JP2006143629A - Method for preparing glycidyl methacrylate - Google Patents

Method for preparing glycidyl methacrylate Download PDF

Info

Publication number
JP2006143629A
JP2006143629A JP2004334212A JP2004334212A JP2006143629A JP 2006143629 A JP2006143629 A JP 2006143629A JP 2004334212 A JP2004334212 A JP 2004334212A JP 2004334212 A JP2004334212 A JP 2004334212A JP 2006143629 A JP2006143629 A JP 2006143629A
Authority
JP
Japan
Prior art keywords
gma
epch
recovered
goh
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004334212A
Other languages
Japanese (ja)
Other versions
JP4656294B2 (en
Inventor
Hiromasa Kato
啓応 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2004334212A priority Critical patent/JP4656294B2/en
Publication of JP2006143629A publication Critical patent/JP2006143629A/en
Application granted granted Critical
Publication of JP4656294B2 publication Critical patent/JP4656294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved method for preparing glycidyl methacrylate in a high yield even by recycling the epichlorhidrin recovered by distillation for use in the method for preparing glycidyl methacrylate from an alkali metal salt of methacrylic acid and excess epichlorohidrin. <P>SOLUTION: By rendering each concentration of glycidol and glycidyl methacrylate present in the epichlorohidrin recovered by distillation 0.1 wt.% or less, glycidyl methacrylate can be produced in a high yield while reusing the recovered epichlorohydrin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はメタクリル酸(以下、MAAと記す)とエピクロロヒドリン(以下、EpCHと記す)を主原料とする生産性に優れたメタクリル酸グリシジル(以下、GMAと記す)の製造方法に関する。さらに、詳しくは、MAAとアルカリ金属物質から得られるMAAのアルカリ金属塩と、該アルカリ金属塩に対して反応量を上回る過剰量のEpCHを用い、触媒である第4級アンモニウム塩の存在下反応させてGMAを合成した後、該反応液から未反応の余剰のEpCHを蒸留回収し、反応原料として再使用するGMAの製造方法において、蒸留回収したEpCH中に含まれる特定の不純物質の量を、特定濃度以下に低減させることを特徴とする、EpCHの利用効率及びGMAの収率ともに優れた、GMAの製造方法に関する。GMAは耐候性塗料や各種樹脂の原料として大変有用である。   The present invention relates to a method for producing glycidyl methacrylate (hereinafter referred to as GMA) excellent in productivity, which uses methacrylic acid (hereinafter referred to as MAA) and epichlorohydrin (hereinafter referred to as EpCH) as main raw materials. More specifically, the reaction is carried out in the presence of a quaternary ammonium salt as a catalyst using an alkali metal salt of MAA obtained from MAA and an alkali metal substance and an excess amount of EpCH exceeding the reaction amount with respect to the alkali metal salt. In the method for producing GMA in which unreacted excess EpCH is recovered by distillation from the reaction solution and reused as a reaction raw material, the amount of specific impurities contained in the distilled and recovered EpCH is determined. The present invention relates to a method for producing GMA, which is characterized by being reduced to a specific concentration or less and excellent in EpCH utilization efficiency and GMA yield. GMA is very useful as a raw material for weather-resistant paints and various resins.

MAAとEpCHからGMAを合成する方法のうち、MAAとアルカリ金属物質、例えば、アルカリ金属の炭酸塩や炭酸水素塩を用いてMAAのアルカリ金属塩を得、次いで、第4級アンモニウム塩の存在下にEpCHと反応させてGMAを製造する方法が工業的に主に用いられている(例えば、特許文献1参照)。
この合成法では収率を高めるため、MAAのアルカリ金属塩に対して反応量を上回る過剰量のEpCHを用いて反応させる方法がとられているが、未反応の余剰なEpCHを廃棄すればコスト面或いは環境面に及ぼす影響も大きいことから、蒸留により回収し次回の反応原料としてリサイクル使用するのが一般的である。
しかしながら、このような回収EpCHを再使用する方法は、原料EpCHの利用効率の面では優れるものの、未使用の新しいEpCHのみを使用した場合に比較して、GMA
収率が低値に推移するという問題点を抱えていた。
Among the methods for synthesizing GMA from MAA and EpCH, MAA and an alkali metal material such as alkali metal carbonate or bicarbonate are used to obtain an alkali metal salt of MAA, and then in the presence of a quaternary ammonium salt. A method of producing GMA by reacting with EpCH is industrially mainly used (see, for example, Patent Document 1).
In this synthesis method, in order to increase the yield, a method of reacting with an alkali metal salt of MAA using an excess amount of EpCH exceeding the reaction amount is used, but if unreacted excess EpCH is discarded, the cost is reduced. Since the influence on the surface or the environment is great, it is generally recovered by distillation and recycled as the next reaction raw material.
However, such a method of reusing the recovered EpCH is excellent in terms of the utilization efficiency of the raw material EpCH, but compared with a case where only unused new EpCH is used, GMA.
The problem was that the yield was low.

このような問題点を改善する方法として、回収EpCH中に含まれる不純物質に着目した検討がなされている(例えば、特許文献2参照)。この検討によれば、GMA合成反応液に副生成物として含まれるグリシドール(以下、GOHと記す)が回収EpCHに混入し、GMA収率の低下を引き起こすこと、またGOHの除去法として、GMA合成反応液に含まれるスラリー状の副生塩を水洗によって除いた後、さらに、GOHを除くため繰り返し水洗を行い、しかる後に蒸留する方法が開示されている。
しかしながら、GOHを除くため水洗を平均5回程度と繰り返し行うこの方法は、水洗、分液、排水の繰り返し作業を多数回にわたって行う必要があるため多大な労力を要し、しかも、水洗量が増えるに従って未反応のEpCHや生成物であるGMAのロスも増えてしまうという問題点を有している。これに対して、GOHの水洗除去を向流洗浄で行う方法も示されているが、副生塩水洗後さらに水洗しなければならない点では変わっておらず、蒸留に先立って新たな水洗工程を必要とする点で煩雑さを伴う。
また、この水洗によって除かれる不純物質はGOHのような水溶性を有する物質に限られており、この方法によって回収されたEpCHを用いた場合のGMA収率は平均90%程度と満足できる状況には至っていない。
As a method for improving such problems, studies have been made focusing on the impurity contained in the recovered EpCH (see, for example, Patent Document 2). According to this study, glycidol (hereinafter referred to as GOH) contained as a by-product in the GMA synthesis reaction liquid is mixed in the recovered EpCH, causing a decrease in the yield of GMA. A method is disclosed in which after the slurry-like by-product salt contained in the reaction solution is removed by water washing, further, water washing is repeated to remove GOH, and then distillation is performed.
However, this method of repeating washing with an average of about 5 times in order to remove GOH requires a lot of labor since it is necessary to repeat washing, separation and drainage many times, and the amount of washing is increased. Accordingly, there is a problem that the loss of unreacted EpCH and the product GMA increases. On the other hand, although the method of performing water washing removal of GOH by countercurrent washing is also shown, it has not changed in that it must be washed with water after by-product salt water washing, and a new water washing process is required prior to distillation. It is complicated in terms of need.
In addition, the impurities removed by this water washing are limited to substances having water solubility such as GOH, and the GMA yield when using EpCH recovered by this method is satisfactory with an average of about 90%. Has not reached.

