JP2006143495A - Molten silicon flowing member and method for transporting silicon - Google Patents

Molten silicon flowing member and method for transporting silicon Download PDF

Info

Publication number
JP2006143495A
JP2006143495A JP2004332818A JP2004332818A JP2006143495A JP 2006143495 A JP2006143495 A JP 2006143495A JP 2004332818 A JP2004332818 A JP 2004332818A JP 2004332818 A JP2004332818 A JP 2004332818A JP 2006143495 A JP2006143495 A JP 2006143495A
Authority
JP
Japan
Prior art keywords
molten silicon
silicon
powder
oxide
water glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004332818A
Other languages
Japanese (ja)
Other versions
JP4620432B2 (en
Inventor
Kensuke Okazawa
健介 岡澤
Masaki Okajima
正樹 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004332818A priority Critical patent/JP4620432B2/en
Publication of JP2006143495A publication Critical patent/JP2006143495A/en
Application granted granted Critical
Publication of JP4620432B2 publication Critical patent/JP4620432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive molten silicon flowing member for removing boron or preventing the pollution by boron in the production of high purity silicon used for an semiconductor, a solar battery or the like; and a simple method for transporting molten silicon. <P>SOLUTION: The molten silicon flowing member is obtained by forming a mixture comprising a powder or grains of one or both of a basic oxide and an amphoteric oxide or a mixture of the grains and the powder, and one kind or a mixture of water glass and a resin, and then drying/solidifying or firing the formed body. The method for transporting molten silicon comprises using the molten silicon flowing member. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽電池あるいは半導体等の高純度が要求されるシリコンの製造においてボロンの除去や汚染の防止をする溶融シリコン流通部材及びシリコンの移送方法に関する。   The present invention relates to a molten silicon distribution member and a silicon transfer method for removing boron and preventing contamination in the production of silicon, such as solar cells or semiconductors, that require high purity.

半導体や太陽電池等に用いられるシリコンは、高純度なものが求められる。特に、ボロンのように除去が困難な不純物については、種々の除去方法が提案されている。この中で、溶融したシリコンをある領域を通過させるだけでボロンを除去する方法としては、特許文献1の方法が提案されている。この方法は、セラミックス、セラミックス混合物、高密度黒鉛、石英等の板に溶融シリコンを通過させるだけで、ボロン等の不純物を取り除く方法である。   Silicon used for semiconductors and solar cells is required to have high purity. In particular, various removal methods have been proposed for impurities that are difficult to remove, such as boron. Among them, the method of Patent Document 1 has been proposed as a method for removing boron by simply passing molten silicon through a certain region. This method is a method of removing impurities such as boron by simply passing molten silicon through a plate of ceramics, ceramic mixture, high-density graphite, quartz or the like.

また、高温で溶解したシリコンを扱う場合、当然、溶融したままでシリコンを容器から容器へ移動させる工程を伴う。図1に示すように、容器1と容器1との間には、タンディッシュや樋等の溶融シリコン2が通過する溶融シリコン流通経路3が存在することになる。また、図2に示すように、容器1を傾け、別の容器1へと直接移動させることも考えられるが、このときも、傾ける容器の注ぎ口4が溶融シリコン流通経路3と考えられる。このような溶融シリコン流通経路3を有する場合、ここからの不純物の汚染、特に、ボロンの汚染が深刻となる。従来、この汚染を防止するための提案は全くない。ただし、汚染防止に応用可能な方法として、前記した板に溶融シリコンを通過させるだけでボロン等の不純物を取り除くと言う特許文献1を挙げることができる。
特公平7−55813号公報
In addition, when handling silicon melted at a high temperature, it naturally involves a step of moving silicon from container to container while it is melted. As shown in FIG. 1, a molten silicon flow path 3 through which molten silicon 2 such as tundish and soot passes exists between the containers 1 and 1. In addition, as shown in FIG. 2, it is conceivable to incline the container 1 and move it directly to another container 1. At this time, the spout 4 of the container to be inclined is considered to be the molten silicon flow path 3. When such a molten silicon distribution path 3 is provided, contamination of impurities from here, especially contamination of boron becomes serious. Conventionally, there is no proposal for preventing this contamination. However, as a method applicable to the prevention of contamination, there can be mentioned Patent Document 1 in which impurities such as boron are removed only by passing molten silicon through the plate.
Japanese Patent Publication No. 7-55813

