JP2006142165A - Method and apparatus for treating organic waste - Google Patents

Method and apparatus for treating organic waste Download PDF

Info

Publication number
JP2006142165A
JP2006142165A JP2004333466A JP2004333466A JP2006142165A JP 2006142165 A JP2006142165 A JP 2006142165A JP 2004333466 A JP2004333466 A JP 2004333466A JP 2004333466 A JP2004333466 A JP 2004333466A JP 2006142165 A JP2006142165 A JP 2006142165A
Authority
JP
Japan
Prior art keywords
organic waste
treatment
fermentation
reaction
valuable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004333466A
Other languages
Japanese (ja)
Other versions
JP4600921B2 (en
Inventor
Naoaki Kataoka
直明 片岡
Roberto Masahiro Serikawa
ロベルト正浩 芹川
Akiko Miya
晶子 宮
Nakamichi Yamazaki
仲道 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Ebara Corp
Original Assignee
Tohoku University NUC
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Ebara Corp filed Critical Tohoku University NUC
Priority to JP2004333466A priority Critical patent/JP4600921B2/en
Publication of JP2006142165A publication Critical patent/JP2006142165A/en
Application granted granted Critical
Publication of JP4600921B2 publication Critical patent/JP4600921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and apparatus for treating organic wastes of a low environmental load by reducing an amount of fermentation residues discharged from a process of producing valuables from the organic wastes. <P>SOLUTION: The method and apparatus for treating the organic wastes includes a process of producing valuables from the organic wastes, in which the method and apparatus for treating the organic wastes are characterized by treating the residues discharged from the valuables production process in a hydrothermal oxidation treatment process. More preferably, the process of producing the valuables is by a biological process; the hydrothermal oxidation treatment process is a process including the reaction to convert the ammonia nitrogen existing in the residues to nitrate nitrogen by oxygen oxidation, and preferably to effect a hydrothermal oxidation reaction by bringing object wastes to be treated into contact with an oxidation catalyst in the presence of the oxygen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、下水汚泥、し尿、家畜糞尿、生ごみ、食品加工廃棄物、屠畜場廃棄物、アルコール蒸留廃棄物、廃木材や草本類などの有機性固形物を含む廃棄物や廃水の処理方法に係わり、特に、有機性廃棄物から水素及び/又はメタンを回収する有価物生産プロセスを有することを特徴とした有機性廃棄物の処理方法及び装置に関するものである。   The present invention relates to a method for treating waste and waste water containing organic solids such as sewage sludge, human waste, livestock manure, food waste, slaughterhouse waste, alcohol distillation waste, waste wood and herbs. In particular, the present invention relates to an organic waste processing method and apparatus characterized by having a valuable material production process for recovering hydrogen and / or methane from organic waste.

近年、生ごみや食品加工残渣、下水汚泥などの有機性廃棄物や廃水の資源回収型処理技術として、これらをガス燃料や液体燃料に変換するメタン発酵や水素発酵、乳酸発酵、エタノール発酵などが注目されるようになってきた。
有機性廃棄物を原料としたメタン発酵や水素発酵、エタノール発酵においては、余剰菌体及び原料の未分解物を含む残渣が必ず排出される。従来はこれら残渣を含む廃液や汚泥は産業廃棄物として処分されるか、さらに好気性生物処理のような後処理をしてから、固液分離した液体は放流、固形物は脱水汚泥や余剰残渣として産業廃棄物として処分されていた。
In recent years, organic waste such as food waste, food processing residue, and sewage sludge and wastewater resource recovery processing technologies include methane fermentation, hydrogen fermentation, lactic acid fermentation, and ethanol fermentation that convert these into gas fuel and liquid fuel. It has come to be noticed.
In methane fermentation, hydrogen fermentation, and ethanol fermentation using organic waste as raw materials, residues including surplus cells and raw material undegraded products are necessarily discharged. Conventionally, waste liquids and sludge containing these residues are disposed of as industrial waste, or after post-treatment such as aerobic biological treatment, the solid-liquid separated liquid is discharged, solids are dehydrated sludge and surplus residues As industrial waste.

さらに近年では、産業廃棄物処分場の処分地が逼迫し、廃棄物処分量の大幅削減が必須となってきたため、残渣の一部をオゾン処理、超音波処理、熱アルカリ処理、湿式酸化処理あるいは水熱処理のような物理化学処理法による可溶化工程を経た後、メタン発酵槽あるいはエタノール発酵槽へ戻して再発酵することにより、メタンやエタノール回収量を増加させると共に余剰汚泥発生量を減少させる処理プロセスが提案されている。
しかしながら、メタン発酵やエタノール発酵を中核とするこれらの処理プロセスにおいては、有機物中の炭素分の多くがメタンガスやエタノールとして回収されるが、窒素やリンは菌体に転換する以外に除去することができず、発酵残渣として残留する。特に、前述のように物理化学処理による可溶化工程を経た後にメタン発酵槽やエタノール発酵へ戻す方法の場合、炭素分についてはメタンやエタノール転換が促進されるものの、発酵汚泥中の溶解性の窒素やリンの濃度が可溶化しない場合に比べて相対的に高くなる。このような窒素やリンの濃度の高い発酵残渣の処理として、リンについてはリン酸マグネシウムアンモニウムとして沈殿除去するMAP法などの化学的処理方法が開発されつつあるが、窒素については効率的な処理プロセスが構築されていないのが現状である。
特開平9-294969号公報 特開2001-262162号公報
Furthermore, in recent years, the disposal site of industrial waste disposal sites has become tight, and it has become essential to greatly reduce the amount of waste disposal, so some of the residue can be treated with ozone, ultrasonic treatment, thermal alkali treatment, wet oxidation treatment or After passing through a solubilization process using a physicochemical treatment method such as hydrothermal treatment, it is returned to the methane fermenter or ethanol fermenter and re-fermented to increase the amount of methane and ethanol recovered and reduce the amount of excess sludge generated. A process is proposed.
However, in these treatment processes centered on methane fermentation and ethanol fermentation, most of the carbon in organic matter is recovered as methane gas and ethanol, but nitrogen and phosphorus can be removed in addition to converting them to cells. It cannot be done and remains as a fermentation residue. In particular, in the case of the method of returning to the methane fermentation tank or ethanol fermentation after the solubilization process by physicochemical treatment as described above, the conversion of methane and ethanol is promoted for the carbon content, but soluble nitrogen in the fermentation sludge As compared with the case where the concentration of phosphorus and phosphorus is not solubilized, the concentration becomes relatively high. Chemical treatment methods such as the MAP method, which precipitates and removes phosphorus as magnesium ammonium phosphate, are being developed as a treatment for fermentation residues with high concentrations of nitrogen and phosphorus, but an efficient treatment process for nitrogen. Is not built.
JP-A-9-294969 Japanese Patent Laid-Open No. 2001-262162

以上に述べたように、従来有機性廃棄物から微生物反応を用いて有価物、特に水素やメタンなどの気体燃料を生産する工程から排出される発酵残渣は、有機物濃度が高い、生物分解性が低い、有機物と窒素やリンの濃度バランスが悪いなど、極めて処理困難な廃液または汚泥であった。そうした発酵汚泥は、環境負荷の低い処理方法が確立されていないため、主として産業廃棄物として埋立や焼却により処分されることが多かったが、廃棄物処分量の大幅な削減が急務となってきている。
すなわち、本発明は有機性廃棄物から有価物を生産する工程から排出される発酵残渣の量を低減し、環境負荷の低い有機性廃棄物の処理方法及び装置を提供することを目的とするものである。
As mentioned above, fermentation residues discharged from the process of producing valuable materials, in particular gaseous fuels such as hydrogen and methane, from conventional organic waste using microbial reactions, have high organic matter concentrations and are biodegradable. It was a waste liquid or sludge that was extremely difficult to treat, such as low concentration balance between organic matter and nitrogen or phosphorus. Such fermented sludge has often been disposed of mainly as landfill or incineration as industrial waste because no treatment method with a low environmental impact has been established. However, there is an urgent need to significantly reduce the amount of waste disposed of. Yes.
That is, the present invention aims to reduce the amount of fermentation residue discharged from the process of producing valuable materials from organic waste, and to provide a method and apparatus for processing organic waste with a low environmental load. It is.

本発明者らは、有機性廃棄物の有価物回収後の残渣に焦点を当て、その効率的な処理方法と処理装置について鋭意検討を行った。先ず、発酵残渣の物理化学的処理方法や生物学的処理方法の研究事例を基に、そこでの有機物分解反応特性や生成物性状を解析・考察した。そして、発酵残渣の物理化学的処理法によって生成された物質を微生物反応によって効率よく処理するプロセスを考案して本発明を完成するに至った。   The inventors of the present invention focused on residues after recovering valuable resources of organic waste, and intensively studied the efficient processing method and processing apparatus. First, based on research examples of physicochemical treatment methods and biological treatment methods of fermentation residues, the organic substance decomposition reaction characteristics and product properties there were analyzed and discussed. Then, the present invention has been completed by devising a process for efficiently treating a substance produced by a physicochemical treatment method of a fermentation residue by a microbial reaction.