特開昭55−17307号公報JP-A-55-17307 特開昭55−85575号公報JP 55-85575 A

本発明は、上記の従来技術における問題点を解決し、回収したEpCHをリサイクル使用しても高収率でGMAを製造できる工業的に優れた製法を提供することを目的とする。   The object of the present invention is to solve the above-mentioned problems in the prior art and to provide an industrially excellent production method capable of producing GMA in a high yield even if the recovered EpCH is recycled.

本発明者は上記課題を解決すべく鋭意検討した結果、回収EpCHをリサイクル使用した場合のGMA収率の低下原因が、GOHのみならず、回収EpCH中に含まれるGMAにもあること、すなわち、GOH、GMAを含む回収EpCHを合成原料に使用すると、GOH、GMAを実質的に含まない回収EpCHを使用した場合と比較してグリセロールモノメタクリレートやグリセロールジメタクリレートなどの副生物が多量に生成し、GMA収率が低下することを突き止めた。また、その対策として、蒸留回収したEpCH中に含まれるGOHとGMAの濃度を、何れも0.1wt%以下に抑えることで、グリセロールモノメタクリレートやグリセロールジメタクリレートなどの副生量が低減され、その結果、飛躍的にGMA収率が向上することを見出し本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have found that the cause of the decrease in the yield of GMA when recycled EpCH is recycled is not only GOH but also GMA contained in the recovered EpCH, When recovered EpCH containing GOH and GMA is used as a synthetic raw material, a large amount of by-products such as glycerol monomethacrylate and glycerol dimethacrylate are generated compared to the case of using recovered EpCH substantially free of GOH and GMA. It was found that the GMA yield decreased. Moreover, as a countermeasure, by suppressing the concentrations of GOH and GMA contained in EpCH collected by distillation to 0.1 wt% or less, the amount of by-products such as glycerol monomethacrylate and glycerol dimethacrylate is reduced. As a result, the inventors have found that the GMA yield is dramatically improved and completed the present invention.

すなわち、本発明の方法は、MAAとアルカリ金属物質から得られるMAAのアルカリ金属塩を、触媒である第4級アンモニウム塩の存在下、MAAのアルカリ金属塩に対して反応量を上回る過剰量のEpCHを用いてGMAを合成した後、未反応のEpCHを蒸留回収して当該合成反応で再使用するGMA製造方法において、蒸留回収したEpCH中に含まれるGOHとGMAの濃度を何れも0.1wt%以下にすることを特徴とする、下記の(1)〜(2)に示す収率的に極めて優れたGMAの製造方法に関する。
(1)MAAとアルカリ金属物質から得られるMAAのアルカリ金属塩を、第4級アンモニウム塩の存在下、該アルカリ金属塩に対して反応量を上回る過剰量のEpCHと反応させてGMAを合成した後、未反応のEpCHを蒸留回収し、当該合成反応で再使用するGMAの製造方法において、蒸留回収したEpCH中に含まれるGOHとGMAの濃度を何れも0.1wt%以下にすることを特徴とする、GMAの製造方法。
(2)未反応のEpCHを蒸留回収する際、水を共沸剤として使用する、(1)記載のGMAの製造方法。
That is, in the method of the present invention, an excess amount of the alkali metal salt of MAA obtained from MAA and an alkali metal substance exceeds the reaction amount with respect to the alkali metal salt of MAA in the presence of a quaternary ammonium salt as a catalyst. In the GMA production method in which GMA is synthesized using EpCH and then unreacted EpCH is recovered by distillation and reused in the synthesis reaction, the concentrations of GOH and GMA contained in the distilled and recovered EpCH are both 0.1 wt% It is related with the manufacturing method of GMA excellent in the yield shown to following (1)-(2) characterized by making it% or less.
(1) GMA was synthesized by reacting an alkali metal salt of MAA obtained from MAA and an alkali metal substance with an excess amount of EpCH exceeding the reaction amount with respect to the alkali metal salt in the presence of a quaternary ammonium salt. Thereafter, unreacted EpCH is recovered by distillation, and in the GMA production method to be reused in the synthesis reaction, the concentration of GOH and GMA contained in the distilled and recovered EpCH is both 0.1 wt% or less. The manufacturing method of GMA.
(2) The method for producing GMA according to (1), wherein water is used as an azeotropic agent when unreacted EpCH is recovered by distillation.

MAAとアルカリ金属物質、例えばアルカリ金属の炭酸塩や炭酸水素塩等からMAAのアルカリ金属塩を得、次いで第4級アンモニウム塩の存在下、MAAのアルカリ金属塩に対して過剰量のEpCHを用いてGMAを合成した後、未反応の余剰のEpCHを合成液から蒸留回収するに際し、蒸留回収したEpCH中に含まれるGOHとGMAの濃度を何れも0.1wt%以下とする本発明の方法を用いることによって、回収EpCHを合成系にリサイクルしながら、高い収率でGMAを製造することが可能となる。   An MAA alkali metal salt is obtained from MAA and an alkali metal material such as an alkali metal carbonate or hydrogen carbonate, and then an excess of EpCH is used with respect to the MAA alkali metal salt in the presence of a quaternary ammonium salt. After synthesizing GMA, when recovering unreacted excess EpCH from the synthesis solution by distillation, the method of the present invention is used to reduce the concentration of GOH and GMA contained in the distilled and recovered EpCH to 0.1 wt% or less. By using it, it becomes possible to produce GMA in a high yield while recycling the recovered EpCH to the synthesis system.

