JP2006153425A - Steam condenser - Google Patents

Steam condenser Download PDF

Info

Publication number
JP2006153425A
JP2006153425A JP2005154969A JP2005154969A JP2006153425A JP 2006153425 A JP2006153425 A JP 2006153425A JP 2005154969 A JP2005154969 A JP 2005154969A JP 2005154969 A JP2005154969 A JP 2005154969A JP 2006153425 A JP2006153425 A JP 2006153425A
Authority
JP
Japan
Prior art keywords
heat transfer
tube group
transfer tube
plate
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005154969A
Other languages
Japanese (ja)
Other versions
JP4607664B2 (en
Inventor
Toshihiro Yoshii
敏浩 吉井
Shunichi Goshima
俊一 五島
Yukio Takigawa
幸夫 瀧川
Shoji Nakajima
昌二 中島
Fumio Obara
文男 小原
Shunji Kono
俊二 河野
Akira Nemoto
晃 根本
Yuji Inoue
裕司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005154969A priority Critical patent/JP4607664B2/en
Publication of JP2006153425A publication Critical patent/JP2006153425A/en
Application granted granted Critical
Publication of JP4607664B2 publication Critical patent/JP4607664B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam condenser capable of smoothly guiding steam in a tube group to a gas cooling part without retainment by suppressing a pressure loss of the steam. <P>SOLUTION: A steam condenser which condenses steam exhausted from a steam turbine. Heat transfer tubes are arrayed below the steam turbine inside the container. Cooling medium flows inside the heat transfer tubes. The heat transfer tubes extend horizontally, and include at least two upper heat transfer tube groups and at least two lower heat transfer tube groups arranged with a gap between each other. Each heat transfer tube group is constituted by arraying heat transfer tubes like a grid. At a lower part between the lower heat transfer tube groups, a baffle plate which obstructs flow of steam extends horizontally. Between the upper and lower heat transfer tube groups, inter-tube-group inundation prevention plates extend horizontally. In each heat transfer tube group, an enclosure part extends to guide gas from the enclosure part to outside of the container through a gas extraction duct. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は復水器に係り、特に管群を構成する伝熱管の配置を改良した復水器に関する。   The present invention relates to a condenser, and more particularly to a condenser having an improved arrangement of heat transfer tubes constituting a tube group.

復水器は蒸気タービンからの排出蒸気を凝縮させて復水として回収する機能を有し、蒸気タービン発電プラントにおいて広く使われている。一般に復水器は、蒸気タービンの蒸気排出口と連通する容器を有し、その容器内に冷却媒体が流通する多数の伝熱管の配列からなる伝熱管群(以下管群と略称する)を有している。   The condenser has a function of condensing the exhaust steam from the steam turbine and recovering it as condensate, and is widely used in steam turbine power plants. Generally, a condenser has a container communicating with a steam outlet of a steam turbine, and has a heat transfer tube group (hereinafter abbreviated as a tube group) composed of an array of many heat transfer tubes through which a cooling medium flows. is doing.

蒸気タービンから排出された蒸気は、復水器の容器内を流下して管群と接触し、伝熱管内を流れる冷却媒体に潜熱を奪われることにより凝縮して、復水として回収される。従来の復水器においては、蒸気と冷却媒体との温度差で蒸気の凝縮が進行する。凝縮する際の蒸気の温度は凝縮面における蒸気の分圧に対する飽和温度となる。   The steam discharged from the steam turbine flows down in the condenser vessel and comes into contact with the tube group, and is condensed by depriving of the latent heat from the cooling medium flowing in the heat transfer tubes, and is recovered as condensate. In the conventional condenser, the condensation of steam proceeds due to the temperature difference between the steam and the cooling medium. The temperature of the vapor at the time of condensation is a saturation temperature with respect to the partial pressure of the vapor at the condensation surface.

しかし、蒸気の分圧は大まかに2つの要因で低下し、それに伴う温度差の減少で凝縮性能(熱交換効率)が低下する。一つの要因は、蒸気の流動に伴う圧力損失であり、もう一つの要因は、蒸気中に混入している不凝縮ガスの濃縮による不凝縮ガス分圧の増大である。したがって、復水器では、蒸気の圧力損失の低減と、不凝縮ガスの濃縮を抑制することが性能向上を達成する上で重要である。   However, the partial pressure of the steam is roughly reduced by two factors, and the condensing performance (heat exchange efficiency) is lowered due to a decrease in the temperature difference. One factor is a pressure loss due to the flow of the steam, and another factor is an increase in the partial pressure of the non-condensable gas due to the concentration of the non-condensable gas mixed in the steam. Therefore, in the condenser, it is important to reduce the pressure loss of steam and suppress the concentration of non-condensable gas in order to achieve performance improvement.

一般に蒸気タービンの排気圧力は復水器の圧力損失および復水器内の不凝縮ガス濃度と関係している。蒸気タービンの排気圧力は、蒸気が凝縮する管群での圧力に、復水器における蒸気の圧力損失を加えた圧力になる。したがって、復水器における蒸気の圧力損失が大きい場合、蒸気タービンの排気圧力が高くなり、タービン出力が低下して発電効率が悪くなる。   In general, the exhaust pressure of a steam turbine is related to the pressure loss of the condenser and the non-condensable gas concentration in the condenser. The exhaust pressure of the steam turbine is a pressure obtained by adding the pressure loss of the steam in the condenser to the pressure in the tube group where the steam is condensed. Therefore, when the steam pressure loss in the condenser is large, the exhaust pressure of the steam turbine increases, the turbine output decreases, and the power generation efficiency deteriorates.

蒸気の流れが滞留する部分があると、その部分で不凝縮ガス濃度が上昇して分圧が上がるため、蒸気分圧が低下して凝縮量が低下する。この場合にも、全体として凝縮量を確保するために、タービン排気圧力が高くなる。   If there is a portion where the flow of steam stays, the concentration of non-condensable gas increases and the partial pressure increases, and the partial pressure of steam decreases and the amount of condensation decreases. Also in this case, the turbine exhaust pressure is increased in order to ensure the amount of condensation as a whole.

このように、復水器内における蒸気の圧力損失を低く抑えることと、管群内で蒸気を滞留させることなくスムーズにガス冷却部へと導くことは、復水器の性能指標として重要な技術上の課題になっている。   In this way, keeping the pressure loss of steam in the condenser low and guiding it smoothly to the gas cooling section without stagnation of steam in the tube group are important technologies as a performance index of the condenser. It is an upper problem.

この課題に対して従来の復水器では、主として2つの異なる手段で対応してきた。その一つの手段は、例えば特許文献1に示すように、比較的集中して配列した管群の周囲に十分広い蒸気通路空間を設けることである。   Conventional condensers have dealt with this problem mainly by two different means. One means is to provide a sufficiently wide steam passage space around a group of tubes arranged in a relatively concentrated manner, as shown in Patent Document 1, for example.

もう一つの手段は、例えば特許文献2に示すように、広い範囲にわたって全体として疎に配列した管群中に蒸気の通路を十分に設けることである。
特開平8-226776号公報 特公昭55-36915号公報
Another means is to sufficiently provide a steam passage in a group of tubes arranged sparsely as a whole over a wide range, as shown in Patent Document 2, for example.
JP-A-8-226776 Japanese Patent Publication No.55-36915

従来の復水器において、新たに管群のみを交換するリプレース適用にあたっては、タービン建屋運転床開口部、或いは壁開口部のどちらからでも、管群の一体搬入が困難な場合がある。このため、管群は搬入可能な大きさに分割構造とする必要があるが、分割型管群を構成する際に問題となるのが、タービン排気流速分布に起因する管群への偏った蒸気流入である。   In a conventional condenser, when replacing a new pipe group only, it may be difficult to carry in the pipe group from either the turbine building operation floor opening or the wall opening. For this reason, the tube group needs to have a split structure that can be carried in. However, the problem with the split-type tube group is the uneven steam to the tube group due to the turbine exhaust flow velocity distribution. Inflow.

一般に、復水器の容器に流入するタービン排気は、タービン主軸から遠ざかるほど流速が速く、主軸に近いほど流速は遅くなる。したがって、復水器上部から復水器下部へ導かれた蒸気流は復水器容器の側壁に沿った流れが最も速くなる。   In general, the turbine exhaust flowing into the condenser vessel has a higher flow rate as it gets farther from the turbine main shaft, and the flow velocity becomes slower as it gets closer to the main shaft. Therefore, the steam flow guided from the upper part of the condenser to the lower part of the condenser has the fastest flow along the side wall of the condenser container.

このため、管群を分割型とし、流路や管群中にイナンデーション(凝縮水滴による熱伝達低下)対策のために凝縮水を受けるためのイナンデーション防止板を複数設置することが考えられる。しかもその場合には、局部的な低圧部発生や、イナンデーション防止板に沿った流路において流速の速い蒸気による管群内側から外側への蒸気の逆流が生じることが考えられ、局部的な淀み発生によるガスの滞留や圧力損失増大により復水器性能を低下させてしまう恐れがある。   For this reason, it is conceivable that the tube group is divided, and a plurality of inundation prevention plates for receiving condensed water are installed in the flow path and the tube group in order to prevent inundation (decrease in heat transfer due to condensed water droplets). In addition, in that case, it is considered that local low-pressure parts are generated, or steam flow back from the inside to the outside of the tube group due to high-velocity steam in the flow path along the anti-inhibition plate. Condensation of gas due to generation or increased pressure loss may reduce condenser performance.

本発明は上記した課題を解決するためになされたものであり、昨今の高精度な流動解析手法により最適化を施し、分割型の管群構成として、流路や管群中にイナンデーション対策のために凝縮水を受けるためのイナンデーション防止板を設置しても、蒸気の圧力損失を抑え、管群内で蒸気を滞留させることなくスムーズにガス冷却部へと導くことができ、高性能でコンパクトな復水器を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and has been optimized by a recent high-precision flow analysis method, and as a split-type tube group configuration, measures for inundation are taken into the flow path and the tube group. Therefore, even if an inversion prevention plate for receiving condensed water is installed, the pressure loss of the steam is suppressed, and the steam can be smoothly led to the gas cooling section without staying in the tube group. The purpose is to provide a compact condenser.

この発明は上記目的を達成するものであって、本発明の一つの態様によれば、蒸気タービンから排出される蒸気を凝縮させる復水器において、少なくとも二つの側壁を有し、前記蒸気タービンから蒸気が流下するように構成された容器と、前記容器内で前記蒸気タービンの下方に配列され、内部に冷却媒体が流通し、前記流下してきた蒸気と接して蒸気を凝縮させる、水平方向に延びる複数の伝熱管であって、前記容器内で水平方向に互いに間隔をあけて配置された少なくとも2個の上部伝熱管群と、前記上部伝熱管群のそれぞれの下方位置に水平方向に互いに間隔をあけて配置された少なくとも2個の下部伝熱管群とを有し、前記各伝熱管群は前記複数の伝熱管が格子状に配列されてなるその複数の伝熱管と、前記複数の伝熱管を支持する複数の管板と、前記下部伝熱管群同士の間の下部に配置されて水平方向に延びて蒸気の流れを妨げる邪魔板と、前記上部伝熱管群と前記下部伝熱管群がそれぞれ互いに上下に対向する間の位置に配置されて水平方向に延びて上方から流下する凝縮水を水平方向に導く管群間イナンデーション防止板と、前記各伝熱管群内で前記伝熱管に平行にほぼ水平に延びるように配置されてガス抽出孔を有する上板と、前記ガス抽出孔をはさんでしかも複数の前記伝熱管をはさんで前記上板から互いに間隔をあけて下方にかつ前記伝熱管に平行に延びる2枚の側板とを有する囲い板部と、前記ガス抽出孔に接続されて前記囲い板部のガスを前記容器の外へ導くガス抽出ダクトと、を有する。   The present invention achieves the above-mentioned object. According to one aspect of the present invention, a condenser for condensing steam discharged from a steam turbine has at least two side walls, and A container configured to allow steam to flow down, and arranged in the container below the steam turbine, in which a cooling medium flows and condenses the steam in contact with the flowing down steam and extends in a horizontal direction A plurality of heat transfer tubes, and at least two upper heat transfer tube groups disposed in the container in a horizontal direction spaced apart from each other, and horizontally spaced from each other at a position below each of the upper heat transfer tube groups. At least two lower heat transfer tube groups arranged in an open manner, and each of the heat transfer tube groups includes the plurality of heat transfer tubes in which the plurality of heat transfer tubes are arranged in a lattice shape, and the plurality of heat transfer tubes. To support A plurality of tube plates, a baffle plate that is disposed in a lower portion between the lower heat transfer tube groups and extends in the horizontal direction to block the flow of steam, and the upper heat transfer tube group and the lower heat transfer tube group are vertically An inversion prevention plate between the tube groups that is arranged at a position between the tubes and that horizontally extends the condensate that flows from the top and flows down from above, and in each of the heat transfer tube groups, substantially parallel to the heat transfer tubes. An upper plate having gas extraction holes arranged to extend; and a plurality of the heat transfer tubes sandwiched between the gas extraction holes and spaced apart from the upper plate and parallel to the heat transfer tubes And a gas extraction duct that is connected to the gas extraction hole and guides the gas in the enclosure plate to the outside of the container.