しかし、特許文献1の方法では、溶融シリコンが通過するところに用いる板の材質は、いずれも熱衝撃に弱く、溶融シリコン流通経路の材質として適さない。また、不純物を除くのであれば、ある程度の高純度のものが求められるが、セラミックス、セラミックス混合物、高密度黒鉛、および石英など、いずれの材質も、高純度になるほど高価となり、製造コストが上昇してしまう問題がある。   However, in the method of Patent Document 1, the material of the plate used where the molten silicon passes is weak against thermal shock, and is not suitable as a material for the molten silicon flow path. In addition, if impurities are removed, a material with a certain degree of purity is required, but any material such as ceramics, ceramic mixture, high-density graphite, and quartz becomes more expensive as the purity becomes higher, and the manufacturing cost increases. There is a problem.

そこで、本発明は、半導体や太陽電池等に用いられる高純度なシリコンの製造におけるボロンの除去や汚染の防止をするための安価な溶融シリコン流通部材と簡便なシリコンの移送方法とを提供することを目的とする。   Accordingly, the present invention provides an inexpensive molten silicon distribution member and a simple silicon transfer method for removing boron and preventing contamination in the production of high purity silicon used in semiconductors, solar cells, and the like. With the goal.

本発明は、上記課題を解決するためになされたもので、
(1)塩基性酸化物もしくは両性酸化物の一方又は双方の粉、粒又は粉と粒との混合物と、水ガラスもしくは樹脂の一方又は双方との混合物を形成し、乾燥固化又は焼成してなることを特徴とする溶融シリコン流通部材、
(2)溶融シリコンが流通する部材であって、該部材の少なくとも溶融シリコンが触れる部分に、塩基性酸化物もしくは両性酸化物の一方又は双方の粉、粒又は粉と粒との混合物と、水ガラスもしくは樹脂の一方又は双方との混合物を、乾燥固化又は焼成してなる被覆層を有することを特徴とする溶融シリコン流通部材、
(3)前記溶融シリコン流通部材の少なくとも溶融シリコンが触れる部分に、さらに塩基性酸化物もしくは両性酸化物の一方又は双方の平均径が1mm以下の粉と水ガラスもしくは樹脂の一方又は双方との混合物からなる表面層を形成してなる(1)又は(2)に記載の溶融シリコン流通部材、
(4)前記粉が1mm以下の平均径であり、前記粒が3mm以上50mm以下の平均径である(1)又は(2)に記載の溶融シリコン流通部材、
(5)前記塩基性酸化物又は前記両性酸化物がマグネシアを主成分とする酸化物である(1)〜(4)のいずれかに記載の溶融シリコン流通部材、
(6)前記水ガラスを用いる場合、前記水ガラス中のホウ素濃度が1質量ppm以下である(1)〜(5)のいずれかに記載の溶融シリコン流通部材、
(7)(1)〜(6)のいずれかに記載の溶融シリコン流通部材で形成された溶融シリコン流通経路に溶融シリコンを流すことを特徴とするシリコンの移送方法、
(8)前記溶融シリコンが、ホウ素を含有する溶融シリコンである(7)記載のシリコンの移送方法、
(9)前記溶融シリコン流通経路が、タンディッシュ又は樋である(7)記載のシリコンの移送方法、
(10)(1)〜(6)のいずれかに記載の部材から形成されてなるタンディッシュ、
(11)(1)〜(6)のいずれかに記載の部材から形成されてなる樋、
である。
The present invention has been made to solve the above problems,
(1) A powder of one or both of basic oxide or amphoteric oxide, a particle or a mixture of powder and particles, and a mixture of water glass or one or both of a resin and dry solidified or fired. Molten silicon distribution member characterized by that,
(2) A member through which molten silicon circulates, and at least a portion of the member that comes into contact with molten silicon, one or both of a basic oxide and an amphoteric oxide, a particle, or a mixture of particles and water, and water A molten silicon distribution member characterized by having a coating layer formed by drying, solidifying or firing a mixture of one or both of glass and resin,
(3) A mixture of a powder in which the average diameter of one or both of the basic oxide and the amphoteric oxide is 1 mm or less and water glass or one or both of the molten silicon flow member and at least the portion where the molten silicon contacts. The molten silicon distribution member according to (1) or (2), which is formed by forming a surface layer comprising:
(4) The molten silicon flow member according to (1) or (2), wherein the powder has an average diameter of 1 mm or less and the grains have an average diameter of 3 mm or more and 50 mm or less,
(5) The molten silicon flow member according to any one of (1) to (4), wherein the basic oxide or the amphoteric oxide is an oxide mainly composed of magnesia.
(6) When the water glass is used, the molten silicon flow member according to any one of (1) to (5), wherein the boron concentration in the water glass is 1 mass ppm or less.
(7) A silicon transfer method characterized by flowing molten silicon through a molten silicon distribution path formed of the molten silicon distribution member according to any one of (1) to (6),
(8) The silicon transfer method according to (7), wherein the molten silicon is molten silicon containing boron,
(9) The silicon transfer method according to (7), wherein the molten silicon flow path is tundish or soot,
(10) A tundish formed from the member according to any one of (1) to (6),
(11) A bag formed from the member according to any one of (1) to (6),
It is.