以下、本発明をさらに詳細に説明する。MAAとアルカリ金属物質からMAAのアルカリ金属塩を得るために使用されるアルカリ金属物質は特に限定されないが、例えば水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム等のナトリウム化合物、或いは水酸化カリウム、炭酸カリウム、炭酸水素カリウム等のカリウム化合物等が例示される。アルカリ金属物質はMAAより過剰に使用され、その使用量はMAAの1〜10倍当量、好ましくは1〜2倍当量である。MAAをアルカリ金属塩となすこの工程は無溶媒で行っても良いが溶媒や分散媒(以下、媒体と記す)を使用しても良く、次工程を考慮するとEpCH存在下で行うのが好ましい。   Hereinafter, the present invention will be described in more detail. The alkali metal material used to obtain the alkali metal salt of MAA from MAA and the alkali metal material is not particularly limited. For example, sodium compounds such as sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, sodium phosphate, or the like Examples thereof include potassium compounds such as potassium, potassium carbonate and potassium hydrogen carbonate. The alkali metal substance is used in excess of MAA, and the amount used is 1 to 10 times equivalent, preferably 1 to 2 times equivalent to MAA. This step of converting MAA into an alkali metal salt may be performed in the absence of a solvent, but a solvent or a dispersion medium (hereinafter referred to as a medium) may be used, and considering the next step, it is preferably performed in the presence of EpCH.

MAAとアルカリ金属物質からMAAのアルカリ金属塩を得る際の温度や圧力は特に限定されない。また、媒体とMAA存在下にアルカリ金属物質を添加しても良いし、逆に、媒体とアルカリ金属物質存在下にMAAを添加しても良い。   There are no particular limitations on the temperature or pressure at which an alkali metal salt of MAA is obtained from MAA and an alkali metal substance. Further, the alkali metal substance may be added in the presence of the medium and the MAA, and conversely, MAA may be added in the presence of the medium and the alkali metal substance.

第4級アンモニウム塩については公知の化合物が使用でき、例えばテトラメチルアンモニウムクロライド、トリメチルエチルアンモニウムクロライド、ジメチルジエチルアンモニウムクロライド、メチルトリエチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、トリメチルエチルアンモニウムブロマイド、ジメチルジエチルアンモニウムブロマイド、メチルトリエチルアンモニウムブロマイド、テトラメチルアンモニウムアイオダイド、トリメチルエチルアンモニウムアイオダイド、ジメチルジエチルアンモニウムウアイオダイド、メチルトリエチルアンモニウムアイオダイド等が例示される。第4級アンモニウム塩の使用量については特に限定されない。   Known compounds can be used for the quaternary ammonium salt, such as tetramethylammonium chloride, trimethylethylammonium chloride, dimethyldiethylammonium chloride, methyltriethylammonium chloride, tetramethylammonium bromide, trimethylethylammonium bromide, dimethyldiethylammonium bromide, Examples thereof include methyltriethylammonium bromide, tetramethylammonium iodide, trimethylethylammonium iodide, dimethyldiethylammonium iodide, and methyltriethylammonium iodide. The amount of quaternary ammonium salt used is not particularly limited.

MAAのアルカリ金属塩と反応させるEpCHの量は、MAAのアルカリ金属塩の1〜10倍モル、好ましくMAAのアルカリ金属塩との反応量を上回る3〜8倍モルが望ましい。EpCHが少ないと副生成物が増加してGMA収率が低下し、多すぎると釜効率が下がって非経済的である。   The amount of EpCH to be reacted with the alkali metal salt of MAA is preferably 1 to 10 times mol of the alkali metal salt of MAA, preferably 3 to 8 times mol exceeding the amount of reaction with the alkali metal salt of MAA. When there is little EpCH, a by-product will increase and GMA yield will fall, and when too much, pot efficiency will fall and it is uneconomical.

第4級アンモニウム塩の存在下にMAAのアルカリ金属塩とEpCHを反応させる際の温度や圧力は特に限定されない。通常は常圧、EpCHの沸点である120℃前後で反応を行い、MAAのアルカリ金属塩がほとんど消費された時点で反応終了とする。   The temperature and pressure when the alkali metal salt of MAA and EpCH are reacted in the presence of a quaternary ammonium salt are not particularly limited. Usually, the reaction is carried out at about 120 ° C., which is the boiling point of EpCH at normal pressure, and the reaction is completed when the alkali metal salt of MAA is almost consumed.

反応終了後、反応液には主生成物であるGMAの他にGOHのような副生成物及び未反応のEpCHが含まれている。また、生成したGMAとほぼ同当量のアルカリ金属塩化物がスラリーとして含まれる。このスラリーは、濾過や遠心分離、または水洗することによって除去することができる。   After completion of the reaction, the reaction solution contains by-products such as GOH and unreacted EpCH in addition to GMA as the main product. Further, an alkali metal chloride equivalent to the produced GMA is contained as a slurry. This slurry can be removed by filtration, centrifugation, or washing with water.

GMA合成反応液からスラリー除去したものを母液とし(以下、GMA合成母液と記す)、蒸留操作によってまず未反応のEpCHを回収し、次いでGMAを回収する。蒸留は通常減圧下で行われ、回収されたEpCHは反応原料としてリサイクルされ、GMAは製品となる。上記した各工程において、適宜重合禁止剤を併用することが好ましい。重合禁止剤としては公知の化合物が使用でき、例えばp−メトキシフェノール、4−ヒドロキシ−2,2,6,6,−テトラメチルピペリジン−1−オキシル、フェノチアジン等が例示される。   The slurry removed from the GMA synthesis reaction solution is used as a mother liquor (hereinafter referred to as GMA synthesis mother liquor), and unreacted EpCH is first recovered by a distillation operation, and then GMA is recovered. Distillation is usually performed under reduced pressure, and the recovered EpCH is recycled as a reaction raw material, and GMA becomes a product. In each step described above, it is preferable to use a polymerization inhibitor in combination as appropriate. As the polymerization inhibitor, known compounds can be used, and examples thereof include p-methoxyphenol, 4-hydroxy-2,2,6,6, -tetramethylpiperidine-1-oxyl, phenothiazine and the like.