すなわち、本発明は下記の構成により上記の目的を達成するものである。
(1)有機性廃棄物から有価物を生産する工程を含む有機性廃棄物の処理方法において、該有価物生産工程から排出された残渣を水熱酸化処理工程で処理することを特徴とする有機性廃棄物の処理方法。
(2)前記水熱酸化処理工程は、前記残渣中に存在するアンモニア態窒素を酸素酸化によって硝酸態窒素に転換する反応を含む工程であることを特徴とする前記(1)に記載の処理方法。
(3)有機性廃棄物から生物学的プロセスで有価物を生産する工程を含む有機性廃棄物の処理方法において、該有価物生産工程から排出された残渣を、水熱酸化処理工程で処理することを特徴とする有機性廃棄物の処理方法。
(4)前記水熱酸化処理工程後に、被処理物に含有される硝酸態窒素を窒素ガスに転換する生物学的脱窒素工程を有することを特徴とする前記(1)〜(3)のいずれか1項に記載の有機性廃棄物の処理方法。
(5)前記水熱酸化処理工程は、酸素存在下において、被処理物と酸化触媒とを接触させ水熱酸化反応を行うことを特徴とする前記(1)〜(4)のいずれか1項に記載の有機性廃棄物の処理方法。
(6)前記酸化触媒は、酸性ゼオライトを含むものであることを特徴とする前記(5)に記載の有機性廃棄物の処理方法。
(7)前記生物学的脱窒素工程が、水素発酵、酸発酵、メタン発酵、脱窒素反応のいずれかの嫌気的生物反応下で行うことを特徴とする前記(4)〜(6)のいずれか1項に記載の有機性廃棄物の処理方法。
That is, the present invention achieves the above object with the following configuration.
(1) An organic waste processing method including a step of producing a valuable material from an organic waste, wherein the residue discharged from the valuable material production step is treated in a hydrothermal oxidation treatment step Waste disposal method.
(2) The treatment method according to (1), wherein the hydrothermal oxidation treatment step includes a reaction of converting ammonia nitrogen existing in the residue into nitrate nitrogen by oxygen oxidation. .
(3) In a method for treating organic waste including a step of producing a valuable material from an organic waste by a biological process, the residue discharged from the valuable material production step is treated in a hydrothermal oxidation treatment step. An organic waste processing method characterized by the above.
(4) The method according to any one of (1) to (3), further comprising a biological denitrification step of converting nitrate nitrogen contained in the object to be treated into nitrogen gas after the hydrothermal oxidation treatment step. The organic waste processing method according to claim 1.
(5) The hydrothermal oxidation treatment step includes performing a hydrothermal oxidation reaction by bringing an object to be treated and an oxidation catalyst into contact with each other in the presence of oxygen. A method for treating organic waste as described in 1. above.
(6) The method for treating organic waste according to (5) above, wherein the oxidation catalyst contains acidic zeolite.
(7) The biological denitrification step is performed under an anaerobic biological reaction of any one of hydrogen fermentation, acid fermentation, methane fermentation, and denitrification reaction, any of (4) to (6) above The organic waste processing method according to claim 1.

(8)有機性廃棄物から有価物を生産する有価物生産装置部を備える有機性廃棄物処理装置であって;有価物生産反応容器と、該反応容器に被処理物を供給する被処理物供給部と、有価物回収部と、残渣を含む被処理物排出部とを備える前記有価物生産装置部と;該有価物生産装置部から排出される残渣を含む被処理物を供給する配管系を含む被処理物供給部と、酸化触媒を有し供給される被処理物において100℃以上臨界温度未満の温度及び飽和蒸気圧以上の圧力に耐えられる水熱酸化反応容器と、該反応容器内に酸素を供給する酸素供給部と、処理後の廃棄物を排出する廃棄物排出部と、を備える水熱酸化処理装置部と;を有する有機性廃棄物の処理装置。
(9)前記酸化触媒は、酸化ゼオライトを含むものであることを特徴とする前記(8)に記載の有機性廃棄物の処理装置。
(10)前記有価物生産装置部は、水素及び/又はメタンを生産する装置であることを特徴とする前記(8)又は(9)に記載の有機性廃棄物の処理装置。
(11)前記有価物生産装置部は、生物学的反応を利用したものであって、前記有価物生産反応容器は発酵処理槽であることを特徴とする前記(8)〜(10)のいずれか1項に記載の有機性廃棄物の処理装置。
(12)前記水熱酸化処理部の後段に、更に生物学的脱窒槽を備える前記(8)〜(11)のいずれか1項に記載の有機性廃棄物の処理装置。
(13)前記水熱酸化処理装置部から排出される被処理物の少なくとも一部を、前記有価物生産装置部に返送する機構及び配管を備える前記(8)〜(12)のいずれか1項に記載の有機性廃棄物の処理装置。
(8) An organic waste treatment apparatus including a valuable material production apparatus that produces a valuable material from organic waste; a valuable material production reaction vessel, and a treatment object that supplies the treatment material to the reaction vessel The valuable material production device unit including a supply unit, a valuable material recovery unit, and a processed material discharge unit including a residue; a piping system that supplies a processed material including a residue discharged from the valuable material production device unit A hydrothermal oxidation reaction vessel capable of withstanding a temperature of 100 ° C. or higher and lower than a critical temperature and a pressure equal to or higher than a saturated vapor pressure in the supplied treatment target having an oxidation catalyst, and the reaction vessel An organic waste treatment apparatus comprising: an oxygen supply part that supplies oxygen to the waste water; and a waste discharge part that discharges the waste after the treatment.
(9) The organic waste treatment apparatus according to (8), wherein the oxidation catalyst includes oxidized zeolite.
(10) The organic waste treatment apparatus according to (8) or (9), wherein the valuable material production apparatus unit is an apparatus that produces hydrogen and / or methane.
(11) Any of the above (8) to (10), wherein the valuable product production device section uses a biological reaction, and the valuable product production reaction vessel is a fermentation tank. The processing apparatus of the organic waste of Claim 1.
(12) The organic waste treatment apparatus according to any one of (8) to (11), further including a biological denitrification tank in the subsequent stage of the hydrothermal oxidation treatment unit.
(13) Any one of said (8)-(12) provided with the mechanism and piping which return at least one part of the to-be-processed object discharged | emitted from the said hydrothermal oxidation processing apparatus part to the said valuable material production apparatus part. Organic waste processing equipment as described in 1.

本発明の有機性廃棄物の処理方法及び装置によれば、有機性廃棄物からの有価物生産工程で排出された残渣を水熱条件下での酸素酸化処理(水熱酸化処理)によって該残渣中のアンモニアを硝酸に容易に転換することができる。さらに、その硝酸態窒素は生物学的脱窒素工程によって窒素ガスにも転換でき、併せて、水素及び/又はメタンなどの有価物生産量を向上できるようにしたので、残渣量を大幅に低減でき、環境負荷の低い有機性廃棄物の処理方法を提供することが可能となった。また、有機性廃棄物からの残渣を極く短時間で液肥化することもできる。   According to the organic waste processing method and apparatus of the present invention, the residue discharged in the valuable material production process from the organic waste is subjected to oxygen oxidation treatment (hydrothermal oxidation treatment) under hydrothermal conditions. The ammonia in it can be easily converted to nitric acid. In addition, the nitrate nitrogen can be converted to nitrogen gas by a biological denitrification process, and at the same time, the production of valuable materials such as hydrogen and / or methane can be improved, so the amount of residue can be greatly reduced. Thus, it has become possible to provide a method for treating organic waste with a low environmental impact. In addition, the residue from organic waste can be liquefied in a very short time.

以下に、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。以降、便宜的にメタン発酵残渣を対象とした処理方法について説明するが、本発明はこれに限定されるものではない。
(1)有価物生産装置
有機性廃棄物からの有価物生産の1例である水素及び/又はメタンを生産する方法としては、熱的方法、物理化学的方法、生物的方法などがあるが、生物学的方法を用いる有価物生産装置の好ましい態様としては、酸発酵法や水素発酵法、可溶化・水素発酵法、メタン発酵法などが挙げられる。これらはいずれもが嫌気性処理法と称される発酵法であり、温度30〜70℃、pH5〜8.5、酸化還元電位−100〜−600mVでの嫌気性雰囲気下で有価物である水素及び/又はメタンを生産する。これらの嫌気性発酵に伴い、微生物菌体(余剰汚泥)、アンモニア態窒素が生成される。さらには難分解性の固形物が未分解残渣として残存する。
Hereinafter, the present invention will be described in more detail, but the present invention is not limited thereto. Hereinafter, for convenience, a treatment method targeting methane fermentation residue will be described, but the present invention is not limited thereto.
(1) Valuables production equipment Examples of methods for producing hydrogen and / or methane, which are examples of the production of valuables from organic waste, include thermal methods, physicochemical methods, biological methods, Preferable embodiments of the valuable material production apparatus using a biological method include an acid fermentation method, a hydrogen fermentation method, a solubilization / hydrogen fermentation method, and a methane fermentation method. These are all fermentation methods called anaerobic treatment methods, and hydrogen and / or a valuable material in an anaerobic atmosphere at a temperature of 30 to 70 ° C., a pH of 5 to 8.5, and a redox potential of −100 to −600 mV. Or produce methane. Along with these anaerobic fermentation, microbial cells (excess sludge) and ammonia nitrogen are produced. Furthermore, a hardly decomposable solid remains as an undecomposed residue.