本発明の溶融シリコン流通部材は、安価であり、溶融シリコン中から容易にボロンを吸着するため、シリコンからのボロンの除去を効率的にできる。   The molten silicon flow member of the present invention is inexpensive and easily adsorbs boron from the molten silicon, so that boron can be efficiently removed from silicon.

本発明方式を用いることによって、溶融シリコンからボロンを除去することができ、ボロン汚染することがなく、溶融シリコンを容器から容器へと移動させることができる。   By using the system of the present invention, boron can be removed from the molten silicon, and the molten silicon can be moved from container to container without being contaminated with boron.

本発明は、図3に示すように、半導体や太陽電池などのための高純度なシリコンを製造するに当たり、タンディッシュ、樋等の溶融シリコン流通経路3において、溶融シリコン2が触れる部分5に、塩基性酸化物もしくは両性酸化物の一方又は双方の粉、粒又は粉と粒との混合物に水ガラスもしくは樹脂の一方又は双方を混ぜて混錬したものを乾燥又は焼成した部材を用いる。又は、前記混錬物を乾燥又は焼成してなる被覆層を有する部材を用い、溶融シリコン2を通過させる。発明者等の実験によれば、ケイ砂等の酸性酸化物を用いた場合、通過後の溶融Si中のボロン濃度は増加することが判った。一方、マグネシアやアルミナ等の塩基性酸化物及び両性酸化物を用いることで、酸性酸化物とは反対に、ボロン濃度が減少することが見出された。この効果を用いることにより、溶融シリコン2からボロンを除去し、高純度化することができる。また、シリコン2の製造工程において、溶融したシリコン2を容器から容器へ移し変えるときに、溶融シリコン流通経路3においてのボロン汚染防止にも応用することができる。   In the present invention, as shown in FIG. 3, in the production of high-purity silicon for semiconductors, solar cells, etc., in the molten silicon flow path 3 such as tundish, soot, etc. A member obtained by drying or firing a powder obtained by mixing one or both of water glass or resin with a powder of one or both of a basic oxide or an amphoteric oxide, or a mixture of powder and particles, or both. Alternatively, the molten silicon 2 is passed through a member having a coating layer formed by drying or baking the kneaded material. According to experiments by the inventors, it has been found that when an acidic oxide such as silica sand is used, the boron concentration in the molten Si after passage increases. On the other hand, it has been found that the use of basic oxides and amphoteric oxides such as magnesia and alumina reduces the boron concentration as opposed to acidic oxides. By using this effect, boron can be removed from the molten silicon 2 to be highly purified. In addition, when the molten silicon 2 is transferred from the container to the container in the manufacturing process of the silicon 2, it can be applied to the prevention of boron contamination in the molten silicon distribution path 3.