反応原料としてリサイクルする回収EpCH中に含まれる不純物質のうち、GOH及びGMA濃度は、共に0.1wt%以下にすることが必要であり、0.01wt%以下にすることが望ましい。なぜなら、GOH、GMA濃度が何れか一方でも0.1wt%を超えると、回収EpCHを反応原料として再使用した場合、反応副生成物濃度が増加し、GMA合成収率が著しく低下するからである。   Of the impurities contained in the recovered EpCH recycled as the reaction raw material, both the GOH and GMA concentrations must be 0.1 wt% or less, and preferably 0.01 wt% or less. This is because when either the GOH or GMA concentration exceeds 0.1 wt%, when the recovered EpCH is reused as a reaction raw material, the reaction by-product concentration increases and the GMA synthesis yield decreases significantly. .

GMA合成母液から、GOHとGMA濃度が共に0.1wt%以下となるEpCHを蒸留回収する方法としては、下記(1)〜(3)に示す蒸留方法が例示できる。
(1)精留塔でGMA合成母液を連続式蒸留する方法
精留塔の濃縮部6〜10段、回収部3〜5段とした場合、塔頂圧は3〜10kPa、還流比は0.5〜3程度が適当である。これよりも塔頂圧が低いと留出液のコンデンサー負荷が大きくなり、塔頂圧が高いと缶出液の温度が高くなって重合の危険が増す。
(2)精留塔でGMA合成母液を回分式蒸留する方法
精留塔は5〜10段程度であり、塔頂圧は一定でも良いし、蒸留開始時から徐々に減圧しながら行っても良いが、EpCH回収終了時点での塔頂圧は通常3〜10kPaとすることが好ましい。還流比については通常の回分式蒸留と同様、EpCH留出量が増加して釜液中のEpCH濃度が減少するに従い、徐々に還流比を上げていくのが好ましい。
(3)回分式単蒸留でGMA合成母液から粗EpCHを得、精留塔で粗EpCHを精製する方法
GMA合成母液の回分式単蒸留条件については、(2)と同様の塔頂圧でよい。通常、得られた粗EpCHには0.5〜2wt%程度のGOHと1〜5wt%のGMAが含まれるので、さらに、この粗EpCHを精留塔にて精製する必要がある。精留は連続式、回分式何れでもよいが、一般に連続式の方が効率的で都合がよい。
これらの蒸留方法を適宜選択して、蒸留回収後のEpCH中に含まれるGOHとGMAの濃度が共に0.1wt%以下となるように蒸留すればよいが、単蒸留と精留を組み合わせた(3)の蒸留方法が、工程数は増えるものの(1)(2)の精留塔のみからなる方法に比較して重合の危険性が少なく簡便である。
Examples of the method for distilling and recovering EpCH having both GOH and GMA concentrations of 0.1 wt% or less from the GMA synthetic mother liquor include the distillation methods shown in the following (1) to (3).
(1) Method of continuous distillation of GMA synthetic mother liquor in rectification column When the rectification column has 6 to 10 concentrating units and 3 to 5 recovery units, the column top pressure is 3 to 10 kPa, and the reflux ratio is 0. About 5 to 3 is appropriate. If the column top pressure is lower than this, the condenser load of the distillate increases, and if the column top pressure is high, the temperature of the bottoms increases and the risk of polymerization increases.
(2) Method of batch-distilling the GMA synthetic mother liquor in the rectification column The rectification column has about 5 to 10 stages, the column top pressure may be constant, or may be performed while gradually reducing the pressure from the start of distillation. However, the tower top pressure at the end of EpCH recovery is usually preferably 3 to 10 kPa. Regarding the reflux ratio, it is preferable to gradually increase the reflux ratio as the EpCH distillate amount increases and the EpCH concentration in the kettle decreases, as in the case of ordinary batch distillation.
(3) Method of obtaining crude EpCH from GMA synthetic mother liquor by batch simple distillation and purifying crude EpCH with a rectifying column As for the batch simple distillation conditions of GMA synthetic mother liquor, the same top pressure as in (2) may be used. . Usually, since the obtained crude EpCH contains about 0.5 to 2 wt% of GOH and 1 to 5 wt% of GMA, it is necessary to further purify the crude EpCH in a rectifying column. The rectification may be either a continuous type or a batch type, but the continuous type is generally more efficient and convenient.
These distillation methods may be selected as appropriate, and distillation may be performed so that the concentrations of GOH and GMA contained in EpCH after distillation recovery are both 0.1 wt% or less, but simple distillation and rectification are combined ( Although the distillation method of 3) increases the number of steps, it is simpler with less risk of polymerization as compared with the method consisting only of the rectification column of (1) and (2).

上記に例示した蒸留方法において、水を共沸剤として使用するのが好ましい。なぜなら、水を共沸剤として用いることでEpCHと不純物質であるGOHやGMAとの分離がし易くなり、蒸留塔段数や還流比を小さくできるからである。このときの水の使用量は、留出するEpCHに対して20〜30wt%が適当である。また、何れの蒸留方法においても、前述したような重合禁止剤を併用することが好ましい。 In the distillation method exemplified above, it is preferable to use water as an azeotropic agent. This is because the use of water as an azeotropic agent facilitates separation of EpCH from impurities such as GOH and GMA, and can reduce the number of distillation column stages and the reflux ratio. The amount of water used at this time is suitably 20 to 30 wt% with respect to the distilled EpCH. In any distillation method, it is preferable to use a polymerization inhibitor as described above.

以下、本発明を実施例及び比較例に基づき説明するが、本発明はこれらの例に限定されるものではない。すなわち、実施例にて説明したGMAの製造条件、製造方法は例示であり、本発明の範囲内において適宜変更することができるし、使用した各種の装置も例示であり、適宜変更することができる。なお、分析にはガスクロマトグラフ(GC−1700、検出器FID、島津製作所製)を使用し、GOH及びGMAの検出限界は0.001wt%であった。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example and a comparative example, this invention is not limited to these examples. That is, the manufacturing conditions and manufacturing methods of GMA described in the examples are examples, and can be changed as appropriate within the scope of the present invention. Various devices used are also examples and can be changed as appropriate. . In addition, the gas chromatograph (GC-1700, detector FID, Shimadzu Corporation make) was used for the analysis, and the detection limit of GOH and GMA was 0.001 wt%.

実施例1
(1)GMA合成母液の調製
攪拌機と油水分離用のデカンターを有する冷却器を備えた内容積1Lのガラス製フラスコに、EpCH(純度>99.9wt%、GOH、GMAとも未検出)735g、炭酸ナトリウム58g、重合禁止剤2,2’−メチレンビス(6−t−ブチル−4−メチルフェノール)1gを入れ、30kPaに減圧してEpCHが沸騰する82℃まで昇温した。留出液をデカンターで水相とEpCH相に分離し、下層のEpCH相をフラスコに還流しながらMAA86gを約1時間かけて滴下した。滴下終了後さらに30分間還流を続けた後、常圧に戻しEpCHが沸騰する120℃まで昇温した。
次に触媒であるテトラメチルアンモニウムクロライド0.3gを添加し、1時間反応させた後、室温まで冷却し水240gを用いて塩化ナトリウムなどからなるスラリーを除去した。このようにして得られたGMA合成母液量は700gで、組成はEpCHが75wt%、GOHが0.7wt%、GMAが19.3wt%であった。また使用したMAA86gに対するGMAの収率は95.0mol%であった。
(2)EpCHの蒸留回収
このGMA合成母液700gに重合禁止剤4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル0.7gを加え、ガラス製蒸留塔(内径25mm、3mmφのDixon Packingを濃縮部400mm、回収部200mm充填)にてEpCHを蒸留回収した。この際のEpCH回収条件は、還流比1、塔頂圧9kPa、塔頂温度48℃、缶出温度118℃であった。得られた回収EpCH量は500g、組成はEpCHが99.7wt%、GOHが0.005wt%、GMAが未検出であった。
(3)蒸留回収EpCHを用いたGMAの合成
この蒸留回収したEpCH500gに不足分のEpCH235g(純度>99.9wt%、GOH、GMA未検出)を加え735gとなした後、上記と同様にしてGMA合成母液を調製した。得られたGMA合成母液量は700gで、組成はEpCHが75wt%、GOHが0.7wt%、GMAが19.3wt%であった。また使用したMAA86gに対するGMA収率は95.0mol%であった。以上の結果を表1に示す。
Example 1
(1) Preparation of GMA synthetic mother liquor In a 1 L glass flask equipped with a stirrer and a cooler having a decanter for oil-water separation, 735 g of EpCH (purity> 99.9 wt%, GOH and GMA are not detected), carbonic acid 58 g of sodium and 1 g of a polymerization inhibitor 2,2′-methylenebis (6-tert-butyl-4-methylphenol) were added, and the pressure was reduced to 30 kPa and the temperature was raised to 82 ° C. where EpCH boiling. The distillate was separated into an aqueous phase and an EpCH phase with a decanter, and 86 g of MAA was added dropwise over about 1 hour while refluxing the lower EpCH phase to the flask. After completion of the dropwise addition, the mixture was further refluxed for 30 minutes, then returned to normal pressure and heated to 120 ° C. at which EpCH was boiled.
Next, 0.3 g of tetramethylammonium chloride as a catalyst was added and allowed to react for 1 hour, then cooled to room temperature, and a slurry of sodium chloride or the like was removed using 240 g of water. The amount of the GMA synthetic mother liquor thus obtained was 700 g, and the composition was EpCH 75 wt%, GOH 0.7 wt%, and GMA 19.3 wt%. The yield of GMA based on 86 g of MAA used was 95.0 mol%.
(2) Distillation recovery of EpCH To 700 g of this GMA synthetic mother liquor, 0.7 g of a polymerization inhibitor 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl was added, and a glass distillation column (inner diameter 25 mm, 3 mmφ) In the Dixon Packing, the EpCH was distilled and collected in a concentrating part 400 mm and a collecting part 200 mm. The EpCH recovery conditions at this time were a reflux ratio of 1, a tower top pressure of 9 kPa, a tower top temperature of 48 ° C., and a bottom temperature of 118 ° C. The amount of recovered EpCH obtained was 500 g, and the composition was 99.7 wt% for EpCH, 0.005 wt% for GOH, and GMA was not detected.
(3) Synthesis of GMA using distilled and recovered EpCH 235 g (purity> 99.9 wt%, GOH, GMA not detected) was added to 500 g of this distilled and recovered EpCH to obtain 735 g. A synthetic mother liquor was prepared. The amount of the resulting GMA synthetic mother liquor was 700 g, and the composition was 75 wt% for EpCH, 0.7 wt% for GOH, and 19.3 wt% for GMA. The GMA yield based on 86 g of MAA used was 95.0 mol%. The results are shown in Table 1.

実施例2
(1)GMA合成母液の調製
実施例1と同様にしてGMA合成母液700gを調製した。
(2)EpCHの蒸留回収
GMA合成母液700gに重合禁止剤フェノチアジン0.35gを加え、供給液であるGMA合成母液に対して重量比で0.2倍量の水をガラス製蒸留塔(内径25mm、3mmφのDixon Packingを濃縮部200mm、回収部100mm充填)に供給しながらEpCHを蒸留回収した。この際の蒸留条件は、還流比1、塔頂圧9kPa、塔頂温度40℃、缶出温度118℃であった。留出液をデカンターで分離し下層のEpCHを回収した。回収EpCH量は500g、組成はEpCHが99.7wt%、GOHが0.005wt%、GMAが未検出であった。
(3)蒸留回収EpCHを用いたGMAの合成
蒸留回収したEpCH500gに不足分のEpCH235g(純度>99.9wt%、GOH、GMA未検出)を加え735gとなした後、実施例1と同様にしてGMA合成母液を調製した。得られたGMA合成母液量は700gで、組成はEpCHが75wt%、GOHが0.7wt%、GMAが19.3wt%であった。また使用したMAA86gに対するGMA収率は95.0mol%であった。以上の結果を表1に示す。
Example 2
(1) Preparation of GMA synthetic mother liquor 700 g of GMA synthetic mother liquor was prepared in the same manner as in Example 1.
(2) Distillation recovery of EpCH 0.35 g of polymerization inhibitor phenothiazine was added to 700 g of GMA synthetic mother liquor, and 0.2 times the amount of water by weight ratio with respect to GMA synthetic mother liquor as a feed solution was made into a glass distillation column (inner diameter 25 mm EpCH was recovered by distillation while supplying 3 mmφ Dixon Packing to a concentrating part 200 mm and a collecting part 100 mm. The distillation conditions at this time were a reflux ratio of 1, a tower top pressure of 9 kPa, a tower top temperature of 40 ° C., and a bottom temperature of 118 ° C. The distillate was separated with a decanter to recover the lower layer EpCH. The recovered EpCH amount was 500 g, the composition was 99.7 wt% EpCH, 0.005 wt% GOH, and GMA was not detected.
(3) Synthesis of GMA using distilled and recovered EpCH After adding 235 g of EpCH (purity> 99.9 wt%, GOH and GMA not detected) to 500 g of distilled and recovered EpCH, the amount was 735 g, and then the same as in Example 1. A GMA synthetic mother liquor was prepared. The amount of the resulting GMA synthetic mother liquor was 700 g, and the composition was 75 wt% for EpCH, 0.7 wt% for GOH, and 19.3 wt% for GMA. The GMA yield based on 86 g of MAA used was 95.0 mol%. The results are shown in Table 1.