ここで可溶化・水素発酵法とは、有機性廃棄物の固形物が加水分解反応や酸発酵、エタノール発酵、乳酸発酵などの嫌気性発酵がほぼ同時に進んでいくことにより可溶化される過程で、水素発酵も行わせるプロセスのことである。可溶化・水素発酵法では、反応温度30〜70℃、pH4.5〜7より好ましくはpH5〜6、水理学的滞留時間(HRT)1〜5日とすることが好ましい。特に、有機性廃棄物の種類によっては可溶化段階が反応律速となりやすいことから、温度45〜70℃の高温反応をHRT 2〜5日で行うことが好ましい。酸発酵、乳酸発酵、エタノール発酵、水素発酵、可溶化・水素発酵などの工程では、水素、二酸化炭素、硫化水素の他に、蟻酸、酢酸、プロピオン酸、乳酸、酪酸、吉草酸、カプロン酸などの有機酸、エタノール、プロパノール、2、3-ブタンジオール、アセトン、ブタノールなどのアルコール類が主に生成される。   Here, solubilization / hydrogen fermentation is a process in which solid waste of organic waste is solubilized by anaerobic fermentation such as hydrolysis, acid fermentation, ethanol fermentation, and lactic acid fermentation almost simultaneously. It is a process that allows hydrogen fermentation to be performed. In the solubilization / hydrogen fermentation method, the reaction temperature is preferably 30 to 70 ° C., pH 4.5 to 7, more preferably pH 5 to 6, and hydraulic residence time (HRT) 1 to 5 days. In particular, depending on the type of organic waste, the solubilization step tends to be rate-determining, so it is preferable to conduct a high-temperature reaction at a temperature of 45 to 70 ° C. in HRT for 2 to 5 days. In processes such as acid fermentation, lactic acid fermentation, ethanol fermentation, hydrogen fermentation, solubilization / hydrogen fermentation, hydrogen, carbon dioxide, hydrogen sulfide, formic acid, acetic acid, propionic acid, lactic acid, butyric acid, valeric acid, caproic acid, etc. Organic acids, ethanol, propanol, 2,3-butanediol, acetone, butanol and other alcohols are mainly produced.

メタン発酵ではメタン、二酸化炭素、硫化水素、アンモニアなどのバイオガスが主に生産される。メタン発酵では、有機物1kgあたり0.35m3(標準状態)のメタンが生産される。メタン発酵は、発酵温度30〜70℃、好ましくは35〜40℃の中温性メタン発酵領域又は50〜65℃の高温性メタン発酵領域で行う。これは、多くの中温性又は高温性メタン生成細菌群やその他の嫌気性細菌群の生育最適温度がこれらの範囲内にあるためである。pH条件はpH6〜9より好ましくはpH7〜8、HRTは5〜30日より好ましくは10〜25日の条件で運転することが好ましい。 In methane fermentation, biogas such as methane, carbon dioxide, hydrogen sulfide and ammonia is mainly produced. In methane fermentation, 0.35 m 3 (standard state) of methane is produced per kg of organic matter. Methane fermentation is carried out in a mesophilic methane fermentation region at a fermentation temperature of 30 to 70 ° C, preferably 35 to 40 ° C, or in a high temperature methane fermentation region of 50 to 65 ° C. This is because the optimum growth temperature of many mesophilic or thermophilic methanogenic bacteria and other anaerobic bacteria is within these ranges. The pH conditions are preferably pH 6-9, more preferably pH 7-8, and HRT is preferably operated for 5-30 days, more preferably 10-25 days.

本発明に係る有機性廃棄物処理向けのメタン発酵工程では、反応器形式として、浮遊床型、固定床型、流動床型、UASB(上向流式嫌気性スラッジブランケット)型のいずれもが適用可能である。この選択に際しては、特にSS(Suspended Solids)濃度、油脂濃度に注意を払う必要がある。具体的には、SS濃度2,000mg/L以上の場合には浮遊床型を適用することが好ましい。また、油脂濃度が、1,000mg/L以上の場合には浮遊床型を適用することが好ましい。メタン発酵槽内においては中性脂肪や高級脂肪酸は温度の高いほうが分散性が増すため、油脂成分の多く含まれる廃棄物原料に適用する場合には、50〜65℃の高温メタン発酵方法を選択することが好ましい。   In the methane fermentation process for organic waste treatment according to the present invention, any of a floating bed type, a fixed bed type, a fluidized bed type, and a UASB (upward flow type anaerobic sludge blanket) type is applied as a reactor type. Is possible. In this selection, it is necessary to pay particular attention to the SS (Suspended Solids) concentration and the fat and oil concentration. Specifically, it is preferable to apply a floating bed type when the SS concentration is 2,000 mg / L or more. Moreover, when the oil and fat concentration is 1,000 mg / L or more, it is preferable to apply a floating bed type. In the methane fermenter, neutral fats and higher fatty acids have higher dispersibility at higher temperatures, so select the high temperature methane fermentation method at 50 to 65 ° C when applying to waste materials that contain a lot of fat components. It is preferable to do.

固定床型、流動床型といった微生物保持担体を充填したメタン発酵では、微生物を担体に保持する方法として結合法や包括法を適用できるが、本発明でのメタン発酵工程における微生物反応においては、砂、珪砂、活性炭、セラミックス、合成樹脂、炭素繊維、プラスチックビーズ、ガラスビーズ、ポリエチレングリコール、ポリビニルアルコール、ポリウレタン、ポリプロピレン、汚泥焼却灰、木炭粉末、石炭灰フライアッシュのような粒子表面に微生物群を付着させて生物膜を形成させることが有利である。これらの保持担体の嫌気性処理槽内での存在形態、流動状態によって固定床と流動床に大別されるが、本発明ではどちらのタイプも適用が可能である。ただし、固定床タイプでは油脂分の過剰付着による固定化担体の閉塞や汚泥の浮上が、また流動タイプでは担体同士のぶつかり合いによる汚泥の剥離が問題となりやすいため、発酵原料中の油脂分濃度や固形物濃度などの性状、発酵槽運転時の廃水供給方法や有機物負荷、汚泥濃度や汚泥性状などに注意が必要である。これらの操作条件を決めるに際しては、廃水性状、水量変動、目標処理水質を加味した上で決定されるものである。   In methane fermentation packed with a microorganism-supporting carrier such as a fixed bed type or a fluidized bed type, a binding method or a comprehensive method can be applied as a method for retaining microorganisms on the carrier, but in the microbial reaction in the methane fermentation process of the present invention, sand is used. , Silica sand, activated carbon, ceramics, synthetic resin, carbon fiber, plastic beads, glass beads, polyethylene glycol, polyvinyl alcohol, polyurethane, polypropylene, sludge incineration ash, charcoal powder, coal ash adhere to the surface of particles such as coal ash It is advantageous to form a biofilm. These holding carriers are roughly classified into a fixed bed and a fluidized bed depending on the form of existence in the anaerobic treatment tank and the flow state, but both types can be applied in the present invention. However, the fixed bed type is prone to clogging of the immobilized carrier and sludge floating due to excessive adhesion of oil and fat, and the fluid type is prone to sludge peeling due to collision between the carriers. It is necessary to pay attention to properties such as solid matter concentration, waste water supply method during fermenter operation, organic matter load, sludge concentration and sludge properties. In determining these operating conditions, the operating conditions are determined in consideration of the state of waste water, fluctuation of water amount, and target treated water quality.

物理化学的方法を用いる有価物生産の好ましい態様としては、100℃以上臨界温度未満の温度において、その溶液が液相を維持する圧力(臨界圧力未満)の条件下、直流電流を供給することで水熱電気分解させて水素ガスを回収する方法がある。この方法によれば、水熱電解槽を用いて難分解性の有機物からの水素ガス回収が可能である。以下に、水熱電気分解について説明する。ハロゲン化物イオン及び還元性物質を含む有機性廃棄物の水媒体(水溶液)に、100℃以上前記水媒体の臨界温度未満の温度、好ましくは、100〜350℃の温度条件において、前記水媒体が液相を維持する圧力において、直流電流を供給する。すなわち、水熱条件下で電気分解を行うので、水熱電気分解という。電気分解の条件として、陽極の電流密度は0.1mA/dm2〜500A/dm2であることが好ましい。電流密度が500A/dm2より高い場合には、陽極表面が剥離したり、溶出し易くなる。一方、電流密度が0.1mA/dm2より低い場合には、陽極の面積を大きくする必要があり、装置が大型化するという欠点がある。電流密度は10mA/dm2〜100A/dm2であることが更に好ましく、100mA/dm2〜50A/dm2であることが一層好ましい。圧力は1MPa〜22MPaの範囲であり、温度と圧力の組み合わせとしては、150℃〜250℃と1MPa〜6MPaの組合せが好ましい。なお、温度と圧力がともに低いと、有機性固形物の可溶化があまり進行ぜず、一方、温度と圧力がともに高すぎると、有機性固形物や可溶化成分が無機化されてしまうので適宜調整することが望ましい。
なお、有価物生産工程から回収された水素及び/又はメタンは、気体燃料としてボイラ、ガス発電、マイクロガスタービン、燃料電池などに供給することにより熱や電気として利用できることは言うまでもない。
As a preferred embodiment of the production of valuable materials using the physicochemical method, a direct current is supplied at a temperature of 100 ° C. or higher and lower than the critical temperature under a pressure (less than the critical pressure) at which the solution maintains a liquid phase. There is a method of recovering hydrogen gas by hydrothermal electrolysis. According to this method, it is possible to recover hydrogen gas from a hardly decomposable organic substance using a hydrothermal electrolytic cell. Below, hydrothermal electrolysis is demonstrated. An aqueous medium (aqueous solution) of organic waste containing halide ions and a reducing substance is heated to 100 ° C. or higher and lower than the critical temperature of the aqueous medium, preferably at a temperature of 100 to 350 ° C. A direct current is supplied at a pressure that maintains the liquid phase. That is, since electrolysis is performed under hydrothermal conditions, it is called hydrothermal electrolysis. As electrolysis conditions, the current density of the anode is preferably 0.1 mA / dm 2 to 500 A / dm 2 . When the current density is higher than 500 A / dm 2 , the anode surface is easily peeled off or eluted. On the other hand, when the current density is lower than 0.1 mA / dm 2 , it is necessary to increase the area of the anode, which disadvantageously increases the size of the device. The current density is more preferably from 10mA / dm 2 ~100A / dm 2 , and still more preferably from 100mA / dm 2 ~50A / dm 2 . The pressure ranges from 1 MPa to 22 MPa, and the combination of temperature and pressure is preferably a combination of 150 ° C. to 250 ° C. and 1 MPa to 6 MPa. If both the temperature and pressure are low, solubilization of the organic solid does not progress so much. On the other hand, if both the temperature and pressure are too high, the organic solid and solubilizing components are mineralized, so that It is desirable to adjust.
Needless to say, hydrogen and / or methane recovered from the valuable material production process can be used as heat or electricity by supplying the fuel, such as a boiler, gas power generation, micro gas turbine, or fuel cell, as gaseous fuel.