特に、マグネシアは、天然で高純度な粒や粉が存在するので、安価にボロン除去及び汚染防止をすることができることから、塩基性酸化物又は両性酸化物はマグネシアを主成分とする酸化物であることが好ましい。また、酸化物の粉、粒又は粉と粒との混合物に水ガラスおよび/又は樹脂を混ぜて混錬した材質なので、十分に乾燥されていれば、熱衝撃によって割れることは少ない。   In particular, since magnesia has natural high-purity grains and powders, boron can be removed and contamination can be prevented at low cost. Therefore, basic oxides or amphoteric oxides are oxides mainly composed of magnesia. Preferably there is. Moreover, since it is the material which knead | mixed water glass and / or resin with the oxide powder, the particle | grains, or the mixture of the powder | flour and the particle | grains, if it is fully dried, it will hardly be cracked by thermal shock.

粉の径は1mm以下が望ましい。粉のみを用いる場合、1mmより大きいと、粉と粉との間に隙間が形成され、シリコンが染込み、漏れや割れの原因となることがある。ただし、1mm以下の粉のみを用いた場合では、部材が崩れる可能性がある。一方、この粉に粒を混ぜると、大きな粒は骨格を形成し、形を保持する作用があるので、崩れを防止することができる。ただし、粒が3mmより小さい場合、形を保持する効果が小さく、崩れの防止効果は小さくなるおそれがある。また、粒が50mmよりも大きいと、粒自体が熱衝撃により割れるおそれがある。以上のことから、粒の径は3mm以上50mm以下が望ましい。   The diameter of the powder is desirably 1 mm or less. When using only powder, if it is larger than 1 mm, a gap is formed between the powder and the powder, so that silicon may be infiltrated and cause leakage or cracking. However, when only powder of 1 mm or less is used, the member may collapse. On the other hand, when grains are mixed into this powder, large grains form a skeleton and have an action of maintaining the shape, so that collapse can be prevented. However, when the grain is smaller than 3 mm, the effect of maintaining the shape is small, and the effect of preventing collapse may be small. On the other hand, if the grain is larger than 50 mm, the grain itself may break due to thermal shock. From the above, the diameter of the grains is preferably 3 mm or more and 50 mm or less.

ボロン除去及び汚染防止は、水ガラスや樹脂中のボロン濃度に大きく依存する。筆者等の実験では、ボロン汚染を0.1質量ppm以下にするには、水ガラスや樹脂中のボロン濃度は1質量ppm程度であれば十分であることが見出された。よって、水ガラス及び樹脂中のボロン濃度は1質量ppm以下であることが望ましい。   Boron removal and contamination prevention depend greatly on the boron concentration in water glass and resin. In the author's experiment, it was found that a boron concentration in water glass or resin of about 1 mass ppm is sufficient to reduce boron contamination to 0.1 mass ppm or less. Accordingly, the boron concentration in the water glass and the resin is desirably 1 mass ppm or less.

樹脂としては、例えば、フェノールレジン、PVA等の1400℃以上のシリコンが溶融する温度域の高温では炭化し、粒子や粉の個体間同志の高い接着性が得られるものが望ましい。   As the resin, for example, a resin such as phenol resin, PVA, or the like that is carbonized at a high temperature range in which silicon at 1400 ° C. or higher melts and high adhesion between particles and powders can be obtained.

酸化物の粉や粒に対する水ガラスや樹脂の割合は、質量比で10分1以上1以下が望ましい。質量比が10分の1未満であると、水ガラスや樹脂を粉や粒全体に混ぜることが難しく混ざったとしても、量が少ないために十分な接着力が得られないおそれがある。一方、質量比が1を超えると、乾くのが遅くなるおそれがある。また、乾かす途中でひびが入り易くなるおそれがある。   The ratio of the water glass or the resin to the oxide powder or particles is desirably 1 to 1 for 10 minutes. If the mass ratio is less than 1/10, even if it is difficult to mix water glass or resin into the whole powder or grains, there is a possibility that sufficient adhesive force cannot be obtained because the amount is small. On the other hand, if the mass ratio exceeds 1, drying may be delayed. Moreover, there is a possibility that cracks are likely to occur during drying.

溶融シリコンの流通部材の施工方法として最も好ましいものは、まず、骨格となるプレートを構成する。このプレートは直接シリコンに触れることが無いので、1000℃程度の高温で形状を保持できるものであれば、金属でもセラミックスでも何でも良い。このプレートに、両性酸化物もしくは塩基性酸化物の一方又は双方の、粉、粒又は粒と粉との混合物を水ガラス又は樹脂と混ぜて混錬したものを塗り、その後、乾燥又は焼成する。しかし、これだけでは溶融シリコンが通過する際、酸化物がひび割れ、一部が溶融シリコンと共に流出するおそれがある。そこで、酸化物の表面にさらに粒度の細かい粉のみを水ガラス又は樹脂に混ぜて混錬したものを、上述の溶融シリコン流通部材の表面に塗り、乾燥又は焼成する。このようにして得られた溶融シリコン流通部材は、もしひび割れたとしても、粉は細かく、流れ出る酸化物の量も少ない。このときの粉の径としては1mm以下が好ましい。   The most preferable method for constructing the molten silicon flow member is first to form a skeleton plate. Since this plate does not touch silicon directly, any metal or ceramic can be used as long as it can maintain its shape at a high temperature of about 1000 ° C. The plate is coated with one or both of amphoteric oxide and basic oxide, a mixture of powder, grains, or a mixture of grains and powder mixed with water glass or resin, and then dried or fired. However, with this alone, when the molten silicon passes, there is a possibility that the oxide cracks and a part flows out together with the molten silicon. Accordingly, the surface of the above-mentioned molten silicon flow member is kneaded by mixing only the finer powder on the surface of the oxide with water glass or resin and kneading, and drying or firing. Even if the molten silicon flow member obtained in this way is cracked, the powder is fine and the amount of oxide flowing out is small. The diameter of the powder at this time is preferably 1 mm or less.

以上のように、本発明の溶融シリコン流通部材とシリコンの移送方法を用いると、溶融シリコンからのボロン除去や高純度シリコンの容器から容器への移動の際に生じるボロン汚染を効率良く、安価に防止することができる。   As described above, when the molten silicon flow member and the silicon transfer method of the present invention are used, boron contamination that occurs when removing boron from molten silicon or transferring high purity silicon from a container to a container is efficiently and inexpensively produced. Can be prevented.

また、上述のシリコン流通部材をタンディッシュまたは樋に利用することができる。   Moreover, the above-mentioned silicon | silicone distribution member can be utilized for a tundish or a basket.

シリコンを溶融し、溶融シリコンの入った容器を傾斜し、タンディッシュにシリコンを注ぎ出し、タンディッシュ(図3において、溶融シリコン流通経路3)を通過した後は、別の容器に注ぎ入れて凝固させる実験を試行した(図3参照)。このとき、シリコンの質量は10kg、凝固させる容器の材質は高純度カーボンであった。以上の実験を数種類のタンディッシュについて実施した。   After melting the silicon, tilting the container containing the molten silicon, pouring the silicon into the tundish, and after passing through the tundish (in FIG. 3, the molten silicon distribution path 3), it is poured into another container and solidified. An experiment was conducted (see FIG. 3). At this time, the mass of silicon was 10 kg, and the material of the container to be solidified was high purity carbon. The above experiment was conducted on several types of tundish.

(比較例1)
径3〜7mmのケイ砂の粒を水ガラスで混錬したものを骨格となるプレートに貼り付け、乾燥させたタンディッシュを用いる方法。
(Comparative Example 1)
A method of using a tundish that has been obtained by kneading silica sand particles having a diameter of 3 to 7 mm with water glass on a plate serving as a skeleton and drying it.

(比較例2)
比較例1のタンディッシュにさらに径500μm以下の粉のみのケイ砂を水ガラスで混錬し、表面にコーティングして乾燥させたタンディッシュを用いる方法。
(Comparative Example 2)
A method of using a tundish obtained by further kneading silica sand having a diameter of 500 μm or less with water glass, coating the surface thereof and drying the tundish of Comparative Example 1.