実施例3
(1)GMA合成母液の調製
実施例1と同様にしてGMA合成母液700gを調製した。
(2)EpCHの蒸留回収
GMA合成母液700gに重合禁止剤フェノチアジン0.35gを添加し、単蒸留にて粗EpCH300g(EpCH96wt%、GOH1wt%、GMA3wt%)を得た。単蒸留は約2時間かけて常圧から3.5kPaまで徐々に減圧しながら行った。この単蒸留で得られた粗EpCHをガラス製蒸精留塔(内径25mm、3mmφのDixon Packingを濃縮部400mm、回収部200mm充填)にて蒸留精製した。この際の蒸留条件は還流比1、塔頂圧9kPa、塔頂温度48℃、缶出温度118℃で蒸留した。得られた回収EpCH量は285g、組成はEpCHが99.7wt%、GOHが0.005wt%、GMAが未検出であった。
(3)蒸留回収EpCHを用いたGMAの合成
蒸留回収したEpCH285gに不足分のEpCH450g(純度>99.9wt%、GOH、GMA未検出)を加え735gとなした後、実施例1と同様にしてGMA合成母液を調製した。得られたGMA合成母液量は700gで、組成はEpCHが75wt%、GOHが0.7wt%、GMAが19.3wt%であった。また使用したMAA86gに対するGMA収率は94.7mol%であった。以上の結果を表1に示す。
Example 3
(1) Preparation of GMA synthetic mother liquor 700 g of GMA synthetic mother liquor was prepared in the same manner as in Example 1.
(2) Distillation recovery of EpCH 0.35 g of polymerization inhibitor phenothiazine was added to 700 g of GMA synthetic mother liquor, and 300 g of crude EpCH (EpCH 96 wt%, GOH 1 wt%, GMA 3 wt%) was obtained by simple distillation. The simple distillation was performed while gradually reducing the pressure from normal pressure to 3.5 kPa over about 2 hours. The crude EpCH obtained by this simple distillation was purified by distillation in a glass distillation tower (Dixon Packing having an inner diameter of 25 mm, 3 mmφ was packed in a concentrating part 400 mm and a collecting part 200 mm). The distillation conditions at this time were a reflux ratio of 1, a tower top pressure of 9 kPa, a tower top temperature of 48 ° C., and a bottom temperature of 118 ° C. The amount of recovered EpCH obtained was 285 g, the composition was 99.7 wt% EpCH, 0.005 wt% GOH, and no GMA was detected.
(3) Synthesis of GMA using distilled and recovered EpCH 450 g of insufficient EpCH (purity> 99.9 wt%, GOH, GMA not detected) was added to 285 g of distilled and recovered EpCH, and the resulting mixture was 735 g. A GMA synthetic mother liquor was prepared. The amount of the resulting GMA synthetic mother liquor was 700 g, and the composition was 75 wt% for EpCH, 0.7 wt% for GOH, and 19.3 wt% for GMA. The GMA yield based on 86 g of MAA used was 94.7 mol%. The results are shown in Table 1.

比較例1
(1)GMA合成母液の調製
実施例1と同様にしてGMA合成母液700gを調製した。
(2)EpCHの蒸留回収
GMA合成母液700gに重合禁止剤フェノチアジン0.35gを添加し、単蒸留にて粗EpCH300g(EpCH96wt%、GOH1wt%、GMA3wt%)を得た。
(3)蒸留回収EpCHを用いたGMAの合成
単蒸留にて回収した粗EpCH300g(純度96wt%)に不足分のEpCH447g(純度>99.9wt%、GOH、GMA未検出)を加え、実施例1と同様にしてGMA合成母液を調製した。得られたGMA合成母液量は700gで、組成はEpCHが75wt%、GOHが0.7wt%、GMAが17.3wt%であった。また、GMA収率は85.0mol%であった。以上の結果を表1に示す。
Comparative Example 1
(1) Preparation of GMA synthetic mother liquor 700 g of GMA synthetic mother liquor was prepared in the same manner as in Example 1.
(2) Distillation recovery of EpCH 0.35 g of polymerization inhibitor phenothiazine was added to 700 g of GMA synthetic mother liquor, and 300 g of crude EpCH (EpCH 96 wt%, GOH 1 wt%, GMA 3 wt%) was obtained by simple distillation.
(3) Synthesis of GMA using distilled and recovered EpCH 300 g (purity 96 wt%) of crude EpCH recovered by simple distillation was added with 447 g of insufficient EpCH (purity> 99.9 wt%, GOH, GMA not detected). In the same manner, a GMA synthetic mother liquor was prepared. The amount of the resulting GMA synthetic mother liquor was 700 g, and the composition was 75 wt% for EpCH, 0.7 wt% for GOH, and 17.3 wt% for GMA. The GMA yield was 85.0 mol%. The results are shown in Table 1.

実施例3
EpCH(純度>99.9wt%、GOH、GMAとも未検出)に、GOH(純度>95wt%、和光純薬工業製)が0.1wt%となるように添加したEpCHを用いた以外は、実施例1と同様にしてGMAの合成を行った。得られたGMA合成母液の組成は、EpCHが75wt%、GOHが0.7wt%、GMAが19.2wt%で、使用したMAA86gに対するGMAの収率は94.7mol%であった。以上の結果を表1に示す。
Example 3
Except using EpCH (purity> 99.9 wt%, GOH and GMA not detected), except that EpCH added so that GOH (purity> 95 wt%, manufactured by Wako Pure Chemical Industries, Ltd.) was 0.1 wt% was used. GMA was synthesized in the same manner as in Example 1. The composition of the obtained GMA synthetic mother liquor was EpCH 75 wt%, GOH 0.7 wt%, GMA 19.2 wt%, and the yield of GMA relative to 86 g of MAA used was 94.7 mol%. The results are shown in Table 1.

