JP4142863B2 - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
JP4142863B2
JP4142863B2 JP2001328142A JP2001328142A JP4142863B2 JP 4142863 B2 JP4142863 B2 JP 4142863B2 JP 2001328142 A JP2001328142 A JP 2001328142A JP 2001328142 A JP2001328142 A JP 2001328142A JP 4142863 B2 JP4142863 B2 JP 4142863B2
Authority
JP
Japan
Prior art keywords
cylinder
rotor
side block
shape
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001328142A
Other languages
Japanese (ja)
Other versions
JP2003129976A (en
Inventor
孝之 岩澤
圭一 森田
Original Assignee
カルソニックコンプレッサー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックコンプレッサー株式会社 filed Critical カルソニックコンプレッサー株式会社
Priority to JP2001328142A priority Critical patent/JP4142863B2/en
Publication of JP2003129976A publication Critical patent/JP2003129976A/en
Application granted granted Critical
Publication of JP4142863B2 publication Critical patent/JP4142863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3446Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はカーエアコンシステム等に用いられる気体圧縮機に関し、特に、その機器の耐久性や冷房能力の向上、ならびに省動力化を図れるようにしたものである。
【0002】
【従来の技術】
従来、この種気体圧縮機は、たとえば図4および図5に示したように内周楕円状のシリンダ4を有し、このシリンダ4の両端面にサイドブロック5、6がネジ止め接合される構造を採用している。
【0003】
また、シリンダ4内にはロータ7が回転可能に配置され、このロータ7に形成されたベーン溝11にはベーン12が装着され、ベーン12はベーン溝11内を摺動でき、かつ、ロータ7の外周面からシリンダ4の内周面に向って出没可能に設けられている。
【0004】
上記シリンダ4、サイドブロック5、6、ロータ7およびベーン12により仕切り形成されたシリンダ4内側の小室は圧縮室13と称し、圧縮室13は、ロータ7の回転により容積の大小変化を繰り返すとともに、この容積変化により吸入室14側から低圧の冷媒ガスを吸入し、これを圧縮し高圧の冷媒ガスとして吐出室15側へ吐出する。
【0005】
吐出室15の底部には、高圧冷媒ガスの吐出圧が作用するオイル溜まり20が設けられており、このオイル溜まり20のオイルは、サイドブロック5、6やシリンダ4の油穴21等を経てベーン溝11底部へ供給され、ベーン12をシリンダ4内壁側へ押し付けるベーン背圧として用いられる。さらに、ベーン溝11底部に供給されたオイルは、ロータ端面7a(「ロータサイド」ともいう)に漏れ出て油膜を形成し、この油膜によりロータサイド7aとサイドブロック5、6との間の摺動隙間(「ロータサイドクリアランス」ともいう)がシールされる。
【0006】
ところで、上記のような構造からなる気体圧縮機において、ロータ端面7aやシリンダ端面4aと対向するリア側のサイドブロック6内側面は、図6に示したように平面でなく、ロータ7側からみて中央部が少し窪んだ凹曲面形状となるように形成されている。フロント側のサイドブロック5内側面も同様である。このようにサイドブロック5、6内側面を凹曲面形状としたのは、ロータサイドクリアランスを確保するためと、ロータサイド7aの油膜を確保するためである。
【0007】
しかしながら、上記のような従来構造の気体圧縮機によると、図6に示したようにサイドブロック5、6の内側面全体が凹状曲面となるように構成されているため、機器組立時にサイドブロック5、6内側面と平面形状のシリンダ端面4aとを突き合せると、その突き合せ接合部に図6に示した隙間G1が生じる。このため、そのままシリンダ4とサイドブロック5、6をネジ止め締結すると、その締結力や該隙間G1の形状との関係から、図7に示したようにサイドブロック5、6はその中央部がロータ7の端面に向って張り出すように変形し、シリンダ4は太鼓状に変形する。これにより、サイドブロック5、6内側面の凹曲面形状の凹量が減少し、ロータサイドクリアランスとロータサイド7aの油膜の確保が困難となり、気体圧縮機としての耐久性、特に耐摩耗性が低下するとともに、ロータ端面7aとサイドブロック5、6との摺動摩擦抵抗が増え、気体圧縮機の運転に大きな動力を要する等の問題点がある。また、上記のようにシリンダ4が太鼓状に変形すると、ベーン12先端とシリンダ4との間に不要な隙間G2が生じ、この隙間G2から圧縮室13内の高圧冷媒ガスが低圧部側へ漏れ出る、いわゆる内部リーク量が増え、冷房能力が低下する等の問題点も有している。
【0008】
【発明が解決しようとする課題】
本発明は上記問題点に鑑みてなされたもので、その目的とするところは、シリンダとサイドブロックのネジ止め締結による形状変形を防止することにより、耐久性や冷房能力の向上、ならびに省動力化を図った気体圧縮機を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、内周楕円状のシリンダと、上記シリンダの端面にネジ止め接合されたフロントサイドブロックおよびリアサイドブロックと、その軸心に一体に設けたロータ軸と上記フロントサイドブロック及びリアサイドブロックの中心に位置する軸受けとにより上記シリンダ内に回転可能に配置されたロータと、上記ロータの外周面から上記シリンダの内周面に向って出没可能に設けたベーンと、上記シリンダ、両サイドブロック、ロータおよびベーンにより仕切り形成された該シリンダ内側の小室からなるとともに、上記ロータの回転により容積の大小変化を繰り返し、この容積変化により低圧の冷媒ガスを吸入し圧縮して吐出する圧縮室とを備え、上記フロントサイドブロックまたは両サイドブロックの内側面全体のうち、上記ロータ端面が摺接するロータ摺接部を、該ロータ端面側からみて凹の形状とし、上記シリンダの端面を平面形状とし、上記シリンダの端面に接合されるシリンダ接合部を、上記シリンダ端面と同じ平面形状とし、上記ロータ摺接部と上記シリンダ接合部との間を繋ぐ繋ぎ部は、上記シリンダ接合部の延長面として平面形状としたことを特徴とするものである。
【0010】
ここで、上記「ロータ端面側からみて凹の形状」とは、凹部が曲面である形状(以下「凹曲面形状」という。)のほか、凹部が曲面でなく直線である形状等も含む。また、上記「シリンダの端面と同じ形状」とは、シリンダの端面が平面であるときはこれと同じ平面形状であることを意味し、シリンダの端面が曲面であるときはこれと同じ曲面形状であることを意味する。
【0011】
本発明では、サイドブロックのシリンダ接合部をシリンダの端面と同じ形状とする上記構成の採用により、サイドブロックとシリンダの接合部は同じ形状どうしが接合される構造となることから、シリンダとサイドブロックのネジ止め接合前に、その接合部に生じる隙間がなくなり、この種の隙間による不具合、すなわちシリンダとサイドブロックのネジ止め締結による形状変形が防止される。
【0015】
【発明の実施の形態】
以下、本発明に係る気体圧縮機の実施形態について図1ないし図3を基に詳細に説明する。なお、従来と同一の部分については図4および図5を用いて説明する。
【0016】
本実施形態の気体圧縮機は、図4に示したように一端開口型のコンプレッサケース1内に圧縮機構部2を収納した構造であり、コンプレッサケース1の開口端にはフロントヘッド3が取り付けられている。
【0017】
圧縮機構部2は内周楕円状のシリンダ4を有し、シリンダ4の両端面にはサイドブロック5、6がネジ止め接合され、該シリンダ4内にはロータ7が配置されている。
【0018】
なお、ロータ7はその軸心に一体に設けたロータ軸8とこれを支持するサイドブロック5、6の軸受9、10とにより回転可能に支持されている。また、図5に示したように、ロータ7にはその径方向に放射状にベーン溝11がスリット状に5つ切り込み形成され、これらのベーン溝11にはそれぞれベーン12が1枚ずつ装着されており、各ベーン12はベーン溝11内を摺動でき、かつ、ロータ7の外周面からシリンダ4の内周面に向って出没可能に設けられている。
【0019】
シリンダ4の内側は、シリンダ4内壁、サイドブロック5、6内面、ロータ7外周面およびベーン12先端側両側面により複数の小室に仕切られており、この仕切り形成された各小室が圧縮室13であり、圧縮室13は、ロータ7が図中矢印イの方向に回転することにより容積の大小変化を繰り返し、この容積変化により低圧室である吸入室14の低圧冷媒ガスを吸入し、これを圧縮し高圧冷媒ガスとして高圧室である吐出室15側へ吐出する。
【0020】
すなわち、圧縮室13の容積変化が生じると、その容積増加時に、吸入室14内の低圧冷媒ガスがサイドブロック5の吸入口(図示省略)やシリンダ4の吸入通路4aとサイドブロック6の吸入口6aを介して圧縮室13へ吸入される。そして、この圧縮室13の容積が減少し始めると、その容積減少効果により圧縮室13内の冷媒が圧縮され始める。その後、圧縮室13の容積が最小付近に近づくと、圧縮された高圧冷媒ガス圧により、シリンダ楕円短径部付近に設けられているシリンダ吐出孔16のリードバルブ17が開く。これにより、圧縮室13内の高圧冷媒ガスは、シリンダ吐出孔16からシリンダ外部空間の吐出チャンバ18へ吐出し、さらに該吐出チャンバ18から油分離器19等を経て吐出室15側へ導かれる。
【0021】
本実施形態の気体圧縮機においても、吐出室15の底部には、高圧冷媒ガスの吐出圧が作用するオイル溜まり20が設けられており、このオイル溜まり20のオイルは、サイドブロック5、6やシリンダ4の油穴21や軸受9、10クリアランス等を経てベーン溝11底部へ供給され、かつベーン12をシリンダ4内壁側へ押し付けるベーン背圧として用いられる。さらに、ベーン溝11底部に供給されたオイルは、ロータサイドに漏れ出て油膜を形成し、この油膜によりロータサイドクリアランスがシールされる。また、上記の如く吐出チャンバ18内に吐出した高圧冷媒ガスには、潤滑用等のオイルがミストの状態で含まれており、この高圧冷媒ガス中のオイル成分が、油分離器19を通過する際に分離捕獲され、かつ吐出室15底部のオイル溜まり20に滴下し一時貯留される。