(実施例1)
平均径2〜5mmのアルミナの粒を水ガラスで混錬したものを骨格となるプレートに貼り付け、乾燥させたタンディッシュを用いる方法。
Example 1
A method of using a tundish obtained by kneading alumina particles having an average diameter of 2 to 5 mm with water glass on a plate serving as a skeleton and drying it.

(実施例2)
実施例1のタンディッシュにさらに平均径500μm以下の粉のみのアルミナを水ガラスで混錬し、表面にコーティングして乾燥させたタンディッシュを用いる方法。
(Example 2)
The method of using the tundish which knead | mixed the alumina of only powder | flour with an average diameter of 500 micrometers or less to the tundish of Example 1 with water glass, and was coated and dried on the surface.

(実施例3)
平均径2〜5mmのマグネシアの粒を水ガラスで混錬したものを骨格となるプレートに貼り付け、乾燥させたタンディッシュを用いる方法。
(Example 3)
A method of using a tundish that is obtained by kneading magnesia grains having an average diameter of 2 to 5 mm with water glass and affixing it to a plate serving as a skeleton.

(実施例4)
実施例3のタンディッシュに、さらに径500μm以下の粉のみのマグネシアを水ガラスで混錬し、表面にコーティングして乾燥させたタンディッシュを用いる方法。
Example 4
The method of using the tundish which knead | mixed the magnesia of only the powder of diameter 500 micrometers or less with the water glass to the tundish of Example 3, and was coated on the surface, and was dried.

いずれも粉や粒の質量に対する水ガラスの質量の割合は50%、粒の層の厚みは50mm、粉をコーティングした層の厚みは5mmとした。調査した項目は、最初の容器を傾斜させ注ぎ出す直前のシリコン中のボロン濃度、凝固させた容器内でのシリコン中のボロン濃度である。   In each case, the ratio of the mass of the water glass to the mass of the powder or grain was 50%, the thickness of the grain layer was 50 mm, and the thickness of the layer coated with the powder was 5 mm. The items investigated were the boron concentration in the silicon just before the first container was tilted and poured out, and the boron concentration in the silicon in the solidified container.

結果を表1に示す。   The results are shown in Table 1.

Figure 2006143495
Figure 2006143495

各比較例は、通過後のボロン濃度は増加するが、実施例1および2では、ボロン濃度は少々低下し、実施例3および4では、大きく低下することが判る。   In each comparative example, the boron concentration after passing increases, but in Examples 1 and 2, the boron concentration slightly decreases, and in Examples 3 and 4, it can be seen that the boron concentration decreases greatly.

以上の結果より、酸性酸化物を用いた各比較例では、ボロンによる汚染が顕著であるのに対して、両性酸化物又は塩基性酸化物を用いた各実施例では、溶融シリコンからボロンが除去され、汚染が無いことも判った。   From the above results, in each comparative example using an acidic oxide, contamination by boron is remarkable, whereas in each example using an amphoteric oxide or a basic oxide, boron is removed from molten silicon. And found no contamination.

本発明の一使用例を示した図である。It is the figure which showed one example of use of this invention. 本発明の一使用例を示した図である。It is the figure which showed one example of use of this invention. 本発明の一使用例を示した図である。It is the figure which showed one example of use of this invention.

符号の説明Explanation of symbols

1 容器、
2 シリコン、
3 溶融シリコン流通経路、
4 容器の注ぎ口、
5 溶融シリコンが触れる部分。
1 container,
2 Silicon,
3 Molten silicon distribution channel,
4 Container spout,
5 The part touched by molten silicon.