また、本発明のもう一つの態様によれば、軸を水平にした蒸気タービンから排出される蒸気を凝縮させる復水器において、少なくとも二つの側壁を有し、前記蒸気タービンから蒸気が流下するように構成された容器と、前記容器内で前記蒸気タービンの下方に配列され、内部に冷却媒体が流通し、前記流下してきた蒸気と接して蒸気を凝縮させる、水平方向に延びる複数の伝熱管であって、前記容器内で水平方向に互いに間隔をあけて配置された少なくとも2個の上部伝熱管群と、前記上部伝熱管群のそれぞれの下方位置に水平方向に互いに間隔をあけて配置された少なくとも2個の下部伝熱管群とを有し、前記各伝熱管群は前記複数の伝熱管が格子状に配列されてなるその複数の伝熱管と、前記複数の伝熱管の端部を固定して鉛直方向に延びる複数の管板と、前記下部伝熱管群同士の間の下部に配置されて水平方向に延びて蒸気の流れを妨げる邪魔板と、前記上部伝熱管群と前記下部伝熱管群がそれぞれ互いに上下に対向する間の位置に配置されて水平方向に延びて上方から流下する凝縮水を水平方向に導く管群間イナンデーション防止板と、前記各下部伝熱管群内で前記伝熱管に平行に水平に延びるように配置されてガス抽出孔を有する第1の上板と、前記ガス抽出孔をはさんでしかも複数の前記伝熱管をはさんで前記上板から互いに間隔をあけて下方にかつ前記伝熱管に平行に延びる2枚の側板とを有する下部管群囲い板部と、前記各上部伝熱管群の下端部の前記容器の側壁側で前記管群間イナンデーション防止板から前記上部伝熱管群の外側端部に沿って立ち上がり、ガス抽出孔を有する外側端板と、前記外側端板の上端に接続されて前記管群間イナンデーション防止板に平行に延びる第2の上板とを有して前記管群間イナンデーション防止板との間に複数の前記伝熱管をはさみこむ上部管群囲い板部と、前記下部管群囲い板部の第1の上板および上部管群囲い板部の外側端板の前記ガス抽出孔に接続されて前記下部管群囲い板部および上部管群囲い板部のガスを前記容器の外へ導くガス抽出ダクトと、を有する。   According to another aspect of the present invention, a condenser for condensing steam discharged from a steam turbine having a horizontal shaft has at least two side walls so that steam flows down from the steam turbine. And a plurality of horizontally extending heat transfer tubes arranged in the container below the steam turbine, in which a cooling medium circulates and condenses the steam in contact with the flowing-down steam. And at least two upper heat transfer tube groups that are spaced apart from each other in the horizontal direction in the container, and are spaced apart from each other in the horizontal direction at respective lower positions of the upper heat transfer tube group. At least two lower heat transfer tube groups, each of the heat transfer tube groups fixing the plurality of heat transfer tubes in which the plurality of heat transfer tubes are arranged in a grid and the ends of the plurality of heat transfer tubes. Extending vertically A plurality of tube plates, a baffle plate disposed in a lower portion between the lower heat transfer tube groups and extending horizontally to prevent the flow of steam, and the upper heat transfer tube group and the lower heat transfer tube group are vertically Between the tube group inundation prevention plates, which are arranged in positions facing each other and extend in the horizontal direction and guide the condensed water flowing down from above in the horizontal direction, and horizontally in parallel to the heat transfer tubes in each lower heat transfer tube group A first upper plate having a gas extraction hole disposed so as to extend to the lower plate and spaced apart from the upper plate across the gas extraction hole and a plurality of the heat transfer tubes A lower tube group enclosure plate portion having two side plates extending in parallel to the heat transfer tubes, and the upper heat transfer tubes from the inter-tube group anti-inversion plate on the side wall of the container at the lower end of each upper heat transfer tube group Stand up along the outer edge of the group and gas An outer end plate having an outlet hole, and a second upper plate connected to the upper end of the outer end plate and extending in parallel to the inter-tube group anti-inversion plate; An upper tube group enclosure plate portion sandwiching a plurality of the heat transfer tubes therebetween, a first upper plate of the lower tube group enclosure plate portion, and the gas extraction holes of the outer end plate of the upper tube group enclosure plate portion. And a gas extraction duct for guiding the gas in the lower tube group enclosure plate portion and the upper tube group enclosure plate portion to the outside of the container.

本発明によれば、流路や管群中にイナンデーション対策のために凝縮水を受けるためのイナンデーション防止板を設置しても、蒸気の圧力損失を抑え、管群内で蒸気を滞留させることなくスムーズにガス冷却部へと導くことができ、高性能でコンパクトな復水器を提供することができる。   According to the present invention, even if an inversion prevention plate for receiving condensed water is installed in the flow path or the tube group for the countermeasure against the inundation, the pressure loss of the steam is suppressed and the steam is retained in the tube group. It is possible to smoothly lead to the gas cooling section without any problem, and to provide a high performance and compact condenser.

[第1の実施形態]
初めに、本発明の第1の実施形態について図1〜図4を参照して説明する。図1は本発明の第1の実施形態による復水器の正面立断面図を示し、図2は同じく側面立断面図である。また、図3は図1における管群部を拡大して示す正面図、図4は図1における下部管群内のイナンデーション防止板端部付近を拡大して示す正面図である。
[First Embodiment]
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front elevational sectional view of a condenser according to a first embodiment of the present invention, and FIG. 2 is a side elevational sectional view. 3 is an enlarged front view showing the tube group portion in FIG. 1, and FIG. 4 is an enlarged front view showing the vicinity of the end portion of the indentation preventing plate in the lower tube group in FIG.

本実施形態による復水器は、図1、図2に示すように、平面形状がほぼ矩形をした容器1を有し、容器1内上部には軸を水平にした蒸気タービン2が設置されている。   As shown in FIGS. 1 and 2, the condenser according to the present embodiment includes a container 1 having a substantially rectangular planar shape, and a steam turbine 2 having a horizontal axis is installed in the upper part of the container 1. Yes.

容器1の内下部には、例えば2万本ないし3万本に及ぶ多数の伝熱管3が、タービン2の軸に平行な向きで直交格子(正方格子、inline grid)状または傾斜格子(千鳥格子、staggered grid)状に配列して収められている。なお、タービン軸と伝熱管長手方向とは平行な向きに限らず、直角な向きであってもよい。伝熱管3は、その長手方向に所定間隔ごとに配置された複数の支え板4により支持固定され、4個の管群5(5A1、5A2、5B1、5B2)を構成している。支え板4は、伝熱管3に平行な梁70によって水平方向に支持されている。   In the lower part of the container 1, for example, a large number of heat transfer tubes 3, for example, 20,000 to 30,000, are arranged in an orthogonal lattice (square lattice) or inclined lattice (staggered lattice) in a direction parallel to the axis of the turbine 2. Child, staggered grid). The turbine shaft and the heat transfer tube longitudinal direction are not limited to being parallel to each other, but may be at right angles. The heat transfer tube 3 is supported and fixed by a plurality of support plates 4 arranged at predetermined intervals in the longitudinal direction, and constitutes four tube groups 5 (5A1, 5A2, 5B1, 5B2). The support plate 4 is supported in the horizontal direction by a beam 70 parallel to the heat transfer tube 3.

伝熱管3の長手方向両端部は、鉛直方向に延びる管板6a、6bに固定され、管板6a、6bの伝熱管3と反対側には、それぞれ複数本の伝熱管3と連通する水室7a、7bが設けられている。水室7aには、冷却媒体である冷却水(通常は海水や冷却塔水)の入口8が取り付けられ、反対側の水室7bに冷却水の出口9が取り付けられている。容器1内の底部には、管群5の下方にホットウエル(復水溜め)10が設けられている。ホットウエル10の上にはホットウェルカバー36が配置されている。   Both ends of the heat transfer tube 3 in the longitudinal direction are fixed to the tube plates 6a and 6b extending in the vertical direction, and water tubes communicating with the plurality of heat transfer tubes 3 on the opposite side of the tube plates 6a and 6b to the heat transfer tube 3, respectively. 7a and 7b are provided. An inlet 8 for cooling water (usually seawater or cooling tower water) as a cooling medium is attached to the water chamber 7a, and an outlet 9 for cooling water is attached to the opposite water chamber 7b. A hot well (condensate reservoir) 10 is provided below the tube group 5 at the bottom of the container 1. A hot well cover 36 is disposed on the hot well 10.

設置スペースの節約と配管の簡素化のため、大型発電プラントの復水器では容器1内の上部に給水加熱器11などが設置されている場合もある。   In order to save installation space and simplify piping, a condenser for a large power plant may have a feed water heater 11 or the like installed in the upper part of the container 1.

上記のような構成の復水器において、蒸気タービン2から流出した高温の蒸気は容器1内を管群5に向かって流下する。管群5の表面に達した蒸気は、そこで伝熱管3と接し、水室7aを経て伝熱管3内を通過する冷却水との間で熱の授受を行なう。蒸気はその潜熱を奪われて凝縮し、容器1の底部にあるホットウエル10に復水として集められる。   In the condenser configured as described above, the high-temperature steam flowing out from the steam turbine 2 flows down toward the tube group 5 in the container 1. The steam reaching the surface of the tube group 5 is in contact with the heat transfer tube 3 there, and exchanges heat with the cooling water passing through the heat transfer tube 3 through the water chamber 7a. The steam is deprived of its latent heat and condensed, and is collected as condensate in the hot well 10 at the bottom of the container 1.

他方、蒸気から熱を吸収した冷却水は伝熱管3の他端の水室7bを経て冷却水出口9から容器1外に排出され、海洋等に戻される。   On the other hand, the cooling water that has absorbed heat from the steam passes through the water chamber 7b at the other end of the heat transfer tube 3 and is discharged from the cooling water outlet 9 to the outside of the container 1 and returned to the ocean or the like.

このように、蒸気タービン2から流出した高温の蒸気は、管群5を通過する間に冷却水に潜熱を奪われて次第に凝縮するが、その際、管群5によって凝縮しきれなかった残留蒸気と、蒸気中に微量含まれていた空気など凝縮されない不凝縮ガスが残留し、その不凝縮ガスは管群5内での流れ方向に、徐々にその濃度が上昇する。   As described above, the high-temperature steam flowing out from the steam turbine 2 is gradually condensed by being deprived of latent heat by the cooling water while passing through the tube group 5, but at this time, residual steam that cannot be completely condensed by the tube group 5. Then, non-condensable gas such as air contained in a small amount in the vapor remains, and the concentration of the non-condensable gas gradually increases in the flow direction in the tube group 5.

このため、不凝縮ガス濃度の高い蒸気をガス冷却部12に導き、ここでさらに蒸気を凝縮させ、不凝縮ガス濃度をできるだけ高めた後にガス抽出ダクト28A、28Bを介して図示しない真空ポンプなどを含むガス抽出装置によって容器1外に抽出するようになっている。   For this reason, steam having a high non-condensable gas concentration is led to the gas cooling unit 12, where the vapor is further condensed and the non-condensable gas concentration is increased as much as possible, and then a vacuum pump (not shown) is connected via the gas extraction ducts 28A and 28B. Extraction to the outside of the container 1 is performed by a gas extraction device that includes it.

ここで、管群5の詳細について説明する。伝熱管3の管群5は、二つの上部管群5A1、5A2と、二つの下部管群5B1、5B2に分かれている。上部管群5A1、5A2は互いの間に間隔をおいて同じ高さに配置され、下部管群5B1および下部管群5B2は、それぞれ、上部管群5A1および上部管群5A2の下方に配置されている。二つの上部管群5A1、5A2と、二つの下部管群5B1、5B2はそれぞれ、容器1の中央を対称面としてほぼ対称に配置され、各管群内の伝熱管3の配置も同じ対称面に対してほぼ対称である。上部管群5A1、5A2の間および下部管群5B1、5B2の間に鉛直方向に延びる中央蒸気流路143が形成されている。   Here, details of the tube group 5 will be described. The tube group 5 of the heat transfer tube 3 is divided into two upper tube groups 5A1 and 5A2 and two lower tube groups 5B1 and 5B2. The upper tube groups 5A1 and 5A2 are arranged at the same height with a space between them, and the lower tube group 5B1 and the lower tube group 5B2 are arranged below the upper tube group 5A1 and the upper tube group 5A2, respectively. Yes. The two upper tube groups 5A1 and 5A2 and the two lower tube groups 5B1 and 5B2 are arranged approximately symmetrically with the center of the container 1 as a symmetry plane, and the arrangement of the heat transfer tubes 3 in each tube group is also the same symmetry plane. It is almost symmetrical. A central steam channel 143 extending in the vertical direction is formed between the upper tube groups 5A1 and 5A2 and between the lower tube groups 5B1 and 5B2.

伝熱管3を支持固定する支え板4は、図1に示すように、上下方向に並んだ上部管群5A1と下部管群5B1を共通に支持する1群の支え板4と、上部管群5A2と下部管群5B2を共通に支持する他の1群の支え板4とで構成してもよいし、これらを1群の一体の支え板4で構成してもよい。   As shown in FIG. 1, the support plate 4 that supports and fixes the heat transfer tube 3 includes a group of support plates 4 that support the upper tube group 5A1 and the lower tube group 5B1 arranged in the vertical direction in common, and the upper tube group 5A2. And another group of support plates 4 that support the lower tube group 5B2 in common, or these may be configured by a group of integral support plates 4.

下部管群5B1と下部管群5B2の間のそれぞれの下端を結ぶ面を塞ぐように、すなわち中央蒸気流路143の下端を塞ぐように、水平方向に延びる邪魔板(baffle plate)22が配置されている。下部管群5B1と下部管群5B2の下端および邪魔板22の下面はホットウェルカバー36の上面よりも上方に位置している。また、上部管群5A1、5A2と下部管群5B1、5B2はいずれも、容器1の側壁21から間隔をおいて配置されている。   A baffle plate 22 extending in the horizontal direction is disposed so as to block the surface connecting the lower ends of the lower tube group 5B1 and the lower tube group 5B2, that is, to block the lower end of the central steam channel 143. ing. The lower ends of the lower tube group 5B1 and the lower tube group 5B2 and the lower surface of the baffle plate 22 are located above the upper surface of the hot well cover 36. Further, the upper tube groups 5A1 and 5A2 and the lower tube groups 5B1 and 5B2 are all arranged at a distance from the side wall 21 of the container 1.

図3では一方の列の管群5A2、5B2のみ示している。他方の列の管群5A1、5B1は管群5A2、5B2と面対称の関係にあるので図示および説明を省略する。   In FIG. 3, only the tube groups 5A2 and 5B2 in one row are shown. Since the tube groups 5A1 and 5B1 in the other row are in a plane symmetry relationship with the tube groups 5A2 and 5B2, illustration and description thereof are omitted.

上部管群5A1と下部管群5B1との間、および上部管群5A2と下部管群5B2との間には、管群間のほぼ中央位置に、水平に配置された管群間イナンデーション防止板23が伝熱管3の長手方向に沿って設けられている。   Between the upper tube group 5A1 and the lower tube group 5B1 and between the upper tube group 5A2 and the lower tube group 5B2, a plate between the tube groups is provided at an almost central position between the tube groups. 23 is provided along the longitudinal direction of the heat transfer tube 3.

管群間イナンデーション防止板23は、中央蒸気通路143側23bの方が、容器1の側壁21側23aよりも長くなっている。   The tube group inundation prevention plate 23 is longer on the central steam passage 143 side 23 b than on the side wall 21 side 23 a of the container 1.

中央蒸気通路143側23bについてはその上部管群5A2端部よりもタービン排気口の中心線寄りに長くし、側壁21側23aについてはその上部管群5A2の端部と同等か、または中央通路143側程ではないが上部管群5A2の端部より少し長くしている。   The central steam passage 143 side 23b is longer than the end of the upper tube group 5A2 and closer to the center line of the turbine exhaust port, and the side wall 21a 23a is equal to the end of the upper tube group 5A2 or the central passage 143. Although not on the side, it is slightly longer than the end of the upper tube group 5A2.

管群間イナンデーション防止板23の両端部には伝熱管3の長手方向に延びる立ち上がり部40が形成されている。   A rising portion 40 extending in the longitudinal direction of the heat transfer tube 3 is formed at both ends of the inter-tube group inundation prevention plate 23.

図3に示すように、上部管群5A2の内部には、3枚のイナンデーション防止板24a、24b、24cが配置され、また、下部管群5B2の内部には、2枚のイナンデーション防止板25a、25bが配置されている。これらのイナンデーション防止板はいずれも、水平に配置されて、それぞれの端部に、伝熱管3の長手方向に延びる立ち上がり部40を有する。   As shown in FIG. 3, three pieces of anti-indentation plates 24a, 24b, and 24c are arranged inside the upper tube group 5A2, and two pieces of anti-inhibition plates are arranged inside the lower tube group 5B2. 25a and 25b are arranged. All of these inundation prevention plates are arranged horizontally, and have rising portions 40 extending in the longitudinal direction of the heat transfer tubes 3 at the respective ends.

上部管群5A2内の外側のイナンデーション防止板24a、24cはほぼ同一高さに配置され、中央のイナンデーション防止板24bはこれらよりも高い位置に配置されている。下部管群5B2内のイナンデーション防止板25a、25bはほぼ同じ高さに配置され、これらの間に間隙が設けられている。   The outer inversion prevention plates 24a and 24c in the upper tube group 5A2 are arranged at substantially the same height, and the central inversion prevention plate 24b is arranged at a position higher than these. The inundation prevention plates 25a and 25b in the lower tube group 5B2 are arranged at substantially the same height, and a gap is provided between them.

下部管群5B2の内部のイナンデーション防止板25a、25bの位置は、下部管群5B2の高さの中央より上にすることが好ましい。   It is preferable that the positions of the inundation prevention plates 25a and 25b inside the lower tube group 5B2 are above the center of the height of the lower tube group 5B2.

下部管群5B2の内部のイナンデーション防止板25a、25bの、下部管群5B2外側端部には、図4に示すように、伝熱管3の長手方向に延びる立ち上がり部40が形成されているほか、立ち上がり部40の反対向きに立下り部41が形成されていて、全体として横倒しのT字形を成している。   As shown in FIG. 4, a rising portion 40 extending in the longitudinal direction of the heat transfer tube 3 is formed at the outer end portion of the lower tube group 5B2 of the inudation prevention plates 25a and 25b inside the lower tube group 5B2. The falling portion 41 is formed in the opposite direction of the rising portion 40, and forms a T-shaped shape as a whole.

図3に示すように、上部管群5A2の上部中央には、伝熱管3の長手方向および鉛直方向に延びる蒸気通路26A形成され、蒸気通路26Aの出口部(下端部)には、下方に開口し、伝熱管3の長手方向に延びる囲い板部27Aが形成されている。囲い板部27Aは、伝熱管3の長手方向に延びて水平に配置された上板27Acと、上板27Acの両端から下方および伝熱管3の長手方向に延びる外側板27Aaおよび内側板27Abとからなる。外側板27Aaは容器1の側壁21に近い側にあり、内側板27Abは中央蒸気通路143寄りにあって、内側板27Abの方が外側板27Aaよりも下方まで延びている。   As shown in FIG. 3, a steam passage 26A extending in the longitudinal direction and the vertical direction of the heat transfer tube 3 is formed in the upper center of the upper tube group 5A2, and opened downward at the outlet (lower end) of the steam passage 26A. And the surrounding board part 27A extended in the longitudinal direction of the heat exchanger tube 3 is formed. The enclosure plate portion 27A includes an upper plate 27Ac that extends horizontally in the longitudinal direction of the heat transfer tube 3, and an outer plate 27Aa and an inner plate 27Ab that extend downward from both ends of the upper plate 27Ac and in the longitudinal direction of the heat transfer tube 3. Become. The outer side plate 27Aa is on the side close to the side wall 21 of the container 1, the inner side plate 27Ab is closer to the central steam passage 143, and the inner side plate 27Ab extends below the outer side plate 27Aa.

外側板27Aaおよび内側板27Abの間には複数の伝熱管3が配置されていて、ガス冷却部12Aが形成されている。囲い板部27Aの上板27Acには、貫通孔であるガス抽出孔42が形成され、ガス抽出孔42の上方にガス抽出ダクト28Aが接続されている。ガス抽出ダクト28Aは蒸気通路26A内を鉛直に延び、伝熱管3の長手方向に延びるガス集合管43に接続されている。ガス集合管43は、容器1の外側に配置された図示しない真空装置に接続されている。   A plurality of heat transfer tubes 3 are arranged between the outer plate 27Aa and the inner plate 27Ab, and a gas cooling unit 12A is formed. A gas extraction hole 42 which is a through hole is formed in the upper plate 27Ac of the surrounding plate portion 27A, and a gas extraction duct 28A is connected above the gas extraction hole 42. The gas extraction duct 28 </ b> A extends vertically in the steam passage 26 </ b> A and is connected to a gas collecting pipe 43 extending in the longitudinal direction of the heat transfer pipe 3. The gas collecting pipe 43 is connected to a vacuum device (not shown) disposed outside the container 1.

上部管群5A2内に形成された囲い板部27Aは、上部管群5A2の高さ方向のほぼ中央部の位置に配置するのが好ましい。   The surrounding plate portion 27A formed in the upper tube group 5A2 is preferably arranged at a substantially central position in the height direction of the upper tube group 5A2.

下部管群5B2においても、上部管群5A2とほぼ同様に、上部中央に蒸気通路26Bが形成され、蒸気通路26Bの出口部(下端部)に、下方に開口した囲い板部27Bが設けられている。囲い板部27Bは、上板27Bcと、上板27Bcの両端から下方に延びる外側板27Baおよび内側板27Bbとからなる。外側板27Baと内側板27Bbの寸法はほぼ等しい。   In the lower pipe group 5B2, a steam passage 26B is formed at the center of the upper part in substantially the same manner as the upper pipe group 5A2, and an enclosing plate part 27B opened downward is provided at the outlet (lower end) of the steam path 26B. Yes. The surrounding plate portion 27B includes an upper plate 27Bc, and an outer plate 27Ba and an inner plate 27Bb that extend downward from both ends of the upper plate 27Bc. The dimensions of the outer plate 27Ba and the inner plate 27Bb are substantially equal.

下部管群5B2内に形成された囲い板27B部の配置は、下部管群5B2の高さ方向の長さの上から25%以内の位置に配置するのが好ましい。   The arrangement of the surrounding plate 27B formed in the lower pipe group 5B2 is preferably arranged at a position within 25% of the length in the height direction of the lower pipe group 5B2.

下部管群5B2におけるガス抽出ダクト28Bおよびガス集合管43などの構造は上部管群5A2の場合と同様である。   The structures of the gas extraction duct 28B and the gas collecting pipe 43 in the lower pipe group 5B2 are the same as those in the upper pipe group 5A2.

下部管群5B1、5B2内の伝熱管3の本数は、上部管群5A1、5A2内の伝熱管3の本数よりも多い。   The number of heat transfer tubes 3 in the lower tube groups 5B1 and 5B2 is larger than the number of heat transfer tubes 3 in the upper tube groups 5A1 and 5A2.

上部管群5A2の上部周囲には、蒸気が斜め下方に向かって外側から内側に通過する外部レーン20が複数個形成されている。また、下部管群5B2の下部周囲には、蒸気が斜め上方に向かって外側から内側に通過する外部レーン34が複数個形成されている。   Around the upper part of the upper tube group 5A2, a plurality of external lanes 20 through which steam passes obliquely downward from the outside to the inside are formed. A plurality of external lanes 34 are formed around the lower portion of the lower tube group 5B2 through which steam passes obliquely upward from the outside to the inside.

ここで、「レーン」とは管群の中にあって、伝熱管配列がスリット上に欠けていて蒸気通路が形成されたものをいう。   Here, “lane” refers to a tube group in which a heat transfer tube array is missing on the slit and a steam passage is formed.

上部管群5A2内部に設けられた水平なイナンデーション防止板24aの上方の管群中には、蒸気通路26Aと連通し、イナンデーション防止板24aの下方にまで延びる第1の内部レーン30が設けられ、イナンデーション防止板24cの上方の管群中には、イナンデーション防止板24cより上方にある管群の中ほどからイナンデーション防止板24cの下方にまで延びる第2の内部レーン31が設けられている。これらの内部レーン30、31はいずれも蒸気の通路となる。   A first inner lane 30 that communicates with the steam passage 26A and extends below the inversion prevention plate 24a is provided in the tube group above the horizontal inversion prevention plate 24a provided in the upper tube group 5A2. In the tube group above the anti-inhibition plate 24c, a second internal lane 31 extending from the middle of the tube group above the anti-inhibition plate 24c to the lower part of the anti-inhibition plate 24c is provided. ing. These internal lanes 30 and 31 are both steam passages.

上部管群5A2の下端の形状は、中央蒸気通路143寄りの側で少なくとも1水平列の伝熱管3が下方に突出して突出部45を形成している。突出部45の位置は、上部管群5A2の囲い板部27Aの内側板27Abよりも中央蒸気通路143寄りであり、突出部45の容器1の側壁21寄りには大きな窪み46が形成されている。   The shape of the lower end of the upper tube group 5A2 is such that at least one horizontal row of heat transfer tubes 3 protrudes downward on the side closer to the central steam passage 143 to form a protrusion 45. The position of the protruding portion 45 is closer to the central steam passage 143 than the inner plate 27Ab of the surrounding plate portion 27A of the upper tube group 5A2, and a large recess 46 is formed near the side wall 21 of the container 1 of the protruding portion 45. .

上部管群5A2中のイナンデーション防止板24aより上方の容器1の側壁21に面した管群外形は、複数の外部レーン20ごとに木の葉状に出っ張らせ、イナンデーション防止板24aは、管群の出っ張りの最短面より長くして設けている。   The outer shape of the tube group facing the side wall 21 of the container 1 above the inversion prevention plate 24a in the upper tube group 5A2 protrudes in a leaf shape for each of the plurality of external lanes 20, and the inhibition prevention plate 24a It is provided longer than the shortest surface of the ledge.

上部管群5A2内のイナンデーション防止板24aより下の部分の外形は、容器1の側壁21に向かって膨らんだほぼ半円形であって、容器1の側壁21に対向する位置から内側に向かって水平に延びる第2の外部レーン32が設けられている。   The outer shape of the portion below the inundation prevention plate 24a in the upper tube group 5A2 is a substantially semicircular shape that swells toward the side wall 21 of the container 1, and from the position facing the side wall 21 of the container 1 toward the inside. A second external lane 32 extending horizontally is provided.

下部管群5B2のイナンデーション防止板25a、25bの上方には、外部流路に通じた水平な、第1の外部レーン33が複数設けられ、イナンデーション防止板25a、25bの下には管群の下隅から60°のラインに沿って外部流路に通じる第2の外部レーン34が設けられている。   A plurality of horizontal first external lanes 33 communicating with the external flow path are provided above the anti-indentation plates 25a and 25b of the lower pipe group 5B2, and a tube group is provided below the inversion prevention plates 25a and 25b. A second external lane 34 leading to the external flow path is provided along a 60 ° line from the lower corner.

この場合、第1の外部レーン33および第2の外部レーン34とも、下部管群5B2の横幅のほぼ1/4程度まで形成されるのが好ましい。   In this case, it is preferable that both the first outer lane 33 and the second outer lane 34 are formed up to about ¼ of the lateral width of the lower tube group 5B2.

また、上部管群5A2の上面の外周部ならびに容器1の側壁21に面した外周部、および下部管群5B2の容器1の側壁21に面した外周部には、凝縮を担わない保護管列が複数列設けられている。   Further, a protective tube row that does not carry condensation is formed on the outer peripheral portion of the upper surface of the upper tube group 5A2, the outer peripheral portion facing the side wall 21 of the container 1, and the outer peripheral portion facing the side wall 21 of the container 1 of the lower tube group 5B2. Multiple rows are provided.

さらに、上部管群5A1、5A2および下部管群5B1、5B2の中に設けた下向きに開口した囲い板部27A、27Bの内部の圧力(ガス冷却部内圧力)を、上部管群5A1、5A2で相対的に低く、下部の管群5B1、5B2で相対的に高く設定した運転を行なう。このような圧力設定は、囲い板部27A、27Bの開口部の反対側に設けたガス抽出ダクト28A、28Bに適当なオリフィスを設けることによって行なえる。   Further, the pressure (inside of the gas cooling section) inside the enclosures 27A and 27B opened downward in the upper pipe groups 5A1 and 5A2 and the lower pipe groups 5B1 and 5B2 is relatively changed between the upper pipe groups 5A1 and 5A2. The operation is set to be relatively low and relatively high in the lower tube groups 5B1 and 5B2. Such pressure setting can be performed by providing appropriate orifices in the gas extraction ducts 28A and 28B provided on the opposite sides of the openings of the surrounding plate portions 27A and 27B.

以上説明した本発明の第1の実施形態による復水器では、容器1内に設けられた4個の管群5A1、5A2、5B1、5B2の内、下部管群5B1、5B2間の下方に邪魔板22が伝熱菅3の長手方向に沿って設けられている。そのため、タービン2からの排出蒸気流が、容器1の側壁21沿いに下向きに流れ、ホットウェルカバー36と下部管群5B1、5B2との間を容器1中央に向かって流れて中央蒸気通路143を上方へ流れるような旋回流を抑制できる。それによって、蒸気の圧力損失を抑制することができる。もともと容器1の壁に近いほど高速な流れとなるため、邪魔板22がない場合は上記旋回流が発生し、圧力損失が大きくなる。   In the condenser according to the first embodiment of the present invention described above, the four pipe groups 5A1, 5A2, 5B1, and 5B2 provided in the container 1 are disturbed below the lower pipe groups 5B1 and 5B2. A plate 22 is provided along the longitudinal direction of the heat transfer rod 3. Therefore, the exhaust steam flow from the turbine 2 flows downward along the side wall 21 of the container 1, flows between the hot well cover 36 and the lower tube groups 5 </ b> B <b> 1 and 5 </ b> B <b> 2 toward the center of the container 1, and passes through the central steam passage 143. A swirling flow that flows upward can be suppressed. Thereby, the pressure loss of the steam can be suppressed. Originally, the closer to the wall of the container 1, the higher the speed of the flow. Therefore, when there is no baffle plate 22, the swirl flow is generated and the pressure loss increases.

また、上部管群5A1、5A2と下部管群5B1、5B2の間に、上部管群5A1、5A2の最下面と同じ寸法か、或いは長く、端部に立ち上がり部40を有する管群間イナンデーション防止板23を設け、さらに上部管群5A1、5A2内にイナンデーション防止板24a〜24cを設け、下部管群5B1、5B2内にイナンデーション防止板25a、25bを設けているので、管群5A1、5A2、5B1、5B2内で凝縮した凝縮水が管群内を下に垂れる事(inundation)による熱伝達率低下を抑制することができる。   Further, between the upper tube groups 5A1 and 5A2 and the lower tube groups 5B1 and 5B2, the same dimension as that of the lowermost surface of the upper tube groups 5A1 and 5A2, or longer, and prevention between tube groups having a rising portion 40 at the end. Since the plate 23 is provided, the anti-inhibition plates 24a to 24c are provided in the upper tube groups 5A1 and 5A2, and the anti-inhibition plates 25a and 25b are provided in the lower tube groups 5B1 and 5B2, the tube groups 5A1 and 5A2 are provided. It is possible to suppress a decrease in the heat transfer coefficient due to the condensed water condensed in 5B1 and 5B2 hanging down in the tube group (inundation).

さらに、管群間イナンデーション防止板23の表面上は、タービン2の偏った流速分布のために多くの蒸気が流れて高速流となり、その流れに流体の粘性力により上部管群から流路へ引きずられる。しかし、上部管群5A1、5A2内のガス冷却部12Aは上部管群5A1、5A2のほぼ中央としてガス冷却部12Aより下の管群に厚みを持たせ、ガス冷却部12Aを構成する上部管群5A1、5A2のガス冷却部12Aを囲む囲み板部27Aの外側板27Aaは内側板27Abよりも短いので、上部管群5A1の凝縮による蒸気引き寄せ力が増し、スムーズに不凝縮ガスをガス冷却部12Aに導くことができる。   Further, a large amount of steam flows on the surface of the inter-tube group inundation prevention plate 23 due to the uneven flow velocity distribution of the turbine 2 to become a high-speed flow, and the flow from the upper tube group to the flow path due to the viscous force of the fluid. Dragged. However, the gas cooling section 12A in the upper pipe groups 5A1 and 5A2 has a thickness in the pipe group below the gas cooling section 12A as the approximate center of the upper pipe groups 5A1 and 5A2, and constitutes the gas cooling section 12A. Since the outer plate 27Aa of the surrounding plate portion 27A surrounding the gas cooling portion 12A of 5A1 and 5A2 is shorter than the inner plate 27Ab, the steam attracting force due to the condensation of the upper tube group 5A1 is increased, and the non-condensable gas is smoothly fed into the gas cooling portion 12A. Can lead to.

一方、下部管群5B1、5B2においては、ガス冷却部12Bの位置を下部管群5B1、5B2の高さ方向中央より上側としているので、ガス冷却部12Bの位置が、下部管群5B1、5B2エリアの最も低圧となる場所に近く、淀みなくスムーズに不凝縮ガスをガス冷却部12Bに導くことができる。   On the other hand, in the lower pipe groups 5B1 and 5B2, the position of the gas cooling section 12B is located above the center in the height direction of the lower pipe groups 5B1 and 5B2. Therefore, the position of the gas cooling section 12B is the lower pipe group 5B1 and 5B2 area. Thus, the non-condensable gas can be smoothly guided to the gas cooling unit 12B without any stagnation.

また、淀みの生じやすい上部管群5A1、5A2内のイナンデーション防止板24aと管群間イナンデーション防止板23の間の部分の管群はその大きさを小さく、外形を半円形とし、容器1の側壁21から水平な蒸気通路の外部レーン32を設けたことも、淀みなくスムーズに不凝縮ガスをガス冷却部12Bに導く効果を高めている。   Further, the tube group in the portion between the inversion prevention plate 24a and the inter-tube group inhibition prevention plate 23 in the upper tube groups 5A1 and 5A2 in which stagnation is likely to occur is small in size and semi-circular in outer shape. The provision of the external lane 32 of the horizontal steam passage from the side wall 21 also enhances the effect of smoothly guiding the non-condensable gas to the gas cooling unit 12B without stagnation.

また、上部管群5A1、5A2は、周囲に複数の外部レーン20、32を有し、内部に、蒸気通路26Aと連通しイナンデーション防止板24aの下方にまで延びる第1の内部レーン30が設けられ、イナンデーション防止板24cの上方には、管群の中ほどからイナンデーション防止板24cの下方にまで延びる第2の内部レーン31が設けられている。このため、蒸気通路26Aから蒸気を上部管群5A1、5A2の内部に取り込みやすく、スムーズに蒸気を上部管群5A1、5A2の上方から下方へ送り込むことができる。   The upper tube groups 5A1 and 5A2 have a plurality of external lanes 20 and 32 around them, and a first internal lane 30 that communicates with the steam passage 26A and extends below the inversion prevention plate 24a is provided therein. In addition, a second internal lane 31 extending from the middle of the tube group to the lower part of the anti-inhibition plate 24c is provided above the anti-inhibition plate 24c. For this reason, it is easy to take in steam into the inside of upper pipe group 5A1 and 5A2 from steam passage 26A, and steam can be smoothly sent from the upper part of upper pipe groups 5A1 and 5A2 to the lower part.

さらに、下部管群5B1、5B2それぞれに、水平な2枚のイナンデーション防止板25a、25bの上下に、外部レーン33、34を設けているので、スムーズに不凝縮ガスをガス冷却部12Bに導くことがきる。   Furthermore, since the external lanes 33 and 34 are provided on the lower tube groups 5B1 and 5B2 above and below the two horizontal anti-indentation plates 25a and 25b, the non-condensable gas is smoothly guided to the gas cooling unit 12B. I can do it.

また、上部管群5A1、5A2の最下端で、容器1の中心に近い側で水平な列が複数下方に突出した突出部45を形成し、その容器1の側壁21に近い側で下部管群5A1、5A2の下端部に大きな窪み46を設けているので、管群間イナンデーション防止板23の上面に沿った高速な流れに引きずられ勝ちな管群内の流れを上昇流とし、不凝縮ガスをスムーズにガス冷却部12Aに流入させることができる。   Further, at the lowest end of the upper tube groups 5A1 and 5A2, a plurality of horizontal rows projecting downwards 45 are formed on the side close to the center of the container 1, and the lower tube group is formed on the side close to the side wall 21 of the container 1. Since a large recess 46 is provided at the lower end of 5A1 and 5A2, the flow in the tube group that is likely to be dragged by the high-speed flow along the upper surface of the inter-tube group inversion prevention plate 23 is assumed to be an upward flow, and non-condensable gas Can smoothly flow into the gas cooling section 12A.

また、上部管群5A1、5A2内のイナンデーション防止板24aが、その上方の管群外周部より外側に突出しているので、イナンデーション防止板24aの上方から上部管群5A1、5A2に流入する蒸気を多くでき、イナンデーション防止板24aの下部に生じやすい渦の発生を抑制する効果がある。   Further, since the inundation prevention plate 24a in the upper tube group 5A1, 5A2 protrudes outward from the outer periphery of the upper tube group, steam flows into the upper tube groups 5A1, 5A2 from above the inversion prevention plate 24a. And the effect of suppressing the generation of vortices that are likely to occur in the lower portion of the inundation prevention plate 24a.

さらに、管群間イナンデーション防止板23は、タービン排気口の中心線に近い方23bが、タービン排気口の中心線から遠い側23aよりも長く水平に突出している。このため、タービンの主軸と復水器容器1の中心線の水平方向ずれに起因して管群間イナンデーション防止板23に沿って流入する蒸気流量のアンバランスが、緩和される。   Further, the tube group inundation prevention plate 23 has a side 23b closer to the center line of the turbine exhaust port protruding horizontally longer than the side 23a far from the center line of the turbine exhaust port. For this reason, the imbalance of the steam flow rate flowing along the inter-tube group anti-inversion plate 23 due to the horizontal shift between the main shaft of the turbine and the center line of the condenser vessel 1 is alleviated.

また、下部管群5B1、5B2それぞれの高さ方向ほぼ中央に設置された2枚のイナンデーション防止板25a、25bの流路側の端部には、立ち上がり部40が設けられているのに加えて立ち下がり部41も設けられて全体としてT字形を成しているので、管群外部の流路より大量の蒸気が管表面を経ないで流入することを抑制することができる。   Further, in addition to the rising portion 40 being provided at the end portion on the flow path side of the two inversion prevention plates 25a and 25b installed at the approximate center in the height direction of each of the lower tube groups 5B1 and 5B2. Since the falling portion 41 is also provided and has a T-shape as a whole, it is possible to prevent a large amount of steam from flowing in through the flow path outside the tube group without passing through the tube surface.

さらに、各管群5A1、5A2、5B1、5B2の容器1の側壁21に面した部分と、上部管群5A1、5A2の上面の管群外周に沿って、凝縮を担わない保護管列が配置されているので、蒸気タービンの高速流に載って加速された水滴による管群や構成部材の損傷を防ぐことができる。   Furthermore, a protection tube row not responsible for condensation is arranged along the portion of each tube group 5A1, 5A2, 5B1, 5B2 facing the side wall 21 of the container 1 and the outer periphery of the tube group on the upper surface of the upper tube group 5A1, 5A2. Therefore, it is possible to prevent damage to the tube group and the constituent members due to water droplets accelerated on the high-speed flow of the steam turbine.

また、各管群5A1、5A2、5B1、5B2内に設けた下向きに開口した囲い板部27A、27B内部の圧力を、上部管群5A1、5A2の囲い板部27Aでは相対的に低く、下部管群5B1、5B2の囲い板部27Bでは相対的に高く設定して運転する。このため、もともと容器1内の下方ほど圧力が相対的に高く、容器1の上部ほど圧力が相対的に低くなる圧力分布傾向に合致した運転ができ、効率的に不凝縮ガスをガス冷却部12A、12Bに導くことができる。   In addition, the pressure inside the enclosure plate portions 27A and 27B provided in each of the tube groups 5A1, 5A2, 5B1 and 5B2 is relatively low in the enclosure plate portion 27A of the upper tube groups 5A1 and 5A2, and the lower tube The enclosure 5B1 of the groups 5B1 and 5B2 is set to be relatively high for operation. For this reason, the operation | movement which matched the pressure distribution tendency from which the pressure was originally comparatively high in the downward direction in the container 1 and the pressure became comparatively low in the upper part of the container 1 can be performed, and the non-condensable gas is efficiently supplied to the gas cooling unit 12A. , 12B.

さらに、既存の容器1を利用して新たな伝熱管に取り替える工事を行なう場合、伝熱管が複数個の管群に分割されているので、タービン建屋運転床開口部、或いは壁開口部のどちらからでも分割された各管群の一体搬入が可能となり、取替え工事を容易に行なえる。   Furthermore, when the construction which replaces with a new heat transfer tube using the existing vessel 1 is performed, the heat transfer tube is divided into a plurality of tube groups, so either from the turbine building operation floor opening or the wall opening. However, it is possible to carry in each pipe group as a single unit, and replacement work can be performed easily.

[第2の実施形態]
次に本発明の第2の実施形態について図5を参照して説明する。なお以下の実施形態の説明において、第1の実施形態と同一または類似の部分には同一の符号を付して、重複説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In the following description of the embodiment, the same or similar parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図5に示すように、上部管群5A1、5A2のそれぞれの中心線50が、下部管群5B1、5B2のそれぞれの中心線51に比べて、容器1内の中央に近い位置にある。   As shown in FIG. 5, the center lines 50 of the upper tube groups 5A1, 5A2 are located closer to the center of the container 1 than the center lines 51 of the lower tube groups 5B1, 5B2.

本実施形態では、タービン排気の高速流が通過する容器1の側壁21に沿った流路の幅が、特に上部管群5A1、5A2の横の位置で広い。そのため、管群間イナンデーション防止板23と上部管群5A1、5A2内のイナンデーション防止板24aの間に生じがちな淀みを抑制でき、スムーズにガス冷却部12A、12Bに蒸気を導くことができる。   In this embodiment, the width of the flow path along the side wall 21 of the container 1 through which the high-speed flow of the turbine exhaust passes is particularly wide at the position next to the upper tube groups 5A1 and 5A2. Therefore, it is possible to suppress stagnation that tends to occur between the tube group inundation prevention plate 23 and the inversion prevention plate 24a in the upper tube groups 5A1 and 5A2, and to smoothly guide steam to the gas cooling units 12A and 12B. .

[第3の実施形態]
次に本発明の第3の実施形態について図6を参照して説明する。この実施形態では、下部管群5B1、5B2のガス冷却部12Bが第1の実施形態よりも上方に設けられている。好ましくは、下部管群5B1、5B2の高さの上から10%以内の位置とすると良い。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIG. In this embodiment, the gas cooling units 12B of the lower tube groups 5B1 and 5B2 are provided above the first embodiment. Preferably, the position is within 10% from the top of the height of the lower pipe groups 5B1 and 5B2.

本実施形態によれば、下部管群5B1、5B2のガス冷却部12Bと下部管群5B1、5B2内のイナンデーション防止板25との間の距離が長くなる。このため、イナンデーション防止板25とガス冷却部12Bとの間に生じやすい淀みを抑制することができ、スムーズにガス冷却部12Bに不凝縮ガスを導く効果が得られる。   According to the present embodiment, the distance between the gas cooling section 12B of the lower tube groups 5B1 and 5B2 and the inversion prevention plate 25 in the lower tube groups 5B1 and 5B2 is increased. For this reason, it is possible to suppress the stagnation that easily occurs between the inundation prevention plate 25 and the gas cooling unit 12B, and the effect of smoothly introducing the non-condensable gas to the gas cooling unit 12B is obtained.

[第4の実施形態]
次に本発明の第4の実施形態について図7を参照して説明する。この実施形態では、管群間イナンデーション防止板23が第1の実施形態よりも下方に設けられている。好ましくは、上部管群5A1、5A2と下部管群5B1、5B2との間の中心線より下方に設けるようにすると良い。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, the inter-tube group inundation prevention plate 23 is provided below the first embodiment. Preferably, it is good to provide below the center line between upper pipe group 5A1, 5A2 and lower pipe group 5B1, 5B2.

本実施形態によれば、上部管群5A1、5A2の下端と管群間イナンデーション防止板23の間の距離が長くなる。このため、管群間イナンデーション防止板23面の上方を流れる蒸気速度が比較的遅く、管群間イナンデーション防止板23とイナンデーション防止板24との間の管群に生じがちな淀みを抑制することができ、スムーズにガス冷却部12Aに不凝縮ガスを導く効果が得られる。   According to the present embodiment, the distance between the lower ends of the upper tube groups 5A1 and 5A2 and the inter-tube group inundation prevention plate 23 is increased. For this reason, the velocity of steam flowing over the surface of the inter-tube group anti-inversion plate 23 is relatively slow, and the stagnation that tends to occur in the tube group between the inter-tube group anti-inversion plate 23 and the anti-inversion plate 24 is suppressed. Thus, the effect of smoothly introducing the non-condensable gas to the gas cooling unit 12A can be obtained.

[第5の実施形態]
次に本発明の第5の実施形態について図8〜図10を参照して説明する。図8は本発明の第5の実施形態の復水器の正面立断面図、図9は管群部を拡大して示す図、図10は上部管群のガス冷却部の斜視図である。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a front elevation sectional view of a condenser according to a fifth embodiment of the present invention, FIG. 9 is an enlarged view of a tube group portion, and FIG. 10 is a perspective view of a gas cooling portion of an upper tube group.

本実施形態の復水器は、第1の実施形態と比べて下部管群5B1、5B2は同じであるが、上部管群5A1、5A2は異なる。   In the condenser of this embodiment, the lower tube groups 5B1 and 5B2 are the same as in the first embodiment, but the upper tube groups 5A1 and 5A2 are different.

上部管群5A1、5A2のガス冷却部12Aは、それぞれの上部管群5A1、5A2の下側で、かつ、容器1の側壁21寄りに位置していて、伝熱管3の長手方向に延びている。ガス冷却部12Aは、側壁21の反対向きに横方向に開口した囲い板部27Aで囲まれている。囲い板部27Aは、管群間イナンデーション防止板23の上面から上方に立ち上がって伝熱管3の長手方向に延びる外側端板135と、外側端板135の上端から上部管群5A1、5A2の内側に向かって水平に延びる上板136とを有し、管群間イナンデーション防止板23の端部付近が、囲い板部27Aの構成要素の一部として共用されている。   The gas cooling portions 12A of the upper tube groups 5A1 and 5A2 are located below the upper tube groups 5A1 and 5A2 and near the side wall 21 of the container 1, and extend in the longitudinal direction of the heat transfer tube 3. . The gas cooling unit 12 </ b> A is surrounded by a surrounding plate part 27 </ b> A that opens in the lateral direction opposite to the side wall 21. The surrounding plate portion 27A rises upward from the upper surface of the inter-tube group anti-inversion plate 23 and extends in the longitudinal direction of the heat transfer tube 3, and from the upper end of the outer end plate 135 to the inner side of the upper tube groups 5A1, 5A2. And an upper plate 136 extending horizontally toward the end, and the vicinity of the end of the inter-tube group anti-inversion plate 23 is shared as a part of the components of the surrounding plate portion 27A.

外側端板135にはガス抽出孔42が設けられ、ガス抽出孔42の外側にガス抽出ダクト28Aが接続されている。ガス抽出ダクト28Aは容器1の側壁21に向かって水平に延び、伝熱管3の長手方向に延びるガス集合管43に接続されている。ガス集合管43は、容器1の外側に配置された図示しない真空装置に接続されている。   A gas extraction hole 42 is provided in the outer end plate 135, and a gas extraction duct 28 </ b> A is connected to the outside of the gas extraction hole 42. The gas extraction duct 28 </ b> A extends horizontally toward the side wall 21 of the container 1 and is connected to a gas collecting pipe 43 extending in the longitudinal direction of the heat transfer pipe 3. The gas collecting pipe 43 is connected to a vacuum device (not shown) disposed outside the container 1.

また、管群間イナンデーション防止板23の上面から上方に向かって、また、伝熱管3方向に、ショートパス防止板139が延びている。ショートパス防止板139は、管群間イナンデーション防止板23と上部管群5A1、5A2との隙間137よりも高く、ショートパス防止板139の上端は上部管群5A1、5A2内に挿入されている。図10に示すように、ショートパス防止板139の伝熱管3方向側面には、切り欠き140が設けられている。切り欠き140は、互いに隣接する支え板4のほぼ中央に配置されている。   Further, a short path prevention plate 139 extends upward from the upper surface of the inter-tube group prevention plate 23 and toward the heat transfer tube 3. The short path prevention plate 139 is higher than the gap 137 between the inter-tube group anti-inversion plate 23 and the upper pipe groups 5A1, 5A2, and the upper end of the short path prevention plate 139 is inserted into the upper pipe groups 5A1, 5A2. . As shown in FIG. 10, a notch 140 is provided on the side surface of the short path prevention plate 139 in the direction of the heat transfer tube 3. The notch 140 is disposed substantially at the center of the support plates 4 adjacent to each other.

図8および図9に示すように、上部管群5A1、5A2の上端中央から下方に向けて蒸気通路レーン142が設けられ、上部管群5A1、5A2の中ほど水平に上部管群5A1、5A2内のイナンデーション防止板133、134が設置されている。   As shown in FIGS. 8 and 9, a steam passage lane 142 is provided from the center of the upper end of the upper pipe group 5A1, 5A2 downward, and horizontally in the upper pipe group 5A1, 5A2 in the upper pipe group 5A1, 5A2. Inundation prevention plates 133 and 134 are installed.

本実施形態の復水器は、上部管群5A1、5A2内のガス冷却部12Aの位置を上部管群5A1、5A2の下端かつ側壁21寄りとし、管群間イナンデーション防止板23と接して設置したので、蒸気タービン2から排出され、側壁21を伝って流れ降りて来た蒸気は、上部管群5A1、5A2内で凝縮しながら、淀みなくガス冷却部12Aへ向かって流れる。   The condenser of the present embodiment is installed so that the position of the gas cooling section 12A in the upper tube groups 5A1, 5A2 is close to the lower end and the side wall 21 of the upper tube groups 5A1, 5A2, and is in contact with the inter-tube group inundation prevention plate 23. Therefore, the steam discharged from the steam turbine 2 and flowing down through the side wall 21 flows toward the gas cooling section 12A without stagnation while condensing in the upper tube groups 5A1 and 5A2.

管群間イナンデーション防止板23の上に、管群間イナンデーション防止板23と上部管群5A1、5A2との隙間137よりも高いショートパス防止板139が設けられているので、中央蒸気流路143より下向きに流れ込んだ蒸気が管群間イナンデーション防止板23と上部管群5A1、5A2の間の隙間137を、伝熱管3の周辺を通らず直接ガス冷却部12Aに流入することを防止できる。さらに、各支え板4の間中央にショートパス防止板139の切り欠き140を設けたので、上部管群5A1、5A2で凝縮して管群間イナンデーション防止板23の上に溜まった凝縮水を、ガス冷却部12Aから中央蒸気通路143へ流し落とすことができる。   A short path prevention plate 139 that is higher than the gap 137 between the inter-tube group inhibition prevention plate 23 and the upper tube groups 5A1, 5A2 is provided on the inter-tube group inhibition prevention plate 23. It is possible to prevent the steam flowing downward from 143 from flowing directly into the gas cooling part 12A through the gap 137 between the inter-tube group anti-inversion plate 23 and the upper tube groups 5A1, 5A2 without passing through the periphery of the heat transfer tube 3. . Furthermore, since the notch 140 of the short path prevention plate 139 is provided in the center between the support plates 4, the condensed water that has condensed on the upper tube group 5A1 and 5A2 and accumulated on the inter-tube group inundation prevention plate 23 is collected. The gas cooling part 12 </ b> A can flow down to the central steam passage 143.

また、上部管群5A1、5A2の上端中央から下方に向けて蒸気通路レーン142を設けたので、上部管群5A1、5A2の上方から流れて来た蒸気をスムーズに上部管群5A1、5A2内に導くことができ、さらに上部管群5A1、5A2内の中ほどにイナンデーション防止板133、134を設置したので、イナンデーション防止板133、134より上方で凝縮した凝縮水をここで受け、下方へ落ちないようにすることより、イナンデーション防止板133、134より下方の伝熱管3の熱伝達率劣化を抑制することができる。   Further, since the steam passage lane 142 is provided downward from the center of the upper end of the upper pipe group 5A1, 5A2, the steam flowing from above the upper pipe group 5A1, 5A2 can be smoothly passed into the upper pipe group 5A1, 5A2. Furthermore, since the anti-inhibition plates 133 and 134 are installed in the middle of the upper tube groups 5A1 and 5A2, the condensed water condensed above the anti-inhibition plates 133 and 134 is received here and moved downward. By preventing it from falling, it is possible to suppress deterioration of the heat transfer coefficient of the heat transfer tube 3 below the inundation prevention plates 133 and 134.

[第6の実施形態]
図11は本発明の第6の実施形態の復水器の正面立断面図である。
[Sixth Embodiment]
FIG. 11 is a front elevational sectional view of a condenser according to a sixth embodiment of the present invention.

本実施形態の復水器は、第1の実施形態に比べて下部管群は同じであるが、上部管群5A1、5A2は異なり、第5の実施形態の上部管群5A1、5A2のそれぞれの内側と外側を反転した構成である。   The condenser of this embodiment has the same lower pipe group as compared to the first embodiment, but the upper pipe groups 5A1 and 5A2 are different, and each of the upper pipe groups 5A1 and 5A2 of the fifth embodiment. The inside and outside are inverted.

本実施形態の復水器では、ガス冷却部12Aの位置を上部管群5A1、5A2の下端の中央蒸気流路143側とし、管群間イナンデーション防止板23と接して設置している。タービン2から排出された蒸気は、側壁21に沿って下方に流れ、上部管群5A1、5A2内で凝縮しながら、管群間イナンデーション防止板23に沿って淀みなくガス冷却部12Aへと流入する。   In the condenser of the present embodiment, the position of the gas cooling unit 12A is located on the side of the central steam channel 143 at the lower end of the upper tube groups 5A1 and 5A2, and is installed in contact with the inter-tube group inundation prevention plate 23. The steam discharged from the turbine 2 flows downward along the side wall 21 and condenses in the upper tube groups 5A1 and 5A2 and flows into the gas cooling unit 12A without any stagnation along the inter-tube group inundation prevention plate 23. To do.

また、管群間イナンデーション防止板23の上に、管群間イナンデーション防止板23と上部管群5A1、5A2との隙間137よりも高いショートパス防止板139が設置されているので、側壁21に沿って流れて来た蒸気が管群間イナンデーション防止板23と上部管群間の隙間137を流れて伝熱管3の周辺を通らずに直接ガス冷却部12Aに流入することを抑制できる。さらに互いに隣接する支え板4の間の中央位置でショートパス防止板139に切り欠き140を設けたので、上部管群5A1、5A2で凝縮し管群間イナンデーション防止板23の上に溜まった凝縮水を、ガス冷却部12Aから中央蒸気通路143へ流し落とすことができる。   Further, the short path prevention plate 139 higher than the gap 137 between the inter-tube group anti-inversion plate 23 and the upper tube groups 5A1 and 5A2 is installed on the inter-tube group anti-inversion plate 23. It is possible to suppress the steam that has flowed along the flow through the gap 137 between the inter-tube group anti-inversion plate 23 and the upper tube group and directly into the gas cooling section 12A without passing through the periphery of the heat transfer tube 3. Further, since the notch 140 is provided in the short path prevention plate 139 at the center position between the support plates 4 adjacent to each other, the condensation accumulated in the upper tube group 5A1 and 5A2 and accumulated on the inter-tube group inundation prevention plate 23. Water can flow down from the gas cooling section 12A to the central steam passage 143.

上部管群5A1、5A2の上端中央から下方に向けて蒸気通路レーン142を設置したので、上部管群上方から流れて来た蒸気をスムーズに管群内に導くことができ、さらに上部管群内中ほど水平に上部管群内のイナンデーション防止板133、134を設置したので、イナンデーション防止板133、134より上方で凝縮した凝縮水をここで受け、下方へ落ちないようにすることより、イナンデーション防止板133、134より下方の伝熱管3の熱伝達率劣化を抑制することができる。   Since the steam passage lane 142 is installed downward from the center of the upper end of the upper tube group 5A1, 5A2, the steam flowing from the upper tube group can be smoothly guided into the tube group. Since the inversion prevention plates 133 and 134 in the upper tube group are installed horizontally in the middle, the condensed water condensed above the inversion prevention plates 133 and 134 is received here, so as not to fall downward, It is possible to suppress deterioration of the heat transfer coefficient of the heat transfer tube 3 below the inundation prevention plates 133 and 134.

[他の実施形態]
以上説明した各実施形態は単なる例示であって、本発明はこれらに限定されるものではない。たとえば、上記実施形態では、上下方向に2段、水平方向に2列の管群を備えた復水器としたが、管群は3段以上かつ/または3列以上あってもよい。3段の場合、中段の管群は、最上段の管群に対しては下部管群となり、最下段の管群に対しては上部管群となる。
[Other Embodiments]
Each embodiment described above is merely an example, and the present invention is not limited thereto. For example, in the above-described embodiment, the condenser is provided with a tube group of two stages in the vertical direction and two rows in the horizontal direction, but the tube group may have three or more stages and / or three or more rows. In the case of three stages, the middle pipe group is the lower pipe group for the uppermost pipe group and the upper pipe group for the lowermost pipe group.

また、上記実施形態では、4つの管群5A1、5A2、5B1、5B2の両端部を2対の管板6a、6bで支持するものとしたが、1対の管板で4つの管群5A1、5A2、5B1、5B2の両端を固定するようにしても良い。   In the above embodiment, both ends of the four tube groups 5A1, 5A2, 5B1, 5B2 are supported by the two pairs of tube plates 6a, 6b. However, the four tube groups 5A1, You may make it fix both ends of 5A2, 5B1, 5B2.

本発明の第1の実施形態による復水器を示す正面立断面図である。It is a front elevation sectional view showing a condenser by a 1st embodiment of the present invention. 図1の復水器を示す側面立断面図である。It is a side elevation sectional view showing the condenser of Drawing 1. 図1の復水器の伝熱管群を示す正面立断面図である。It is a front elevation sectional view showing the heat exchanger tube group of the condenser of FIG. 図1の復水器の伝熱管群の要部を示す拡大正面立断面図である。It is an expansion front elevation sectional view showing the important section of the heat exchanger tube group of the condenser of Drawing 1. 本発明の第2の実施形態による復水器を示す正面立断面図である。It is front elevation sectional drawing which shows the condenser by the 2nd Embodiment of this invention. 本発明の第3の実施形態による復水器を示す正面立断面図である。It is front elevation sectional drawing which shows the condenser by the 3rd Embodiment of this invention. 本発明の第4の実施形態による復水器を示す正面立断面図である。It is front elevation sectional drawing which shows the condenser by the 4th Embodiment of this invention. 本発明の第5の実施形態による復水器を示す正面立断面図である。It is front elevation sectional drawing which shows the condenser by the 5th Embodiment of this invention. 図8の復水器の伝熱管群を示す正面立断面図である。It is front elevation sectional drawing which shows the heat exchanger tube group of the condenser of FIG. 本発明の第5および第6の実施形態の復水器の上部管群のガス冷却部付近を示す拡大斜視図である。It is an expansion perspective view which shows the gas cooling part vicinity of the upper pipe group of the condenser of the 5th and 6th embodiment of this invention. 本発明の第6の実施形態による復水器を示す正面立断面図である。It is a front elevation sectional view showing a condenser by a 6th embodiment of the present invention.

符号の説明Explanation of symbols

1:容器、2:蒸気タービン、3:伝熱管、5A1、5A2、5B1、5B2:伝熱管群、6a、6b:管板、7a、7b:水室、10:ホットウエル、12A、12B:ガス冷却部、20:外部レーン、21:側壁、22:邪魔板、23:管群間イナンデーション防止板、24a〜25b:イナンデーション防止板、26A、26B:蒸気通路、27:囲い板、28A、28B:ガス抽出ダクト、30:第1の内部レーン、31:第2の内部レーン、32:第2の外部レーン、33:第1の外部レーン、34:第2の外部レーン、40:立ち上がり部、41:立ち下がり部、42:ガス抽出孔42:ガス集合管、45:突出部、46:窪み、50、51:中心線、135:外側端板、136:上板、137:隙間、139:ショートパス防止板、140:切欠き、143:中央蒸気通路   1: container, 2: steam turbine, 3: heat transfer tube, 5A1, 5A2, 5B1, 5B2: heat transfer tube group, 6a, 6b: tube plate, 7a, 7b: water chamber, 10: hot well, 12A, 12B: gas Cooling unit, 20: external lane, 21: side wall, 22: baffle plate, 23: inter-tube group inversion prevention plate, 24a to 25b: inundation prevention plate, 26A, 26B: steam passage, 27: enclosure plate, 28A, 28B: gas extraction duct, 30: first internal lane, 31: second internal lane, 32: second external lane, 33: first external lane, 34: second external lane, 40: rising portion , 41: falling part, 42: gas extraction hole 42: gas collecting pipe, 45: protrusion, 46: depression, 50, 51: center line, 135: outer end plate, 136: upper plate, 137: gap, 139 : Short pass prevention Plate, 140: cutout, 143: Central steam passage

Claims (19)

蒸気タービンから排出される蒸気を凝縮させる復水器において、
少なくとも二つの側壁を有し、前記蒸気タービンから蒸気が流下するように構成された容器と、
前記容器内で前記蒸気タービンの下方に配列され、内部に冷却媒体が流通し、前記流下してきた蒸気と接して蒸気を凝縮させる、水平方向に延びる複数の伝熱管であって、前記容器内で水平方向に互いに間隔をあけて配置された少なくとも2個の上部伝熱管群と、前記上部伝熱管群のそれぞれの下方位置に水平方向に互いに間隔をあけて配置された少なくとも2個の下部伝熱管群とを有し、前記各伝熱管群は前記複数の伝熱管が格子状に配列されてなるその複数の伝熱管と、
前記複数の伝熱管を支持する複数の管板と、
前記下部伝熱管群同士の間の下部に配置されて水平方向に延びて蒸気の流れを妨げる邪魔板と、
前記上部伝熱管群と前記下部伝熱管群がそれぞれ互いに上下に対向する間の位置に配置されて水平方向に延びて上方から流下する凝縮水を水平方向に導く管群間イナンデーション防止板と、
前記各伝熱管群内で前記伝熱管に平行にほぼ水平に延びるように配置されてガス抽出孔を有する上板と、前記ガス抽出孔をはさんでしかも複数の前記伝熱管をはさんで前記上板から互いに間隔をあけて下方にかつ前記伝熱管に平行に延びる2枚の側板とを有する囲い板部と、
前記ガス抽出孔に接続されて前記囲い板部のガスを前記容器の外へ導くガス抽出ダクトと、
を有することを特徴とする復水器。
In the condenser that condenses the steam discharged from the steam turbine,
A vessel having at least two sidewalls and configured to allow steam to flow down from the steam turbine;
A plurality of heat transfer tubes extending in a horizontal direction, arranged below the steam turbine in the container, in which a cooling medium circulates, and in contact with the flowing steam to condense the steam, At least two upper heat transfer tube groups spaced apart from each other in the horizontal direction, and at least two lower heat transfer tubes spaced from each other in the horizontal direction at respective lower positions of the upper heat transfer tube group Each of the heat transfer tube groups, and the plurality of heat transfer tubes in which the plurality of heat transfer tubes are arranged in a grid pattern, and
A plurality of tube plates for supporting the plurality of heat transfer tubes;
A baffle plate disposed in the lower part between the lower heat transfer tube groups and extending in the horizontal direction to prevent the flow of steam;
An anti-inversion plate between tube groups arranged in a position between the upper heat transfer tube group and the lower heat transfer tube group facing each other and extending horizontally and flowing condensate flowing down from above in the horizontal direction; and
In each of the heat transfer tube groups, an upper plate arranged to extend substantially horizontally in parallel with the heat transfer tubes and having gas extraction holes, and the gas extraction holes and the plurality of heat transfer tubes A surrounding plate portion having two side plates extending downwardly and in parallel with the heat transfer tube from the upper plate,
A gas extraction duct that is connected to the gas extraction hole and guides the gas of the surrounding plate part to the outside of the container;
Condenser characterized by having.
前記各下部伝熱管群の伝熱管の数よりも前記各上部伝熱管群の伝熱管の数の方が少ないことを特徴とする請求項1記載の復水器。   The condenser according to claim 1, wherein the number of heat transfer tubes in each upper heat transfer tube group is smaller than the number of heat transfer tubes in each lower heat transfer tube group. 前記伝熱管の方向に延びる前記管群間イナンデーション防止板の端部に立ち上がり部が形成されていることを特徴とする請求項1または2記載の復水器。   The condenser according to claim 1 or 2, wherein a rising portion is formed at an end portion of the inter-tube group inundation prevention plate extending in the direction of the heat transfer tube. 前記各上部伝熱管群の中の前記複数の伝熱管の間にそれぞれ配置されて、水平方向に延びて、上方から流下する凝縮水を水平方向に導く3枚の上部管群内イナンデーション防止板であって、互いに隙間をあけて配置された上部管群内イナンデーション防止板と、
前記各下部伝熱管群の中の前記複数の伝熱管の間にそれぞれ配置されて、水平方向に延びて、上方から流下する凝縮水を水平方向に導く複数の下部管群内イナンデーション防止板であって、互いに隙間をあけて配置された下部管群内イナンデーション防止板と、
をさらに有し、
前記3枚の上部管群内イナンデーション防止板の内の中央の上部管群内イナンデーション防止板が前記上板の上に配置されていることを特徴とする請求項1ないし3のいずれか記載の復水器。
Three upper tube group inversion prevention plates arranged between the plurality of heat transfer tubes in each of the upper heat transfer tube groups and extending in the horizontal direction and guiding the condensed water flowing down from above in the horizontal direction And an inversion prevention plate in the upper pipe group arranged with a gap between each other,
A plurality of lower pipe group inundation prevention plates arranged between the plurality of heat transfer pipes in each of the lower heat transfer pipe groups, extending in the horizontal direction and guiding the condensed water flowing down from above in the horizontal direction. And an inversion prevention plate in the lower pipe group arranged with a gap between each other,
Further comprising
4. The center of the upper pipe group inversion prevention plate among the three upper pipe group inversion prevention plates is disposed on the upper plate. 5. Condenser.
前記少なくとも二つの上部伝熱管群のうちの前記容器の側壁に隣接する二つの上部伝熱管群内の前記上部管群内イナンデーション防止板の前記容器側壁に近い側の下方の前記上部伝熱管配列の伝熱管に垂直な断面で見た形状が、前記容器側壁に向かって膨らんだほぼ半円形状であって、
このほぼ半円形状の部分に、前記容器の側壁に向かって水平に延びて前記上部伝熱管群の中心方向に向けて蒸気を導く少なくとも一つの蒸気通路レーンが設けられていることを特徴とする請求項4記載の復水器。
Of the at least two upper heat transfer tube groups, the upper heat transfer tube array below the side closer to the vessel side wall of the upper tube group inversion prevention plate in two upper heat transfer tube groups adjacent to the side wall of the vessel The shape seen in a cross section perpendicular to the heat transfer tube is a substantially semicircular shape swelled toward the container side wall,
The substantially semicircular portion is provided with at least one steam passage lane that extends horizontally toward the side wall of the container and guides the steam toward the center of the upper heat transfer tube group. The condenser according to claim 4.
前記下部管群内イナンデーション防止板の上方に、前記下部伝熱管群の外側より水平方向に蒸気を導入する少なくとも一つの蒸気通路レーンが設けられていることを特徴とする請求項4または5記載の復水器。   The at least one steam passage lane for introducing steam in a horizontal direction from the outside of the lower heat transfer tube group is provided above the inversion prevention plate in the lower tube group. Condenser. 前記下部管群内イナンデーション防止板の下方に、前記下部伝熱管群の外側より斜め上方に蒸気を導入する少なくとも一つの蒸気通路レーンが設けられていることを特徴とする請求項4ないし6のいずれか記載の復水器。   7. At least one steam passage lane that introduces steam obliquely above the outside of the lower heat transfer tube group is provided below the inversion prevention plate in the lower tube group. One of the condensers described. 前記下部管群内イナンデーション防止板の前記下部伝熱管群の外側の端部に、前記伝熱管の方向に延びる立ち上がり部および立ち下り部が形成されていることを特徴とする請求項4ないし7のいずれか記載の復水器。   8. A rising portion and a falling portion extending in the direction of the heat transfer tube are formed at an outer end portion of the lower heat transfer tube group of the inversion prevention plate in the lower tube group. The condenser according to any one of the above. 前記下部伝熱管内イナンデーション防止板は、前記下部伝熱管群の高さ方向中央より上の位置に設けられていることを特徴とする請求項4ないし8のいずれか記載の復水器。   The condenser according to any one of claims 4 to 8, wherein the lower heat transfer tube inundation prevention plate is provided at a position above the center in the height direction of the lower heat transfer tube group. 前記下部伝熱管群内に配置された前記囲い板部の上板は、前記下部伝熱管群内の高さ方向の上から10%以内の位置に設置されていることを特徴とする請求項1ないし9のいずれか記載の復水器。   The upper plate of the enclosure plate portion disposed in the lower heat transfer tube group is installed at a position within 10% from the top in the height direction in the lower heat transfer tube group. The condenser in any one of thru | or 9. 前記上部伝熱管群内の前記囲い板部は、前記上部伝熱管群の高さ方向の中央よりも高い位置に設置されていることを特徴とする請求項1ないし10のいずれか記載の復水器。   The condensate according to any one of claims 1 to 10, wherein the surrounding plate portion in the upper heat transfer tube group is installed at a position higher than a center in the height direction of the upper heat transfer tube group. vessel. 前記少なくとも二つの上部伝熱管群のうちの前記容器の側壁に隣接する二つの上部伝熱管群内の前記囲い板部それぞれを構成する前記2枚の側板は、前記容器の壁に近い側の外側板と、この外側板よりも内側にあって外側板よりも下方まで延びる内側板とからなることを特徴とする請求項1ないし11のいずれか記載の復水器。   Of the at least two upper heat transfer tube groups, the two side plates constituting each of the surrounding plate portions in the two upper heat transfer tube groups adjacent to the side wall of the container are outside on the side close to the wall of the container. The condenser according to any one of claims 1 to 11, comprising a plate and an inner plate that is located inside the outer plate and extends downward from the outer plate. 前記少なくとも二つの上部伝熱管群のうちの前記容器の側壁に隣接する二つの上部伝熱管群それぞれについて、側壁から遠い側の下端部に沿って少なくとも水平1列の前記伝熱管からなる突出部が形成され、その突出部の前記側壁から近い側に少なくとも水平2列の前記伝熱管に相当する深さの、伝熱管が設置されていない窪み領域が形成されていることを特徴とする請求項1ないし10のいずれか記載の復水器。   For each of the two upper heat transfer tube groups adjacent to the side wall of the container among the at least two upper heat transfer tube groups, there is a protrusion formed of at least one horizontal row of the heat transfer tubes along the lower end portion on the side far from the side wall. 2. A recessed region in which a heat transfer tube is not installed and formed at a depth corresponding to at least two horizontal rows of the heat transfer tubes is formed on a side closer to the side wall of the protruding portion. The condenser in any one of thru | or 10. 前記少なくとも二つの上部伝熱管群のうちの前記容器の側壁に隣接する二つの上部伝熱管群に隣接する前記管群間イナンデーション防止板は、前記側壁に対向する外側端部とその外側端部の反対側の内側端部とを有し、前記外側端部と前記側壁との距離は前記上部伝熱管群と前記側壁との距離と等しいか短く、前記内側端部は前記下部伝熱管群の内側端部よりも容器の中心線寄りにあることを特徴とする請求項1ないし13のいずれか記載の復水器。   Of the at least two upper heat transfer tube groups, the inter-tube group anti-inversion plate adjacent to the two upper heat transfer tube groups adjacent to the side wall of the container has an outer end facing the side wall and an outer end thereof. A distance between the outer end and the side wall is equal to or shorter than a distance between the upper heat transfer tube group and the side wall, and the inner end portion of the lower heat transfer tube group. The condenser according to any one of claims 1 to 13, wherein the condenser is located closer to the center line of the container than the inner end. 前記上部伝熱管群のうちの前記容器の側壁に隣接する二つの上部伝熱管群は、それぞれに対向する前記下部伝熱管群よりも、内側に配置されていて、前記上部伝熱管群と前記側壁との間の距離が前記下部伝熱管群と前記側壁との間の距離よりも大きいこと特徴とする請求項1ないし14のいずれか記載の復水器。   Of the upper heat transfer tube group, two upper heat transfer tube groups adjacent to the side wall of the container are disposed inside the lower heat transfer tube group facing each other, and the upper heat transfer tube group and the side wall are arranged. The condenser according to claim 1, wherein a distance between the lower heat transfer tube group and the side wall is greater than a distance between the lower heat transfer tube group and the side wall. 前記管群間イナンデーション防止板は、前記上部伝熱管群と前記下部伝熱管群の間の隙間の中央よりも下方にあることを特徴とする請求項1ないし15のいずれか記載の復水器。   The condenser according to any one of claims 1 to 15, wherein the inter-tube group inundation prevention plate is located below a center of a gap between the upper heat transfer tube group and the lower heat transfer tube group. . 軸を水平にした蒸気タービンから排出される蒸気を凝縮させる復水器において、
少なくとも二つの側壁を有し、前記蒸気タービンから蒸気が流下するように構成された容器と、
前記容器内で前記蒸気タービンの下方に配列され、内部に冷却媒体が流通し、前記流下してきた蒸気と接して蒸気を凝縮させる、水平方向に延びる複数の伝熱管であって、前記容器内で水平方向に互いに間隔をあけて配置された少なくとも2個の上部伝熱管群と、前記上部伝熱管群のそれぞれの下方位置に水平方向に互いに間隔をあけて配置された少なくとも2個の下部伝熱管群とを有し、前記各伝熱管群は前記複数の伝熱管が格子状に配列されてなるその複数の伝熱管と、
前記複数の伝熱管の端部を固定して鉛直方向に延びる複数の管板と、
前記下部伝熱管群同士の間の下部に配置されて水平方向に延びて蒸気の流れを妨げる邪魔板と、
前記上部伝熱管群と前記下部伝熱管群がそれぞれ互いに上下に対向する間の位置に配置されて水平方向に延びて上方から流下する凝縮水を水平方向に導く管群間イナンデーション防止板と、
前記各下部伝熱管群内で前記伝熱管に平行に水平に延びるように配置されてガス抽出孔を有する第1の上板と、前記ガス抽出孔をはさんでしかも複数の前記伝熱管をはさんで前記上板から互いに間隔をあけて下方にかつ前記伝熱管に平行に延びる2枚の側板とを有する下部管群囲い板部と、
前記各上部伝熱管群の下端部の前記容器の側壁側で前記管群間イナンデーション防止板から前記上部伝熱管群の外側端部に沿って立ち上がり、ガス抽出孔を有する外側端板と、前記外側端板の上端に接続されて前記管群間イナンデーション防止板に平行に延びる第2の上板とを有して前記管群間イナンデーション防止板との間に複数の前記伝熱管をはさみこむ上部管群囲い板部と、
前記下部管群囲い板部の第1の上板および上部管群囲い板部の外側端板の前記ガス抽出孔に接続されて前記下部管群囲い板部および上部管群囲い板部のガスを前記容器の外へ導くガス抽出ダクトと、
を有することを特徴とする復水器。
In a condenser that condenses steam discharged from a steam turbine with a horizontal shaft,
A vessel having at least two sidewalls and configured to allow steam to flow down from the steam turbine;
A plurality of heat transfer tubes extending in a horizontal direction, arranged below the steam turbine in the container, in which a cooling medium circulates, and in contact with the flowing steam to condense the steam, At least two upper heat transfer tube groups spaced apart from each other in the horizontal direction, and at least two lower heat transfer tubes spaced from each other in the horizontal direction at respective lower positions of the upper heat transfer tube group Each of the heat transfer tube groups, and the plurality of heat transfer tubes in which the plurality of heat transfer tubes are arranged in a grid pattern, and
A plurality of tube plates extending in the vertical direction by fixing ends of the plurality of heat transfer tubes;
A baffle plate disposed in the lower part between the lower heat transfer tube groups and extending in the horizontal direction to prevent the flow of steam;
An anti-inversion plate between tube groups arranged in a position between the upper heat transfer tube group and the lower heat transfer tube group facing each other and extending horizontally in a horizontal direction to guide condensed water flowing down from above;
In each of the lower heat transfer tube groups, a first upper plate arranged to extend horizontally in parallel to the heat transfer tubes and having a gas extraction hole, and a plurality of the heat transfer tubes sandwiched between the gas extraction holes A lower tube group enclosure plate portion having two side plates extending downwardly and in parallel with the heat transfer tube from the upper plate,
The outer end plate having gas extraction holes, rising from the inter-tube group inversion prevention plate on the side wall side of the lower end portion of each upper heat transfer tube group along the outer end portion of the upper heat transfer tube group, and A second upper plate connected to the upper end of the outer end plate and extending in parallel to the inter-tube group anti-inversion plate, and sandwiching the plurality of heat transfer tubes between the inter-tube group anti-inversion plate. An upper tube group shroud,
Connected to the gas extraction holes of the first upper plate of the lower tube group enclosure plate portion and the outer end plate of the upper tube group enclosure plate portion, the gas of the lower tube group enclosure plate portion and the upper tube group enclosure plate portion is supplied. A gas extraction duct leading out of the vessel;
Condenser characterized by having.
前記管群間イナンデーション防止板上から立ち上がって前記伝熱管の方向に延び、その上端が前記上部管群内に挿入されている、ショートパス防止板をさらに有することを特徴とする請求項17記載の復水器。   18. The apparatus further comprises a short path prevention plate that rises from above the inter-tube group prevention plate and extends in the direction of the heat transfer tube, and has an upper end inserted into the upper tube group. Condenser. 前記ショートパス防止板は、前記管群間イナンデーション防止板上の凝縮水を水平方向に流すための切り欠きを有することを特徴とする請求項18記載の復水器。
The condenser according to claim 18, wherein the short path prevention plate has a notch for allowing the condensed water on the tube group inundation prevention plate to flow in a horizontal direction.
JP2005154969A 2004-05-28 2005-05-27 Condenser Expired - Fee Related JP4607664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154969A JP4607664B2 (en) 2004-05-28 2005-05-27 Condenser

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004159565 2004-05-28
JP2004313644 2004-10-28
JP2005154969A JP4607664B2 (en) 2004-05-28 2005-05-27 Condenser

Publications (2)

Publication Number Publication Date
JP2006153425A true JP2006153425A (en) 2006-06-15
JP4607664B2 JP4607664B2 (en) 2011-01-05

Family

ID=36631936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154969A Expired - Fee Related JP4607664B2 (en) 2004-05-28 2005-05-27 Condenser

Country Status (1)

Country Link
JP (1) JP4607664B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189279A (en) * 2011-03-11 2012-10-04 Toshiba Corp Condenser
JP2015096802A (en) * 2015-01-08 2015-05-21 三菱日立パワーシステムズ株式会社 Condenser

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536915B2 (en) * 1975-12-12 1980-09-24
JPS5883179A (en) * 1981-11-13 1983-05-18 Mitsubishi Heavy Ind Ltd Condenser
JPS59120368U (en) * 1983-01-28 1984-08-14 三菱重工業株式会社 condenser
JPS60169091A (en) * 1984-02-14 1985-09-02 Mitsubishi Heavy Ind Ltd Condenser
JPH058244U (en) * 1991-06-28 1993-02-05 三菱重工業株式会社 Steam plant condenser
JPH0642307A (en) * 1992-07-21 1994-02-15 Mitsubishi Heavy Ind Ltd Steam turbine condenser defroster
JPH0630666U (en) * 1993-09-02 1994-04-22 三菱重工業株式会社 Condenser drain removal device
JP2000227286A (en) * 1999-02-03 2000-08-15 Hitachi Ltd Condenser
JP2000304464A (en) * 1999-04-15 2000-11-02 Toshiba Corp Condenser
JP2001153569A (en) * 1999-11-30 2001-06-08 Toshiba Corp Condenser
JP2003207284A (en) * 2002-01-17 2003-07-25 Mitsubishi Heavy Ind Ltd Condenser and condensing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536915B2 (en) * 1975-12-12 1980-09-24
JPS5883179A (en) * 1981-11-13 1983-05-18 Mitsubishi Heavy Ind Ltd Condenser
JPS59120368U (en) * 1983-01-28 1984-08-14 三菱重工業株式会社 condenser
JPS60169091A (en) * 1984-02-14 1985-09-02 Mitsubishi Heavy Ind Ltd Condenser
JPH058244U (en) * 1991-06-28 1993-02-05 三菱重工業株式会社 Steam plant condenser
JPH0642307A (en) * 1992-07-21 1994-02-15 Mitsubishi Heavy Ind Ltd Steam turbine condenser defroster
JPH0630666U (en) * 1993-09-02 1994-04-22 三菱重工業株式会社 Condenser drain removal device
JP2000227286A (en) * 1999-02-03 2000-08-15 Hitachi Ltd Condenser
JP2000304464A (en) * 1999-04-15 2000-11-02 Toshiba Corp Condenser
JP2001153569A (en) * 1999-11-30 2001-06-08 Toshiba Corp Condenser
JP2003207284A (en) * 2002-01-17 2003-07-25 Mitsubishi Heavy Ind Ltd Condenser and condensing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189279A (en) * 2011-03-11 2012-10-04 Toshiba Corp Condenser
JP2015096802A (en) * 2015-01-08 2015-05-21 三菱日立パワーシステムズ株式会社 Condenser

Also Published As

Publication number Publication date
JP4607664B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JPH02242088A (en) Steam condenser
US8505886B2 (en) Multistage pressure condenser
SE516267C2 (en) Control of cooling flow over a large mixing cross section in a nuclear reactor
KR100194778B1 (en) Avenger
KR100309960B1 (en) Water heater
JP2576292B2 (en) Condenser and power plant using the same
JP4607664B2 (en) Condenser
KR100658126B1 (en) Condenser
AU607036B2 (en) Steam condenser
JP2008241211A (en) Horizontal inflow type condenser and its operation method
US7481264B2 (en) Steam condenser
JP7002420B2 (en) Direct contact condenser and power plant
JP2021076315A (en) Multi-tube condenser
US10502492B2 (en) Condenser for condensing steam from a steam turbine
JP3314599B2 (en) Condenser and power plant
JP2018009723A (en) Condenser
JP2018146214A (en) Condenser and power generation plant turbine system
US20010025703A1 (en) Condenser
JP6685809B2 (en) Condenser
JP5960297B2 (en) Condenser
JP2016057050A (en) Steam condenser
JP2011094908A (en) Air-cooled condenser
KR20230154218A (en) Laminated panel heat exchanger for air-cooled industrial steam condensers
JP6038742B2 (en) Steam dryer
JP2016109400A (en) Horizontal inflow type condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R151 Written notification of patent or utility model registration

Ref document number: 4607664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees