JP2006152423A - Boron-doped diamond film, and diamond-coated cutting tool - Google Patents

Boron-doped diamond film, and diamond-coated cutting tool Download PDF

Info

Publication number
JP2006152423A
JP2006152423A JP2004349151A JP2004349151A JP2006152423A JP 2006152423 A JP2006152423 A JP 2006152423A JP 2004349151 A JP2004349151 A JP 2004349151A JP 2004349151 A JP2004349151 A JP 2004349151A JP 2006152423 A JP2006152423 A JP 2006152423A
Authority
JP
Japan
Prior art keywords
boron
diamond
doped
film
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004349151A
Other languages
Japanese (ja)
Inventor
Hiroyuki Haniyu
博之 羽生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSG Corp
Original Assignee
OSG Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSG Corp filed Critical OSG Corp
Priority to JP2004349151A priority Critical patent/JP2006152423A/en
Publication of JP2006152423A publication Critical patent/JP2006152423A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve oxidation resistance and lubricity of a diamond film. <P>SOLUTION: Since boron is doped in a boron-doped diamond film 20, a layer of boron oxide (such as B<SB>2</SB>O<SB>3</SB>) is deposited on the surface of the diamond film 20 when subjected to oxidation. Progress of oxidation inside the film is suppressed by the layer of the oxide, the oxidation resistance of the film 20 is improved, and the friction coefficient is reduced to improve the lubricity. In particular, the diamond film 20 of the present embodiment forms a multi-layered structure in which low-doping layers 22 and high-doping layers 24 are alternately laminated on each other. Further, the highest layer is constituted of the high-doping layer 24, the oxidation resistance and the lubricity by the boron oxide can be improved while maintaining the wear resistance or the like which is the original characteristic of the diamond film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加工工具などの所定の部材にコーティングされるダイヤモンド被膜に係り、特に、耐酸化性および潤滑性を向上させる技術に関するものである。   The present invention relates to a diamond film coated on a predetermined member such as a processing tool, and more particularly to a technique for improving oxidation resistance and lubricity.

超硬合金等の母材の表面にダイヤモンド被膜をコーティングしたダイヤモンド被覆加工工具が、例えばエンドミルやバイト、タップ、ドリルなどの切削工具、或いはその他の加工工具として提案されている。特許文献1や特許文献2に記載されている工具はその一例で、このようなダイヤモンド被覆加工工具は非常に高い硬度を有し、優れた耐摩耗性、耐溶着性が得られる。また、特許文献3、特許文献4には、導電性を持たせたり耐酸化性を向上させたりするために、マイクロ波プラズマCVD(化学気相成長)法等によりダイヤモンドを結晶成長させる際に、ボロン(硼素;B)をドーピングする技術が記載されている。
特許第2519037号公報 特開2002−79406号公報 特開2004−193522号公報 特開平10−146703号公報
A diamond coating tool in which a surface of a base material such as cemented carbide is coated with a diamond coating has been proposed as a cutting tool such as an end mill, a bite, a tap, a drill, or other processing tools. The tools described in Patent Document 1 and Patent Document 2 are an example, and such a diamond-coated tool has a very high hardness and provides excellent wear resistance and welding resistance. In Patent Document 3 and Patent Document 4, in order to give conductivity or improve oxidation resistance, when diamond is crystal-grown by a microwave plasma CVD (chemical vapor deposition) method or the like, A technique for doping boron (boron; B) is described.
Japanese Patent No. 2519037 JP 2002-79406 A JP 2004-193522 A Japanese Patent Laid-Open No. 10-146703

しかしながら、工具母材等の表面にコーティングされるダイヤモンド被膜については、未だボロンのドーピングについて提案されておらず、耐酸化性が低いとともに潤滑性(表面粗さ)が悪いことから、鉄系の材料を含む複合材料の切削加工や、切削点が高温になるチタン合金等の耐熱合金に対する切削加工などでは、ダイヤモンド被膜が酸化により早期に摩耗して十分な耐久性が得られないことがあった。また、摩擦による発熱で耐久性が低下したり、被削材の加工面品質が損なわれたりすることがあった。   However, for diamond coatings coated on the surface of tool base materials, etc., boron doping has not yet been proposed, and since it has low oxidation resistance and poor lubricity (surface roughness), it is a ferrous material. When cutting a composite material containing or cutting a heat-resistant alloy such as a titanium alloy that has a high cutting point, the diamond coating may wear early due to oxidation, and sufficient durability may not be obtained. In addition, the heat generation due to friction may reduce the durability, and the work surface quality of the work material may be impaired.

本発明は以上の事情を背景として為されたもので、その目的とするところは、ダイヤモンド被膜の耐酸化性や潤滑性を向上させることにある。   The present invention has been made against the background described above, and its object is to improve the oxidation resistance and lubricity of the diamond coating.

かかる目的を達成するために、第1発明は、所定の部材の表面にコーティングされるダイヤモンド被膜であって、ボロンがドーピングされているとともに、そのボロンのドーピング量は膜厚方向において変化しており、被膜表面では多くされていることを特徴とする。   In order to achieve such an object, the first invention is a diamond film coated on the surface of a predetermined member, in which boron is doped, and the boron doping amount changes in the film thickness direction. It is characterized by being increased on the surface of the coating.

第2発明は、第1発明のボロンドープダイヤモンド被膜において、前記ボロンのドーピング量が0.05〜2.0原子%の範囲内の低ドーピング層と、ボロンのドーピング量が1.0〜10原子%の範囲内で且つ前記低ドーピング層よりも多い高ドーピング層とを有することを特徴とする。   A second invention is the boron-doped diamond film of the first invention, wherein the boron doping amount is in the range of 0.05 to 2.0 atomic%, and the boron doping amount is 1.0 to 10 atoms. %, And a higher doping layer than the low doping layer.

第3発明は、第1発明または第2発明のボロンドープダイヤモンド被膜において、ダイヤモンドの結晶粒径が2μm以下の微結晶ダイヤモンドにて構成されていることを特徴とする。   A third invention is characterized in that the boron-doped diamond film of the first invention or the second invention is composed of microcrystalline diamond having a crystal grain diameter of 2 μm or less.

第4発明は、所定の工具母材の表面にダイヤモンド被膜がコーティングされているダイヤモンド被覆加工工具に関するもので、所定の加工を行なう加工部の表面に、ダイヤモンド被膜として第1発明〜第3発明の何れかのボロンドープダイヤモンド被膜がコーティングされていることを特徴とする。   The fourth invention relates to a diamond-coated processing tool in which a diamond coating is coated on the surface of a predetermined tool base material. The diamond coating is applied to the surface of a processing portion where predetermined processing is performed according to the first to third inventions. Any boron-doped diamond film is coated.

なお、ボロンドープダイヤモンドは、炭素原子の一部がボロン原子によって置き換えられたもので、正の電荷を持つ正孔を有するp型半導体である。また、ボロンの原子%は、ボロン原子に置き換えられた原子数の割合で、例えば二次イオン質量分析法等によって調べられる。   Boron-doped diamond is a p-type semiconductor having positively charged holes in which some carbon atoms are replaced by boron atoms. Further, the atomic% of boron is the ratio of the number of atoms replaced with boron atoms, and is examined by, for example, secondary ion mass spectrometry.

このようなボロンドープダイヤモンド被膜においては、表面が酸化を受けた際に表面にボロンの酸化物(例えばB2 3 )の層が形成されるため、その酸化物の層により被膜内部への酸化の進行が抑制されて、被膜の耐酸化性が向上するとともに、摩擦係数が小さくなって潤滑性が向上する。特に、本発明ではボロンのドーピング量が膜厚方向において変化しており、被膜表面で多くされているため、ダイヤモンド被膜の本来の特性である耐摩耗性等を維持しつつ、ボロンの酸化物による耐酸化性および潤滑性の向上効果を得ることができる。これにより、鉄系の材料を含む複合材料の切削加工や、切削点が高温になるチタン合金等の耐熱合金に対する切削加工などにおいても、酸化によるダイヤモンド被膜の早期摩耗や剥離が抑制されて優れた耐久性が得られるようになる。また、潤滑性が良くなることから、摩擦による発熱が抑制され、この点でもダイヤモンド被膜の耐久性が向上するとともに、被削材の加工面品質が向上する。 In such a boron-doped diamond film, when the surface is oxidized, a layer of boron oxide (for example, B 2 O 3 ) is formed on the surface, so that the oxide layer oxidizes the inside of the film. Is suppressed, the oxidation resistance of the coating is improved, and the coefficient of friction is reduced to improve the lubricity. In particular, in the present invention, the doping amount of boron changes in the film thickness direction and is increased on the surface of the coating, so that the wear resistance, which is an original characteristic of the diamond coating, is maintained, and the boron oxide is used. The effect of improving oxidation resistance and lubricity can be obtained. As a result, in the cutting of composite materials including iron-based materials and the cutting of heat-resistant alloys such as titanium alloys where the cutting point is high, early wear and delamination of the diamond coating due to oxidation are suppressed and excellent. Durability can be obtained. In addition, since the lubricity is improved, heat generation due to friction is suppressed. In this respect, the durability of the diamond coating is improved and the work surface quality of the work material is improved.

第3発明では、ダイヤモンドが微結晶であるため、通常のダイヤモンド被膜に比較して表面が平滑であり、その表面にボロンの酸化物の層が形成されることにより、摩擦係数が一層小さくなって優れた潤滑性が得られる。   In the third invention, since diamond is a microcrystal, the surface is smoother than that of a normal diamond coating, and a boron oxide layer is formed on the surface, so that the friction coefficient is further reduced. Excellent lubricity can be obtained.

加工部の表面に上記ボロンドープダイヤモンド被膜がコーティングされている第4発明のダイヤモンド被覆加工工具においても、実質的に上記と同様の効果が得られる。   In the diamond coating tool of the fourth invention in which the boron-doped diamond film is coated on the surface of the processed part, substantially the same effect as described above can be obtained.

本発明のボロンドープダイヤモンド被膜は、耐摩耗性や耐酸化性、潤滑性が要求される切削工具などの加工工具、すなわちダイヤモンド被覆加工工具に好適に適用されるが、例えば半導体装置などの硬質被膜として用いることもできるなど、加工工具以外にも適用され得る。   The boron-doped diamond coating of the present invention is preferably applied to a processing tool such as a cutting tool that requires wear resistance, oxidation resistance, and lubricity, that is, a diamond coating processing tool. For example, it can be used as a processing tool.

ダイヤモンド被覆加工工具の場合、ボロンドープダイヤモンド被膜をコーティングすべき工具母材としては超硬合金などの超硬質工具材料が好適に用いられるが、セラミックス等の他の工具材料を用いることもできる。密着性を高めるために、その工具母材の表面に粗面化処理を施したり、他の被膜を下地として設けたりするなど、所定の前処理を行うことができる。   In the case of a diamond-coated tool, a superhard tool material such as a cemented carbide is suitably used as a tool base material to be coated with a boron-doped diamond coating, but other tool materials such as ceramics can also be used. In order to improve the adhesion, a predetermined pretreatment such as roughening the surface of the tool base material or providing another coating as a base can be performed.

また、ボロンドープダイヤモンド被膜の膜厚は、5μmより薄いと十分な耐摩耗性が得られない一方、25μmを超えると剥離し易くなるため、5〜25μmの範囲内が好ましく、10〜20μm程度が適当である。加工工具以外に適用する場合は、そのコーティング対象の材質や目的等に応じて適宜定められる。   Further, when the film thickness of the boron-doped diamond film is less than 5 μm, sufficient wear resistance cannot be obtained. On the other hand, if it exceeds 25 μm, it is easy to peel off, and therefore it is preferably in the range of 5 to 25 μm, preferably about 10 to 20 μm. Is appropriate. When applied to other than the processing tool, it is appropriately determined according to the material and purpose of the coating target.

ボロンドープダイヤモンド被膜のコーティングにはCVD法が好適に用いられ、特にマイクロ波プラズマCVD法が望ましいが、ホットフィラメントCVD法や高周波プラズマCVD法等の他のCVD法を用いることもできる。ボロンのドーピング技術については、前記特許文献3や特許文献4に記載されているものなど、ダイヤモンドに対するボロンのドーピング技術として従来から知られている種々の手法を採用できる。   A CVD method is suitably used for coating the boron-doped diamond film, and a microwave plasma CVD method is particularly desirable, but other CVD methods such as a hot filament CVD method and a high-frequency plasma CVD method can also be used. Regarding boron doping techniques, various techniques conventionally known as boron doping techniques for diamond, such as those described in Patent Document 3 and Patent Document 4, can be employed.

ボロンドープダイヤモンド被膜は、例えば第2発明のようにドーピング量が少ない低ドーピング層とドーピング量が多い高ドーピング層とを有し、所定の部材の表面に接する部分に設けられる低ドーピング層の上に高ドーピング層を設けた2層構造としたり、それ等を交互に繰り返し積層して最表面を高ドーピング層とした多層構造としたりすることができる。第1発明の実施に際しては、ボロンドープ無しのダイヤモンド層とボロンドープ有りのボロンドープ層との2層構造や、それ等を交互に繰り返し積層した多層構造、ボロンドープ無しのダイヤモンド層と低ドーピング層と高ドーピング層とを有する3種類の層構造、或いはボロンのドーピング量を連続的に変化(漸増)させたり段階的に増加させたりした徐変構造など、種々の態様が可能である。   The boron-doped diamond film has, for example, a low doping layer with a low doping amount and a high doping layer with a high doping amount as in the second invention, and is formed on the low doping layer provided in a portion in contact with the surface of a predetermined member. A two-layer structure in which a highly doped layer is provided, or a multilayer structure in which the outermost surface is a highly doped layer by alternately and repeatedly stacking them can be employed. In carrying out the first invention, a two-layer structure including a boron-doped diamond layer and a boron-doped boron-doped layer, a multilayer structure in which these layers are alternately laminated, a boron-undoped diamond layer, a low-doped layer, and a high-doped layer Various forms are possible, such as three types of layer structures having the above or a gradual change structure in which the boron doping amount is continuously changed (gradual increase) or increased stepwise.

ボロンのドーピング量(含有量)は、0.05原子%より少ないと耐酸化性、潤滑性の効果が十分に得られないため、被膜の最表面を含めてボロンをドーピングする層には少なくとも0.05原子%以上ドーピングすることが望ましく、0.5原子%以上が更に望ましい。   If the boron doping amount (content) is less than 0.05 atomic%, the effects of oxidation resistance and lubricity cannot be sufficiently obtained. Therefore, the boron doping layer including the outermost surface of the coating should be at least 0. It is desirable to dope at least 0.05 atomic%, and more desirably 0.5 atomic% or more.