(2)発酵残渣中のアンモニア分解条件
発酵残渣中に含まれるアンモニア態窒素(アンモニア態窒素濃度として300〜8,000mg/L程度)を硝酸態窒素に転換するための方法として、水熱条件下での酸素酸化反応(水熱酸化)が効果的である。その際の温度、酸素分圧及びpH条件として、温度は100℃以上、臨界温度未満、好ましく150〜400℃、最も好ましくは200〜350℃、酸素分圧は0.7〜4MPa以上とすることが好ましく、最も好ましくは1.5〜7MPa以上である。pH条件としてはpH5〜9の範囲が好ましく、最も好ましくはpH6〜8の中性領域であり、その条件においてアンモニア分解が効率的に進行する。処理時間としては、反応容器内滞留時間0.5〜5h、より好ましくは0.5〜2hで行う。上記のような水熱酸化条件下、pH6〜8の中性領域、酸素圧0.7〜4MPa以上での熱化学反応によって発酵残渣中のアンモニア成分を硝酸へ転換することが可能となる。なお、従来の生物学的硝化法では微生物への反応阻害を回避するためアンモニア濃度2,000〜3,000mg/L以下となるよう対象物の希釈等の操作が必要であったが、前述のような水熱酸化反応を用いれば高濃度領域のアンモニアに対して反応効率、転換効率が高い点が有利となる。
(2) Ammonia decomposition conditions in fermentation residue As a method for converting ammonia nitrogen contained in the fermentation residue (ammonia nitrogen concentration of about 300 to 8,000 mg / L) to nitrate nitrogen under hydrothermal conditions The oxygen oxidation reaction (hydrothermal oxidation) is effective. As the temperature, oxygen partial pressure and pH conditions at that time, the temperature is 100 ° C. or higher and less than the critical temperature, preferably 150 to 400 ° C., most preferably 200 to 350 ° C., and the oxygen partial pressure is preferably 0.7 to 4 MPa or higher. Most preferably, it is 1.5-7 MPa or more. The pH condition is preferably in the range of pH 5-9, most preferably in the neutral region of pH 6-8, under which ammonia decomposition proceeds efficiently. The treatment time is a residence time in the reaction vessel of 0.5 to 5 hours, more preferably 0.5 to 2 hours. Under the hydrothermal oxidation conditions as described above, the ammonia component in the fermentation residue can be converted to nitric acid by a thermochemical reaction at a neutral region of pH 6 to 8 and an oxygen pressure of 0.7 to 4 MPa or more. In the conventional biological nitrification method, in order to avoid reaction inhibition to microorganisms, an operation such as dilution of an object was necessary so that the ammonia concentration was 2,000 to 3,000 mg / L or less. Use of the thermal oxidation reaction is advantageous in that the reaction efficiency and conversion efficiency are high with respect to ammonia in a high concentration region.

(3)アンモニア分解における触媒条件
上記のような水熱条件下、pH6〜8の中性領域、酸素分圧0.7〜4MPa以上での水熱酸化反応において発酵残渣中のアンモニア態窒素を硝酸態窒素へと転換する場合、触媒を用いることが非常に効果的である。例えば、ゼオライト、斜プチロ石、モルデナイト、セピオライト等の添加によってアンモニアの分解反応を促進することができる。中でも、酸性ゼオライト系のセピオライトを用いることは極めて効果的であり、アンモニア態窒素から硝酸態窒素へ転換する反応時間を短縮でき、さらには、同じ反応時間で変換割合も大きくすることができる。なお、酸性ゼオライトであるセピオライトは、成分としてはスメクタイト、あるいはアスベストなどと同類であるが、長方形のチャンネル構造を有していることによりアンモニアの吸着能が高く、内部に強いブレンステッドの酸を含有していることから、吸着したアンモニア成分を活性化することがアンモニア分解反応にとって有利である。
(3) Catalytic conditions for ammonia decomposition Under the above hydrothermal conditions, ammonia nitrogen in the fermentation residue is converted to nitrate nitrogen in the hydrothermal oxidation reaction in a neutral region of pH 6-8 and an oxygen partial pressure of 0.7-4 MPa or higher. It is very effective to use a catalyst when converting to. For example, the decomposition reaction of ammonia can be promoted by adding zeolite, clinoptilolite, mordenite, sepiolite, or the like. Among them, it is extremely effective to use acidic zeolite-based sepiolite, the reaction time for conversion from ammonia nitrogen to nitrate nitrogen can be shortened, and the conversion rate can be increased with the same reaction time. Sepiolite, an acidic zeolite, is similar in composition to smectite or asbestos, but has a rectangular channel structure, so it has a high ammonia adsorption capacity and contains a strong Bronsted acid inside. Therefore, activating the adsorbed ammonia component is advantageous for the ammonia decomposition reaction.

上記のような触媒反応を反応容器内で進める方法として、触媒を添加して混合攪拌する方法の他、触媒を充填する方法、流動化する方法、ハニカム状などに固定化する方法のいずれでも可能である。なお、反応効率と触媒寿命を考慮すると、充填法、流動化法、又は固定化方法において触媒反応効率が高く、取扱いが容易で、寿命も長い。触媒の添加率、充填率、固定化率などの運転操作条件を決める場合には、有価物生産工程から排出される有機物性状、窒素量、水分量、目標水質を加味した上で決めることが必要である。   As a method of advancing the catalytic reaction as described above in the reaction vessel, any of a method of adding a catalyst and mixing and stirring, a method of filling a catalyst, a method of fluidizing, and a method of fixing in a honeycomb shape are possible. It is. In view of the reaction efficiency and the catalyst life, the catalyst reaction efficiency is high in the filling method, fluidization method, or immobilization method, the handling is easy, and the life is long. When determining operating conditions such as catalyst addition rate, packing rate, and immobilization rate, it is necessary to consider the organic properties, nitrogen content, water content, and target water quality that are discharged from the production of valuable materials. It is.

(4)生物学的脱窒素処理
上述のような水熱酸化処理工程において発酵残渣中のアンモニア態窒素が硝酸態窒素、例えば硝酸へと転換された場合、生成された硝酸は工業原料、液体肥料として用いることができるほか、生物学的脱窒素反応によって硝酸態窒素を窒素ガスへと容易に生物転換することが可能である。生物学的脱窒素反応は、下水処理やし尿処理、工場排水処理などの分野では循環式硝化脱窒法、回分式脱窒法、間欠曝気式脱窒法、オキシデーションディッチ式脱窒法などと称される種々の生物プロセスで既に実用化されており、十分な性能も立証されている。
(4) Biological denitrification treatment When ammonia nitrogen in the fermentation residue is converted to nitrate nitrogen, for example nitric acid, in the hydrothermal oxidation treatment step as described above, the produced nitric acid is an industrial raw material, liquid fertilizer. In addition, it is possible to easily bioconvert nitrate nitrogen to nitrogen gas by a biological denitrification reaction. Biological denitrification reactions are variously called circulatory nitrification denitrification, batch denitrification, intermittent aeration denitrification, oxidation ditch denitrification, etc. in the fields of sewage treatment, human waste treatment, factory wastewater treatment, etc. Has already been put to practical use in the biological process of the company, and sufficient performance has been proven.

この脱窒素反応は、脱窒菌の働きによって亜硝酸態窒素や硝酸態窒素が窒素ガスに還元される生物反応である。脱窒菌は従属栄養性細菌であり、脱窒素反応は嫌気性環境で行う菌の呼吸作用であるので、エネルギー源としての水素供与体(有機物)が必要である。脱窒素の反応条件は、温度15〜45℃、pH6〜8で行うことが好ましい。脱窒素反応による水素供与体としては、メタノールやエタノールなどが用いられることが多い。また、有機性廃棄物からの生物的エネルギー回収プロセスからの水素発酵液、酸発酵液、可溶化・水素発酵液、乳酸発酵液、エタノール発酵液、アセトン-ブタノール発酵液、メタン発酵液などを用いることもできる。   This denitrification reaction is a biological reaction in which nitrite nitrogen and nitrate nitrogen are reduced to nitrogen gas by the action of denitrifying bacteria. Since denitrifying bacteria are heterotrophic bacteria and the denitrifying reaction is a respiratory action of bacteria performed in an anaerobic environment, a hydrogen donor (organic substance) is required as an energy source. The reaction conditions for denitrification are preferably 15 to 45 ° C. and pH 6 to 8. Methanol or ethanol is often used as a hydrogen donor by denitrification reaction. In addition, hydrogen fermentation liquid, acid fermentation liquid, solubilization / hydrogen fermentation liquid, lactic acid fermentation liquid, ethanol fermentation liquid, acetone-butanol fermentation liquid, methane fermentation liquid, etc. from biological energy recovery process from organic waste are used. You can also.