【0022】
ところで、従来の気体圧縮機の場合、シリンダ端面4aおよびロータ端面7aと対向しているサイドブロック5、6内側面の形状は、それ全体が凹曲面形状であったが(図6参照)、本実施形態の気体圧縮機の場合、リア側のサイドブロック(リアサイドブロック)6内側面の形状は、図1に示したように、すり鉢状に窪んだ凹曲面とその外縁に連続的に設けられる平面とを組合せた2面形状となっている。フロント側のサイドブロック(フロントサイドブロック)5内側面の形状も同様である。
【0023】
すなわち、本実施形態では、フロントおよびリア側のサイドブロック5、6の内側面全体のうち、ロータ端面7aが対向し摺接するロータ摺接部bは、該ロータ7端面側からみて凹の形状(本実施形態では凹曲面形状)となるように形成されている一方、これ以外の部分、つまりサイドブロック5、6の内側面全体のうち、シリンダ4の端面に対向し接合されるシリンダ接合部cについては、該シリンダ4の端面と同じ形状(本実施形態では平面形状)となるように形成されている。
【0024】
したがって、本実施形態の気体圧縮機においては、その機器組立時に、シリンダ4の端面4aにサイドブロック5、6の内側面を突き合せてネジ止め接合するが、この接合部において、サイドブロック5、6内側面とシリンダ端面4aは同じ平面どうしが接合される構造となり、このような同じ平面どうしの接合構造であることから、シリンダ4とサイドブロック5、6のネジ止め接合前に、その接合部に従来のような隙間(図6の符号G1参照)が生じることはない。
【0025】
このため、本実施形態の気体圧縮機によると、シリンダ4とサイドブロック5、6をネジ止め接合したときに、従来のようにサイドブロック5、6の中央部がロータ7の端面7aに向って張り出し変形したり、シリンダ4が太鼓状に変形することはなく、この種サイドブロック5、6やシリンダ4のネジ止め締結による形状変形は低減され、かつ、サイドブロック5、6内側面の凹曲面形状はネジ止め締結後もそれ以前と同じ形状が維持される。そして、このようにネジ止め締結後も形状が変化しないサイドブロック5、6内側面の凹曲面形状部分により、ロータサイドクリアランス(ロータ端面7aとサイドブロック5、6との間の摺動隙間)は十分に確保され、かつ、ロータサイド(ロータ端面7a)に十分な油膜を確保することができ、この油膜によりロータ端面7aとサイドブロック5、6の摺接部の潤滑が確実に行われることから、気体圧縮機としての耐久性、特に耐摩耗性が向上し、かつ、その摺接部における摺動摩擦抵抗が減り、気体圧縮機の運転に要する動力の低減も図れる。
【0026】
また、本実施形態の気体圧縮機によると、上記の如くシリンダ4の太鼓状変形が防止されるので、従来のようにベーン12先端とシリンダ4との間に不要な隙間(図7の符号G2参照)が生じることもなく、この種の隙間から圧縮室13内の高圧冷媒ガスが低圧部(吸入室)側へ漏れ出る、いわゆる内部リーク量を低減することができ、冷房能力の向上も図れる。
【0027】
なお、上記実施形態では、サイドブロック5、6の内側面のうち、凹曲面形状のロータ摺接部bと平面形状のシリンダ接合部cとの間を繋ぐ繋ぎ部dを、ロータ摺接部bの延長面として曲面形状とする構成を採用したが(図1参照)、この繋ぎ面dについては、図2に示したようにシリンダ接合部cの延長面として平面形状とすることもできる。
【0028】
また、シリンダ4とサイドブロック5、6のネジ止め締結による形状変形を防止する手段については、上記実施形態とは別に、たとえば図3に示したような変形防止構造を採用することもできる。この図の構造は、サイドブロック5、6の内側面全体を、ロータ端面7a側からみて凹の形状、具体的にはロータ端面7a側からみて中央部が窪んでいる凹曲面形状とするとともに、サイドブロック5、6が接合されるシリンダ4のサイドブロック接合部aを、上記サイドブロック5、6内側面の凹の形状と同じ形状、具体的にはサイドブロック5、6内側面の凹曲面形状と同じ曲率の曲面形状としたものである。この図3の構造によると、サイドブロック5、6内側面とシリンダ端面4aの接合部は同じ曲率の曲面どうしが接合される構造となるから、上記実施形態と同じく、シリンダ4とサイドブロック5、6のネジ止め接合前や接合後に、従来のような不要な隙間(図6の符号G1および図7の符号G2参照)が生じることはなく、よって、この図3の変形防止構造によっても、上記実施形態と同様の効果、すなわち気体圧縮機の耐久性や冷房能力の向上、ならびに省動力化を図ることができる。
【0029】
【発明の効果】
本発明に係る気体圧縮機にあっては、上記の如く、サイドブロックのシリンダ接合部をシリンダの端面と同じ形状とする、または、シリンダのサイドブロック接合部をサイドブロックの凹形状と同じ形状とする構成を採用したものである。このため、サイドブロックとシリンダの接合部は同じ形状どうしが接合される構造となるので、シリンダとサイドブロックのネジ止め接合前に、その接合部に隙間が生じることはなく、この種の隙間による従来の不具合、すなわちサイドブロックやシリンダのねじ止め締結による形状変形が防止され、ロータサイドクリアランスとロータサイドの油膜を十分に確保することが可能となり、気体圧縮機としての耐久性や冷房能力の向上ならびに省動力化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る気体圧縮機の要部の一実施形態を示した説明図。