第3発明の微結晶ダイヤモンドは、例えば前記特許文献2に記載のように核生成工程および結晶成長工程を繰り返すことにより形成することが可能である。結晶粒径は2μm以下で、1μm以下が望ましい。この結晶粒径は、結晶成長方向と直角な方向の最大径寸法で、総てのダイヤモンドの結晶粒径が2μm以下であることが望ましいが、表面或いは所定の横断面における結晶粒径の少なくとも80%以上が2μm以下であれば良い。また、結晶成長方向の長さ寸法を2μm以下とすれば、その結晶成長方向と直角な方向の結晶粒径も一般には2μm以下となる。なお、結晶成長方向の寸法が2μmより大きくても、結晶粒径が2μm以下であれば良い。第1発明、第2発明の実施に際しては、結晶粒径が2μmより大きい粗結晶のダイヤモンド被膜を用いることもできる。   The microcrystalline diamond of the third invention can be formed by repeating a nucleation step and a crystal growth step as described in Patent Document 2, for example. The crystal grain size is 2 μm or less, preferably 1 μm or less. The crystal grain size is the maximum diameter in a direction perpendicular to the crystal growth direction, and the crystal grain size of all diamonds is preferably 2 μm or less, but at least 80 of the crystal grain size on the surface or a predetermined cross section. % Or more may be 2 μm or less. Further, if the length dimension in the crystal growth direction is 2 μm or less, the crystal grain size in the direction perpendicular to the crystal growth direction is generally 2 μm or less. Even if the dimension in the crystal growth direction is larger than 2 μm, the crystal grain size may be 2 μm or less. In carrying out the first and second inventions, a coarse crystal diamond film having a crystal grain size larger than 2 μm may be used.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。
図1は、本発明が適用されたダイヤモンド被覆加工工具、具体的にはダイヤモンド被覆切削工具としてのエンドミル10を示す図で、(a) は軸心と直角方向から見た正面図、(b) は刃部14の表面付近の断面図である。このエンドミル10は、4枚刃のスクエアエンドミルであり、工具母材12は超硬合金にて構成されており、その工具母材12にはシャンクおよび刃部14が軸方向に一体に設けられている。刃部14は加工部に相当し、切れ刃として外周刃16および底刃18を備えているとともに、刃部14の表面にはボロンがドーピングされたボロンドープダイヤモンド被膜20(以下、単にダイヤモンド被膜20という)が20μm程度の膜厚でコーティングされている。なお、図1(a) の斜線部は、工具母材12の表面にコーティングされたダイヤモンド被膜20を表している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing an end mill 10 as a diamond coating tool to which the present invention is applied, specifically, a diamond coated cutting tool. FIG. 1 (a) is a front view seen from a direction perpendicular to the axis, and FIG. FIG. 4 is a cross-sectional view of the vicinity of the surface of the blade portion 14. The end mill 10 is a four-blade square end mill, and the tool base 12 is made of cemented carbide, and the tool base 12 is provided with a shank and a blade 14 integrally in the axial direction. Yes. The blade portion 14 corresponds to a processed portion, and includes an outer peripheral blade 16 and a bottom blade 18 as cutting edges, and a boron-doped diamond coating 20 (hereinafter simply referred to as a diamond coating 20) doped with boron on the surface of the blade portion 14. Is coated with a film thickness of about 20 μm. The hatched portion in FIG. 1A represents the diamond film 20 coated on the surface of the tool base 12.

ダイヤモンド被膜20は、結晶粒径が1μm以下の微結晶ダイヤモンドにて構成されているとともに、ボロンのドーピング量が0.05〜2.0原子%の範囲内で例えば1.0原子%程度の低ドーピング層22と、ボロンのドーピング量が1.0〜10原子%の範囲内で且つ低ドーピング層22よりも多い、例えば5.0原子%程度の高ドーピング層24とを交互に繰り返し積層した多層構造を成している。工具母材12の表面には低ドーピング層22が設けられ、最上層は高ドーピング層24とされている。また、低ドーピング層22および高ドーピング層24の厚さは本実施例では略同じであるが、低ドーピング層22を高ドーピング層24よりも厚くするなど、適宜変更することが可能である。   The diamond coating 20 is made of microcrystalline diamond having a crystal grain size of 1 μm or less, and has a boron doping amount in the range of 0.05 to 2.0 atomic%, for example, as low as about 1.0 atomic%. A multilayer in which the doping layer 22 and the high doping layer 24 having a boron doping amount in the range of 1.0 to 10 atomic% and larger than the low doping layer 22, for example, about 5.0 atomic% are alternately stacked. It has a structure. A low doping layer 22 is provided on the surface of the tool base material 12, and the uppermost layer is a high doping layer 24. Further, although the thicknesses of the low doping layer 22 and the high doping layer 24 are substantially the same in this embodiment, they can be appropriately changed, for example, the low doping layer 22 is thicker than the high doping layer 24.

上記エンドミル10は、超硬合金に研削加工等を施すことにより、切れ刃として外周刃16および底刃18を有する工具母材12を形成した後、ダイヤモンド被膜20の密着性を高めるために、工具母材12の刃部14の表面に粗面化処理を施す。粗面化処理としては、例えば電解研磨などの化学的腐食や、SiC等の砥粒などによるサンドブラストが適当である。その後、図2のマイクロ波プラズマCVD装置30を用いて、粗面化された刃部14の表面に気相合成法、具体的にはマイクロ波プラズマCVD法により、ボロンをドーピングしながらダイヤモンド粒子を生成・成長させてダイヤモンド被膜20をコーティングする。   In order to improve the adhesion of the diamond coating 20 after the end mill 10 forms the tool base material 12 having the outer peripheral edge 16 and the bottom edge 18 as a cutting edge by grinding the cemented carbide or the like, The surface of the blade portion 14 of the base material 12 is roughened. As the surface roughening treatment, for example, chemical erosion such as electrolytic polishing or sand blasting with an abrasive such as SiC is suitable. Then, using the microwave plasma CVD apparatus 30 of FIG. 2, diamond particles are doped on the surface of the roughened blade portion 14 while doping boron with a vapor phase synthesis method, specifically, a microwave plasma CVD method. The diamond film 20 is formed and grown.

図2のマイクロ波プラズマCVD装置30は、反応炉32、マイクロ波発生装置34、原料ガス供給装置36、真空ポンプ38、および電磁コイル40を備えて構成されている。円筒状の反応炉32内にはテーブル42が設けられダイヤモンド被膜20をコーティングすべき複数の工具母材12がワーク支持具44に支持されて、それぞれ刃部14が上向きになる姿勢で配置されるようになっている。マイクロ波発生装置34は、例えば2.45GHz等のマイクロ波を発生する装置で、このマイクロ波が反応炉32内へ導入されることにより工具母材12が加熱されるとともに、マイクロ波発生装置34の電力制御によって加熱温度が調節される。   The microwave plasma CVD apparatus 30 of FIG. 2 includes a reaction furnace 32, a microwave generator 34, a source gas supply device 36, a vacuum pump 38, and an electromagnetic coil 40. A table 42 is provided in the cylindrical reaction furnace 32, and a plurality of tool base materials 12 to be coated with the diamond coating 20 are supported by a work support tool 44, and each blade 14 is disposed in an upward posture. It is like that. The microwave generator 34 is a device that generates a microwave of, for example, 2.45 GHz, and the tool base material 12 is heated by introducing the microwave into the reaction furnace 32, and the microwave generator 34. The heating temperature is adjusted by controlling the electric power.

原料ガス供給装置36は、メタン(CH4 )や水素(H2 )、一酸化炭素(CO)などの原料ガスを反応炉32内に供給するためのもので、それ等のガスボンベや流量を制御する流量制御弁、流量計などを備えて構成されているが、本実施例ではボロンをドーピングするために、例えば酸化ボロンをメタノールに溶かした液体を原料ガスに混ぜて反応炉32内に供給できるようになっている。真空ポンプ38は、反応炉32内の気体を吸引して減圧するためのもので、圧力計46によって検出される反応炉32内の圧力値が予め定められた所定の圧力値になるように、真空ポンプ38のモータ電流などがフィードバック制御される。電磁コイル40は、反応炉32内を取り巻くように反応炉32の外周側に円環状に配設されている。 The source gas supply device 36 is for supplying source gases such as methane (CH 4 ), hydrogen (H 2 ), and carbon monoxide (CO) into the reaction furnace 32, and controls the gas cylinders and flow rates thereof. In this embodiment, in order to dope boron, for example, a liquid obtained by dissolving boron oxide in methanol can be mixed with the raw material gas and supplied into the reaction furnace 32. It is like that. The vacuum pump 38 is for sucking and depressurizing the gas in the reaction furnace 32, so that the pressure value in the reaction furnace 32 detected by the pressure gauge 46 becomes a predetermined pressure value determined in advance. The motor current of the vacuum pump 38 is feedback controlled. The electromagnetic coil 40 is arranged in an annular shape on the outer peripheral side of the reaction furnace 32 so as to surround the inside of the reaction furnace 32.

このようなマイクロ波プラズマCVD装置30を用いたダイヤモンド被膜20のコーティング処理は、図3に示すように核付着工程のステップR1と、結晶成長工程のステップR2とを有して行なわれる。ステップR1の核付着工程では、メタンの濃度が10%〜30%の範囲内で定められた設定値となるようにメタンおよび水素の流量調節を行うとともに、工具母材12の表面温度が700℃〜900℃の範囲内で定められた設定温度になるようにマイクロ波発生装置34を調節し、反応炉32内のガス圧が2.7×102 Pa〜2.7×103 Paの範囲内で定められた設定圧になるように真空ポンプ38を作動させ、その状態を0.1時間〜2時間継続する。これにより、工具母材12の表面、或いはステップR2の結晶成長処理で結晶成長させられた多数のダイヤモンド結晶の表面に、ダイヤモンドの結晶成長の起点となる核の層が付着される。 As shown in FIG. 3, the coating process of the diamond film 20 using such a microwave plasma CVD apparatus 30 is performed including a step R1 of the nucleus deposition process and a step R2 of the crystal growth process. In the nuclear attachment step of Step R1, the flow rate of methane and hydrogen is adjusted so that the concentration of methane is set within a range of 10% to 30%, and the surface temperature of the tool base 12 is 700 ° C. The microwave generator 34 is adjusted so that the set temperature is set in a range of ˜900 ° C., and the gas pressure in the reaction furnace 32 is in a range of 2.7 × 10 2 Pa to 2.7 × 10 3 Pa. The vacuum pump 38 is operated so as to reach the set pressure determined in the above, and this state is continued for 0.1 to 2 hours. As a result, a nucleus layer serving as a starting point of diamond crystal growth is attached to the surface of the tool base material 12 or the surfaces of a large number of diamond crystals that have been crystal-grown by the crystal growth process in step R2.

ステップR2の結晶成長工程は、メタンの濃度が1%〜4%の範囲内で定められた設定値になるようにメタンおよび水素の流量調節を行うとともに、工具母材12の表面温度が800℃〜900℃の範囲内で定められた設定温度になるようにマイクロ波発生装置34を調節し、反応炉32内のガス圧が1.3×103 Pa〜6.7×103 Paの範囲内で定められた設定圧になるように真空ポンプ38を作動させ、その状態を、ダイヤモンドの結晶粒径が1μm以下に維持されるように予め定められた所定時間、具体的にはダイヤモンドの結晶長さ(結晶成長方向の長さ寸法)が1μmになる予め求められた時間よりも短い所定の処理時間だけ継続する。すなわち、本実施例の結晶成長処理では、結晶成長方向の長さ寸法が1μm以下であれば、その結晶成長方向と略直角な平面内の結晶粒径は1μm以下に維持されるのである。 In the crystal growth process of Step R2, the flow rate of methane and hydrogen is adjusted so that the concentration of methane is set within a range of 1% to 4%, and the surface temperature of the tool base 12 is 800 ° C. 900 to adjust the microwave generator 34 so as to set the temperature defined in the range of ° C., ranges gas pressure in the reaction furnace 32 is 1.3 × 10 3 Pa~6.7 × 10 3 Pa The vacuum pump 38 is operated so that the set pressure is set within the predetermined range, and the state is maintained for a predetermined time so that the crystal grain size of diamond is maintained at 1 μm or less, specifically, the diamond crystal. This is continued for a predetermined processing time shorter than a predetermined time for which the length (length dimension in the crystal growth direction) is 1 μm. That is, in the crystal growth process of this embodiment, if the length dimension in the crystal growth direction is 1 μm or less, the crystal grain size in a plane substantially perpendicular to the crystal growth direction is maintained at 1 μm or less.

そして、次のステップR3では、工具母材12の表面上に結晶成長させられたダイヤモンド被膜20の膜厚が予め定められた設定膜厚(本実施例では20μm)に達したか否かを、例えばステップR2の実行回数などで判断し、設定膜厚になるまで上記ステップR1およびR2を繰り返す。ステップR1の実行時には、ダイヤモンドの結晶成長が中止し、その結晶上に新たに核の層が形成されるとともに、以後の結晶成長処理(ステップR2)では、核の層の下のダイヤモンドの結晶が再成長させられることはなく、新たな核を起点として新たにダイヤモンドが結晶成長させられることにより、結晶粒径および結晶長さが共に1μm以下の微結晶で多層構造のダイヤモンド被膜20が工具母材12の表面にコーティングされる。   Then, in the next step R3, whether or not the film thickness of the diamond coating 20 crystal-grown on the surface of the tool base material 12 has reached a predetermined set film thickness (20 μm in this embodiment), For example, the determination is made based on the number of executions of step R2, and the above steps R1 and R2 are repeated until the set film thickness is reached. During the execution of Step R1, the crystal growth of diamond is stopped, and a new nucleus layer is formed on the crystal. In the subsequent crystal growth process (Step R2), the diamond crystal below the nucleus layer is formed. The diamond film 20 is not regrown but is newly grown from a new nucleus as a starting point, so that the diamond film 20 having a multi-crystal structure with a crystal grain size and a crystal length of both 1 μm or less is formed as a tool base material. 12 surfaces are coated.

また、上記ダイヤモンド被膜20のコーティング処理に際しては、水素等の原料ガスを供給する際に、前記酸化ボロンをメタノールに溶かした液体をその原料ガスに混ぜて反応炉32内に所定流量で供給することにより、そのダイヤモンド被膜20にボロンをドーピングする。ボロンのドーピング量は、酸化ボロンを溶かした液体の供給流量を変更することによって調節でき、これによりドーピング量が異なる低ドーピング層22および高ドーピング層24を所定の厚さで交互に積層できる。これ等の低ドーピング層22、高ドーピング層24の厚さは、前記ステップR1およびR2の1回の処理で形成される微結晶ダイヤモンドの厚さ(本実施例では約1μm)と同じか或いはその整数倍に設定され、一連のステップR1およびR2では一定のドーピング量でボロンがドーピングされる。   Further, when supplying the raw material gas such as hydrogen during the coating process of the diamond film 20, a liquid obtained by dissolving the boron oxide in methanol is mixed with the raw material gas and supplied into the reaction furnace 32 at a predetermined flow rate. Thus, the diamond coating 20 is doped with boron. The doping amount of boron can be adjusted by changing the supply flow rate of the liquid in which boron oxide is dissolved, whereby the low doping layer 22 and the high doping layer 24 having different doping amounts can be alternately stacked at a predetermined thickness. The thicknesses of the low doping layer 22 and the high doping layer 24 are the same as the thickness of the microcrystalline diamond (about 1 μm in this embodiment) formed by one processing of the steps R1 and R2, or the It is set to an integral multiple, and boron is doped with a constant doping amount in a series of steps R1 and R2.

このような本実施例のエンドミル10においては、ダイヤモンド被膜20にボロンがドーピングされているため、そのダイヤモンド被膜20の表面には、酸化を受けた際にボロンの酸化物(例えばB2 3 )の層が形成され、その酸化物の層により被膜内部への酸化の進行が抑制されて、ダイヤモンド被膜20の耐酸化性が向上するとともに、摩擦係数が小さくなって潤滑性が向上する。特に、本実施例のダイヤモンド被膜20は、低ドーピング層22と高ドーピング層24とを交互に積層した多層構造を成しているとともに、最上層は高ドーピング層24にて構成されているため、ダイヤモンド被膜の本来の特性である耐摩耗性等を維持しつつ、ボロンの酸化物による耐酸化性および潤滑性の向上効果を良好に得ることができる。また、本実施例のダイヤモンド被膜20は結晶粒径が1μm以下の微結晶であるため、通常のダイヤモンド被膜に比較して表面が平滑であり、その表面にボロンの酸化物の層が形成されることにより、摩擦係数が一層小さくなって優れた潤滑性が得られる。 In the end mill 10 of this embodiment, since the diamond coating 20 is doped with boron, the surface of the diamond coating 20 has an oxide of boron (for example, B 2 O 3 ) when oxidized. The oxide layer suppresses the progress of oxidation into the coating, thereby improving the oxidation resistance of the diamond coating 20 and reducing the friction coefficient to improve the lubricity. In particular, the diamond coating 20 of this example has a multilayer structure in which the low doping layers 22 and the high doping layers 24 are alternately stacked, and the uppermost layer is composed of the high doping layers 24. The effect of improving the oxidation resistance and lubricity due to the oxide of boron can be satisfactorily obtained while maintaining the wear resistance, which is the original characteristic of the diamond coating. Further, since the diamond coating 20 of the present example is a microcrystal having a crystal grain size of 1 μm or less, the surface is smoother than that of a normal diamond coating, and a boron oxide layer is formed on the surface. As a result, the friction coefficient is further reduced and excellent lubricity is obtained.

これにより、本実施例のエンドミル10によれば、鉄系の材料を含む複合材料の切削加工や、切削点が高温になるチタン合金等の耐熱合金に対する切削加工などにおいても、酸化によるダイヤモンド被膜20の早期摩耗や剥離が抑制されて優れた耐久性が得られるようになる。また、潤滑性が良くなることから、摩擦による発熱が抑制され、この点でもダイヤモンド被膜20の耐久性が向上するとともに、被削材の加工面品質が向上する。   As a result, according to the end mill 10 of the present embodiment, the diamond coating 20 caused by oxidation can be used for cutting composite materials including iron-based materials and for cutting heat-resistant alloys such as titanium alloys that have high cutting points. The early wear and delamination are suppressed, and excellent durability can be obtained. Further, since the lubricity is improved, heat generation due to friction is suppressed, and in this respect as well, the durability of the diamond coating 20 is improved and the work surface quality of the work material is improved.

因みに、図4の(a) は、通常の結晶粒径(粗結晶)のダイヤモンド被膜すなわち1回の結晶成長処理(図3のステップR2)で所定の膜厚となるまでダイヤモンドを結晶成長させた場合の被膜表面の電子顕微鏡写真で、図4の(b) は、本実施例のダイヤモンド被膜20と同様な微結晶ダイヤモンド被膜の表面の電子顕微鏡写真であり、ダイヤモンドの結晶粒径の違いが明らかである。   Incidentally, FIG. 4A shows a diamond film having a normal crystal grain size (coarse crystal), that is, diamond is grown to a predetermined film thickness by one crystal growth process (step R2 in FIG. 3). FIG. 4B is an electron micrograph of the surface of the microcrystalline diamond coating similar to the diamond coating 20 of this example, and the difference in the crystal grain size of the diamond is clear. It is.

図5は、図4と同じ通常の結晶粒径(粗結晶)のダイヤモンド被膜および微結晶ダイヤモンド被膜について、その表面粗さ(輪郭曲線)を調べた結果である。図5の(a) は通常の結晶粒径のダイヤモンド被膜の場合で、その最大高さRzは3.0μmであるのに対し、図5の(b) は微結晶ダイヤモンドで、その最大高さRzは0.7μmであり、極めて平滑な被膜表面が得られることが分かる。このことから、被削材の加工面についても、面粗さが大幅に向上するものと推定される。   FIG. 5 shows the results of examining the surface roughness (contour curve) of a diamond film and a microcrystalline diamond film having the same normal crystal grain size (coarse crystal) as in FIG. 5 (a) shows a case of a diamond film having a normal crystal grain size, and its maximum height Rz is 3.0 μm, while FIG. 5 (b) shows a microcrystalline diamond and its maximum height. Rz is 0.7 μm, and it can be seen that an extremely smooth coating surface is obtained. From this, it is estimated that the surface roughness of the work surface of the work material is greatly improved.

図6は、前記ダイヤモンド被膜20と同じダイヤモンド被膜をコーティングしたドリル(本発明品)と、ボロンドープ無しの微結晶ダイヤモンド被膜をコーティングした従来品と、一定のドーピング量(1.0原子%)でボロンドープした微結晶ダイヤモンド被膜をコーティングした比較品とを用いて、アルミ合金(ADC12)に対する切削加工の耐久性試験を行なった場合で、(a) は加工条件、(b) は試験結果である。この試験結果から明らかなように、3段目の本発明品においては、1段目のボロンドープ無しの従来品に比較して3倍程度の耐久性が得られるとともに、2段目の一定のドーピング量でボロンドープした比較品に対しても、約1.4倍の耐久性が得られる。なお、加工条件の「Minimum Quantity of Lubricant 」は最少量潤滑で、ここではミスト状の潤滑剤雰囲気での加工を意味する。   FIG. 6 shows a drill coated with the same diamond film as the diamond film 20 (product of the present invention), a conventional product coated with a microcrystalline diamond film without boron doping, and boron doped with a constant doping amount (1.0 atomic%). When the durability test of the cutting process on the aluminum alloy (ADC12) was performed using the comparative product coated with the microcrystalline diamond film, (a) shows the processing conditions, and (b) shows the test results. As is apparent from the test results, the third-stage product according to the present invention has a durability about three times that of the conventional product without boron doping at the first stage and constant doping at the second stage. About 1.4 times the durability is obtained even for the comparative product doped with boron in an amount. The processing condition “Minimum Quantity of Lubricant” is the minimum amount of lubrication, and here, means processing in a mist-like lubricant atmosphere.

図7は、ボロンドープ無しの通常の結晶粒径(粗結晶)のダイヤモンド被膜と、ボロンドープ無しの微結晶ダイヤモンド被膜と、前記ダイヤモンド被膜20と同じ条件で形成したドーピング量が異なる多層のボロンドープ微結晶ダイヤモンド被膜とを、それぞれコーティングしたピンを用いて、それ等の摩擦係数を調べた場合で、(a) は試験条件、(b) は試験結果である。この試験結果から明らかなように、多層ボロンドープ微結晶ダイヤモンド被膜によれば、粗結晶のダイヤモンド被膜は勿論、ボロンドープ無しの微結晶ダイヤモンド被膜に比べても、摩擦係数が小さくなる。これは、ダイヤモンド被膜の表面にボロンの酸化物の層が形成されるためと考えられる。   FIG. 7 shows a boron-doped microcrystalline diamond having a normal crystal grain size (coarse crystal) without boron doping, a microcrystalline diamond coating without boron doping, and a multilayer boron-doped microcrystalline diamond formed under the same conditions as the diamond coating 20. In the case where the friction coefficient was examined using pins coated with the coating film, (a) is the test condition, and (b) is the test result. As is clear from this test result, according to the multilayer boron-doped microcrystalline diamond film, the coefficient of friction is smaller than that of the coarse-crystal diamond film as well as the boron-doped microcrystalline diamond film. This is presumably because a boron oxide layer is formed on the surface of the diamond coating.

図8は、通常の結晶粒径(粗結晶)のダイヤモンド被膜について、0.5〜1.0原子%の一定のドーピング量でボロンをドーピングしたものとボロンドープ無しのものとを用意し、それぞれ被膜だけを母材から剥がして加熱するとともに、加熱前後の質量を測定し、酸化による質量損失(%)を調べた結果である。試験は、15℃/分の昇温速度で各試験温度(700℃、725℃、750℃、775℃、800℃)まで加熱するとともに、その試験温度に30分保持した後、常温まで自然冷却して質量の変化を測定した。図8から明らかなように、ボロンドープ無しでは、700℃程度から酸化が始まるのに対し、ボロンドープ有りの場合には775℃程度から酸化が始まり、75℃程度の差が認められた。なお、この試験結果は、一定のドーピング量でボロンをドーピングした通常の結晶粒径(粗結晶)のダイヤモンド被膜に関するものであるが、耐酸化性の違いはボロンドープの有無によるものと考えられるので、ドーピング量が異なる多層の粗結晶または微結晶のボロンドープダイヤモンド被膜についても同様の結果が得られるものと推定される。   FIG. 8 shows a diamond film having a normal crystal grain size (coarse crystal) prepared by doping boron with a constant doping amount of 0.5 to 1.0 atomic% and without boron doping. This is a result of measuring only the mass loss (%) due to oxidation by measuring the mass before and after the heating and peeling the substrate from the base material. The test was heated to each test temperature (700 ° C., 725 ° C., 750 ° C., 775 ° C., 800 ° C.) at a rate of temperature increase of 15 ° C./min, held at that test temperature for 30 minutes, and then naturally cooled to room temperature. The change in mass was measured. As is apparent from FIG. 8, the oxidation starts at about 700 ° C. without boron doping, whereas the oxidation starts at about 775 ° C. with boron doping, and a difference of about 75 ° C. is recognized. This test result relates to a diamond film having a normal crystal grain size (coarse crystal) doped with boron at a constant doping amount, but the difference in oxidation resistance is considered to be due to the presence or absence of boron doping. It is presumed that the same result can be obtained for a multilayered coarse crystal or microcrystal boron-doped diamond film having different doping amounts.

図9は、ボロンを0.5〜1.0原子%の一定のドーピング量でドーピングした通常の結晶粒径(粗結晶)のダイヤモンド被膜を20μmの膜厚でコーティングした2枚刃のスクエアエンドミルの外観写真で、このボロンドープ品と、ボロンドープ無しの通常の結晶粒径(粗結晶)のダイヤモンド被膜を20μmの膜厚でコーティングした非ボロンドープ品とを用いて、酸化試験を行なったところ、図10に示す結果が得られた。酸化試験は、15℃/分の昇温速度で750℃まで加熱するとともに、その750℃に30分保持した後、常温まで自然冷却して被膜の状態(消失した面積)を調べた。図10の左側のエンドミルは非ボロンドープ品で、酸化や工具母材との熱膨張差に起因する剥離などでダイヤモンド被膜が略100%消失しているのに対し、右側のボロンドープ品では、10%程度消失しているだけで、大部分が残っている。図10の黒い部分がダイヤモンド被膜で、ボロンドープ品では、先端の底刃部分においても17〜18μmの厚さでダイヤモンド被膜が残っていた。この場合も、一定のドーピング量でボロンをドーピングした通常の結晶粒径(粗結晶)のダイヤモンド被膜に関するものであるが、耐酸化性の違いはボロンドープの有無によるものと考えられるので、ドーピング量が異なる多層の粗結晶または微結晶のボロンドープダイヤモンド被膜についても同様の結果が得られるものと推定される。   FIG. 9 shows a two-blade square end mill in which a diamond film having a normal crystal grain size (coarse crystal) doped with boron at a constant doping amount of 0.5 to 1.0 atomic% is coated with a film thickness of 20 μm. In the appearance photograph, an oxidation test was performed using this boron-doped product and a non-boron-doped product in which a diamond film having a normal crystal grain size (coarse crystal) without boron doping was coated with a film thickness of 20 μm. The results shown are obtained. In the oxidation test, the sample was heated to 750 ° C. at a heating rate of 15 ° C./min, held at 750 ° C. for 30 minutes, and then naturally cooled to room temperature to examine the state of the coating (disappeared area). The end mill on the left side of FIG. 10 is a non-boron-doped product, and the diamond film disappears by about 100% due to oxidation or peeling due to a difference in thermal expansion from the tool base material, whereas the right-side boron-doped product has a 10% Most of it remains, just disappearing. The black portion in FIG. 10 is the diamond coating, and in the boron-doped product, the diamond coating remained at a thickness of 17 to 18 μm even at the bottom edge portion at the tip. This case also relates to a diamond film having a normal crystal grain size (coarse crystal) doped with boron at a constant doping amount, but the difference in oxidation resistance is considered to be due to the presence or absence of boron doping. It is presumed that similar results can be obtained with different layers of coarse or microcrystalline boron-doped diamond coatings.

なお、前記図8では、750℃においてボロンドープ品では被膜消失が0%で、非ボロンドープ品でも被膜消失は8〜10%程度であり、図10の試験結果に比べて被膜の消失量が少ないが、これは、図10では工具母材との熱膨張差に起因する剥離が影響しているものと考えられる。   In FIG. 8, at 750 ° C., the disappearance of the film is 0% for the boron-doped product, and the disappearance of the film is about 8 to 10% even for the non-boron-doped product. In FIG. 10, it is considered that peeling due to a difference in thermal expansion from the tool base material has an influence.

図11の(a) 、(b) は、前記図1とは異なる構造のボロンドープダイヤモンド被膜を説明する図で、それぞれ図1(b) に対応する断面図であり、図11(a) のボロンドープダイヤモンド被膜50は、結晶粒径が1μm以下の微結晶ダイヤモンドにて構成されているとともに、ボロンのドーピング量が例えば0.05原子%から10原子%まで連続的に漸増させられている場合である。具体的には、約1μmの厚さの微結晶ダイヤモンドの1層毎に例えば0.5原子%ずつドーピング量を増大させるのである。   FIGS. 11A and 11B are views for explaining a boron-doped diamond film having a structure different from that shown in FIG. 1, and are cross-sectional views corresponding to FIG. 1B, respectively. The boron-doped diamond coating 50 is made of microcrystalline diamond having a crystal grain size of 1 μm or less, and the boron doping amount is gradually increased from 0.05 atomic percent to 10 atomic percent, for example. It is. Specifically, the doping amount is increased by, for example, 0.5 atomic% for each layer of microcrystalline diamond having a thickness of about 1 μm.

図11の(b) のボロンドープダイヤモンド被膜60は、結晶粒径が1μm以下の微結晶ダイヤモンドにて構成されているとともに、ボロンのドーピング量が0.05〜2.0原子%の範囲内で例えば1.0原子%程度の低ドーピング層62と、ボロンのドーピング量が1.0〜10原子%の範囲内で且つ低ドーピング層62よりも多い、例えば5.0原子%程度の高ドーピング層64とから成る2層構造を成しているものである。また、低ドーピング層62の厚さは12〜15μmの範囲内で、高ドーピング層64の厚さは2〜4μmの範囲内である。   The boron-doped diamond film 60 shown in FIG. 11B is composed of microcrystalline diamond having a crystal grain size of 1 μm or less, and the boron doping amount is in the range of 0.05 to 2.0 atomic%. For example, a low doping layer 62 of about 1.0 atomic% and a high doping layer having a boron doping amount in the range of 1.0 to 10 atomic% and larger than the low doping layer 62, for example, about 5.0 atomic%. A two-layer structure consisting of 64 is formed. The thickness of the low doping layer 62 is in the range of 12 to 15 μm, and the thickness of the high doping layer 64 is in the range of 2 to 4 μm.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更,改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, these are one embodiment to the last, and this invention is implemented in the aspect which added the various change and improvement based on the knowledge of those skilled in the art. be able to.

本発明の一実施例であるエンドミルを示す図で、(a) は軸心と直角方向から見た正面図、(b) は刃部の表面付近の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the end mill which is one Example of this invention, (a) is the front view seen from the direction orthogonal to an axial center, (b) is sectional drawing of the surface vicinity of a blade part. ダイヤモンド被膜をコーティングするマイクロ波プラズマCVD装置の一例を説明する概略構成図である。It is a schematic block diagram explaining an example of the microwave plasma CVD apparatus which coats a diamond film. 図2の装置を用いて微結晶ダイヤモンド被膜をコーティングする際の手順を説明するフローチャートである。It is a flowchart explaining the procedure at the time of coating a microcrystal diamond film using the apparatus of FIG. 通常の結晶粒径(粗結晶)のダイヤモンド被膜の表面の電子顕微鏡写真と、微結晶ダイヤモンド被膜の表面の電子顕微鏡写真とを比較して示す図である。It is a figure which compares and shows the electron micrograph of the surface of the diamond film of a normal crystal grain size (coarse crystal), and the electron micrograph of the surface of a microcrystal diamond film. 通常の結晶粒径(粗結晶)のダイヤモンド被膜の面粗さ(輪郭曲線)と、微結晶ダイヤモンド被膜の面粗さ(輪郭曲線)とを比較して示す図である。It is a figure which compares and shows the surface roughness (contour curve) of the diamond film of a normal crystal grain diameter (coarse crystal), and the surface roughness (contour curve) of a microcrystal diamond film. ボロンドープ無しの微結晶ダイヤモンド被膜と、一定のドーピング量でボロンをドーピングした微結晶ダイヤモンド被膜と、ボロンのドーピング量が異なる多層の微結晶ダイヤモンド被膜とについて、その耐久性の違いを調べた結果を説明する図で、(a) は加工条件、(b) は試験結果である。Explains the results of investigating the difference in durability between a microcrystalline diamond coating without boron doping, a microcrystalline diamond coating doped with boron at a constant doping amount, and a multi-layered microcrystalline diamond coating with different boron doping amounts In this figure, (a) shows the processing conditions and (b) shows the test results. ボロンドープ無しの粗結晶ダイヤモンド被膜と、ボロンドープ無しの微結晶ダイヤモンド被膜と、ボロンのドーピング量が異なる多層の微結晶ダイヤモンド被膜とについて、その摩擦係数の違いを調べた結果を説明する図で、(a) は試験方法、(b) は試験結果である。It is a figure explaining the result of investigating the difference in the coefficient of friction of a coarse crystal diamond film without boron doping, a microcrystalline diamond film without boron doping, and a multilayer microcrystalline diamond film with different boron doping amounts. ) Is the test method and (b) is the test result. ボロンドープの有無によるダイヤモンド被膜の酸化の違い(質量の変化割合)を複数の試験温度で調べた結果を示す図である。It is a figure which shows the result of having investigated the difference (change ratio of mass) of the diamond film by the presence or absence of boron dope at several test temperature. ボロンドープダイヤモンド被膜がコーティングされた2枚刃のスクエアエンドミルの外観写真を示す図である。It is a figure which shows the external appearance photograph of the 2 end blade square end mill coated with the boron dope diamond film. 図9の工具に酸化試験を行なった後の外観写真(右側)を、ボロンドープ無しのダイヤモンド被膜をコーティングした工具(左側)と比較して示す図である。It is a figure which shows the external appearance photograph (right side) after performing the oxidation test to the tool of FIG. 9 compared with the tool (left side) which coated the diamond film without boron dope. ボロンドープダイヤモンド被膜の他の態様を説明する図で、図1の(b) に対応する表面付近の断面図である。It is a figure explaining the other aspect of a boron dope diamond film, and is sectional drawing of the surface vicinity corresponding to (b) of FIG.

符号の説明Explanation of symbols

10:エンドミル(ダイヤモンド被覆加工工具) 12:工具母材 14:刃部(加工部) 20、50、60:ボロンドープダイヤモンド被膜 22、62:低ドーピング層 24、64:高ドーピング層   10: End mill (diamond coating tool) 12: Tool base material 14: Blade part (machined part) 20, 50, 60: Boron-doped diamond coating 22, 62: Low doping layer 24, 64: High doping layer

Claims (4)

所定の部材の表面にコーティングされるダイヤモンド被膜であって、
ボロンがドーピングされているとともに、該ボロンのドーピング量は膜厚方向において変化しており、被膜表面では多くされている
ことを特徴とするボロンドープダイヤモンド被膜。
A diamond coating coated on the surface of a given member,
A boron-doped diamond film characterized in that boron is doped, and the boron doping amount changes in the film thickness direction and is increased on the film surface.
前記ボロンのドーピング量が0.05〜2.0原子%の範囲内の低ドーピング層と、該ボロンのドーピング量が1.0〜10原子%の範囲内で且つ前記低ドーピング層よりも多い高ドーピング層とを有する
ことを特徴とする請求項1に記載のボロンドープダイヤモンド被膜。
A low doping layer in which the boron doping amount is in the range of 0.05 to 2.0 atomic%, and a boron doping amount in the range of 1.0 to 10 atomic% and higher than the low doping layer. The boron-doped diamond film according to claim 1, further comprising a doping layer.
ダイヤモンドの結晶粒径が2μm以下の微結晶ダイヤモンドにて構成されている
ことを特徴とする請求項1または2に記載のポロンドープダイヤモンド被膜。
The poron-doped diamond film according to claim 1 or 2, wherein the crystal grain size of the diamond is composed of microcrystalline diamond having a crystal grain size of 2 µm or less.
所定の加工を行なう加工部の表面に、請求項1〜3の何れか1項に記載のボロンドープダイヤモンド被膜がコーティングされていることを特徴とするダイヤモンド被覆加工工具。   A diamond-coated machining tool according to any one of claims 1 to 3, wherein the boron-doped diamond coating according to any one of claims 1 to 3 is coated on a surface of a machining portion that performs predetermined machining.
JP2004349151A 2004-12-01 2004-12-01 Boron-doped diamond film, and diamond-coated cutting tool Pending JP2006152423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349151A JP2006152423A (en) 2004-12-01 2004-12-01 Boron-doped diamond film, and diamond-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349151A JP2006152423A (en) 2004-12-01 2004-12-01 Boron-doped diamond film, and diamond-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2006152423A true JP2006152423A (en) 2006-06-15

Family

ID=36631055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349151A Pending JP2006152423A (en) 2004-12-01 2004-12-01 Boron-doped diamond film, and diamond-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2006152423A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025384A (en) * 2009-07-28 2011-02-10 Kobe Steel Ltd Cutting method for difficult-to-cut material
CN105563665A (en) * 2015-12-14 2016-05-11 广东工业大学 Diamond coating cutter, and preparation method and application thereof in high speed graphite processing
WO2018131166A1 (en) 2017-01-16 2018-07-19 オーエスジー株式会社 Tool
JP2019063958A (en) * 2017-10-03 2019-04-25 オーエスジー株式会社 High hardness hard carbon composite film coated tool
WO2021075358A1 (en) 2019-10-18 2021-04-22 住友電工ハードメタル株式会社 Diamond-coated tool
US11739419B2 (en) * 2017-04-27 2023-08-29 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Highly adhesive CVD grown boron doped diamond graded layer on WC-Co

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079406A (en) * 2000-06-29 2002-03-19 Osg Corp Diamond-coated cutting tool and method of manufacturing it
JP2004231983A (en) * 2003-01-28 2004-08-19 Sumitomo Electric Ind Ltd Diamond coated electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079406A (en) * 2000-06-29 2002-03-19 Osg Corp Diamond-coated cutting tool and method of manufacturing it
JP2004231983A (en) * 2003-01-28 2004-08-19 Sumitomo Electric Ind Ltd Diamond coated electrode

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025384A (en) * 2009-07-28 2011-02-10 Kobe Steel Ltd Cutting method for difficult-to-cut material
CN105563665A (en) * 2015-12-14 2016-05-11 广东工业大学 Diamond coating cutter, and preparation method and application thereof in high speed graphite processing
KR102205933B1 (en) 2017-01-16 2021-01-20 오에스지 가부시키가이샤 tool
US11292066B2 (en) 2017-01-16 2022-04-05 Osg Corporation Tool having a boron doped diamond coating
KR20190077475A (en) 2017-01-16 2019-07-03 오에스지 가부시키가이샤 tool
CN110072658A (en) * 2017-01-16 2019-07-30 Osg株式会社 Tool
JPWO2018131166A1 (en) * 2017-01-16 2019-11-07 オーエスジー株式会社 tool
EP3542938A4 (en) * 2017-01-16 2020-06-03 OSG Corporation Tool
WO2018131166A1 (en) 2017-01-16 2018-07-19 オーエスジー株式会社 Tool
US11739419B2 (en) * 2017-04-27 2023-08-29 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Highly adhesive CVD grown boron doped diamond graded layer on WC-Co
JP2019063958A (en) * 2017-10-03 2019-04-25 オーエスジー株式会社 High hardness hard carbon composite film coated tool
WO2021075358A1 (en) 2019-10-18 2021-04-22 住友電工ハードメタル株式会社 Diamond-coated tool
CN114555857A (en) * 2019-10-18 2022-05-27 住友电工硬质合金株式会社 Diamond coated tool
JP7098856B2 (en) 2019-10-18 2022-07-12 住友電工ハードメタル株式会社 Diamond coated tool
JPWO2021075358A1 (en) * 2019-10-18 2021-11-25 住友電工ハードメタル株式会社 Diamond coated tool
CN114555857B (en) * 2019-10-18 2024-01-09 住友电工硬质合金株式会社 Diamond cladding tool

Similar Documents

Publication Publication Date Title
JP3590579B2 (en) Diamond coated member and method of manufacturing the same
JP2006152424A (en) Hard film, and hard film-coated cutting tool
JP5008984B2 (en) Surface-coated cutting tool and method for manufacturing surface-coated cutting tool
JP5098726B2 (en) Coated tool and method for producing coated tool
JP5257750B2 (en) Surface coated cutting tool
JP3477162B2 (en) Diamond coated tool and method of manufacturing the same
KR20140092310A (en) Copper foil for graphene production and production method therefor, and graphene production method
JPWO2018174139A1 (en) Diamond coated cemented carbide cutting tool
JPWO2008026700A1 (en) Cutting tool, manufacturing method thereof and cutting method
JP2009220238A (en) Amorphous carbon coated tool
JP2011230286A (en) Surface-coated cutting tool
US20060112648A1 (en) Boron-doped diamond coating and diamond-coated tool
Srinivasan et al. On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy
JP5234357B2 (en) Wear-resistant tool material with excellent lubricity
JP6614446B2 (en) Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer
JP5075652B2 (en) Diamond coated cutting insert and cutting tool
JP2006152423A (en) Boron-doped diamond film, and diamond-coated cutting tool
WO2013129321A1 (en) Covered rotary tool and manufacturing method therefor
JP2005262389A (en) Surface-coated cutting tool for processing titanium alloy
JP2018024038A (en) Surface coated cutting tool excellent in deposition chipping resistance and peeling resistance
JP4975682B2 (en) Method for manufacturing coated cutting tool
JP2006152422A (en) Boron-doped diamond film, and diamond-coated cutting tool
JP6040698B2 (en) Diamond-coated cemented carbide drill
JP5327534B2 (en) Surface coated cutting tool with excellent chipping resistance and peeling resistance of hard coating layer
US20200406365A1 (en) Cutting tool and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070719

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Effective date: 20100202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608