水熱酸化処理工程でアンモニア態窒素から硝酸態窒素へと転換された後に一部を有価物生産工程に返送して生物学的脱窒素反応を行う方法には、水熱酸化処理工程から排出された溶液又は汚泥をそのまま返送する方法、排出された汚泥を重力沈降濃縮あるいは機械濃縮によって汚泥部分を排除し、その分離水(上澄液又は脱水ろ液)を有価物生産工程に返送する方法が用いられる。水熱酸化処理によって汚泥の沈降分離性、脱水性が向上するために固液分離は極めて容易となるが、汚泥濃縮工程において汚泥のSSあたり0.1〜1.0%の高分子凝集剤等や鉄系などの無機凝集薬剤を用いて1液法または2液法によって汚泥濃縮・凝集を促進する手法も有効である。また、機械濃縮の手法としては、濃縮スクリーンの他、遠心脱水機、スクリュープレス式脱水機、ベルトプレス脱水機などの汚泥用脱水機として通常使用されるものを適用できる。脱水汚泥を有価物生産工程に返送する場合、これらの脱水機で脱水された汚泥を戻しても何ら問題はない。   In the method of performing biological denitrification reaction after returning from ammonia nitrogen to nitrate nitrogen in the hydrothermal oxidation treatment process and returning a part to the valuable material production process, it is discharged from the hydrothermal oxidation treatment process. A method of returning the solution or sludge as it is, a method of removing the sludge portion of the discharged sludge by gravity sedimentation or mechanical concentration, and returning the separated water (supernatant liquid or dehydrated filtrate) to the valuable resource production process. Used. Solid-liquid separation is extremely easy due to the improvement of sludge sedimentation and dewatering properties due to hydrothermal oxidation treatment, but 0.1 to 1.0% polymer flocculant per SS of sludge in the sludge concentration process, iron system, etc. It is also effective to promote sludge concentration / aggregation by one- or two-component method using inorganic coagulant. Further, as a method of mechanical concentration, in addition to a concentration screen, those usually used as sludge dehydrators such as a centrifugal dehydrator, a screw press dehydrator, and a belt press dehydrator can be applied. When dewatered sludge is returned to the valuable material production process, there is no problem even if the sludge dehydrated by these dehydrators is returned.

さらには、有価物生産工程に返送する際に余剰活性汚泥などの好気性汚泥を外部から導入することも可能である。これは、余剰活性汚泥などの微生物体が主体の汚泥は、嫌気性処理工程において嫌気性発酵の栄養源にもなることから、有機物分解反応の促進にも効果的となる。この場合、汚泥の導入の際に超音波破砕、湿式ミル破砕、ボールミル破砕、ホモジナイズ破砕、熱処理、高温高圧処理、水熱処理、超臨界もしくは亜臨界域での水熱処理、酸やアルカリ処理、オゾン酸化などに代表される物理的、化学的細胞破砕処理を施した後に有価物生産工程に導入することが一層効果的である。   Furthermore, it is also possible to introduce aerobic sludge such as surplus activated sludge from the outside when returning to the valuable material production process. This is because sludge mainly composed of microorganisms such as surplus activated sludge also serves as a nutrient source for anaerobic fermentation in the anaerobic treatment step, and is therefore effective in promoting organic matter decomposition reaction. In this case, ultrasonic crushing, wet mill crushing, ball mill crushing, homogenizing crushing, heat treatment, high-temperature high-pressure treatment, hydrothermal treatment, hydrothermal treatment in supercritical or subcritical region, acid or alkali treatment, ozone oxidation at the time of introduction of sludge It is more effective to introduce it into a valuable material production process after performing physical and chemical cell disruption processes represented by the above.

水熱酸化処理工程でアンモニア態から硝酸態へと転換された窒素を含む溶液の一部を有価物生産工程に返送する方法では、脱窒素に加え、水素やメタンなど有価物回収量の増大にも繋がる。なお、水熱酸化処理工程から排出された溶液の一部を有価物生産工程に返送して脱窒素反応を行わせる場合、嫌気性反応と脱窒素反応を同時に安定的に起こさせるために、有価物生産工程でのCODと硝酸態窒素の比率(COD/NO-N比)は6以上とすることが好ましく、最も好ましくは9以上に制御することが好ましい。 In the method of returning a part of the solution containing nitrogen converted from ammonia to nitrate in the hydrothermal oxidation process to the valuable production process, in addition to denitrification, increase the recovery of valuable resources such as hydrogen and methane. Is also connected. In addition, when a part of the solution discharged from the hydrothermal oxidation treatment process is returned to the valuable material production process to perform the denitrification reaction, in order to cause the anaerobic reaction and the denitrogenation reaction at the same time, The ratio of COD and nitrate nitrogen (COD / NO 3 -N ratio) in the product production process is preferably 6 or more, and most preferably 9 or more.

本発明において、水熱酸化処理後の廃液に有機物、窒素及びリンが残留している場合、当該処理液を嫌気好気活性汚泥変法などのような有機物・窒素・リン同時除去が可能な生物処理によって浄化することができる。また、水熱酸化処理液に有機物及び窒素が放流基準以下で残留し、且つリンが高濃度に残留する場合、当該処理液を凝集沈殿や晶析等のような化学的リン除去方法で処理することができる。化学的リン除去の中でもヒドロキシアパタイトを晶析させる方法(HAP法)においては、対象とする溶液中に高濃度の炭酸が存在すると晶析反応を阻害することが知られており、特に脱炭酸工程は煩雑で高コストであるためHAP法の普及に障害となっているのが実情である。しかしながら、水熱酸化処理では炭酸ガスが十分に気化されるので特別な脱炭酸工程を設ける必要性がなく、化学的リン除去の中でもHAP法が特に好ましい。すなわち、水熱酸化反応器からの処理水は熱交換器等で熱回収を行った後に減圧段階でのフラッシングにより炭酸は気相へ移動され、処理ガスとして分離される。   In the present invention, when organic matter, nitrogen and phosphorus remain in the waste liquid after hydrothermal oxidation treatment, the treatment liquid can be removed simultaneously with organic matter, nitrogen and phosphorus, such as modified anaerobic aerobic activated sludge. It can be purified by treatment. Also, when organic matter and nitrogen remain in the hydrothermal oxidation treatment liquid below the discharge standard and phosphorus remains at a high concentration, the treatment liquid is treated by a chemical phosphorus removal method such as coagulation precipitation or crystallization. be able to. In chemical phosphorus removal, the method of crystallizing hydroxyapatite (HAP method) is known to inhibit the crystallization reaction when high concentration of carbonic acid is present in the target solution. Is complicated and expensive, and is a hindrance to the spread of the HAP method. However, since the carbon dioxide gas is sufficiently vaporized in the hydrothermal oxidation treatment, it is not necessary to provide a special decarboxylation step, and the HAP method is particularly preferable among chemical phosphorus removal. That is, the treated water from the hydrothermal oxidation reactor is heat-recovered with a heat exchanger or the like, and then the carbonic acid is moved to the gas phase by flushing at the decompression stage and separated as a treated gas.

次に、本発明の実施の形態を図面で説明する。なお、実施の形態を説明するための全図において、同一機能を有するものは同一符号を用いて示す。
図1から図4は、飲料製造工場から排出される食品加工廃棄物20t/日の処理例についての実施形態の図面である。
Next, embodiments of the present invention will be described with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments.
FIG. 1 to FIG. 4 are drawings of an embodiment of a processing example of food processing waste 20 t / day discharged from a beverage manufacturing factory.

図4は、従来の有機性廃棄物をメタン発酵で処理するブロック図である。すなわち、食品加工廃棄物20t/日(セルロース性物質30〜40%、タンパク質5〜20%、脂質10〜20%、その他有機性成分20〜45%)の有機性廃棄物を高温メタン発酵処理(55℃、浮遊床型、HRT 17〜20日)する事例を示す。有機性廃棄物1を有機物濃度8〜15%、粘度15〜20mPa.sのスラリーに調整後(有機物濃度調整として主に場内プロセス処理水を使用)、高温メタン発酵槽2で高温メタン発酵処理し、その発酵残渣5が排出される。この場合、高温メタン発酵処理によってメタンガスを主成分とするバイオガスが2,000〜3,500m3(メタンガス含有率55〜68%) 得られる。また、発酵残渣5にはアンモニア態窒素が2,000〜3,500mg/L含まれた。 FIG. 4 is a block diagram for treating conventional organic waste by methane fermentation. That is, organic waste of 20t / day of food processing waste (cellulosic material 30-40%, protein 5-20%, lipid 10-20%, other organic components 20-45%) is treated with high temperature methane fermentation ( 55 ° C, floating bed type, HRT 17-20 days). After adjusting organic waste 1 to slurry with organic substance concentration 8-15% and viscosity 15-20mPa.s (mainly using on-site process water as organic substance concentration adjustment), high-temperature methane fermentation treatment is performed in high-temperature methane fermentation tank 2 The fermentation residue 5 is discharged. In this case, 2,000 to 3,500 m 3 (methane gas content 55 to 68%) is obtained by the high temperature methane fermentation treatment. The fermentation residue 5 contained 2,000-3,500 mg / L of ammonia nitrogen.

図1は、本発明により、前述の図4の処理フローで発生する発酵残渣5を、酸性ゼオライトのセピオライト触媒を添加した水熱酸化用反応容器3で水熱酸化処理した事例を示す(温度250℃、pH7の中性領域、酸素分圧1.5Mpa、処理時間1hでの水熱酸化)。水熱酸化用容器3から排出される残渣6は、有機質やアンモニア態窒素をほとんど含まず、代わって、硝酸態窒素を主成分とするものである。この残渣6は液体肥料としての利用価値がある。   FIG. 1 shows an example in which the fermentation residue 5 generated in the process flow of FIG. 4 is hydrothermally oxidized in a hydrothermal oxidation reaction vessel 3 to which an acidic zeolite sepiolite catalyst is added (temperature 250). Hydrothermal oxidation at ℃, neutral pH7, oxygen partial pressure 1.5Mpa, treatment time 1h). The residue 6 discharged from the hydrothermal oxidation container 3 contains almost no organic matter or ammonia nitrogen, and instead contains nitrate nitrogen as a main component. This residue 6 has utility value as a liquid fertilizer.

図2は、前述の図1から排出された残渣6について、生物学的脱窒素槽4によって硝酸態窒素を窒素ガスに変換する事例を示す。脱窒素槽4では、20〜25℃の温度条件下にて脱窒素反応のための有機物8(例えばメタノール)の添加を行う。脱窒素槽4からは、生物脱窒素反応で生成される窒素ガスが排出され、残渣7は窒素分をほとんど含まなくなる。   FIG. 2 shows an example in which nitrate nitrogen is converted into nitrogen gas by the biological denitrification tank 4 with respect to the residue 6 discharged from FIG. In the denitrification tank 4, an organic substance 8 (for example, methanol) for denitrification reaction is added under a temperature condition of 20 to 25 ° C. From the denitrification tank 4, the nitrogen gas produced | generated by biological denitrification reaction is discharged | emitted, and the residue 7 hardly contains nitrogen content.

図3は、前述の図1から排出された残渣6について、これを汚泥返送ライン9によって高温メタン発酵槽2に返送することによって、脱窒素反応をメタン発酵槽2で行うものである。この方法によって、硝酸態窒素を窒素ガスに変換する際に必要とされる有機物(メタノールなど)を削減することが可能であり、またメタンガス回収量も図1〜2,4の場合と比較して向上させることが可能である。このプロセスからの排出残渣7には窒素分がほとんど含まれない。図3で示される処理プロセスについて、有機性廃棄物全体での具体的なプロセスフローを図5に示す。   FIG. 3 shows that the denitrification reaction is performed in the methane fermentation tank 2 by returning the residue 6 discharged from the above-described FIG. 1 to the high-temperature methane fermentation tank 2 through the sludge return line 9. By this method, it is possible to reduce organic substances (such as methanol) required for converting nitrate nitrogen to nitrogen gas, and the amount of methane gas recovered is also compared with the cases of FIGS. It is possible to improve. The discharge residue 7 from this process contains almost no nitrogen. FIG. 5 shows a specific process flow of the entire organic waste for the treatment process shown in FIG.

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例により何等制限されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited at all by these Examples.

実施例1
食品製造廃棄物を原料として試験を行った。A工場施設から排出された果実抽出残渣(以下、果物滓と称す)及びお茶殻(以下、茶殻)、排水処理設備から排出された脱水汚泥(以下、汚泥と称す)を混合し、固形物濃度(TS濃度)10%となるように水道水で濃度調整後、石臼式の湿式粉砕機(高速摩砕機セレンディピター(登録商標)MKCA6-3型(増幸産業株式会社製))で粉砕処理した。このように調整した被処理水を以下「原水」と称す。この原水の水質を第1表に示す。原水のpH調整のために粉砕処理した原水1リットルに対してNaHCO310gを添加して連続実験に供した。また、メタン生成活性を安定に保持するために、必要に応じてFe/Ni/Co混合液〔FeCl3(29g/L)、NiCl2・6H2O(4.4g/L)、CoSO4・7H2O(4.7g/L)〕1.0mLを原水1Lに対して添加した。
Example 1
Tests were conducted using food manufacturing waste as a raw material. Mixing the fruit extraction residue (hereinafter referred to as “fruit cake”) and tea husk (hereinafter referred to as “tea husk”) discharged from the factory facility A, and the dewatered sludge (hereinafter referred to as “sludge”) discharged from the wastewater treatment facility. (TS concentration) After adjusting the concentration with tap water to 10%, it was pulverized with a stone mill type wet pulverizer (high-speed milling machine Serendipator (registered trademark) MKCA6-3 (manufactured by Masuko Sangyo Co., Ltd.)) . The treated water thus adjusted is hereinafter referred to as “raw water”. The quality of this raw water is shown in Table 1. 10 g of NaHCO 3 was added to 1 liter of crushed raw water to adjust the pH of the raw water and subjected to continuous experiments. Also, in order to maintain stable methane production activity, Fe / Ni / Co mixed solution [FeCl 3 (29 g / L), NiCl 2 · 6H 2 O (4.4 g / L), CoSO 4 · 7H as required 2 O (4.7 g / L)] 1.0 mL was added to 1 L of raw water.

有価物生産装置として、実験装置は可溶化・水素発酵槽(ポリ塩化ビニル製、総容積5.5L、有効容積5.0L、ジャケット式温水循環)及び完全混合型の高温メタン発酵槽(円筒型、ポリ塩化ビニル製、総容積30L、有効容積25L、ジャケット温水循環式)を用いた。実験装置の運転条件は、可溶化・水素発酵槽及びメタン発酵槽共に55℃、攪拌速度50/minで行った。可溶化・水素発酵槽の攪拌についてはチューブポンプRP-60型(東京理化器械社製)を使った液循環による攪拌方式とし、発酵槽下部液1.2Lを引抜いて槽上部から注入する操作を1日3回、タイマー運転で行った。原水投入量は1.2〜1.5L/日、HRTは可溶化・水素発酵槽は3日、メタン発酵槽は約20日で行った。可溶化・水素発酵槽への原水投入はチューブポンプRP-60型で発酵槽側面の下部から注入し、可溶化・水素発酵槽からのオーバーフロー液をメタン発酵槽に流入する送液フローとした。また、メタン発酵槽からのオーバーフロー液の一部0.6-0.8L/日を可溶化・水素発酵槽に返送ながら連続運転した。返送操作にはローラーポンプ(東京理化器械社製RP-1000型)を用い、1日4回に分割してタイマー運転で可溶化・水素発酵槽に発酵槽底部から上向流式に注入した。   As valuable materials production equipment, experimental equipment includes solubilization / hydrogen fermenter (made of polyvinyl chloride, total volume 5.5L, effective volume 5.0L, jacketed hot water circulation) and fully mixed high temperature methane fermenter (cylindrical, poly Vinyl chloride, total volume 30L, effective volume 25L, jacket warm water circulation type) was used. The operating conditions of the experimental apparatus were 55 ° C. and a stirring speed of 50 / min for both the solubilization / hydrogen fermenter and methane fermenter. For the solubilization and stirring of the hydrogen fermenter, the stirring method is based on liquid circulation using a tube pump RP-60 type (manufactured by Tokyo Rika Kikai Co., Ltd.). It was done by timer operation 3 times a day. Raw water input was 1.2-1.5L / day, HRT was solubilized and hydrogen fermenter was 3 days, and methane fermenter was about 20 days. The raw water input to the solubilization / hydrogen fermenter was injected from the lower side of the side of the fermenter with a tube pump RP-60 type, and the overflow flow from the solubilization / hydrogen fermenter flowed into the methane fermenter. In addition, continuous operation was performed while returning a part of the overflow liquid from the methane fermenter 0.6-0.8L / day to the solubilized / hydrogen fermentor. For the return operation, a roller pump (RP-1000 type, manufactured by Tokyo Rika Kikai Co., Ltd.) was used, divided into 4 times a day, and solubilized and injected into the hydrogen fermenter in the upward direction from the bottom of the fermenter by timer operation.

水質及びバイオガスの分析方法は下記の方法で行った。
・ TS(Total Solids、全蒸発残留物);105℃蒸発残留物重量(JIS K 0102)
・ VS(Volatile Solids、強熱減量);600℃強熱減量(JIS K 0102)
・ CODCr(化学的酸素消費量);重クロム酸カリウム法(JIS K 0102)
・ BOD(生物化学的酸素消費量);ウインクラー・アジ化ナトリウム変法(JIS K 0102)
・ タンパク質;(ケルダール窒素−アンモニア性窒素)×6.25
・ 全還元糖類;フェノール-硫酸法(吸光度488nm)
・ 脂質;ヘキサン:イソプロパノール(5:3)混合溶媒抽出法
・ 揮発性有機酸(VFA);高速液体クロマトグラフ(エルマ光学ERC-8710、検出器 RI、カラムShodex Ionpack KC-811、カラム温度60℃、移動相0.1%リン酸)
・ アンモニア態窒素、硝酸態窒素:全自動分析計(Bran+Luebbe TRAACS880型)
・ メタンガス・炭酸ガス;ガスクロマトグラフ(GLサイエンスGC-322、検出器TCD、TCD電流値120mA、分離カラム Active Carbon 30/60、カラム温度 95℃、キャリアガス ヘリウム)
・ 水素(GLサイエンスGC-322、検出器TCD、TCD電流値50mA、分離カラム Unibeads C 60/80、カラム温度 140℃、キャリアガス アルゴン)
・ 溶解性区分;GF/B (1μm)でのろ液
Water quality and biogas were analyzed by the following methods.
・ TS (Total Solids, total evaporation residue); 105 ℃ evaporation residue weight (JIS K 0102)
・ VS (Volatile Solids, loss on ignition); 600 ° C loss on ignition (JIS K 0102)
・ COD Cr (chemical oxygen consumption); potassium dichromate method (JIS K 0102)
・ BOD (Biochemical Oxygen Consumption); Winkler ・ Modified Sodium Azide (JIS K 0102)
・ Protein; (Kjeldahl nitrogen-ammoniacal nitrogen) x 6.25
・ Total reducing sugars; phenol-sulfuric acid method (absorbance 488 nm)
・ Lipid: Hexane: Isopropanol (5: 3) mixed solvent extraction method ・ Volatile organic acid (VFA): High performance liquid chromatograph (Elmer Optics ERC-8710, Detector RI, Column Shodex Ionpack KC-811, Column temperature 60 ℃ , Mobile phase 0.1% phosphoric acid)
・ Ammonia nitrogen, nitrate nitrogen: fully automatic analyzer (Bran + Luebbe TRAACS880)
・ Methane gas / carbon dioxide gas chromatograph (GL Science GC-322, detector TCD, TCD current value 120mA, separation column Active Carbon 30/60, column temperature 95 ℃, carrier gas helium)
・ Hydrogen (GL Science GC-322, detector TCD, TCD current value 50mA, separation column Unibeads C 60/80, column temperature 140 ℃, carrier gas argon)
・ Solubility classification: Filtrate with GF / B (1μm)

食品加工廃棄物の性状を第1表に示す。   Table 1 shows the properties of food processing waste.

Figure 2006142165
Figure 2006142165

果実滓、茶殻、汚泥を混合後、水分調整して粉砕処理した食品廃棄物粉砕液の性状を第2表に示す。   Table 2 shows the properties of the food waste pulverized liquid obtained by mixing the fruit cake, tea husk, and sludge and then adjusting the water content and pulverizing.

Figure 2006142165
Figure 2006142165

前述の図1に示す処理プロセスによって、食品廃棄物粉砕液を実験原料に可溶化・水素発酵及びメタン発酵した実験結果を第3表に示す。可溶化・水素発酵及びメタン発酵の運転条件は前述のとおりである。   Table 3 shows the experimental results of solubilizing, hydrogen fermentation, and methane fermentation of the food waste pulverized liquid using the treatment process shown in FIG. The operating conditions of solubilization / hydrogen fermentation and methane fermentation are as described above.

Figure 2006142165
Figure 2006142165

前述の図2に示す処理プロセスによって、食品廃棄物粉砕液をメタン発酵後、その発酵残渣液を水熱酸化処理した実験結果を第4表の(A)カラムに示す。なお、水熱酸化処理の条件は、有効容積300mLのミニオートクレーブを用い、メタン発酵残渣液150mLとセピオライト1.0gを添加後振り混ぜながら30分間の水熱酸化処理を行った(温度250℃、pH7、酸素分圧1.5MPaでの水熱酸化)。
さらに、前述の図2に示す廃棄物処理プロセスによって、上記の水熱処理で得られた溶液を生物学的脱窒素処理した実験結果を第4表の(B)カラムに示す。生物学的脱窒素実験は有効容積5.0Lのポリ塩化ビニル製円筒型容器を用い、25℃、攪拌速度10/minで行った。脱窒素処理では、膜分離高負荷脱窒素処理方式のし尿処理場の生物反応槽汚泥を種菌として用い、汚泥濃度3,600mg/L、無酸素滞留時間1〜1.5日、メタノールを連続注入しながら行った。
The experimental results obtained by subjecting the food waste pulverized liquid to methane fermentation and hydrothermal oxidation of the fermentation residue liquid by the treatment process shown in FIG. 2 are shown in the column (A) of Table 4. The hydrothermal oxidation treatment was carried out using a mini autoclave with an effective volume of 300 mL and hydrothermal oxidation treatment for 30 minutes with shaking and mixing after adding 150 mL of methane fermentation residue and 1.0 g of sepiolite (temperature 250 ° C., pH 7 , Hydrothermal oxidation with oxygen partial pressure of 1.5 MPa).
Furthermore, the experimental results of biological denitrification treatment of the solution obtained by the above hydrothermal treatment by the waste treatment process shown in FIG. 2 are shown in the column (B) of Table 4. Biological denitrification experiments were carried out at 25 ° C. and a stirring speed of 10 / min using a polyvinyl chloride cylindrical container having an effective volume of 5.0 L. In the denitrification treatment, sludge concentration of 3,600 mg / L, oxygen-free residence time of 1 to 1.5 days, and continuous injection of methanol, using biological reaction tank sludge from a membrane separation high-load denitrification treatment human waste treatment plant. It was.

Figure 2006142165
Figure 2006142165

前述の図3に示す廃棄物処理プロセスによって、上記の水熱酸化処理によって得られた溶液をメタン発酵槽に返送した場合の実験結果を第5表に示す。水熱酸化処理液のメタン発酵槽への循環比は1〜1.5で行った。   Table 5 shows the experimental results when the solution obtained by the hydrothermal oxidation treatment is returned to the methane fermentation tank by the waste treatment process shown in FIG. The circulation ratio of the hydrothermal oxidation treatment liquid to the methane fermentation tank was 1 to 1.5.

Figure 2006142165
Figure 2006142165

本発明は、下水汚泥、し尿、家畜糞尿、生ごみ、食品加工廃棄物、屠畜場廃棄物、アルコール蒸留廃棄物、廃木材や草本類などの有機性固形物を含む廃棄物や廃水の処理方法に適用し、特に、有機性廃棄物から水素及び/又はメタンを回収する有価物生産プロセスを有する有機性廃棄物の処理方法及び装置において有効に適用することができる。   The present invention relates to a method for treating waste and waste water containing organic solids such as sewage sludge, human waste, livestock manure, food waste, slaughterhouse waste, alcohol distillation waste, waste wood and herbs. In particular, the present invention can be effectively applied to a method and apparatus for treating organic waste having a valuable production process for recovering hydrogen and / or methane from organic waste.

本発明の有機性廃棄物メタン発酵を示すブロック図である。It is a block diagram which shows the organic waste methane fermentation of this invention. 図1から排出された残渣について生物学的脱窒素槽によって硝酸態窒素を窒素ガスに変換するブロック図である。It is a block diagram which converts nitrate nitrogen into nitrogen gas by the biological denitrification tank about the residue discharged | emitted from FIG. 図2から排出された残渣をメタン発酵槽で脱窒素反応を行うブロック図である。It is a block diagram which performs a denitrification reaction for the residue discharged | emitted from FIG. 2 with a methane fermenter. 従来の有機性廃棄物メタン発酵を示すブロック図である。It is a block diagram which shows the conventional organic waste methane fermentation. 図3で示される処理プロセスを有機性廃棄物全体で具体化したプロセスフローを示す。The process flow which actualized the treatment process shown by FIG. 3 with the whole organic waste is shown.

符号の説明Explanation of symbols

1 有機性廃棄物
2 高温メタン発酵処理
3 水熱酸化用反応容器
4 生物学的脱窒素槽
5 発酵残渣
6 残渣A
7 残渣B
8 有機物
9 汚泥返送ライン
1 Organic waste 2 High-temperature methane fermentation treatment 3 Reaction vessel for hydrothermal oxidation 4 Biological denitrification tank 5 Fermentation residue 6 Residue A
7 Residue B
8 Organic matter 9 Sludge return line

Claims (13)

有機性廃棄物から有価物を生産する工程を含む有機性廃棄物の処理方法において、該有価物生産工程から排出された残渣を水熱酸化処理工程で処理することを特徴とする有機性廃棄物の処理方法。   An organic waste processing method including a step of producing a valuable material from an organic waste, wherein the residue discharged from the valuable material production step is treated in a hydrothermal oxidation treatment step. Processing method. 前記水熱酸化処理工程は、前記残渣中に存在するアンモニア態窒素を酸素酸化によって硝酸態窒素に転換する反応を含む工程であることを特徴とする請求項1に記載の処理方法。   The treatment method according to claim 1, wherein the hydrothermal oxidation treatment step includes a reaction of converting ammonia nitrogen present in the residue into nitrate nitrogen by oxygen oxidation. 有機性廃棄物から生物学的プロセスで有価物を生産する工程を含む有機性廃棄物の処理方法において、該有価物生産工程から排出された残渣を、水熱酸化処理工程で処理することを特徴とする有機性廃棄物の処理方法。   In a method for treating organic waste including a step of producing a valuable material from an organic waste by a biological process, the residue discharged from the valuable material production step is treated in a hydrothermal oxidation treatment step. A method for treating organic waste. 前記水熱酸化処理工程後に、被処理物に含有される硝酸態窒素を窒素ガスに転換する生物学的脱窒素工程を有することを特徴とする請求項1〜3のいずれか1項に記載の有機性廃棄物の処理方法。   4. The biological denitrification step of converting nitrate nitrogen contained in the object to be treated into nitrogen gas after the hydrothermal oxidation treatment step, according to claim 1. Organic waste disposal methods. 前記水熱酸化処理工程は、酸素存在下において、被処理物と酸化触媒とを接触させ水熱酸化反応を行うことを特徴とする請求項1〜4のいずれか1項に記載の有機性廃棄物の処理方法。   5. The organic waste according to claim 1, wherein the hydrothermal oxidation treatment step performs a hydrothermal oxidation reaction by bringing an object to be treated and an oxidation catalyst into contact with each other in the presence of oxygen. How to handle things. 前記酸化触媒は、酸性ゼオライトを含むものであることを特徴とする請求項5に記載の有機性廃棄物の処理方法。   The organic waste treatment method according to claim 5, wherein the oxidation catalyst contains acidic zeolite. 前記生物学的脱窒素工程が、水素発酵、酸発酵、メタン発酵、脱窒素反応のいずれかの嫌気的生物反応下で行うことを特徴とする請求項4〜6のいずれか1項に記載の有機性廃棄物の処理方法。   The biological denitrification step is carried out under an anaerobic biological reaction of any one of hydrogen fermentation, acid fermentation, methane fermentation, and denitrogenation reaction. Organic waste disposal methods. 有機性廃棄物から有価物を生産する有価物生産装置部を備える有機性廃棄物処理装置であって;有価物生産反応容器と、該反応容器に被処理物を供給する被処理物供給部と、有価物回収部と、残渣を含む被処理物排出部とを備える前記有価物生産装置部と;該有価物生産装置部から排出される残渣を含む被処理物を供給する配管系を含む被処理物供給部と、酸化触媒を有し供給される被処理物において100℃以上臨界温度未満の温度及び飽和蒸気圧以上の圧力に耐えられる水熱酸化反応容器と、該反応容器内に酸素を供給する酸素供給部と、処理後の廃棄物を排出する廃棄物排出部と、を備える水熱酸化処理装置部と;を有する有機性廃棄物の処理装置。   An organic waste treatment apparatus comprising a valuable material production device that produces valuable material from organic waste; a valuable material production reaction vessel, and a treatment object supply unit that supplies the treatment material to the reaction vessel; A valuable material production unit comprising: a valuable material recovery unit; and a waste product discharge unit including a residue; and a piping system that supplies a material to be processed including a residue discharged from the valuable material production device unit. A treated product supply unit, a hydrothermal oxidation reaction vessel capable of withstanding a temperature of 100 ° C. or more and less than a critical temperature and a pressure of a saturated vapor pressure or more in an object to be treated having an oxidation catalyst, and oxygen in the reaction vessel An organic waste treatment apparatus comprising: an oxygen supply section to supply; and a waste discharge section that discharges waste after treatment. 前記酸化触媒は、酸化ゼオライトを含むものであることを特徴とする請求項8に記載の有機性廃棄物の処理装置。   The organic waste treatment apparatus according to claim 8, wherein the oxidation catalyst contains oxidized zeolite. 前記有価物生産装置部は、水素及び/又はメタンを生産する装置であることを特徴とする請求項8又は請求項9に記載の有機性廃棄物の処理装置。   The organic waste processing apparatus according to claim 8, wherein the valuable product production unit is a device that produces hydrogen and / or methane. 前記有価物生産装置部は、生物学的反応を利用したものであって、前記有価物生産反応容器は発酵処理槽であることを特徴とする請求項8〜10のいずれか1項に記載の有機性廃棄物の処理装置。   The said valuable-material production apparatus part utilizes biological reaction, Comprising: The said valuable-material production reaction container is a fermentation processing tank, The any one of Claims 8-10 characterized by the above-mentioned. Organic waste treatment equipment. 前記水熱酸化処理部の後段に、更に生物学的脱窒槽を備える請求項8〜11のいずれか1項に記載の有機性廃棄物の処理装置。   The organic waste treatment apparatus according to any one of claims 8 to 11, further comprising a biological denitrification tank at a subsequent stage of the hydrothermal oxidation treatment unit. 前記水熱酸化処理装置部から排出される被処理物の少なくとも一部を、前記有価物生産装置部に返送する機構及び配管を備える請求項8〜12のいずれか1項に記載の有機性廃棄物の処理装置。   The organic waste according to any one of claims 8 to 12, further comprising a mechanism and a pipe for returning at least a part of the object to be treated discharged from the hydrothermal oxidation treatment device unit to the valuable material production device unit. Material processing equipment.
JP2004333466A 2004-11-17 2004-11-17 Organic waste treatment method and apparatus Active JP4600921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333466A JP4600921B2 (en) 2004-11-17 2004-11-17 Organic waste treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333466A JP4600921B2 (en) 2004-11-17 2004-11-17 Organic waste treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2006142165A true JP2006142165A (en) 2006-06-08
JP4600921B2 JP4600921B2 (en) 2010-12-22

Family

ID=36622447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333466A Active JP4600921B2 (en) 2004-11-17 2004-11-17 Organic waste treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4600921B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302082A (en) * 2013-06-28 2013-09-18 武汉科梦环境工程有限公司 Chinese medicine residue squeezing classification and resource utilization system
JPWO2015025941A1 (en) * 2013-08-23 2017-03-02 国立大学法人東北大学 Method for treating organic matter in the presence of water, catalytic reactor and system including the same, and method for recovering waste heat from a low-temperature source
CN117282760A (en) * 2023-10-25 2023-12-26 北京科技大学 Treatment method of waste incineration fly ash

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103723899B (en) * 2014-01-23 2015-06-17 杭州互惠环保科技有限公司 Sludge comprehensive treatment method based on anaerobic digestion and hydrothermal carbonization

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58300A (en) * 1981-06-25 1983-01-05 Niigata Eng Co Ltd Treatment of sludge
JPH02265696A (en) * 1989-04-06 1990-10-30 Osaka Gas Co Ltd Treatment of waste water
JPH0474599A (en) * 1990-07-13 1992-03-09 Osaka Gas Co Ltd Treatment of waste water and sludge
JPH04104899A (en) * 1990-08-23 1992-04-07 Osaka Gas Co Ltd Method for treating waste water and sludge
JPH04118094A (en) * 1990-09-07 1992-04-20 Mitsui Eng & Shipbuild Co Ltd Method for decomposing urea by hydrothermal oxidation
JPH04215899A (en) * 1990-08-06 1992-08-06 Osaka Gas Co Ltd Treatment of waste water ane sludge
JPH0975995A (en) * 1995-09-19 1997-03-25 Hitachi Ltd Removing system of high concentration ammonia nitrogen
JPH1052698A (en) * 1996-06-04 1998-02-24 Ebara Corp Method for treating water medium containing organic substance and apparatus for hydrothermal reaction
JP2001062424A (en) * 1999-08-27 2001-03-13 Shinko Pantec Co Ltd Process and equipment for chemical recycling treatment
JP2001300481A (en) * 2000-04-25 2001-10-30 Kyodo Shoji:Kk Method and apparatus for treating organic waste
JP2003200199A (en) * 2002-01-08 2003-07-15 Kenji Kida Sewage treatment method
JP2003245537A (en) * 2002-02-25 2003-09-02 Ishikawajima Harima Heavy Ind Co Ltd Treatment method for waste generated in edible oil manufacturing process and treatment apparatus using the same
JP2003245628A (en) * 2002-02-25 2003-09-02 Ishikawajima Harima Heavy Ind Co Ltd Treatment method for waste generated in food material processing process and treatment apparatus using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58300A (en) * 1981-06-25 1983-01-05 Niigata Eng Co Ltd Treatment of sludge
JPH02265696A (en) * 1989-04-06 1990-10-30 Osaka Gas Co Ltd Treatment of waste water
JPH0474599A (en) * 1990-07-13 1992-03-09 Osaka Gas Co Ltd Treatment of waste water and sludge
JPH04215899A (en) * 1990-08-06 1992-08-06 Osaka Gas Co Ltd Treatment of waste water ane sludge
JPH04104899A (en) * 1990-08-23 1992-04-07 Osaka Gas Co Ltd Method for treating waste water and sludge
JPH04118094A (en) * 1990-09-07 1992-04-20 Mitsui Eng & Shipbuild Co Ltd Method for decomposing urea by hydrothermal oxidation
JPH0975995A (en) * 1995-09-19 1997-03-25 Hitachi Ltd Removing system of high concentration ammonia nitrogen
JPH1052698A (en) * 1996-06-04 1998-02-24 Ebara Corp Method for treating water medium containing organic substance and apparatus for hydrothermal reaction
JP2001062424A (en) * 1999-08-27 2001-03-13 Shinko Pantec Co Ltd Process and equipment for chemical recycling treatment
JP2001300481A (en) * 2000-04-25 2001-10-30 Kyodo Shoji:Kk Method and apparatus for treating organic waste
JP2003200199A (en) * 2002-01-08 2003-07-15 Kenji Kida Sewage treatment method
JP2003245537A (en) * 2002-02-25 2003-09-02 Ishikawajima Harima Heavy Ind Co Ltd Treatment method for waste generated in edible oil manufacturing process and treatment apparatus using the same
JP2003245628A (en) * 2002-02-25 2003-09-02 Ishikawajima Harima Heavy Ind Co Ltd Treatment method for waste generated in food material processing process and treatment apparatus using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103302082A (en) * 2013-06-28 2013-09-18 武汉科梦环境工程有限公司 Chinese medicine residue squeezing classification and resource utilization system
JPWO2015025941A1 (en) * 2013-08-23 2017-03-02 国立大学法人東北大学 Method for treating organic matter in the presence of water, catalytic reactor and system including the same, and method for recovering waste heat from a low-temperature source
CN117282760A (en) * 2023-10-25 2023-12-26 北京科技大学 Treatment method of waste incineration fly ash
CN117282760B (en) * 2023-10-25 2024-04-16 北京科技大学 Treatment method of waste incineration fly ash

Also Published As

Publication number Publication date
JP4600921B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
Sharma et al. Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli
CN100371270C (en) Combined treatment process for manioc producing effluent
JP5711192B2 (en) Method and apparatus for anaerobic treatment of organic waste
WO2006035594A1 (en) Method and apparatus for biologically treating wastewater containing fats and oils
CN101538103A (en) Sewage treatment method and equipment thereof
KR101152210B1 (en) Organic Waste Disposal System with Improved Methane Yield and Method
Wang et al. A hybrid two-phase system for anaerobic digestion of food waste
CN111282962B (en) Method for co-processing organic solid waste and kitchen waste
CN106915883A (en) A kind of minimizing of endogenous FNA pretreating sludges and process for reclaiming
JP5121111B2 (en) Method and apparatus for anaerobic treatment of organic waste
JP5229930B2 (en) Biomass gasification method and system
Trzcinski Advanced biological, physical, and chemical treatment of waste activated sludge
CN203112650U (en) Kitchen waste wastewater treatment system
Francese et al. Feeding approaches for biogas production from animal wastes and industrial effluents
JP2002361293A (en) Method and apparatus for reducing volume of organic sludge
JP2006255538A (en) Method and apparatus for treatment of food waste
JP2009178657A (en) Subcritical water treatment method for organic sludge of oil refinery waste water
JP4600921B2 (en) Organic waste treatment method and apparatus
JP2007203150A (en) Anaerobic decomposition method and apparatus for organic matter-containing liquid
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
JP4457391B2 (en) Organic sludge treatment method and treatment apparatus
JP2005103375A (en) Methane fermentation treatment method and apparatus
Bong et al. Review on the characteristic and feasibility of leachate for biogas production by anaerobic digestion
JP5731209B2 (en) Method and apparatus for treating soap production waste liquid
JP2002316130A (en) Method and apparatus for treating organic solid waste

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4600921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250