比較例2
EpCH(純度>99.9wt%、GOH、GMAとも未検出)に、GOH(純度>95wt%、和光純薬工業製)が0.2wt%となるように添加したEpCHを用いた以外は、実施例1と同様にしてGMAの合成を行った。得られたGMA合成母液の組成は、EpCHが75wt%、GOHが0.8wt%、GMAが18.3wt%で、使用したMAA86gに対するGMAの収率は90.0mol%であった。以上の結果を表1に示す。
Comparative Example 2
Except using EpCH (purity> 99.9 wt%, GOH and GMA not detected), and using EpCH added so that GOH (purity> 95 wt%, manufactured by Wako Pure Chemical Industries, Ltd.) is 0.2 wt% GMA was synthesized in the same manner as in Example 1. The composition of the obtained GMA synthetic mother liquor was EpCH 75 wt%, GOH 0.8 wt%, GMA 18.3 wt%, and the yield of GMA relative to 86 g of MAA used was 90.0 mol%. The results are shown in Table 1.

実施例4
EpCH(純度>99.9wt%、GOH、GMAとも未検出)に、GMA(純度>95wt%、和光純薬工業製)が0.1wt%となるように添加したEpCHを用いた以外は、実施例1と同様にしてGMAの合成を行った。得られたGMA合成母液の組成は、EpCHが75wt%、GOHが0.7wt%、GMAが19.2wt%で使用したMAA86gに対するGMAの収率は94.7mol%であった。以上の結果を表1に示す。
Example 4
Implementation was performed except that EpCH was used so that GMA (purity> 95 wt%, manufactured by Wako Pure Chemical Industries) was added to EpCH (purity> 99.9 wt%, GOH and GMA were not detected) to 0.1 wt%. GMA was synthesized in the same manner as in Example 1. The composition of the obtained GMA synthetic mother liquor was 94.7 mol% with respect to 86 g of MAA used at EpCH of 75 wt%, GOH of 0.7 wt% and GMA of 19.2 wt%. The results are shown in Table 1.

比較例3
EpCH(純度>99.9wt%、GOH、GMAとも未検出)に、GMA(純度>95wt%、和光純薬工業製)が0.2wt%となるように添加したEpCHを用いた以外は、実施例1と同様にしてGMAの合成を行った。得られたGMA合成母液の組成は、EpCHが75wt%、GOHが0.7wt%、GMAが18.5wt%で、使用したMAA86gに対するGMAの収率は91.0mol%であった。以上の結果を表1に示す。
Comparative Example 3
Implementation was performed except that EpCH was used so that GMA (purity> 95 wt%, manufactured by Wako Pure Chemical Industries) was 0.2 wt% to EpCH (purity> 99.9 wt%, GOH and GMA were not detected). GMA was synthesized in the same manner as in Example 1. The composition of the obtained GMA synthetic mother liquor was EpCH 75 wt%, GOH 0.7 wt%, GMA 18.5 wt%, and the yield of GMA relative to 86 g of MAA used was 91.0 mol%. The results are shown in Table 1.

実施例5
EpCH(純度>99.9wt%、GOH、GMAとも未検出)に、GOH(純度>95wt%、和光純薬工業製)とGMA(純度>95wt%、和光純薬工業製)が何れも0.1wt%となるように添加したEpCHを用いた以外は、実施例1と同様にしてGMAの合成を行った。得られたGMA合成母液の組成は、EpCHが75wt%、GOHが0.8wt%、GMAが19.2wt%で、使用したMAA86gに対するGMAの収率は94.7mol%であった。以上の結果を表1に示す。
Example 5
EpCH (purity> 99.9 wt%, neither GOH nor GMA detected), GOH (purity> 95 wt%, manufactured by Wako Pure Chemical Industries) and GMA (purity> 95 wt%, manufactured by Wako Pure Chemical Industries) are both 0. GMA was synthesized in the same manner as in Example 1 except that EpCH added to 1 wt% was used. The composition of the obtained GMA synthetic mother liquor was EpCH 75 wt%, GOH 0.8 wt%, GMA 19.2 wt%, and the yield of GMA relative to 86 g of MAA used was 94.7 mol%. The results are shown in Table 1.

比較例4
EpCH(純度>99.9wt%、GOH、GMAとも未検出)に、GOH(純度>95wt%、和光純薬工業製)とGMA(純度>95wt%、和光純薬工業製)が何れも0.2wt%となるように添加したEpCHを用いた以外は、実施例1と同様にしてGMAの合成を行った。得られたGMA合成母液の組成は、EpCHが75wt%、GOHが0.9wt%、GMAが18.1wt%で、使用したMAA86gに対するGMAの収率は89.0mol%であった。以上の結果を表1に示す。
Comparative Example 4
EpCH (purity> 99.9 wt%, neither GOH nor GMA detected), GOH (purity> 95 wt%, manufactured by Wako Pure Chemical Industries) and GMA (purity> 95 wt%, manufactured by Wako Pure Chemical Industries) are both 0. GMA was synthesized in the same manner as in Example 1 except that EpCH added to 2 wt% was used. The composition of the obtained GMA synthetic mother liquor was EpCH 75 wt%, GOH 0.9 wt%, GMA 18.1 wt%, and the yield of GMA relative to 86 g of MAA used was 89.0 mol%. The results are shown in Table 1.

表1 実施例 比較例
実施例・比較例番号 1 2 3 4 5 1 2 3 4
原料EpCH組成(wt%)
EpCH 99 99 99 99 99 98 99 99 99
GOH 0.005 0.01 0.1 0 0.1 0.4 0.2 0 0.2
GMA <0.001 0.01 0 0.1 0.1 1.2 0 0.2 0.2
合成収率(%) 95.0 95.0 94.7 94.7 94.7 85.0 90.0 91.0 89.0
Table 1 Examples Comparative Examples
Example / comparative example number 1 2 3 4 5 1 2 3 4
Raw material EpCH composition (wt%)
EpCH 99 99 99 99 99 98 99 99 99
GOH 0.005 0.01 0.1 0 0.1 0.4 0.2 0 0.2
GMA <0.001 0.01 0 0.1 0.1 1.2 0 0.2 0.2
Synthesis yield (%) 95.0 95.0 94.7 94.7 94.7 85.0 90.0 91.0 89.0

Claims (2)

メタクリル酸とアルカリ金属物質から得られるメタクリル酸のアルカリ金属塩を、第4級アンモニウム塩の存在下、該アルカリ金属塩に対して反応量を上回る過剰量のエピクロロヒドリンと反応させてメタクリル酸グリシジルを合成した後、未反応のエピクロロヒドリンを蒸留回収し、当該合成反応で再使用するメタクリル酸グリシジルの製造方法において、蒸留回収したエピクロロヒドリン中に含まれるグリシドールとメタクリル酸グリシジルの濃度を何れも0.1wt%以下にすることを特徴とする、メタクリル酸グリシジルの製造方法。   An alkali metal salt of methacrylic acid obtained from methacrylic acid and an alkali metal substance is reacted with an excess amount of epichlorohydrin exceeding the reaction amount with respect to the alkali metal salt in the presence of a quaternary ammonium salt. After synthesizing glycidyl, unreacted epichlorohydrin is recovered by distillation. In the method for producing glycidyl methacrylate, which is reused in the synthesis reaction, glycidol and glycidyl methacrylate contained in the recovered epichlorohydrin are recovered. A method for producing glycidyl methacrylate, wherein the concentration is 0.1 wt% or less. 未反応のエピクロロヒドリンを蒸留回収する際、水を共沸剤として使用する、請求項1記載のメタクリル酸グリシジルの製造方法。   The method for producing glycidyl methacrylate according to claim 1, wherein water is used as an azeotropic agent when unreacted epichlorohydrin is recovered by distillation.
JP2004334212A 2004-11-18 2004-11-18 Method for producing glycidyl methacrylate Active JP4656294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334212A JP4656294B2 (en) 2004-11-18 2004-11-18 Method for producing glycidyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334212A JP4656294B2 (en) 2004-11-18 2004-11-18 Method for producing glycidyl methacrylate

Publications (2)

Publication Number Publication Date
JP2006143629A true JP2006143629A (en) 2006-06-08
JP4656294B2 JP4656294B2 (en) 2011-03-23

Family

ID=36623736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334212A Active JP4656294B2 (en) 2004-11-18 2004-11-18 Method for producing glycidyl methacrylate

Country Status (1)

Country Link
JP (1) JP4656294B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046626A (en) * 2009-08-25 2011-03-10 Nippon Shokubai Co Ltd Method for producing glycidyl acrylate
CN109705061A (en) * 2018-12-28 2019-05-03 山东广浦生物科技有限公司 A kind of preparation method of glycidyl methacrylate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840335B1 (en) * 1968-01-20 1973-11-30
JPS5076012A (en) * 1973-11-07 1975-06-21
JPS5585575A (en) * 1978-12-23 1980-06-27 Mitsui Toatsu Chem Inc Production of glycidyl methacrylate
JPH09249657A (en) * 1996-03-13 1997-09-22 Nof Corp Purification of glycidyl (meth)acrilate
JPH11302268A (en) * 1998-04-20 1999-11-02 Mitsubishi Gas Chem Co Inc Purification and production for glycidyl (meth)acrylate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840335B1 (en) * 1968-01-20 1973-11-30
JPS5076012A (en) * 1973-11-07 1975-06-21
JPS5585575A (en) * 1978-12-23 1980-06-27 Mitsui Toatsu Chem Inc Production of glycidyl methacrylate
JPH09249657A (en) * 1996-03-13 1997-09-22 Nof Corp Purification of glycidyl (meth)acrilate
JPH11302268A (en) * 1998-04-20 1999-11-02 Mitsubishi Gas Chem Co Inc Purification and production for glycidyl (meth)acrylate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046626A (en) * 2009-08-25 2011-03-10 Nippon Shokubai Co Ltd Method for producing glycidyl acrylate
CN109705061A (en) * 2018-12-28 2019-05-03 山东广浦生物科技有限公司 A kind of preparation method of glycidyl methacrylate

Also Published As

Publication number Publication date
JP4656294B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
KR101928574B1 (en) Method for producing (meth)acrylic acid anhydride, method for storing (meth)acrylic acid anhydride, and method for producing (meth)acrylate ester
JPH07116103B2 (en) Method for producing t-butyl methacrylate
JP5559205B2 (en) Method for purifying azeotropic fraction generated during synthesis of N, N-dimethylaminoethyl acrylate
JP2967252B2 (en) Production method of glycidyl methacrylate
JP2009107949A (en) Method for producing allyl alcohol compound
JP4656294B2 (en) Method for producing glycidyl methacrylate
CN102498106A (en) Process for the destillative purification of fluoroethylene carbonate
JP4247582B2 (en) Purification method and production method of glycidyl (meth) acrylate
JPS6241662B2 (en)
JP2000212177A (en) Purification of glycidyl (meth)acrylate
US6162946A (en) Processing for producing allyl 2-hydroxyisobutyrate
JP2013234125A (en) Method of producing glycidyl (meth)acrylate
JP2013531671A (en) Method for producing chlorohydrin composition and method for producing epichlorohydrin using chlorohydrin composition produced by the method
JP4666139B2 (en) Purification method of glycidyl methacrylate
JP5260826B2 (en) Method for producing high purity fluorine-containing (meth) acrylic acid ester
JP2007031383A (en) Method for producing terephthalic acid diester
JP2012236783A (en) Method for producing glycidyl (meth)acrylate
JPH09249657A (en) Purification of glycidyl (meth)acrilate
JP2006151854A (en) Method for producing glycidyl methacrylate
JP6002603B2 (en) Method for producing high-purity optically active dialkyl ester of tartaric acid
JP2005132790A (en) Method for producing 2-methyl-2-hydroxy-1-propyl (meth)acrylate
JP2003160530A (en) Method for purifying (meth)acrylic acid
JP2010222373A (en) Method for producing glycidyloxybutyl acrylate
JP3081707B2 (en) Method for producing glycidyl methacrylate
JP6044264B2 (en) Method for producing glycidyl methacrylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4656294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3