Claims (11)

塩基性酸化物もしくは両性酸化物の一方又は双方の粉、粒又は粉と粒との混合物と、
水ガラスもしくは樹脂の一方又は双方との混合物を形成し、
乾燥固化又は焼成してなることを特徴とする溶融シリコン流通部材。
A powder of one or both of a basic oxide or an amphoteric oxide, a grain or a mixture of a powder and a grain,
Forming a mixture with one or both of water glass or resin,
A molten silicon flow member obtained by drying, solidifying or firing.
溶融シリコンが流通する部材であって、該部材の少なくとも溶融シリコンが触れる部分に、
塩基性酸化物もしくは両性酸化物の一方又は双方の粉、粒又は粉と粒との混合物と、
水ガラスもしくは樹脂の一方又は双方との混合物を、
乾燥固化又は焼成してなる被覆層を有することを特徴とする溶融シリコン流通部材。
A member through which molten silicon circulates, and at least a portion of the member that touches the molten silicon
A powder of one or both of a basic oxide or an amphoteric oxide, a grain or a mixture of a powder and a grain,
Mix with water glass or resin or both
A molten silicon flow member having a coating layer formed by drying, solidifying or firing.
前記溶融シリコン流通部材の少なくとも溶融シリコンが触れる部分に、さらに塩基性酸化物もしくは両性酸化物の一方又は双方の平均径が1mm以下の粉と水ガラスもしくは樹脂の一方又は双方との混合物からなる表面層を形成してなる請求項1又は2に記載の溶融シリコン流通部材。   A surface made of a mixture of a powder having an average diameter of one or both of basic oxide and amphoteric oxide of 1 mm or less and water glass or resin or at least a portion of the molten silicon flow member that is in contact with molten silicon. The molten silicon flow member according to claim 1 or 2, wherein a layer is formed. 前記粉が1mm以下の平均径であり、前記粒が3mm以上50mm以下の平均径である請求項1又は2に記載の溶融シリコン流通部材。   The molten silicon flow member according to claim 1 or 2, wherein the powder has an average diameter of 1 mm or less and the grains have an average diameter of 3 mm or more and 50 mm or less. 前記塩基性酸化物又は前記両性酸化物がマグネシアを主成分とする酸化物である請求項1〜4のいずれかに記載の溶融シリコン流通部材。   The molten silicon flow member according to any one of claims 1 to 4, wherein the basic oxide or the amphoteric oxide is an oxide containing magnesia as a main component. 前記水ガラスを用いる場合、前記水ガラス中のホウ素濃度が1質量ppm以下である請求項1〜5のいずれかに記載の溶融シリコン流通部材。   The molten silicon flow member according to any one of claims 1 to 5, wherein when the water glass is used, a boron concentration in the water glass is 1 mass ppm or less. 請求項1〜6のいずれかに記載の溶融シリコン流通部材で形成された溶融シリコン流通経路に溶融シリコンを流すことを特徴とするシリコンの移送方法。   A silicon transfer method, wherein molten silicon is caused to flow through a molten silicon distribution path formed by the molten silicon distribution member according to claim 1. 前記溶融シリコンが、ホウ素を含有する溶融シリコンである請求項7記載のシリコンの移送方法。   The silicon transfer method according to claim 7, wherein the molten silicon is boron-containing molten silicon. 前記溶融シリコン流通経路が、タンディッシュ又は樋である請求項7記載のシリコンの移送方法。   The silicon transfer method according to claim 7, wherein the molten silicon flow path is tundish or straw. 請求項1〜6のいずれかに記載の部材から形成されてなるタンディッシュ。   A tundish formed from the member according to claim 1. 請求項1〜6のいずれかに記載の部材から形成されてなる樋。   A bag formed from the member according to claim 1.
JP2004332818A 2004-11-17 2004-11-17 Molten silicon distribution member and silicon transfer method Expired - Fee Related JP4620432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332818A JP4620432B2 (en) 2004-11-17 2004-11-17 Molten silicon distribution member and silicon transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332818A JP4620432B2 (en) 2004-11-17 2004-11-17 Molten silicon distribution member and silicon transfer method

Publications (2)

Publication Number Publication Date
JP2006143495A true JP2006143495A (en) 2006-06-08
JP4620432B2 JP4620432B2 (en) 2011-01-26

Family

ID=36623612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332818A Expired - Fee Related JP4620432B2 (en) 2004-11-17 2004-11-17 Molten silicon distribution member and silicon transfer method

Country Status (1)