【図2】図1に示した実施形態の変形例の説明図。
【図3】本発明に係る気体圧縮機の要部の他の実施形態を示した説明図。
【図4】気体圧縮機の基本的な構成を示した断面図。
【図5】図4のB−B線断面図。
【図6】従来の気体圧縮機におけるシリンダとサイドブロックの接合部の構造説明図。
【図7】図6に示した従来のシリンダとサイドブロックをねじ止め接合したときのシリンダとサイドブロックの形状変形の様子を示した説明図。
【符号の説明】
1 コンプレッサケース
2 圧縮機構部
3 フロントヘッド
4 シリンダ
4a シリンダ端面
5 フロント側のサイドブロック
6 リア側のサイドブロック
7 ロータ
7a ロータ端面(ロータサイド)
8 ロータ軸
9、10 軸受
11 ベーン溝
12 ベーン
13 圧縮室
14 吸入室(低圧室)
15 吐出室(高圧室)
16 シリンダ吐出孔
17 リードバルブ
18 吐出チャンバ
19 油分離器
20 オイル溜まり
21 油穴
a シリンダのサイドブロック接合部
b サイドブロックのロータ摺接部
c サイドブロックのシリンダ接合部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas compressor used in a car air conditioner system and the like, and in particular, can improve the durability and cooling capacity of the device and save power.
[0002]
[Prior art]
Conventionally, this kind of gas compressor has a cylinder 4 having an inner peripheral elliptical shape as shown in FIGS. 4 and 5, for example, and side blocks 5 and 6 are screwed and joined to both end faces of the cylinder 4. Is adopted.
[0003]
A rotor 7 is rotatably arranged in the cylinder 4, and a vane 12 is mounted in a vane groove 11 formed in the rotor 7. The vane 12 can slide in the vane groove 11, and the rotor 7 From the outer peripheral surface of the cylinder 4 toward the inner peripheral surface of the cylinder 4.
[0004]
The small chamber inside the cylinder 4 partitioned by the cylinder 4, the side blocks 5 and 6, the rotor 7 and the vane 12 is referred to as a compression chamber 13, and the compression chamber 13 repeats the change in volume by the rotation of the rotor 7. Due to this volume change, low-pressure refrigerant gas is sucked from the suction chamber 14 side, compressed, and discharged as high-pressure refrigerant gas to the discharge chamber 15 side.
[0005]
An oil reservoir 20 on which the discharge pressure of the high-pressure refrigerant gas acts is provided at the bottom of the discharge chamber 15, and the oil in the oil reservoir 20 passes through the side blocks 5, 6, the oil holes 21 of the cylinder 4, etc. It is supplied to the bottom of the groove 11 and used as a vane back pressure that presses the vane 12 toward the inner wall side of the cylinder 4. Further, the oil supplied to the bottom of the vane groove 11 leaks to the rotor end surface 7 a (also referred to as “rotor side”) to form an oil film, and the oil film slides between the rotor side 7 a and the side blocks 5 and 6. The moving gap (also referred to as “rotor side clearance”) is sealed.
[0006]
By the way, in the gas compressor having the structure as described above, the inner surface of the rear side block 6 facing the rotor end surface 7a and the cylinder end surface 4a is not a flat surface as shown in FIG. The central portion is formed to have a concave curved shape with a slight depression. The same applies to the inner surface of the side block 5 on the front side. The reason why the side surfaces of the side blocks 5 and 6 are formed in a concave curved surface is to secure the rotor side clearance and to secure the oil film of the rotor side 7a.
[0007]
However, according to the gas compressor having the conventional structure as described above, since the entire inner side surfaces of the side blocks 5 and 6 are formed as concave curved surfaces as shown in FIG. , 6 and the cylinder end surface 4a having a planar shape are abutted with each other, the gap G1 shown in FIG. For this reason, when the cylinder 4 and the side blocks 5 and 6 are fastened and screwed as they are, the center portion of the side blocks 5 and 6 is the rotor as shown in FIG. 7 because of the fastening force and the shape of the gap G1. 7 is deformed so as to project toward the end face of the cylinder 7, and the cylinder 4 is deformed into a drum shape. Thereby, the concave amount of the concave curved surface shape of the inner surfaces of the side blocks 5 and 6 is reduced, and it becomes difficult to secure the rotor side clearance and the oil film of the rotor side 7a, and the durability as a gas compressor, particularly the wear resistance is lowered. In addition, the sliding frictional resistance between the rotor end surface 7a and the side blocks 5 and 6 increases, and there is a problem that a large amount of power is required for the operation of the gas compressor. When the cylinder 4 is deformed in a drum shape as described above, an unnecessary gap G2 is generated between the tip of the vane 12 and the cylinder 4, and the high-pressure refrigerant gas in the compression chamber 13 leaks from the gap G2 to the low-pressure part side. There are also problems such as an increase in the amount of so-called internal leakage and a decrease in cooling capacity.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and its object is to improve the durability and cooling capacity as well as to save power by preventing the deformation of the cylinder and the side block by screwing and fastening. It is providing the gas compressor which aimed at.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention comprises an inner circumferential elliptical cylinder, a front side block and a rear side block that are screwed and joined to an end surface of the cylinder, a rotor shaft that is integrally provided on the axis thereof, and the above A rotor disposed rotatably in the cylinder by a bearing located at the center of the front side block and the rear side block, and a vane provided so as to protrude from the outer peripheral surface of the rotor toward the inner peripheral surface of the cylinder; It consists of a small chamber inside the cylinder that is partitioned by the cylinder, both side blocks, the rotor, and the vanes. The volume of the cylinder is repeatedly changed by the rotation of the rotor, and the low-pressure refrigerant gas is sucked and compressed by the volume change. A compression chamber for discharging, and an inner surface of the front side block or both side blocks Among the body, the rotor sliding portion where the rotor end face in sliding contact, a concave shape when viewed from the rotor end face, the end face of the cylinder and the planar shape, the cylinder joint portion joined to the end surface of the cylinder, the The connecting portion connecting the rotor sliding contact portion and the cylinder joint portion has the same planar shape as the cylinder end surface, and has a planar shape as an extension surface of the cylinder joint portion .
[0010]
Here, “the concave shape when viewed from the rotor end surface side” includes a shape in which the concave portion is a curved surface (hereinafter referred to as “concave curved shape”), and a shape in which the concave portion is not a curved surface but a straight line. In addition, the above “the same shape as the end face of the cylinder” means that when the end face of the cylinder is a plane, it is the same plane shape, and when the end face of the cylinder is a curved face, it has the same curved shape. It means that there is.
[0011]
In the present invention, by adopting the above-described configuration in which the cylinder joint portion of the side block has the same shape as the end face of the cylinder, the joint portion of the side block and the cylinder has a structure in which the same shape is joined. Before the screw joint, there is no gap generated in the joint portion, and this type of gap, that is, the deformation of the cylinder and the side block due to the screw fastening is prevented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a gas compressor according to the present invention will be described in detail with reference to FIGS. 1 to 3. The same parts as those in the prior art will be described with reference to FIGS.
[0016]
As shown in FIG. 4, the gas compressor of this embodiment has a structure in which a compression mechanism portion 2 is housed in a compressor case 1 having an one-end opening type, and a front head 3 is attached to the opening end of the compressor case 1. ing.
[0017]
The compression mechanism section 2 has an inner circumferential elliptical cylinder 4, and side blocks 5 and 6 are screwed and joined to both end faces of the cylinder 4, and a rotor 7 is disposed in the cylinder 4.
[0018]
The rotor 7 is rotatably supported by a rotor shaft 8 provided integrally with the shaft center and bearings 9 and 10 of side blocks 5 and 6 that support the rotor shaft 8. Further, as shown in FIG. 5, the rotor 7 has five vane grooves 11 radially formed in the radial direction thereof, and each vane 12 is attached to each of the vane grooves 11 one by one. Each vane 12 is slidable in the vane groove 11 and is provided so as to protrude from the outer peripheral surface of the rotor 7 toward the inner peripheral surface of the cylinder 4.
[0019]
The inside of the cylinder 4 is partitioned into a plurality of small chambers by the inner wall of the cylinder 4, the inner surfaces of the side blocks 5 and 6, the outer peripheral surface of the rotor 7, and both side surfaces on the tip end side of the vane 12. Yes, the compression chamber 13 repeats the change in volume as the rotor 7 rotates in the direction of arrow A in the figure, and the volume change sucks the low-pressure refrigerant gas in the suction chamber 14, which is a low-pressure chamber, and compresses it. The high-pressure refrigerant gas is discharged to the discharge chamber 15 side which is a high-pressure chamber.
[0020]
That is, when the volume of the compression chamber 13 changes, the low-pressure refrigerant gas in the suction chamber 14 flows into the suction port (not shown) of the side block 5 or the suction passage 4a of the cylinder 4 and the suction port of the side block 6 when the volume increases. The air is sucked into the compression chamber 13 through 6a. When the volume of the compression chamber 13 starts to decrease, the refrigerant in the compression chamber 13 starts to be compressed due to the volume reduction effect. Thereafter, when the volume of the compression chamber 13 approaches the minimum, the reed valve 17 of the cylinder discharge hole 16 provided in the vicinity of the cylinder elliptical short diameter portion is opened by the compressed high-pressure refrigerant gas pressure. Thereby, the high-pressure refrigerant gas in the compression chamber 13 is discharged from the cylinder discharge hole 16 to the discharge chamber 18 in the external space of the cylinder, and is further guided from the discharge chamber 18 to the discharge chamber 15 side through the oil separator 19 and the like.
[0021]
Also in the gas compressor of the present embodiment, an oil reservoir 20 on which the discharge pressure of the high-pressure refrigerant gas acts is provided at the bottom of the discharge chamber 15, and the oil in the oil reservoir 20 is stored in the side blocks 5, 6 and It is supplied to the bottom of the vane groove 11 through the oil hole 21 of the cylinder 4, the bearing 9, 10 clearance, etc., and is used as a vane back pressure that presses the vane 12 toward the inner wall side of the cylinder 4. Further, the oil supplied to the bottom of the vane groove 11 leaks to the rotor side to form an oil film, and the rotor side clearance is sealed by this oil film. The high-pressure refrigerant gas discharged into the discharge chamber 18 as described above contains oil for lubrication or the like in a mist state, and the oil component in the high-pressure refrigerant gas passes through the oil separator 19. At the same time, it is separated and captured and dropped into the oil reservoir 20 at the bottom of the discharge chamber 15 to be temporarily stored.
[0022]
By the way, in the case of the conventional gas compressor, the shape of the inner surfaces of the side blocks 5 and 6 facing the cylinder end surface 4a and the rotor end surface 7a is a concave curved surface as a whole (see FIG. 6). In the case of the gas compressor of the embodiment, the shape of the inner side surface of the rear side block (rear side block) 6 is, as shown in FIG. 1, a concave curved surface recessed in a mortar shape and a plane continuously provided on the outer edge thereof. Is a two-surface shape. The shape of the inner side surface of the front side block (front side block) 5 is the same.
[0023]
In other words, in the present embodiment, the rotor sliding contact portion b with which the rotor end surface 7a is opposed and slidably contacted among the entire inner surfaces of the front and rear side blocks 5, 6 has a concave shape when viewed from the end surface side of the rotor 7 ( In this embodiment, the cylinder joint portion c is formed so as to be a concave curved surface shape), and is opposed to and joined to the end face of the cylinder 4 among the other portions, that is, the entire inner surfaces of the side blocks 5 and 6. Is formed to have the same shape as the end face of the cylinder 4 (planar shape in the present embodiment).
[0024]
Therefore, in the gas compressor of the present embodiment, when assembling the equipment, the inner surfaces of the side blocks 5 and 6 are abutted and screwed to the end surface 4a of the cylinder 4, and the side block 5, 6 The inner side surface and the cylinder end surface 4a are structured such that the same planes are joined to each other, and since these are the same joined structures to each other, before the cylinder 4 and the side blocks 5 and 6 are screwed together, Thus, a conventional gap (see reference numeral G1 in FIG. 6) does not occur.
[0025]
For this reason, according to the gas compressor of this embodiment, when the cylinder 4 and the side blocks 5 and 6 are screwed and joined, the central portion of the side blocks 5 and 6 faces the end surface 7a of the rotor 7 as in the prior art. There is no overhanging deformation or the cylinder 4 is deformed in a drum shape, the deformation of the side blocks 5 and 6 and the cylinder 4 due to screw fastening is reduced, and the concave curved surfaces of the side surfaces of the side blocks 5 and 6 are reduced. The shape remains the same as before the screw fastening. The rotor side clearance (sliding gap between the rotor end surface 7a and the side blocks 5 and 6) is thus formed by the concave curved shape portions of the inner side surfaces of the side blocks 5 and 6 whose shape does not change even after screwing and fastening. The oil film can be sufficiently secured and a sufficient oil film can be secured on the rotor side (rotor end surface 7a), and the oil film can surely lubricate the sliding contact portion between the rotor end surface 7a and the side blocks 5 and 6. Further, durability as a gas compressor, particularly wear resistance, is improved, and sliding friction resistance at the sliding contact portion is reduced, so that power required for operation of the gas compressor can be reduced.
[0026]
Further, according to the gas compressor of the present embodiment, the drum-like deformation of the cylinder 4 is prevented as described above, so that an unnecessary gap (reference numeral G2 in FIG. 7) is provided between the tip of the vane 12 and the cylinder 4 as in the prior art. The high-pressure refrigerant gas in the compression chamber 13 leaks to the low-pressure part (suction chamber) side through this type of gap, so that the so-called internal leak amount can be reduced, and the cooling capacity can be improved. .
[0027]
In the above embodiment, of the inner surfaces of the side blocks 5 and 6, the connecting portion d that connects the concave curved rotor sliding contact portion b and the planar cylinder joining portion c is used as the rotor sliding contact portion b. Although the curved surface is adopted as the extended surface (see FIG. 1), the connecting surface d can be a planar shape as the extended surface of the cylinder joint c as shown in FIG.
[0028]
In addition to the above-described embodiment, for example, a deformation preventing structure as shown in FIG. 3 can be adopted as a means for preventing the deformation of the cylinder 4 and the side blocks 5 and 6 by screwing and fastening. The structure of this figure has a concave shape when viewed from the rotor end surface 7a side, specifically, a concave curved surface shape where the central portion is depressed when viewed from the rotor end surface 7a side. The side block joint portion a of the cylinder 4 to which the side blocks 5 and 6 are joined has the same shape as the concave shape of the inner side surfaces of the side blocks 5 and 6, specifically, the concave curved surface shape of the inner side surfaces of the side blocks 5 and 6. Is a curved surface shape with the same curvature. According to the structure shown in FIG. 3, since the curved surfaces having the same curvature are joined to each other at the joint portions of the side blocks 5 and 6 and the cylinder end surface 4a, the cylinder 4 and the side block 5, No unnecessary gap (refer to reference numeral G1 in FIG. 6 and reference numeral G2 in FIG. 7) is generated before and after the screwing connection in FIG. 6, and thus the deformation preventing structure in FIG. The same effects as in the embodiment, that is, improvement in durability and cooling capacity of the gas compressor and power saving can be achieved.
[0029]
【The invention's effect】
In the gas compressor according to the present invention, as described above, the cylinder joint portion of the side block has the same shape as the end surface of the cylinder, or the side block joint portion of the cylinder has the same shape as the concave shape of the side block. It adopts the configuration to do. For this reason, since the joint part of a side block and a cylinder becomes the structure where the same shape is joined, before the screwing joining of a cylinder and a side block, a clearance gap does not arise in the junction part. This prevents conventional defects, that is, deformation of the shape due to screwing of the side block and cylinder, and ensures sufficient rotor side clearance and oil film on the rotor side, improving the durability and cooling capacity as a gas compressor. In addition, power saving can be achieved.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a main part of a gas compressor according to the present invention.
FIG. 2 is an explanatory diagram of a modified example of the embodiment shown in FIG.
FIG. 3 is an explanatory view showing another embodiment of the main part of the gas compressor according to the present invention.
FIG. 4 is a cross-sectional view showing a basic configuration of a gas compressor.
5 is a cross-sectional view taken along line BB in FIG.
FIG. 6 is an explanatory diagram of the structure of a joint between a cylinder and a side block in a conventional gas compressor.
7 is an explanatory view showing a state of shape deformation of the cylinder and the side block when the conventional cylinder and the side block shown in FIG. 6 are screwed and joined. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor case 2 Compression mechanism part 3 Front head 4 Cylinder 4a Cylinder end surface 5 Front side block 6 Rear side block 7 Rotor 7a Rotor end surface (rotor side)
8 Rotor shaft 9, 10 Bearing 11 Vane groove 12 Vane 13 Compression chamber 14 Suction chamber (low pressure chamber)
15 Discharge chamber (high pressure chamber)
16 Cylinder discharge hole 17 Reed valve 18 Discharge chamber 19 Oil separator 20 Oil reservoir 21 Oil hole a Cylinder side block joint b Side block rotor sliding contact c Side block cylinder joint

Claims (1)

内周楕円状のシリンダと、
上記シリンダの端面にネジ止め接合されたフロントサイドブロックおよびリアサイドブロックと、
その軸心に一体に設けたロータ軸と上記フロントサイドブロック及びリアサイドブロックの中心に位置する軸受けとにより上記シリンダ内に回転可能に配置されたロータと、
上記ロータの外周面から上記シリンダの内周面に向って出没可能に設けたベーンと、
上記シリンダ、両サイドブロック、ロータおよびベーンにより仕切り形成された該シリンダ内側の小室からなるとともに、上記ロータの回転により容積の大小変化を繰り返し、この容積変化により低圧の冷媒ガスを吸入し圧縮して吐出する圧縮室とを備え、
上記フロントサイドブロックまたは両サイドブロックの内側面全体のうち、上記ロータ端面が摺接するロータ摺接部を、該ロータ端面側からみて凹の形状とし、
上記シリンダの端面を平面形状とし、
上記シリンダの端面に接合されるシリンダ接合部を、上記シリンダ端面と同じ平面形状とし、
上記ロータ摺接部と上記シリンダ接合部との間を繋ぐ繋ぎ部は、上記シリンダ接合部の延長面として平面形状としたこと
を特徴とする気体圧縮機。
An inner circumferential elliptical cylinder;
A front side block and a rear side block which are screwed and joined to the end face of the cylinder;
A rotor rotatably disposed in the cylinder by a rotor shaft provided integrally with the shaft center and a bearing located at the center of the front side block and the rear side block;
A vane provided so as to be able to protrude from the outer peripheral surface of the rotor toward the inner peripheral surface of the cylinder;
It consists of a small chamber inside the cylinder that is partitioned by the cylinder, both side blocks, the rotor, and vanes, and the volume of the cylinder is repeatedly changed by the rotation of the rotor. A compression chamber for discharging,
Of the entire inner side surface of the front side block or both side blocks, the rotor sliding contact portion with which the rotor end surface is in sliding contact has a concave shape when viewed from the rotor end surface side,
The end face of the cylinder has a planar shape,
The cylinder joint to be joined to the end face of the cylinder has the same planar shape as the cylinder end face
Connecting portion connecting between said rotor sliding portion and the cylinder joint, the gas compressor is characterized in that a planar shape as an extension surface of the cylinder joint.
JP2001328142A 2001-10-25 2001-10-25 Gas compressor Expired - Fee Related JP4142863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001328142A JP4142863B2 (en) 2001-10-25 2001-10-25 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001328142A JP4142863B2 (en) 2001-10-25 2001-10-25 Gas compressor

Publications (2)

Publication Number Publication Date
JP2003129976A JP2003129976A (en) 2003-05-08
JP4142863B2 true JP4142863B2 (en) 2008-09-03

Family

ID=19144253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001328142A Expired - Fee Related JP4142863B2 (en) 2001-10-25 2001-10-25 Gas compressor

Country Status (1)

Country Link
JP (1) JP4142863B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040118B2 (en) * 2006-02-21 2012-10-03 パナソニック株式会社 Vane rotary compressor
JP2017110584A (en) * 2015-12-17 2017-06-22 カルソニックカンセイ株式会社 Gas compressor
CN111980922A (en) * 2019-05-21 2020-11-24 上海海立电器有限公司 Rotary compressor

Also Published As

Publication number Publication date
JP2003129976A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JPH0151910B2 (en)
JP2004263690A (en) Vane type vacuum pump
JPH0332794Y2 (en)
US5577903A (en) Rotary compressor
JPH0151913B2 (en)
KR100875344B1 (en) Rotary compressor
JP4142863B2 (en) Gas compressor
JP2008163874A (en) Rotary compressor
JPH07189924A (en) Rotary compressor
JP4684832B2 (en) Gas compressor
JP2007100602A (en) Gas compressor
JP2004052675A (en) Gas compressor
JPH09310687A (en) Scroll type compressor
JPH10252674A (en) Gas compressor
JP3745915B2 (en) Gas compressor
JPH07133776A (en) Vane rotary compressor
JP2001140781A (en) Gas compressor
JP4043233B2 (en) Gas compressor
JP4185723B2 (en) Gas compressor
JP2004028090A (en) Compressor
JP4370037B2 (en) Gas compressor
JPS6343423Y2 (en)
JP4854633B2 (en) Rotary fluid machine and refrigeration cycle apparatus
KR100720543B1 (en) device for decreasing friction resistance in rotary compressor
JP2000265983A (en) Gas compressor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080606

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4142863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees