JP2006152809A - Vane rotary compressor - Google Patents

Vane rotary compressor Download PDF

Info

Publication number
JP2006152809A
JP2006152809A JP2004340229A JP2004340229A JP2006152809A JP 2006152809 A JP2006152809 A JP 2006152809A JP 2004340229 A JP2004340229 A JP 2004340229A JP 2004340229 A JP2004340229 A JP 2004340229A JP 2006152809 A JP2006152809 A JP 2006152809A
Authority
JP
Japan
Prior art keywords
side plate
front side
rotor
cylinder
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004340229A
Other languages
Japanese (ja)
Inventor
Yoshifumi Abe
喜文 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004340229A priority Critical patent/JP2006152809A/en
Publication of JP2006152809A publication Critical patent/JP2006152809A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable vane rotary compressor by suppressing the biased abrasion between a rotor and a front side plates and the biased abrasion between a rotor cylindrical part and a cylinder while the compressor is operated, particularly, at high load. <P>SOLUTION: The shape of the front side plates is so formed as to be deformed by 15 μm or longer in a direction for increasing the mutual distance between the front side plate and the rear side plate when a pressure in a working space is 3 MPa. Accordingly, a small clearance between the rotor and the front side plate is increased at high load, and the local contact of the rotor on the front side plate is relieved. Thus, a heated amount and the biased abrasion between the rotor and the front side plate due to friction and the biased abrasion between the rotor cylindrical part and the cylinder can be suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車用空調装置等に用いられるベーンロータリ型圧縮機に関するものである。   The present invention relates to a vane rotary type compressor used for an air conditioner for automobiles and the like.

従来の自動車空調用圧縮機に使用されているベーンロータリ型圧縮機として、図8及び図9に示したものが知られている(たとえば、特許文献1参照)。   As a vane rotary type compressor used in a conventional compressor for automobile air conditioning, those shown in FIGS. 8 and 9 are known (for example, see Patent Document 1).

図8及び図9において、ベーン1は、ロータ2に形成されたベーン溝内を出没するように組み込まれ、シリンダ3の内壁を摺動し、シリンダ3とロータ2とベーン1と前部側板4及び後部側板5により、作動空間を形成する。ロータ2と前部側板4またはロータ2と後部側板5の間には小隙間6,7が設定されている。   8 and 9, the vane 1 is incorporated so as to protrude and retract in a vane groove formed in the rotor 2, slides on the inner wall of the cylinder 3, and the cylinder 3, the rotor 2, the vane 1, and the front side plate 4. And the working space is formed by the rear side plate 5. Small gaps 6 and 7 are set between the rotor 2 and the front side plate 4 or between the rotor 2 and the rear side plate 5.

エンジン(図示せず)からベルト(図示せず)を介して圧縮機に動力が伝達されロータ2が回転することにより、冷媒が吸入孔8からシリンダ3内の作動空間内へ吸入され、作動空間内で圧縮されて、シリンダ3に形成された吐出孔9から吐出される。
特開2004−251210号公報
Power is transmitted from the engine (not shown) to the compressor via a belt (not shown), and the rotor 2 rotates, whereby the refrigerant is sucked into the working space in the cylinder 3 from the suction hole 8 and the working space. And is discharged from a discharge hole 9 formed in the cylinder 3.
JP 2004-251210 A

ところで、上述の圧縮機は車載用のため、小型化、軽量化及び高性能化への配慮が要求される。そこで、圧縮機の排気量を下げることによりダウンサイジングを図りつつ、冷房性能が損なわれることのないよう、排気量を下げた分、圧縮機運転中の回転数を引き上げて冷房性能を維持若しくは向上させることが考えられる。   By the way, since the above-mentioned compressor is for in-vehicle use, consideration for size reduction, weight reduction, and high performance is required. Therefore, while reducing downsizing by reducing the displacement of the compressor, the cooling performance is maintained or improved by increasing the number of rotations during compressor operation so that the cooling performance is not impaired while the cooling performance is not impaired. It is possible to make it.

このような小型軽量化の手法を取り入れると、必然的に圧縮機の許容最高回転数が上昇することとなる。許容最高回転数が従来よりも高回転になるにことより、耐久性等の信頼性の面で以下に記述する課題が生じる。   Incorporating such a small and lightweight technique inevitably increases the maximum allowable rotational speed of the compressor. Since the allowable maximum number of rotations is higher than the conventional one, problems described below arise in terms of reliability such as durability.

すなわち、従来の圧縮機よりも高回転で運転されるため、ロータと前部側板及び後部側板との間の摩擦による発熱量が増大し焼付きを生ずる等の不具合が想定される。   That is, since it is operated at a higher rotational speed than a conventional compressor, a heat generation amount due to friction between the rotor, the front side plate, and the rear side plate is increased, and a problem such as seizure is assumed.

また、従来の構成では、圧縮機運転中に、前部側板4が三日月状に形成された作動空間内で圧縮された冷媒の圧力を局所的に偏荷重で受けるため、組立時には略均等に設定された、ロータ2と前部側板4の間の小隙間6が、三日月状に形成された作動空間内の相当部分でそれ以外の部分より拡大する。これに加えて、ロータ2後部には大気より圧力の高い内圧がかかっていることから、ロータ2が前部側板4側に押し付けられている。このような運転状態では、ロータ2が後部側板に対し傾斜して回転する。このため、ロータ2と後部側板5若しくは前部側板4との間の小隙間7若しくは6が不均一となり局所的に接触し偏摩耗を起こす場合がある。さらに、ロータ2はシリンダ3に対しても傾斜するため、アキシャルシール線上の一部においてロータとシリンダとが接触し偏摩耗したり、ベーン1もシリンダ3内を傾斜して摺動したりする等の不具合が想定される。   Further, in the conventional configuration, during operation of the compressor, the front side plate 4 receives the pressure of the refrigerant compressed in the working space formed in a crescent shape locally by an uneven load. The small gap 6 between the rotor 2 and the front side plate 4 is expanded at a considerable portion in the working space formed in a crescent shape as compared with other portions. In addition, the rotor 2 is pressed against the front side plate 4 because an internal pressure higher than the atmospheric pressure is applied to the rear part of the rotor 2. In such an operating state, the rotor 2 rotates while being inclined with respect to the rear side plate. For this reason, the small gap 7 or 6 between the rotor 2 and the rear side plate 5 or the front side plate 4 becomes non-uniform and may contact locally and cause uneven wear. Furthermore, since the rotor 2 is also inclined with respect to the cylinder 3, the rotor and the cylinder come into contact with each other on part of the axial seal line, and the vane 1 also slides in the cylinder 3 while being inclined. Is expected.

本発明はこのような課題を解決するものであり、信頼性、軽量、低コスト、及び高性能等の商品性の高いベーンロータリ型圧縮機を提供するものである。   The present invention solves such a problem, and provides a vane rotary type compressor having high merchantability such as reliability, light weight, low cost, and high performance.

上記課題を解決するために、本発明の請求項1に記載のベーンロータリ型圧縮機は、前部側板及び後部側板の少なくとも一方の形状を、作動空間内の圧力が3MPaのときに前部側板と後部側板の相互間隔がロータの回転駆動軸の根元部分で15μm以上拡大するものとしたことを特徴としている。ここで、このような形状について、前部側板を例に説明すると、後述の「発明の実施をするための最良の形態」で説明するように、この形状には前部側板の厚さや外側面に形成される補強リブの設置割合やリブ高さが含まれる。そして、これらを単独で若しくは複合的に調整することにより、作動空間内の圧力が3MPaのときに前部側板と後部側板の相互間隔がロータの回転駆動軸の根元部分で15μm以上拡大する形状となっていればよい。   In order to solve the above-described problem, a vane rotary compressor according to claim 1 of the present invention is configured so that at least one of the front side plate and the rear side plate has a front side plate when the pressure in the working space is 3 MPa. The distance between the rear side plate and the rear side plate is increased by 15 μm or more at the root portion of the rotary drive shaft of the rotor. Here, such a shape will be described by taking the front side plate as an example. As will be described later in “Best Mode for Carrying Out the Invention”, this shape includes the thickness of the front side plate and the outer surface. The installation ratio and the rib height of the reinforcing ribs formed are included. And by adjusting these individually or in combination, when the pressure in the working space is 3 MPa, the mutual distance between the front side plate and the rear side plate is increased by 15 μm or more at the root portion of the rotary drive shaft of the rotor, It only has to be.

上記構成により、圧縮機運転中、特に高回転で運転中は作動室内の圧力も上昇するため、前部側板と後部側板の相互間隔が拡大する。その結果、ロータと前部側板又は後部側板の間の摩擦による発熱量が減少する。また、該小隙間が拡大する結果、ロータと前部側板、後部側板、シリンダ内周面との間に生ずる偏摩耗を抑制できる。   With the above configuration, the pressure in the working chamber also increases during operation of the compressor, particularly at high rotation, so that the mutual distance between the front side plate and the rear side plate is increased. As a result, the amount of heat generated by friction between the rotor and the front side plate or the rear side plate is reduced. In addition, as a result of the small gap expanding, uneven wear that occurs between the rotor and the front side plate, the rear side plate, and the cylinder inner peripheral surface can be suppressed.

第1の発明のベーンロータリ型圧縮機は、内部に筒状の中空部を有するシリンダと、前記シリンダ内に外周面の少なくとも一部が前記シリンダの内壁面に近接して回転自在に配設される略円筒状のロータと、前記ロータを回転駆動する回転駆動軸と、前記シリンダの両端開口部を閉塞すると共に前記回転駆動軸を回転自在に支持する前部側板及び後部側板と、前記ロータの外周面から出没自在に前記ロータに組み込まれ、先端が前記シリンダ内壁面に当接し、前記シリンダと前記ロータの相互間に形成された作動空間を少なくとも吸入空間と吐出空間に仕切るベーンと、前記吸入空間に連通する吸入孔及び前記吐出空間に連通する吐出孔とを備え、前記前部側板及び前記後部側板の少なくとも一方の形状を、前記作動空間内の圧力が3MPaのときに前記前部側板と前記後部側板の相互間隔が前記回転駆動軸の根元部分で15μm以上拡大するものとしたことを特徴とするもので、圧縮機運転中、特に高回転で運転中は作動室内の圧力も上昇するため、前部側板と後部側板の相互間隔が拡大し、その結果、ロータと前部側板又は後部側板の間の摩擦による発熱量が減少するとともに、ロータと前部側板、後部側板、シリンダ内周面との間に生ずる偏摩耗を抑制でき、信頼性が向上する。   A vane rotary compressor according to a first aspect of the present invention is a cylinder having a cylindrical hollow portion therein, and at least a part of an outer peripheral surface thereof is disposed in the cylinder so as to be rotatable in the vicinity of the inner wall surface of the cylinder. A substantially cylindrical rotor, a rotary drive shaft for rotationally driving the rotor, a front side plate and a rear side plate for closing the opening at both ends of the cylinder and rotatably supporting the rotary drive shaft, A vane which is incorporated into the rotor so as to be able to protrude and retract from an outer peripheral surface, a tip abuts against the inner wall surface of the cylinder, and a vane which partitions an operating space formed between the cylinder and the rotor into at least a suction space and a discharge space; A suction hole that communicates with the space and a discharge hole that communicates with the discharge space, and the shape of at least one of the front side plate and the rear side plate is 3 MPa. Sometimes, the distance between the front side plate and the rear side plate is increased by 15 μm or more at the base portion of the rotary drive shaft, and is operated during operation of the compressor, particularly at high speed. Since the pressure in the chamber also increases, the mutual distance between the front side plate and the rear side plate is increased, and as a result, the amount of heat generated by friction between the rotor and the front side plate or the rear side plate is reduced, and the rotor and the front side plate, Uneven wear generated between the side plate and the cylinder inner peripheral surface can be suppressed, and the reliability is improved.

第2の発明のベーンロータリ型圧縮機は、第1の発明の加えて、前部側板の回転駆動軸を回転自在に担持するボス部から放射状に前部側板の外側に設置される補強リブの数量割合が、ロータと面する部分の外側より作動室に面する部分の外側で多くなっていることを特徴とするもので、異常な摩耗が抑制できる。   In addition to the first invention, the vane rotary type compressor of the second invention is a reinforcing rib installed radially outside the front side plate from a boss portion that rotatably supports the rotational drive shaft of the front side plate. The quantity ratio is increased outside the portion facing the working chamber from the outside facing the rotor, and abnormal wear can be suppressed.

第3の発明のベーンロータリ型圧縮機は、前部側板の回転駆動軸を回転自在に担持するボス部から放射状に前部側板の外側に設置される補強リブの高さが、ロータと面する部分の外側より作動室に面する部分の外側で高くなっていることを特徴とするもので、異常な摩耗が抑制できる。   In the vane rotary compressor according to the third aspect of the present invention, the height of the reinforcing ribs that are radially disposed outside the front side plate from the boss portion that rotatably supports the rotational drive shaft of the front side plate faces the rotor. It is characterized by being higher on the outside of the part facing the working chamber than on the outside of the part, and abnormal wear can be suppressed.

以下本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1〜図7は、本発明を適用したベーンロータリ型圧縮機を示している。図示した圧縮機は、円筒空間を有するシリンダ3と、シリンダ3の円筒空間両側開口を閉塞する前部側板4及び後部側板5と、シリンダ3の上部に設けられた通路カバーと、後部側板5と連続したカップ状の高圧室カバーを具備している。シリンダ3の一部には冷凍サイクル(図示せず)に連結される吸入口が形成され、また通路カバーには、冷凍サイクル(図示せず)
に連通される吐出室が形成されている。
(Embodiment 1)
1 to 7 show a vane rotary compressor to which the present invention is applied. The illustrated compressor includes a cylinder 3 having a cylindrical space, a front side plate 4 and a rear side plate 5 that close both side openings of the cylindrical space of the cylinder 3, a passage cover provided on the top of the cylinder 3, a rear side plate 5, It has a continuous cup-shaped high pressure chamber cover. A suction port connected to a refrigeration cycle (not shown) is formed in a part of the cylinder 3, and a refrigeration cycle (not shown) is formed in the passage cover.
A discharge chamber communicated with is formed.

また、図2に示したように、シリンダ3には、吸入口とシリンダ3内部の円筒空間を連通する吸入孔8と、円筒空間と吐出室を連通する吐出孔9が設けられている。2はシリンダ3内部の円筒空間に設けられたロータで、前部側板4と後部側板5にそれぞれ軸支された回転駆動軸2が一体に設けられている。ロータ2は、図2に示す如くシリンダ3内において吸入孔8と吐出孔9の間で最も近接するように配置されている。この近接部をロータヘッド部と定義し、このロータヘッド部により、シリンダ3内の円筒空間を吸入側と吐出側に区分している。ここで、ロータヘッド部は、シリンダ3の内壁との間で狭小隙間を維持しており、円筒空間の吸入側と吐出側は、通常この狭小隙間に形成されている潤滑油膜によって気密性を保って仕切られている。   As shown in FIG. 2, the cylinder 3 is provided with a suction hole 8 that communicates the suction port and the cylindrical space inside the cylinder 3, and a discharge hole 9 that communicates the cylindrical space and the discharge chamber. Reference numeral 2 denotes a rotor provided in a cylindrical space inside the cylinder 3, and a rotation drive shaft 2 pivotally supported by the front side plate 4 and the rear side plate 5 is integrally provided. As shown in FIG. 2, the rotor 2 is disposed in the cylinder 3 so as to be closest between the suction hole 8 and the discharge hole 9. This proximity portion is defined as a rotor head portion, and the cylindrical space in the cylinder 3 is divided into a suction side and a discharge side by this rotor head portion. Here, the rotor head portion maintains a narrow gap with the inner wall of the cylinder 3, and the suction side and the discharge side of the cylindrical space are usually kept airtight by a lubricating oil film formed in the narrow gap. It is partitioned.

また、ロータ2は、接線と平行方向で且つ、所定角度毎にベーン溝が設けられ、この各ベーン溝には、先端がシリンダ3の内壁に接触するベーン1が出没自在に設けられている。これら各ベーン1のシリンダ内壁への当接によりシリンダ3の円筒空間は、前部側板4と後部側板5とで吸入空間と、吐出空間と、この両者の間に位置する中間空間の複数の空間に仕切られる。   Further, the rotor 2 is provided with vane grooves in a direction parallel to the tangential line and at predetermined angles, and vanes 1 whose tips are in contact with the inner wall of the cylinder 3 are provided in the vane grooves so as to be able to protrude and retract. Due to the abutment of each vane 1 on the inner wall of the cylinder, the cylindrical space of the cylinder 3 is divided into a plurality of spaces including a suction space, a discharge space, and an intermediate space between the front side plate 4 and the rear side plate 5. Divided into

なお、図1において、前部側板4とベーン1側面及び後部側板5とベーン1側面には、間隔を設けて記載しているが、ベーン1の幅は、ロータ2の軸方向における幅と同等に設定され、前述の如くシリンダ3の円筒空間を複数の空間に仕切っている。   In FIG. 1, the front side plate 4 and the vane 1 side surface and the rear side plate 5 and the vane 1 side surface are described with a space therebetween, but the width of the vane 1 is equal to the width in the axial direction of the rotor 2. As described above, the cylindrical space of the cylinder 3 is divided into a plurality of spaces.

上記構成において、エンジン(図示せず)から無端ベルト(図示せず)を介して回転軸が駆動されると、これに伴ってロータ2が回転する。その結果、遠心力及びベーン溝内の潤滑油圧力によってベーン1がシリンダ3内壁と当接し、シリンダ3の円筒空間を複数の空間に仕切る。この回転に伴い、吸入孔8からシリンダ3内の吸入空間に吸入された冷媒は、回転が進むにつれて中間空間である密閉空間に閉じこめられ、さらに回転が進むことによって吐出空間である密封空間内で圧縮され、さらに回転が進むことによって吐出孔9から吐出室へ吐出される。   In the above configuration, when the rotation shaft is driven from an engine (not shown) via an endless belt (not shown), the rotor 2 rotates accordingly. As a result, the vane 1 comes into contact with the inner wall of the cylinder 3 by the centrifugal force and the lubricating oil pressure in the vane groove, and the cylindrical space of the cylinder 3 is partitioned into a plurality of spaces. Along with this rotation, the refrigerant sucked into the suction space in the cylinder 3 from the suction hole 8 is confined in a sealed space that is an intermediate space as the rotation proceeds, and further, in the sealed space that is a discharge space by further rotation. By being further compressed and further rotated, it is discharged from the discharge hole 9 to the discharge chamber.

この吐出室の冷媒は、さらに後部側板5の連通路を通過し、高圧カバー内の高圧室に流入し、ここで、冷媒と混合している潤滑油が分離され、冷媒は吐出口から冷凍サイクル中へ流れ、また分離された潤滑油は、高圧室底部に貯まる。   The refrigerant in the discharge chamber further passes through the communication path of the rear side plate 5 and flows into the high-pressure chamber in the high-pressure cover, where lubricating oil mixed with the refrigerant is separated, and the refrigerant is discharged from the discharge port to the refrigeration cycle. The lubricating oil that has flowed into and separated is stored at the bottom of the high-pressure chamber.

ここで、ロータ2が回転する時の様子について、もう少し詳しく説明する。   Here, the state when the rotor 2 rotates will be described in a little more detail.

図1及び図3に示すように、前部側板4は、その厚みが三日月状に形成された作動空間に面する相当部分でそれ以外の部分より厚くなっており、作動空間内の圧力が3MPa時に前部側板4と後部側板5の相互間隔が15μm以上拡大する方向に変形するようになっている。   As shown in FIGS. 1 and 3, the front side plate 4 is thicker than the other portions at a considerable portion facing the working space formed in a crescent shape, and the pressure in the working space is 3 MPa. Sometimes the front side plate 4 and the rear side plate 5 are deformed in a direction in which the mutual distance is increased by 15 μm or more.

圧縮機運転中、前部側板が三日月状に形成された作動空間内で圧縮された冷媒の内圧を局所的に偏荷重として受けても、組立時には略均等に設定された、ロータ2と前部側板4の間の小隙間6若しくは小隙間7が、ほぼ均等に拡大されるため、ロータ2と前部側板4が局所的に接触しにくくなり、ロータ2と前部側板4の間での異常摩耗や、ロータ2円筒部とシリンダ3間の隙間が局所的に縮小することもなくなる。このため、ロータ2円筒部とシリンダ3間での異常摩耗(偏摩耗)が抑制できる。   During operation of the compressor, even if the internal pressure of the refrigerant compressed in the working space in which the front side plate is formed in a crescent shape is locally received as an uneven load, the rotor 2 and the front portion are set substantially evenly during assembly. Since the small gaps 6 or the small gaps 7 between the side plates 4 are enlarged substantially uniformly, the rotor 2 and the front side plate 4 are less likely to contact locally, and an abnormality between the rotor 2 and the front side plate 4 occurs. Wear and the gap between the cylindrical portion of the rotor 2 and the cylinder 3 are not locally reduced. For this reason, abnormal wear (uneven wear) between the cylindrical portion of the rotor 2 and the cylinder 3 can be suppressed.

(実施の形態2)
図4及び図5は、前部側板4の外側に形成される補強リブについて、前部側板の回転駆
動軸を支持しているボス部より放射状に設置された補強リブ4aの設置割合(数)をロータ当接部より作動空間該当部で多くしたもので、実施の形態1と同様、異常な摩耗が抑制できる。
(Embodiment 2)
4 and 5 show the installation ratio (number) of reinforcing ribs 4a arranged radially from the bosses supporting the rotational drive shaft of the front side plate with respect to the reinforcing ribs formed on the outside of the front side plate 4. As in the first embodiment, the abnormal wear can be suppressed.

補強リブ以外の構成は、図1〜図3に示した実施の形態1と同様であるので、その説明は省略する。   Since the configuration other than the reinforcing rib is the same as that of the first embodiment shown in FIGS. 1 to 3, the description thereof is omitted.

(実施の形態3)
図6及び図7は、前部側板4の中心部より放射状に設置された補強リブ4aの設置割合は略同等で、前部側板4の作動空間該当部の補強リブの高さを、ロータ当接部の補強リブの高さより高くしたものもので、実施の形態1と同様、異常な摩耗が抑制できる。
(Embodiment 3)
6 and 7, the installation ratio of the reinforcing ribs 4a installed radially from the center of the front side plate 4 is substantially the same, and the height of the reinforcing ribs corresponding to the working space of the front side plate 4 is determined by the rotor contact. The height is higher than the height of the reinforcing rib at the contact portion, and abnormal wear can be suppressed as in the first embodiment.

補強リブ以外の構成は、図1〜図3に示した実施の形態1と同様であるので、その説明は省略する。   Since the configuration other than the reinforcing rib is the same as that of the first embodiment shown in FIGS. 1 to 3, the description thereof is omitted.

なお、上述の実施の形態では、円筒状のシリンダ内に円柱状のロータを配置した構造のベーンロータリ圧縮機を例に説明したが、本発明は、断面が楕円形の筒状内壁を有するシリンダ内に円柱状のロータを配置しシリンダ内に2つの作動室を有するタイプのベーンロータリ圧縮機にも適用可能である。   In the above-described embodiment, the vane rotary compressor having the structure in which the columnar rotor is disposed in the cylindrical cylinder has been described as an example. However, the present invention is a cylinder having a cylindrical inner wall having an elliptical cross section. The present invention can also be applied to a vane rotary compressor of a type in which a cylindrical rotor is disposed inside and two working chambers are provided in the cylinder.

また、上述した前部側板4と後部側板5の相互間隔の拡大は作動空間内の圧力が3Mpaのとき上限値を40μmとすることが好ましい。40μmを超えると作動室内で吹き抜けが顕著となり圧縮機の効率が大幅に低下するからである。   Further, it is preferable that the above-described increase in the distance between the front side plate 4 and the rear side plate 5 has an upper limit value of 40 μm when the pressure in the working space is 3 MPa. This is because if it exceeds 40 μm, the blow-through in the working chamber becomes remarkable, and the efficiency of the compressor is greatly reduced.

(実施例)
以下に、本発明を適用した圧縮機及び従来の圧縮機の作動室に3MPaの圧力を掛けた状態で、前部側板がどの程度変形するかを測定した結果を表1に示す。
(Example)
Table 1 shows the results of measuring how much the front side plate is deformed in a state where a pressure of 3 MPa is applied to the working chamber of the compressor to which the present invention is applied and the conventional compressor.

測定は前部側板のボス部先端の変位量を周方向に等間隔の角度位置8箇所で行った。測定値(変形量)として示すものは、8箇所の平均値である。   The measurement was performed at eight angular positions at equal intervals in the circumferential direction with respect to the amount of displacement of the front boss portion of the front side plate. What is shown as a measured value (deformation amount) is an average value of eight locations.

なお、表中の実施例1〜3は、上述の実施の形態1で説明した圧縮機を3台用意しそれぞれについて変形量を測定したので、それぞれの個体を意味している。   In Examples 1 to 3, the three compressors described in the first embodiment are prepared, and the deformation amount is measured for each of the three compressors.

Figure 2006152809
Figure 2006152809

表1から理解されるように、従来の圧縮機(比較例)では、前部側板の変形量が10.2μmであるのに対し、本発明を適用した実施例においてはいずれも前部側板の変形量が15μmを超えるものとなっている。   As understood from Table 1, in the conventional compressor (comparative example), the deformation amount of the front side plate is 10.2 μm, whereas in the examples to which the present invention is applied, all of the front side plate is The amount of deformation exceeds 15 μm.

このように前部側板の変形歪量を大きくすることにより、ロータと前部側板間の摩擦による発熱量や偏摩耗、ロータと後部側板間の偏摩耗、ロータとシリンダ内周壁間の偏摩耗
を抑制することができた。
By increasing the amount of deformation of the front side plate in this way, the amount of heat generation and uneven wear due to friction between the rotor and the front side plate, uneven wear between the rotor and the rear side plate, and uneven wear between the rotor and the inner peripheral wall of the cylinder are reduced. I was able to suppress it.

以上のように、本発明にかかる圧縮機は、自動車用空調装置に用いられる圧縮機として利用可能であり、従来の圧縮機よりも小型軽量の圧縮機を提供することが可能である。   As described above, the compressor according to the present invention can be used as a compressor used in an automobile air conditioner, and can provide a compressor that is smaller and lighter than a conventional compressor.

本発明の実施の形態1におけるベーンロータリ型圧縮機の断面図Sectional drawing of the vane rotary type compressor in Embodiment 1 of this invention 図1のA−A面図A-A view of FIG. 本発明の実施の形態1におけるベーンロータリ型圧縮機の前部側板側から見た図The figure seen from the front side board side of the vane rotary type compressor in Embodiment 1 of this invention 本発明の実施の形態2におけるベーンロータリ型圧縮機の断面図Sectional drawing of the vane rotary type compressor in Embodiment 2 of this invention 本発明の実施の形態2におけるベーンロータリ型圧縮機の前部側板側から見た図The figure seen from the front side board side of the vane rotary type compressor in Embodiment 2 of the present invention. 本発明の実施の形態3におけるベーンロータリ型圧縮機の断面図Sectional drawing of the vane rotary type compressor in Embodiment 3 of this invention 本発明の実施の形態3におけるベーンロータリ型圧縮機の前部側板側から見た図The figure seen from the front side board side of the vane rotary type compressor in Embodiment 3 of this invention 従来の圧縮機の断面図Cross section of a conventional compressor 図7のE−E断面図EE sectional view of FIG.

符号の説明Explanation of symbols

1 ベーン
2 ロ−タ
3 シリンダ
4 前部側板
4a 補強リブ
5 後部側板
6 小隙間
7 小隙間
8 吸入孔
9 吐出孔
1 Vane 2 Rotor 3 Cylinder 4 Front Side Plate 4a Reinforcement Rib 5 Rear Side Plate 6 Small Clearance 7 Small Clearance 8 Suction Hole 9 Discharge Hole

Claims (3)

内部に筒状の中空部を有するシリンダと、前記シリンダ内に外周面の少なくとも一部が前記シリンダの内壁面に近接して回転自在に配設される略円筒状のロータと、前記ロータを回転駆動する回転駆動軸と、前記シリンダの両端開口部を閉塞すると共に前記回転駆動軸を回転自在に支持する前部側板及び後部側板と、前記ロータの外周面から出没自在に前記ロータに組み込まれ、先端が前記シリンダ内壁面に当接し、前記シリンダと前記ロータの相互間に形成された作動空間を少なくとも吸入空間と吐出空間に仕切るベーンと、前記吸入空間に連通する吸入孔及び前記吐出空間に連通する吐出孔とを備え、前記前部側板及び前記後部側板の少なくとも一方の形状を、前記作動空間内の圧力が3MPaのときに前記前部側板と前記後部側板の相互間隔が前記回転駆動軸の根元部分で15μm以上拡大するものとしたことを特徴とするベーンロータリ型圧縮機。 A cylinder having a cylindrical hollow portion therein, a substantially cylindrical rotor in which at least a part of the outer peripheral surface is rotatably disposed close to the inner wall surface of the cylinder, and the rotor is rotated. A rotary drive shaft for driving, a front side plate and a rear side plate for closing the opening at both ends of the cylinder and rotatably supporting the rotary drive shaft; A tip abuts against the inner wall surface of the cylinder, a vane partitioning at least a suction space and a discharge space into a working space formed between the cylinder and the rotor, a suction hole communicating with the suction space, and a communication with the discharge space And at least one of the shape of the front side plate and the rear side plate is a phase between the front side plate and the rear side plate when the pressure in the working space is 3 MPa. Vane rotary type compressor characterized in that the interval is assumed to increase at the base portion 15μm or more of the rotary drive shaft. 前記前部側板の前記回転駆動軸を回転自在に担持するボス部から放射状に前記前部側板の外側に設置される補強リブの数量割合が、前記ロータと面する部分の外側より前記作動室に面する部分の外側で多くなっていることを特徴とする請求項1記載のベーンロータリ型圧縮機。 The quantity ratio of the reinforcing ribs installed radially outside the front side plate from the boss portion that rotatably supports the rotational drive shaft of the front side plate is larger than the outside facing the rotor to the working chamber. 2. The vane rotary compressor according to claim 1, wherein the number of the vane rotary compressor increases outside the facing portion. 前記前部側板の前記回転駆動軸を回転自在に担持するボス部から放射状に前記前部側板の外側に設置される補強リブの高さが、前記ロータと面する部分の外側より前記作動室に面する部分の外側で高くなっていることを特徴とする請求項1記載のベーンロータリ型圧縮機。 The height of the reinforcing ribs installed radially outside the front side plate from the boss portion that rotatably supports the rotational drive shaft of the front side plate is larger than the outside facing the rotor to the working chamber. 2. The vane rotary compressor according to claim 1, wherein the compressor is raised outside the facing portion.
JP2004340229A 2004-11-25 2004-11-25 Vane rotary compressor Pending JP2006152809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340229A JP2006152809A (en) 2004-11-25 2004-11-25 Vane rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340229A JP2006152809A (en) 2004-11-25 2004-11-25 Vane rotary compressor

Publications (1)

Publication Number Publication Date
JP2006152809A true JP2006152809A (en) 2006-06-15

Family

ID=36631412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340229A Pending JP2006152809A (en) 2004-11-25 2004-11-25 Vane rotary compressor

Country Status (1)

Country Link
JP (1) JP2006152809A (en)

Similar Documents

Publication Publication Date Title
US7306439B2 (en) Orbiting scroll in a scroll fluid machine
JP5556450B2 (en) Rotary compressor
KR20200090376A (en) Scroll compressor
JPH08200254A (en) Scroll compressor
US9145890B2 (en) Rotary compressor with dual eccentric portion
JP6402648B2 (en) Vane type compressor
JP5366884B2 (en) Vane rotary compressor
WO2014132526A1 (en) Scroll-type fluid machine
CN112460017A (en) Pump body assembly and fluid machine with same
JP6618663B1 (en) Slide bearing structure and scroll compressor
JP4684832B2 (en) Gas compressor
JP2006152809A (en) Vane rotary compressor
KR20110046584A (en) Dry pump
JP4618645B2 (en) Scroll compressor
JP4142863B2 (en) Gas compressor
JP4254358B2 (en) Vane rotary compressor
KR102407092B1 (en) Electric compressor for vehicle
CN212643042U (en) Compression mechanism and scroll compressor comprising same
JP5238922B2 (en) Scroll fluid machinery
JP2007120433A (en) Vane pump
US11067078B2 (en) Scroll compressor having single discharge port open at starting end of fixed-side wrap
JP2005337115A (en) Compressor body and gas compressor provided with its compressor body
JP2006009576A (en) Scroll compressor
JP2002221175A (en) Gas compressor
JP2008025350A (en) Vane rotary type compressor