Country Link
JP (1) JP4620432B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143417A1 (en) * 2009-06-08 2010-12-16 新日鉄マテリアルズ株式会社 Silicon melt transfer member and silicon melt transfer method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196070A (en) * 1987-10-08 1989-04-14 Hara Ceramic Kk Unfixed shape refractory to be used for spout for molten metal
JPH0755813B2 (en) * 1987-08-19 1995-06-14 バイエル・アクチエンゲゼルシヤフト Method for removing impurities from silicon
JPH07267624A (en) * 1994-03-29 1995-10-17 Kawasaki Steel Corp Purification of silicon and apparatus therefor
JPH10130011A (en) * 1996-10-29 1998-05-19 Kawasaki Steel Corp Removing method of boron from metal silicon
JP2002087889A (en) * 2000-09-16 2002-03-27 Yotai Refractories Co Ltd Low heat conductive carbon-containing refractory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755813B2 (en) * 1987-08-19 1995-06-14 バイエル・アクチエンゲゼルシヤフト Method for removing impurities from silicon
JPH0196070A (en) * 1987-10-08 1989-04-14 Hara Ceramic Kk Unfixed shape refractory to be used for spout for molten metal
JPH07267624A (en) * 1994-03-29 1995-10-17 Kawasaki Steel Corp Purification of silicon and apparatus therefor
JPH10130011A (en) * 1996-10-29 1998-05-19 Kawasaki Steel Corp Removing method of boron from metal silicon
JP2002087889A (en) * 2000-09-16 2002-03-27 Yotai Refractories Co Ltd Low heat conductive carbon-containing refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143417A1 (en) * 2009-06-08 2010-12-16 新日鉄マテリアルズ株式会社 Silicon melt transfer member and silicon melt transfer method
JP2010280552A (en) * 2009-06-08 2010-12-16 Nippon Steel Materials Co Ltd Conveying member for silicon melt and method for conveying silicon melt

Also Published As

Publication number Publication date
JP4620432B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
RU2401889C2 (en) Crucible for crystallisation of silicon and procedure for its fabrication
TWI692452B (en) Ceramic composite beads and methods for making the same
CN110511046B (en) Refractory castable for slag stopping component of continuous casting tundish and preparation method
CN113105254B (en) Novel ceramic sand and preparation method thereof
US20160186290A1 (en) Metallurgical slag coatings for refractory substrates
JP4620432B2 (en) Molten silicon distribution member and silicon transfer method
JP3814449B2 (en) Discharge port member for melting furnace and manufacturing method thereof
WO2006085679A1 (en) Method of refining silicon
JP4394080B2 (en) Zirconia refractories
JP2003041357A (en) Silicon holding vessel and manufacturing method therefor
JP2007191341A (en) Method for refining silicon
CN109809805B (en) Preparation method of silicon carbide ceramic membrane for metallurgical nozzle
KR100597932B1 (en) Method for continuous casting of molten steel for thin sheet
JP2000072534A (en) Large scale fire brick, especially brick for bottom of tin bath, and its production
WO2016144899A1 (en) Metallurgical slag coatings for refractory substrates
JP4353627B2 (en) filter
JP5053206B2 (en) Method of forming quartz glass material using mold material
US20020041062A1 (en) Low-firing temperature method for producing Al2O3 bodies having enhanced chemical resistance
JP2003267708A (en) Method of manufacturing aluminum nitride sintered powder
JPS62100477A (en) Silicon carbide base parts for dry etching equipment
KR100310919B1 (en) Silicon carbide filter for romoving particulates of engine exhaust and a method emploing the same
JP4838592B2 (en) Refractory for molten silicon and method for producing the same
JP2003145265A (en) Immersion nozzle for casting
Turen et al. RELATIONSHIP BETWEEN GLASS FIBRE CONTENT AND PARTICLE SIZE OF SPRAYABLE TUNDISH LINING(MgO) ON THE WETTABILITY OF MOLTEN STEEL/MgO SYSTEM
JPH05269547A (en) Heat insulating material for molten metal and insulation method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20061019

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

RD03 Notification of appointment of power of attorney

Effective date: 20070522

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20090521

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees