マグネシウムを添加した正極活物質を用いることにより、充放電サイクル特性が大幅に向上することが解る。特にLiPFとLiBFの混合溶質を用いた本発明の電池5はさらなるサイクル特性の改善が認められた。 In Table 1, from the comparison of the charge / discharge cycle characteristics of the batteries 1 to 7 of the present invention and the battery 1 of the comparative example, the charge / discharge cycle characteristics can be greatly improved by using the positive electrode active material added with magnesium. I understand. In particular, the battery 5 of the present invention using a mixed solute of LiPF 6 and LiBF 4 was found to have further improved cycle characteristics.

マグネシウムの添加量が過少である比較例の電池3は、マグネシウムを添加しない比較例の電池1と同等のサイクル特性しか得られなかった。また、マグネシウムの添加量が過多の比較例の電池4は、初期の容量が低く、高温保存時の容量維持率も51%と低かった。   The battery 3 of the comparative example in which the addition amount of magnesium was too small could only obtain cycle characteristics equivalent to those of the battery 1 of the comparative example in which no magnesium was added. Moreover, the battery 4 of the comparative example in which the additive amount of magnesium was excessive had a low initial capacity and a low capacity retention rate of 51% during high-temperature storage.

ジエチルカーボネートを含有する非水電解液を用いた本発明の電池2、3および4は、本発明の電池1に比べて低温放電特性の向上が認められた。非水溶媒中にジエチルカーボネートを含有させることにより非水溶媒の粘度が低下し、低温時の電池の充放電特性が改善されたと考えられる。   The batteries 2, 3 and 4 of the present invention using a non-aqueous electrolyte containing diethyl carbonate were found to have improved low-temperature discharge characteristics as compared with the battery 1 of the present invention. By including diethyl carbonate in the non-aqueous solvent, it is considered that the viscosity of the non-aqueous solvent is lowered and the charge / discharge characteristics of the battery at low temperature are improved.

本発明の電池1〜7と、比較例の電池2の高温保存時の電流遮断機構の作動までの時間測定の比較より、非水電解液中にγ−ブチロラクトンを含有することにより、大幅にガス発生が抑制され、電流遮断機構が作動するまでの時間が大きく伸びていることが解る。これは、γ−ブチロラクトンが正極表面で分解して分解物が正極表面に緻密な被膜を形成し、電解液と正極との直接の接触を抑制する結果、高温保存時のガス発生を大幅に抑制しているためである。また、非水電解液中にγ−ブチロラクトン以外にビニレンカーボネートとエチレンカーボネートを含有しない本発明の電池7に比べて、非水電解液中にγ−ブチロラクトン、ビニレンカーボネート及びエチレンカーボネートを含有する本発明の電池1は、高温保存特性の容量維持率の向上が認められた。これは、本発明の電池1では非水電解液中にγ−ブチロラクトンと併せてビニレンカーボネートとエチレンカーボネートを含有することで、ビニレンカーボネートが負極上で連鎖的に重合反応を起こし、迅速に負極上に緻密で強固な被膜を形成することで、γ−ブチロラクトンの一部が負極表面で分解されるのを抑制し、さらにエチレンカーボネートが、高温環境下でビニレンカーボネートの分解が促進されて負極表面に過剰な被膜が形成されるのを防ぐことにより、高温保存特性の向上が認められたと考えられる。   From the comparison of the time measurement until the operation of the current interruption mechanism at the time of high-temperature storage of the batteries 1 to 7 of the present invention and the battery 2 of the comparative example, by containing γ-butyrolactone in the non-aqueous electrolyte, gas is greatly increased. It can be seen that the time until the occurrence of the current interruption mechanism is suppressed is greatly increased. This is because γ-butyrolactone decomposes on the surface of the positive electrode and the decomposed product forms a dense film on the surface of the positive electrode, suppressing direct contact between the electrolyte and the positive electrode, greatly reducing gas generation during high-temperature storage. It is because it is doing. Further, the present invention contains γ-butyrolactone, vinylene carbonate, and ethylene carbonate in the non-aqueous electrolyte as compared with the battery 7 of the present invention that does not contain vinylene carbonate and ethylene carbonate other than γ-butyrolactone in the non-aqueous electrolyte. In the battery 1, an improvement in capacity retention rate of high-temperature storage characteristics was observed. This is because, in the battery 1 of the present invention, vinylene carbonate and ethylene carbonate are contained in the non-aqueous electrolyte together with γ-butyrolactone so that vinylene carbonate causes a polymerization reaction in a chain on the negative electrode, and quickly on the negative electrode. By forming a dense and strong film, it is possible to suppress the decomposition of a part of γ-butyrolactone on the negative electrode surface, and further, ethylene carbonate promotes the decomposition of vinylene carbonate in a high temperature environment, and on the negative electrode surface. It is considered that an improvement in high-temperature storage characteristics was recognized by preventing the formation of an excessive film.

また、非水電解液中にシクロヘキシルベンゼンとジフェニルエーテルを含有する本発明の電池3、4では、過充電試験における最大温度が大幅に低下していることが解る。   Moreover, in the batteries 3 and 4 of the present invention containing cyclohexylbenzene and diphenyl ether in the non-aqueous electrolyte, it can be seen that the maximum temperature in the overcharge test is greatly reduced.

燐片状黒鉛の表面の少なくとも一部を非晶質炭素で被覆した負極活物質を用いた本発明の電池6では、高温保存特性の容量維持率で向上が認められた。これは負極表面を非晶質炭素で被覆することにより、高温保存時の電解液の分解が抑制されたためと考えられる。   In the battery 6 of the present invention using the negative electrode active material in which at least a part of the surface of the flake graphite was coated with amorphous carbon, an improvement was observed in the capacity retention rate of the high temperature storage characteristics. This is presumably because the decomposition of the electrolyte during high temperature storage was suppressed by coating the negative electrode surface with amorphous carbon.

本発明の非水電解液二次電池及び非水電解液二次電池パックは、サイクル特性に優れ、且つ電池を高温条件下に一定時間放置しても電流遮断機構が誤作動を起こさないので、パソコンおよび携帯電話等の電子機器の駆動用電源等として有用である。   The non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery pack of the present invention are excellent in cycle characteristics and the current interruption mechanism does not malfunction even if the battery is left for a certain period of time under high temperature conditions. It is useful as a power source for driving electronic devices such as personal computers and mobile phones.

本発明による円筒型非水電解液二次電池の右半分断面正面図Right half sectional front view of a cylindrical non-aqueous electrolyte secondary battery according to the present invention

符号の説明Explanation of symbols

1 セパレータ
2 正極板
3 負極板
4 正極リード
5 負極リード
6 底部絶縁板
7 電池ケース
8 上部絶縁板
9 ガスケット
10 封口板

DESCRIPTION OF SYMBOLS 1 Separator 2 Positive electrode plate 3 Negative electrode plate 4 Positive electrode lead 5 Negative electrode lead 6 Bottom insulating plate 7 Battery case 8 Upper insulating plate 9 Gasket 10 Sealing plate

Claims (19)

正極、負極、非水電解液および電池内部に電池の内圧上昇により作動する電流遮断機構を備えてなる非水電解液二次電池であって、前記正極が一般式:Lia(Co1-x-yMgxybc(Mは、Mn、Ni、Y、Yb、Ca、Al、Ti、Cu、Zn、SrおよびBaからなる群より選択される少なくとも一種、0≦a≦1.05、0.005≦x≦0.15、0≦y≦0.25、0.85≦b≦1.1、1.8≦c≦2.1)で表されるリチウム含有遷移金属酸化物、前記負極が炭素材料、前記非水電解液が、(A)環状カルボン酸エステルを含有する非水溶媒、ならびに前記非水溶媒に溶解させた溶質からなる非水電解液二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a non-aqueous electrolyte, and a current interruption mechanism that operates by increasing the internal pressure of the battery, wherein the positive electrode has a general formula: Li a (Co 1-xy at least one mg x M y) b O c (M is, Mn, Ni, Y, Yb , Ca, Al, Ti, Cu, Zn, is selected from the group consisting of Sr and Ba, 0 ≦ a ≦ 1.05 0.005 ≦ x ≦ 0.15, 0 ≦ y ≦ 0.25, 0.85 ≦ b ≦ 1.1, 1.8 ≦ c ≦ 2.1) A non-aqueous electrolyte secondary battery in which the negative electrode is made of a carbon material, the non-aqueous electrolyte comprises (A) a non-aqueous solvent containing a cyclic carboxylic acid ester, and a solute dissolved in the non-aqueous solvent. 前記非水電解液が、(A)環状カルボン酸エステル、(B)炭素−炭素不飽和結合を少なくとも一つ有する環状炭酸エステルおよび(C)炭素−炭素不飽和結合を有しない環状炭酸エステルを含有する非水溶媒ならびに前記非水溶媒に溶解させた溶質からなる請求項1記載の非水電解液二次電池。 The non-aqueous electrolyte contains (A) a cyclic carboxylic acid ester, (B) a cyclic carbonate having at least one carbon-carbon unsaturated bond, and (C) a cyclic carbonate having no carbon-carbon unsaturated bond. The non-aqueous electrolyte secondary battery according to claim 1, comprising a non-aqueous solvent and a solute dissolved in the non-aqueous solvent. 前記環状カルボン酸エステル(A)が、γ−ブチロラクトン(GBL)、γ−バレロラクトン(GVL)、α−アセチル−γ−ブチロラクトン、α−メチル−γ−ブチロラクトン、β−メチル−γ−ブチロラクトン、α−アンゲリカラクトン、α−メチレン−γ−ブチロラクトン、γ−ヘキサノラクトン、γ−ノナノラクトン、γ−オクタノラクトン、γ−メチル−γ−デカノラクトンからなる群より選択される少なくとも一種である請求項1または請求項2に記載の非水電解液二次電池。 The cyclic carboxylic acid ester (A) is γ-butyrolactone (GBL), γ-valerolactone (GVL), α-acetyl-γ-butyrolactone, α-methyl-γ-butyrolactone, β-methyl-γ-butyrolactone, α 1 or at least one selected from the group consisting of -angelica lactone, α-methylene-γ-butyrolactone, γ-hexanolactone, γ-nonanolactone, γ-octanolactone, γ-methyl-γ-decanolactone The nonaqueous electrolyte secondary battery according to claim 2. 前記炭素−炭素不飽和結合を少なくとも一つ有する環状炭酸エステル(B)が、ビニレンカーボネート(VC)を始めとして、3−メチルビニレンカーボネート、3,4−ジメチルビニレンカーボネート、3−エチルビニレンカーボネート、3,4−ジエチルビニレンカーボネート、3−プロピルビニレンカーボネート、3,4−ジプロピルビニレンカーボネート、3−フェニルビニレンカーボネート、3,4−ジフェニルビニレンカーボネート、ビニルエチレンカーボネート(VEC)、ジビニルエチレンカーボネート(DVEC)からなる群より選択される少なくとも一種である請求項2記載の非水電解液二次電池。 The cyclic carbonate (B) having at least one carbon-carbon unsaturated bond is vinylene carbonate (VC), 3-methyl vinylene carbonate, 3,4-dimethyl vinylene carbonate, 3-ethyl vinylene carbonate, 3 , 4-diethyl vinylene carbonate, 3-propyl vinylene carbonate, 3,4-dipropyl vinylene carbonate, 3-phenyl vinylene carbonate, 3,4-diphenyl vinylene carbonate, vinyl ethylene carbonate (VEC), divinyl ethylene carbonate (DVEC) The nonaqueous electrolyte secondary battery according to claim 2, which is at least one selected from the group consisting of: 前記炭素−炭素不飽和結合を有しない環状炭酸エステル(C)が、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)からなる群より選択される少なくとも一種である請求項2記載の非水電解液二次電池。 The cyclic carbonate (C) having no carbon-carbon unsaturated bond is at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate (BC). Non-aqueous electrolyte secondary battery. 前記非水溶媒が、さらに鎖状炭酸エステル(D)を含有する請求項1〜5のいずれかに記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the nonaqueous solvent further contains a chain carbonate ester (D). 鎖状炭酸エステル(D)が、ジメチルカーボネート、エチルメチルカーボネートおよびジエチルカーボネートからなる群より選択される少なくとも一種である請求項6記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 6, wherein the chain carbonate ester (D) is at least one selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. 前記溶質が、LiPF6とLiBF4からなる群より選択される少なくとも一種である請求項1〜7のいずれかに記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the solute is at least one selected from the group consisting of LiPF 6 and LiBF 4 . 前記非水溶媒が、さらにフェニル基および前記フェニル基に隣接する環状化合物基からなるベンゼン誘導体を含有する請求項1〜8のいずれかに記載の非水電解液二次電池。 The nonaqueous electrolyte secondary battery according to any one of claims 1 to 8, wherein the nonaqueous solvent further contains a benzene derivative comprising a phenyl group and a cyclic compound group adjacent to the phenyl group. 感熱性の保護素子が取り付けられていることを特徴とする請求項1〜9のいずれかに記載の非水電解液二次電池。 A non-aqueous electrolyte secondary battery according to any one of claims 1 to 9, wherein a heat-sensitive protective element is attached. 前記保護素子がPTCであることを特徴とする請求項10記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 10, wherein the protective element is PTC. 前記保護素子が温度フューズであることを特徴とする請求項10記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 10, wherein the protection element is a temperature fuse. 前記保護素子がサーミスタであることを特徴とする請求項10記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 10, wherein the protection element is a thermistor. 前記保護素子がサーモスタットであることを特徴とする請求項10記載の非水電解液二次電池。 The non-aqueous electrolyte secondary battery according to claim 10, wherein the protective element is a thermostat. 請求項1〜9のいずれかに記載の非水電解液二次電池を単数又は複数使用した電池パックであって、感熱性の保護素子が取り付けられていることを特徴とする非水電解液二次電池パック。 A battery pack using one or a plurality of the non-aqueous electrolyte secondary batteries according to claim 1, wherein a heat-sensitive protective element is attached. Next battery pack. 前記保護素子がPTCであることを特徴とする請求項15記載の非水電解液二次電池パック。 The non-aqueous electrolyte secondary battery pack according to claim 15, wherein the protection element is a PTC. 前記保護素子が温度フューズであることを特徴とする請求項15記載の非水電解液二次電池パック。 The nonaqueous electrolyte secondary battery pack according to claim 15, wherein the protective element is a temperature fuse. 前記保護素子がサーミスタであることを特徴とする請求項15記載の非水電解液二次電池パック。 The non-aqueous electrolyte secondary battery pack according to claim 15, wherein the protection element is a thermistor. 前記保護素子がサーモスタットであることを特徴とする請求項15記載の非水電解液二次電池パック。 The non-aqueous electrolyte secondary battery pack according to claim 15, wherein the protection element is a thermostat.
JP2004348090A 2004-12-01 2004-12-01 Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery pack Pending JP2006156268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348090A JP2006156268A (en) 2004-12-01 2004-12-01 Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348090A JP2006156268A (en) 2004-12-01 2004-12-01 Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery pack

Publications (1)

Publication Number Publication Date
JP2006156268A true JP2006156268A (en) 2006-06-15

Family

ID=36634266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348090A Pending JP2006156268A (en) 2004-12-01 2004-12-01 Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery pack

Country Status (1)

Country Link
JP (1) JP2006156268A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541938A (en) * 2006-06-23 2009-11-26 ボストン−パワー,インコーポレイテッド Lithium ion secondary battery
KR100977973B1 (en) 2007-01-09 2010-08-24 주식회사 엘지화학 Non-aqueous electrolyte and secondary battery comprising the same
JP2011527090A (en) * 2008-07-03 2011-10-20 ボード オブ ガバナーズ フォー ハイヤー エデュケーション, ステート オブ ロード アイランド アンド プロヴィデンス プランテーションズ Inhibition of oxidation of lithium ion battery electrolytes by electrolyte additives
JP2013062329A (en) * 2011-09-12 2013-04-04 Fdk Corp Lithium ion capacitor
JP2013109931A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Electrode for nonaqueous electrolytic secondary battery use, and nonaqueous electrolytic secondary battery
US8828605B2 (en) 2004-12-28 2014-09-09 Boston-Power, Inc. Lithium-ion secondary battery
WO2015001718A1 (en) * 2013-07-01 2015-01-08 三洋電機株式会社 Non-aqueous electrolyte secondary cell
WO2018145350A1 (en) * 2017-02-07 2018-08-16 上海璞泰来新能源科技股份有限公司 Lithium battery with rapid detectable safety
CN112321298A (en) * 2020-11-06 2021-02-05 中国科学院新疆理化技术研究所 Perovskite-like thermistor material and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8828605B2 (en) 2004-12-28 2014-09-09 Boston-Power, Inc. Lithium-ion secondary battery
JP2009541938A (en) * 2006-06-23 2009-11-26 ボストン−パワー,インコーポレイテッド Lithium ion secondary battery
KR100977973B1 (en) 2007-01-09 2010-08-24 주식회사 엘지화학 Non-aqueous electrolyte and secondary battery comprising the same
JP2011527090A (en) * 2008-07-03 2011-10-20 ボード オブ ガバナーズ フォー ハイヤー エデュケーション, ステート オブ ロード アイランド アンド プロヴィデンス プランテーションズ Inhibition of oxidation of lithium ion battery electrolytes by electrolyte additives
JP2013062329A (en) * 2011-09-12 2013-04-04 Fdk Corp Lithium ion capacitor
JP2013109931A (en) * 2011-11-18 2013-06-06 Toyota Motor Corp Electrode for nonaqueous electrolytic secondary battery use, and nonaqueous electrolytic secondary battery
WO2015001718A1 (en) * 2013-07-01 2015-01-08 三洋電機株式会社 Non-aqueous electrolyte secondary cell
JPWO2015001718A1 (en) * 2013-07-01 2017-02-23 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP2017228542A (en) * 2013-07-01 2017-12-28 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US10109889B2 (en) 2013-07-01 2018-10-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
WO2018145350A1 (en) * 2017-02-07 2018-08-16 上海璞泰来新能源科技股份有限公司 Lithium battery with rapid detectable safety
CN112321298A (en) * 2020-11-06 2021-02-05 中国科学院新疆理化技术研究所 Perovskite-like thermistor material and preparation method thereof
CN112321298B (en) * 2020-11-06 2022-03-11 中国科学院新疆理化技术研究所 Perovskite-like thermistor material and preparation method thereof

Similar Documents

Publication Publication Date Title
US7026073B2 (en) Non-aqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
US8338030B2 (en) Non-aqueous electrolyte secondary battery
KR100812106B1 (en) Nonaqueous electrolyte secondary battery
CN110998959B (en) Lithium secondary battery having improved high-temperature storage characteristics
US7745057B2 (en) Nonaqueous electrolyte secondary battery
JP3010781B2 (en) Non-aqueous electrolyte secondary battery
JP4657403B2 (en) Nonaqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2011150873A (en) Nonaqueous electrolyte secondary battery
JP2002117895A (en) Electrolysis liquid for non-aqueous system battery and non-aqueous system secondary battery
JP5109329B2 (en) Secondary battery
JP2006324235A (en) Nonaqueous electrolyte secondary battery
JP2010176996A (en) Nonaqueous electrolyte secondary battery
JP4153700B2 (en) Non-aqueous electrolyte secondary battery
JP5070780B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
US10340525B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery
JP4184335B2 (en) Non-aqueous electrolyte
JP2008251212A (en) Non-aqueous electrolyte secondary battery
JP4826760B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4794193B2 (en) Nonaqueous electrolyte secondary battery
JP2006156268A (en) Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution secondary battery pack
JP3533893B2 (en) Non-aqueous electrolyte secondary battery
JP5405353B2 (en) Non-aqueous electrolyte secondary battery