JP2006131991A - Method for forming very small metal bump - Google Patents

Method for forming very small metal bump Download PDF

Info

Publication number
JP2006131991A
JP2006131991A JP2005262422A JP2005262422A JP2006131991A JP 2006131991 A JP2006131991 A JP 2006131991A JP 2005262422 A JP2005262422 A JP 2005262422A JP 2005262422 A JP2005262422 A JP 2005262422A JP 2006131991 A JP2006131991 A JP 2006131991A
Authority
JP
Japan
Prior art keywords
metal
opening
resin layer
bump
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005262422A
Other languages
Japanese (ja)
Other versions
JP4856914B2 (en
Inventor
Yoshihiro Gomi
善宏 五味
Ryoichi Arai
亮一 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Nagano Prefecture
Original Assignee
Mikuni Corp
Nagano Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp, Nagano Prefecture filed Critical Mikuni Corp
Priority to JP2005262422A priority Critical patent/JP4856914B2/en
Publication of JP2006131991A publication Critical patent/JP2006131991A/en
Application granted granted Critical
Publication of JP4856914B2 publication Critical patent/JP4856914B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Physical Vapour Deposition (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a very small metal bump forming method capable of consistently forming very small bumps by a gas deposition method for depositing metal particles by ejecting metal particles and carrier gas to only a bump forming part of a metal member formed on one face side of a substrate. <P>SOLUTION: An inverted tapered recessed part 34 in which the bottom face diameter with a bump forming part of a pattern 12 exposed to the bottom face is larger than the diameter of an opening in a surface of a resin layer 30 is formed in the resin layer 30 as a mask layer to cover the pattern 12 formed on one face side of a substrate 10. Then, metal particles obtained by evaporating the metal are carried with carrier gas to the bump forming part of the pattern 12 exposed to a bottom face of a recessed part 34, and a conical bump 14 is formed by the gas deposition method to eject the metal particles from a nozzle 25 for deposition, and the resin layer 30 is peeled therefrom. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は微細金属バンプの形成方法に関し、更に詳細には基板の一面側に形成された金属部材の所定箇所に微細な金属バンプを形成する微細金属バンプの形成方法に関する。   The present invention relates to a method for forming a fine metal bump, and more particularly to a method for forming a fine metal bump in which a fine metal bump is formed at a predetermined position of a metal member formed on one side of a substrate.

半導体装置等の電子部品では、樹脂やセラミック等から成る基板の一面側に形成された主として銅から成るパターンの各端部に、他の電子部品との接続等のために、金等の金属から成る微細金属バンプが形成されることが多い。かかる微細金属バンプは、例えば下記特許文献1に記載されているガスデポジション法によって形成できる。
このガスデポジション法では、図7に示すガスデポジション装置を用い、フィルタ16が設けられた吸引管17を経由して吸引されて真空状態の室18内に載置されたルツボ20内の金属22を加熱蒸発して金属微粒子とする。この金属微粒子は、室18内にキャリアガスとして供給されるヘリウムガスと共に、吸引管27を経由して吸引されて真空状態の室26内に搬送される。室26内には、パターン12が一面側に形成された基板10が挿入されており、移送管24の先端に形成されたノズル25からヘリウムガスと共に金属微粒子がパターン12のバンプ形成箇所に向けて噴射される。室26内に噴射された金属微粒子はパターン12のバンプ形成箇所に堆積して円錐状の金属バンプ14を形成し、ヘリウムガスは吸引管27から吸引されて排出される。
特開平10−140325号公報
In electronic parts such as semiconductor devices, metal and other metals are used for connection with other electronic parts at each end of a pattern mainly made of copper formed on one side of a substrate made of resin or ceramic. Often formed are fine metal bumps. Such fine metal bumps can be formed by, for example, a gas deposition method described in Patent Document 1 below.
In this gas deposition method, the metal in the crucible 20 placed in the vacuum chamber 18 is sucked through the suction pipe 17 provided with the filter 16 using the gas deposition apparatus shown in FIG. 22 is heated and evaporated to form metal fine particles. The fine metal particles are sucked through a suction pipe 27 together with helium gas supplied as a carrier gas into the chamber 18 and are transported into the vacuum chamber 26. A substrate 10 having the pattern 12 formed on one surface side is inserted into the chamber 26, and metal fine particles together with helium gas are directed from the nozzle 25 formed at the tip of the transfer tube 24 toward the bump formation portion of the pattern 12. Be injected. The metal fine particles injected into the chamber 26 are deposited on the bump forming portion of the pattern 12 to form the conical metal bump 14, and the helium gas is sucked from the suction pipe 27 and discharged.
Japanese Patent Laid-Open No. 10-140325

図7に示すガスデポジション装置を用いたガスデポジション法によれば、パターン12のバンプ形成箇所に円錐状の金属バンプ14を形成できる。
しかし、ノズル25からヘリウムガスと共に金属微粒子をパターン12のバンプ形成箇所に向けて噴射するものの、金属微粒子はバンプ形成箇所以外にも付着する。このため、従来のガスデポジション法では、金属バンプ14の裾野が広がり易くなり、金属バンプ14の小径化が困難であること、パターン12,12・・のファインピッチ化に伴って、金属バンプ14,14・・の間に短絡のおそれがあること、形成された金属バンプ14の形状や高さ等が不揃になり易いことが判明した。
そこで、本発明の課題は、基板の一面側に形成された金属部材のバンプ形成箇所のみに、金属微粒子とキャリアガスとを噴射して金属微粒子を堆積するガスデポジション法によって微細な金属バンプを安定して形成し得る微細金属バンプの形成方法を提供することにある。
According to the gas deposition method using the gas deposition apparatus shown in FIG. 7, the conical metal bumps 14 can be formed at the bump formation portions of the pattern 12.
However, although the metal fine particles are jetted from the nozzle 25 together with the helium gas toward the bump forming portion of the pattern 12, the metal fine particles adhere to other than the bump forming portion. For this reason, in the conventional gas deposition method, the base of the metal bumps 14 is easily widened, it is difficult to reduce the diameter of the metal bumps 14, and the fine pitches of the patterns 12, 12. , 14..., 14..., And the shape and height of the formed metal bumps 14 are likely to be uneven.
Accordingly, an object of the present invention is to form fine metal bumps by a gas deposition method in which metal fine particles and a carrier gas are jetted onto only the bump forming portions of the metal member formed on one surface of the substrate to deposit the metal fine particles. An object of the present invention is to provide a method for forming fine metal bumps that can be stably formed.

本発明者等は、前記課題を解決するには、ガスデポジション法で金属バンプ14,14・・を形成する際に、パターン12のバンプ形成箇所のみに金属微粒子を堆積することが有効ではないかと考え、パターン12のバンプ形成箇所のみが露出するマスク層を用いることを試みた。
先ず、図8(a)(b)に示す様に、基板10のパターン12,12・・を覆うマスク層としての樹脂層30を形成し、この樹脂層30にレーザ加工を施し、パターン12のバンプ形成箇所が底面に露出する凹部100を形成した[図8(c)]。
図8(c)に示す凹部100は、図9に示す通常のレーザ加工によって形成したものである。この図9に示す通常のレーザ加工では、レーザ装置から照射されたレーザ光をレンズ102で集光して樹脂層30に照射して形成する。形成された凹部100は、パターン12の形成箇所が露出する底面面積が樹脂層30の表面に開口する開口面積よりも小さいテーパ状の凹部であった。
次いで、図8(c)に示す基板10を図7のガスデポジション装置の室26に挿入し、図10に示す様に、室18に挿入されているルツボ20内の金属を加熱蒸発して得た金属微粒子をキャリアガスとしてのヘリウムガスと共にノズル25から噴射した。
In order to solve the above-mentioned problems, the present inventors are not effective in depositing metal fine particles only on the bump formation portion of the pattern 12 when forming the metal bumps 14, 14... By the gas deposition method. In view of this, an attempt was made to use a mask layer in which only the bump formation portion of the pattern 12 is exposed.
First, as shown in FIGS. 8A and 8B, a resin layer 30 is formed as a mask layer covering the patterns 12, 12... Of the substrate 10, and laser processing is performed on the resin layer 30. A concave portion 100 in which a bump forming portion is exposed on the bottom surface was formed [FIG. 8C].
The concave portion 100 shown in FIG. 8C is formed by ordinary laser processing shown in FIG. In the normal laser processing shown in FIG. 9, the laser light emitted from the laser device is condensed by the lens 102 and irradiated to the resin layer 30. The formed recess 100 was a tapered recess in which the area of the bottom where the pattern 12 was formed was smaller than the area of the opening in the surface of the resin layer 30.
Next, the substrate 10 shown in FIG. 8C is inserted into the chamber 26 of the gas deposition apparatus shown in FIG. 7, and the metal in the crucible 20 inserted in the chamber 18 is heated and evaporated as shown in FIG. The obtained metal fine particles were jetted from the nozzle 25 together with helium gas as a carrier gas.

ノズル25から噴出した金属微粒子は、凹部100の底面に露出するパターン12のバンプ形成箇所、凹部100の内壁面及び樹脂層30の表面にも堆積する。このため、所定時間経過後に金属微粒子とヘリウムガスとのノズル25からの噴射を停止したとき、金属微粒子がバンプ形成箇所に堆積して形成された突起部102と樹脂層30の表面に堆積した堆積層32とは、図11に示す如く、凹部100の内壁面に金属微粒子が堆積した堆積層103によって接続されている。かかる状態では、樹脂層30を基板10から剥離したとき、突起部102は樹脂層30と共にパターン12のバンプ形成箇所から剥離される。
一方、樹脂層30に形成する凹部を、図12に示す様に、その内壁面が垂直の凹部104としても、ガスデポジション法によって凹部104内に金属バンプ14を形成しようとしても、図12に示す如く、凹部104内には略平坦な堆積層106が形成されるに過ぎず、先細りの金属バンプ14を形成できない。
The metal fine particles ejected from the nozzles 25 are also deposited on the bump forming portion of the pattern 12 exposed on the bottom surface of the recess 100, the inner wall surface of the recess 100, and the surface of the resin layer 30. For this reason, when the injection of the metal fine particles and helium gas from the nozzle 25 is stopped after a predetermined time has elapsed, the metal fine particles are deposited on the bump formation portions and the protrusions 102 formed on the surface of the resin layer 30 and deposited. As shown in FIG. 11, the layer 32 is connected by a deposition layer 103 in which metal fine particles are deposited on the inner wall surface of the recess 100. In this state, when the resin layer 30 is peeled from the substrate 10, the protrusions 102 are peeled from the bump forming portions of the pattern 12 together with the resin layer 30.
On the other hand, as shown in FIG. 12, the recess formed in the resin layer 30 is a recess 104 whose inner wall surface is vertical, or the metal bump 14 is formed in the recess 104 by the gas deposition method. As shown, a substantially flat deposition layer 106 is formed in the recess 104, and the tapered metal bump 14 cannot be formed.

本発明者等は、樹脂層30に形成した凹部の形状によって、ガスデポジション法により凹部内に堆積される金属微粒子から成る堆積物形状が異なることに着目し、樹脂層30に形成した凹部形状とガスデポジション法によって凹部内に形成する金属微粒子から成る堆積物形状との関係について検討した。
この検討によれば、パターン12,12・・のバンプ形成箇所が底面に露出する底面面積が樹脂層30の表面に開口する開口面積よりも大きい逆テーパ状の凹部によれば、凹部のテーパ面及び堆積層32から独立した円錐状の金属バンプ14を安定して形成できることを知り、本発明に到達した。
The inventors pay attention to the fact that the shape of the deposit made of metal fine particles deposited in the recess by the gas deposition method differs depending on the shape of the recess formed in the resin layer 30, and the shape of the recess formed in the resin layer 30. And the shape of the deposit composed of fine metal particles formed in the recess by gas deposition.
According to this study, according to the reverse taper-shaped recess in which the bottom surface area where the bump formation portion of the pattern 12, 12,... Is exposed on the bottom surface is larger than the opening area opened on the surface of the resin layer 30, the tapered surface of the recess In addition, the present inventors have reached the present invention by knowing that the conical metal bumps 14 independent of the deposited layer 32 can be stably formed.

すなわち、本発明は、基板の一面側に形成された金属部材の所定箇所に微細な金属バンプを形成する際に、該基板の一面側を覆うマスク層として、前記金属部材のバンプ形成箇所が底面に露出する底面面積が前記マスク層の表面に開口する開口面積よりも大きい逆テーパ状の凹部を形成した樹脂層を、前記基板の一面側に形成した後、前記凹部の底面に露出する金属部材のバンプ形成箇所に、金属を蒸発させて得られる金属微粒子をキャリアガスと共に搬送してノズルから噴射して堆積するガスデポジション法によって、底面部から先端部方向に次第に横断面積が小さくなる先細り状の金属バンプを形成し、次いで、前記樹脂層を剥離することを特徴とする微細金属バンプの形成方法にある。
かかる本発明において、逆テーパ状の凹部として、マスク層に開口する開口形状が円形状の逆テーパ状の凹部を形成し、前記逆テーパ状の凹部内に円錐状又は円錐台状の金属バンプを形成すること、或いは逆テーパ状の凹部として、マスク層に開口する開口形状が幅狭で且つ長形状の逆テーパ状の凹部を形成し、前記逆テーパ状の凹部内に凹部内壁面に沿って幅狭で且つ長形状の先細り状の金属バンプを形成することができる。
尚、ここで言う「円錐状の金属バンプ」とは、先端部が尖っている円錐状の金属バンプのことであり、「円錐台状の金属バンプ」とは、先端部が平坦な円錐台状の金属バンプのことである。
That is, according to the present invention, when a fine metal bump is formed on a predetermined portion of a metal member formed on one surface side of the substrate, the bump formation portion of the metal member is a bottom surface as a mask layer covering the one surface side of the substrate. A metal member that is exposed on the bottom surface of the concave portion after forming a resin layer having a reverse taper-shaped concave portion that is larger than the opening area that opens on the surface of the mask layer on one surface side of the substrate. Tapered shape that gradually reduces the cross-sectional area from the bottom to the tip by a gas deposition method in which metal fine particles obtained by evaporating metal are transported together with a carrier gas and sprayed from a nozzle at the bump formation location. The metal bump is formed, and then the resin layer is peeled off.
In the present invention, as the inversely tapered recess, an inversely tapered recess having a circular opening shape in the mask layer is formed, and a conical or truncated conical metal bump is formed in the inversely tapered recess. Forming a reverse-tapered recess having a narrow and long opening shape in the mask layer as the reverse-tapered recess, and extending along the inner wall surface of the recess in the reverse-tapered recess A narrow and long tapered metal bump can be formed.
The term “conical metal bump” as used herein refers to a conical metal bump with a sharp tip, and the “conical metal bump” refers to a truncated cone with a flat tip. It is a metal bump.

かかる本発明において、マスク層としての樹脂層を基板の一面側に形成した後、前記樹脂層に逆テーパ状の凹部を形成することによって、ファイン化された金属部材でも、所定箇所に正確に微細金属バンプを形成できる。
また、テーパ状の凹部を、レーザ加工によって形成する際に、前記レーザ加工に用いるレーザ加工装置として、複数のレーザビームに分割する分割手段と、前記分割手段から離れた位置を起点として分散された各レーザビームの分散ビームを再収束して再収束ビームとするように設けられた第1収束手段と、前記第1収束手段の収束位置に開口された開口部を通過する前記再収束ビームの各々によって、前記開口部の形状が前記樹脂層の表面に所定の大きさで投影されるように設けられたマスク板と、前記マスク板の開口部を通過し、前記凹部の開口部よりも外側に分散された分散ビームを所定の入射角度で前記凹部の開口部に照射する第2収束手段とを具備するレーザ加工装置を用いることが好適である。このレーザ加工には、エキシマレーザを好適に用いることができる。
更に、ガスデポジション法において、蒸発する金属として金を用い、キャリアガスとしてヘリウムガスを用いることによって、金から成るバンプを形成できる。
In the present invention, a resin layer as a mask layer is formed on one side of the substrate, and then a reverse-tapered recess is formed in the resin layer. Metal bumps can be formed.
Further, when forming the tapered concave portion by laser processing, as a laser processing apparatus used for the laser processing, a splitting means for splitting into a plurality of laser beams and a position separated from the splitting means are dispersed as starting points A first converging means provided so as to refocus a dispersed beam of each laser beam into a refocusing beam, and each of the refocusing beams passing through an opening portion opened at a convergence position of the first converging means A mask plate provided so that the shape of the opening is projected on the surface of the resin layer with a predetermined size, and the opening passes through the opening of the mask plate and is outside the opening of the recess. It is preferable to use a laser processing apparatus including second converging means for irradiating the dispersed dispersed beam to the opening of the recess at a predetermined incident angle. An excimer laser can be suitably used for this laser processing.
Further, in the gas deposition method, bumps made of gold can be formed by using gold as the metal to be evaporated and helium gas as the carrier gas.

本発明によれば、基板の一面側を覆うマスク層として、基板の金属部材のバンプ形成箇所が底面に露出する底面面積がマスク層の表面に開口する開口面積よりも大きい逆テーパ状の凹部を形成した樹脂層を、基板の一面側に形成した後、ガスデポジション法によって凹部内に金属バンプを形成する。この際に、逆テーパ状の凹部内には、金属バンプの形成と同時に樹脂層上に堆積された金属から成る堆積層及び凹部のテーパ面から独立した、底面部から先端部方向に次第に横断面積が狭くなる先細り状の金属バンプを安定して形成できる。
その結果、樹脂層を基板の一面側から剥離する際に、凹部内に形成した先細り状の金属バンプが樹脂層と共に剥離されることを防止でき、ガスデポジション法によって金属部材のバンプ形成箇所のみに先細り状の金属バンプを安定して形成できる。
According to the present invention, as the mask layer covering one surface side of the substrate, the reverse taper-shaped concave portion in which the bottom surface area where the bump forming portion of the metal member of the substrate is exposed on the bottom surface is larger than the opening area opened on the surface of the mask layer is provided. After the formed resin layer is formed on one surface side of the substrate, metal bumps are formed in the recesses by a gas deposition method. At this time, in the inversely tapered recess, the cross-sectional area gradually increases from the bottom surface to the tip, independent of the deposited layer of metal deposited on the resin layer simultaneously with the formation of the metal bump and the tapered surface of the recess. It is possible to stably form a tapered metal bump in which the width becomes narrower.
As a result, when the resin layer is peeled from one side of the substrate, it is possible to prevent the taper-shaped metal bumps formed in the recesses from being peeled off together with the resin layer, and only the bump forming portion of the metal member by the gas deposition method. It is possible to stably form a tapered metal bump.

本発明に係る微細金属バンプの形成方法の一例を図1に示す。図1(a)に示す基板10は、樹脂によって形成されており、その一面側にめっきによって形成された金属部材としてのパターン12が形成されている。このパターン12が形成された基板10の一面側を覆うマスク層としてのポリイミド樹脂から成る樹脂層30に、パターン12のバンプ形成箇所が底面に露出する底面面積が樹脂層30の表面に開口する開口面積よりも大きな逆テーパ状の凹部34を形成する。
かかる逆テーパ状の凹部34の開口形状は、図2(a)に示す円形状であってもよく、図2(b)に示す幅狭で且つ長形状であってもよい。
An example of a method for forming fine metal bumps according to the present invention is shown in FIG. A substrate 10 shown in FIG. 1A is made of resin, and a pattern 12 as a metal member formed by plating is formed on one surface side thereof. In the resin layer 30 made of polyimide resin as a mask layer covering the one surface side of the substrate 10 on which the pattern 12 is formed, an opening in which the bottom surface area where the bump formation portion of the pattern 12 is exposed on the bottom surface opens to the surface of the resin layer 30 A reverse-tapered recess 34 larger than the area is formed.
The opening shape of the inversely tapered recess 34 may be a circular shape as shown in FIG. 2A, or a narrow and long shape as shown in FIG.

逆テーパ状の凹部34は、図3に示すレーザ加工装置40を用いて形成できる。このレーザ加工装置40には、複数のレーザビームに分割する分割手段として複数個の円柱レンズ42,42・・から成る複合レンズが設けられている。
この複合レンズの下方に、円柱レンズ42の各々の焦点位置44を起点として分散された分散ビーム45,45・・を再収束する第1収束手段としての第1収束レンズ46が設けられており、第1収束レンズ46の焦点位置に開口部47が形成されたマスク板48が設けられている。この開口部47は、形成する凹部34の開口形状に倣っており、第1収束レンズ46によって再収束され開口部47を通過する収束ビームによって樹脂層30の表面に所定の大きさで投影される。
更に、マスク板48の下方には、マスク板48の開口部47を通過した収束ビームを樹脂層30の所定位置に案内すると共に、形成する凹部34の開口部よりも外側に分散された分散ビーム49,49・・を所定の入射角度で凹部34の開口部に照射する第2収束手段としての第2収束レンズ50が設けられている。
The inversely tapered recess 34 can be formed using the laser processing apparatus 40 shown in FIG. The laser processing apparatus 40 is provided with a compound lens composed of a plurality of cylindrical lenses 42, 42,... As a dividing means for dividing the laser beam into a plurality of laser beams.
Below this compound lens, a first converging lens 46 is provided as a first converging means for refocusing the dispersed beams 45, 45,... Dispersed from the focal position 44 of each cylindrical lens 42. A mask plate 48 having an opening 47 formed at the focal position of the first converging lens 46 is provided. The opening 47 follows the opening shape of the recess 34 to be formed, and is projected onto the surface of the resin layer 30 with a predetermined size by a convergent beam that is refocused by the first focusing lens 46 and passes through the opening 47. .
Further, below the mask plate 48, the converged beam that has passed through the opening 47 of the mask plate 48 is guided to a predetermined position of the resin layer 30, and the dispersed beam is dispersed outside the opening of the concave portion 34 to be formed. A second converging lens 50 is provided as second converging means for irradiating 49, 49,...

この様に、図3に示すレーザ加工装置40によれば、マスク板48の開口部47を通過し第2収束レンズ50によって樹脂層30に案内される収束ビームに加えて、マスク板48の開口部を過ぎて形成する凹部34の開口部よりも外側に分散された分散ビーム49,49・・が、第2収束レンズ50によって所定の角度で凹部34の開口部に照射される。このため、図1(a)に示す逆テーパ状の凹部34を、基板10の一面側に形成した樹脂層30に形成できる。
図1において、レーザ加工装置40によって樹脂層30に照射されるレーザとしては、樹脂層30を溶断するものの、金属製のパターン12を溶断することのないエネルギーのレーザを用いる。かかるレーザとしては、エキシマレーザを好適に用いることができる。
尚、図3に示すレーザ加工装置40を樹脂層30の所定位置に停止してレーザを照射することによって、図2(a)に示す開口面形状が円形状の逆テーパ状の凹部34を形成でき、レーザ加工装置40を樹脂層30に沿って所定距離移動することによって、図2(a)に示す開口面形状が幅狭で且つ長形状の逆テーパ状の凹部34を形成できる。
As described above, according to the laser processing apparatus 40 shown in FIG. 3, in addition to the convergent beam that passes through the opening 47 of the mask plate 48 and is guided to the resin layer 30 by the second convergent lens 50, the aperture of the mask plate 48. The dispersed beams 49, 49,... Dispersed outside the opening of the recess 34 formed past the portion are irradiated to the opening of the recess 34 by the second converging lens 50 at a predetermined angle. For this reason, the reverse taper-shaped recessed part 34 shown to Fig.1 (a) can be formed in the resin layer 30 formed in the one surface side of the board | substrate 10. FIG.
In FIG. 1, as a laser irradiated to the resin layer 30 by the laser processing apparatus 40, a laser having energy that does not melt the metal pattern 12 while melting the resin layer 30 is used. As such a laser, an excimer laser can be preferably used.
The laser processing apparatus 40 shown in FIG. 3 is stopped at a predetermined position of the resin layer 30 and irradiated with a laser, thereby forming a concave portion 34 having a circular opening surface shape shown in FIG. 2A. In addition, by moving the laser processing apparatus 40 by a predetermined distance along the resin layer 30, the concave portion 34 having a narrow and long opening shape shown in FIG. 2A can be formed.

ところで、図7に示す様に、通常のレーザ加工によって、樹脂フィルムに開口面積の一方が他方の開口面積よりも大きいテーパ状の貫通孔を形成しておき、開口面積の大きい開口部が開口された樹脂フィルム面を基板10の一面側に貼着する方法によっても、逆テーパ状の凹部34を形成可能である。
但し、この方法によれば、樹脂フィルムに形成した貫通孔の各々と基板10の一面側に形成したパターン12,12・・の各バンプ形成箇所との位置合わせを行うことを必要とするため、両者の位置合わせを厳格に行わなくてもよい場合に採用できる。
By the way, as shown in FIG. 7, a taper-shaped through hole in which one of the opening areas is larger than the other opening area is formed in the resin film by normal laser processing, and the opening having the large opening area is opened. The reverse taper-shaped concave portion 34 can also be formed by a method in which the resin film surface is adhered to one surface side of the substrate 10.
However, according to this method, it is necessary to perform alignment between each of the through holes formed in the resin film and each bump forming portion of the patterns 12, 12,... Formed on the one surface side of the substrate 10. It can be employed when the alignment between the two does not have to be strictly performed.

ここで、基板10の一面側の樹脂層30に、開口形状が図2(a)に示す円形状の逆テーパ状の凹部34を形成し、この逆テーパ状の凹部34内にガスデポジション法によって金属バンプ14を形成すべく、基板10を図7に示すガスデポジション装置の室26に挿入した。
ガスデポジション装置では、図1(b)に示す様に、室18に挿入されているルツボ20内の金属22としての金を1500℃に加熱し加熱蒸発して得た金微粒子をキャリアガスとしてのヘリウムガスと共に、300℃に加熱されているノズル25から噴射した。
ノズル25から噴出した金微粒子は、凹部34の底面に露出するパターン12のバンプ形成箇所に堆積して円錐状の金属バンプ14を形成しつつ、樹脂層30の表面にも堆積して堆積層32を形成する。
その後、所定高さの円錐状の金属バンプ14が形成されたとき、金粒子とヘリウムガスとのノズル25からの噴射を停止し、図1(c)に示す様に、基板10を取り出して樹脂層30を基板10の一面側から剥離したところ、図4に示す様に、パターン12,12・・の各バンプ形成箇所に円錐状の金属バンプ14が形成された基板10を得ることができた。
この樹脂層30の剥離は機械的剥離によって行うことができる。
樹脂層30を剥離したパターン12には、バンプ形成箇所を除いて金属微細粒子は付着されていなかった。
尚、基板10に形成した複数のパターン12,12・・の各々に金属バンプ14を形成する場合には、図1(b)に示す様に、基板10を左右方向(矢印A方向)に移動することによって、各パターン12に形状及び高さの揃った金属バンプ14を形成できる。
Here, a circularly reverse tapered recess 34 whose opening shape is shown in FIG. 2A is formed in the resin layer 30 on the one surface side of the substrate 10, and a gas deposition method is formed in the reverse tapered recess 34. The substrate 10 was inserted into the chamber 26 of the gas deposition apparatus shown in FIG.
In the gas deposition apparatus, as shown in FIG. 1B, gold fine particles obtained by heating and evaporating gold as a metal 22 in the crucible 20 inserted in the chamber 18 to 1500 ° C. are used as a carrier gas. Injected from the nozzle 25 heated to 300 ° C. together with the helium gas.
The gold fine particles ejected from the nozzle 25 are deposited on the surface of the resin layer 30 while being deposited on the bump forming portion of the pattern 12 exposed on the bottom surface of the recess 34 to form the conical metal bump 14. Form.
Thereafter, when the conical metal bumps 14 having a predetermined height are formed, the injection of gold particles and helium gas from the nozzle 25 is stopped, and the substrate 10 is taken out as shown in FIG. When the layer 30 was peeled from the one surface side of the substrate 10, as shown in FIG. 4, the substrate 10 in which the conical metal bumps 14 were formed at the bump forming portions of the patterns 12, 12,. .
The resin layer 30 can be peeled off by mechanical peeling.
The metal fine particles were not attached to the pattern 12 from which the resin layer 30 was peeled except for the bump formation portion.
When the metal bumps 14 are formed on each of the plurality of patterns 12, 12,... Formed on the substrate 10, the substrate 10 is moved in the left-right direction (arrow A direction) as shown in FIG. As a result, the metal bumps 14 having the same shape and height can be formed on each pattern 12.

この様に、逆テーパ状の凹部34内にガスデポジション法によって金属バンプ14を形成すると、図1(b)に示す様に、凹部34のテーパ面及び樹脂層30上に形成された堆積層32から独立して、樹脂層30の厚さよりも高い円錐状の金属バンプ14を安定して形成できる。
このため、樹脂層30の厚さを薄くできるため、図2に示すレーザ加工装置40によって、凹部間のピッチが狭い凹部34を形成でき、パターン12のファイン化にも充分に対応できる。
一方、図10に示す如く、テーパ状の凹部100では、凹部100内にガスデポジション法によって金属バンプ14を形成しようとすると、凹部100内に形成された突起部102と樹脂層30の表面に堆積した堆積層32とが、図11に示す如く、凹部100の内壁面に金属微粒子が堆積した堆積層103によって接続されていたり、その形状が円錐状形状とは異なる形状であったりして極めて不安定である。このため、図11に示すテーパ状の凹部100では、ガスデポジション法によって円錐状の金属バンプ14を安定して形成できない。
図1及び図4では、円錐状の金属バンプ14を形成したが、金粒子とヘリウムガスとのノズル25からの噴射時間を調整することによって、円錐台状の金属バンプを形成できる。
In this way, when the metal bumps 14 are formed in the inversely tapered recess 34 by the gas deposition method, as shown in FIG. 1B, the deposited layer formed on the tapered surface of the recess 34 and the resin layer 30. Independently from 32, the conical metal bump 14 higher than the thickness of the resin layer 30 can be stably formed.
For this reason, since the thickness of the resin layer 30 can be reduced, the laser processing apparatus 40 shown in FIG. 2 can form the recesses 34 having a narrow pitch between the recesses, and can sufficiently cope with the fine pattern 12.
On the other hand, as shown in FIG. 10, in the tapered concave portion 100, when the metal bump 14 is formed in the concave portion 100 by the gas deposition method, the protrusion 102 formed in the concave portion 100 and the surface of the resin layer 30 are formed. As shown in FIG. 11, the deposited layer 32 is connected to the inner wall surface of the recess 100 by a deposited layer 103 in which metal fine particles are deposited, or the shape thereof is very different from the conical shape. It is unstable. For this reason, in the tapered recessed part 100 shown in FIG. 11, the conical metal bump 14 cannot be stably formed by the gas deposition method.
1 and 4, the conical metal bump 14 is formed. However, by adjusting the injection time of the gold particles and the helium gas from the nozzle 25, the frustoconical metal bump can be formed.

図1及び図4では、基板10の一面側に図2(a)に示す開口形状が円形状の逆テーパ状の凹部34を形成して、ガスデポジション法によって円錐状の金属バンプ14を形成したが、基板10の一面側に設けた樹脂層30に、図2(b)に示す様に、開口形状が幅狭で且つ長形状の逆テーパ状の凹部34を形成し、この基板10を図7に示すガスデポジション装置の室26に挿入して、凹部34内に金属バンプを形成することによって、円錐状の金属バンプ14と異なる形状の金属バンプを形成できる。
この際に、ガスデポジション装置では、図1(b)に示す様に、室18に挿入されているルツボ20内の金属22としての金を1500℃に加熱し加熱蒸発して得た金微粒子をキャリアガスとしてのヘリウムガスと共に、300℃に加熱されているノズル25から噴射した。
かかる噴射を所定時間継続した後、金粒子とヘリウムガスとのノズル25からの噴射を停止して、樹脂層30を剥離したところ、基板10に形成した複数のパターン12,12・・の各所定箇所に、図5(a)に示す金属バンプを形成することができた。図5(a)に示す金属バンプは、図2(b)に示す開口形状が幅狭で且つ長形状の逆テーパ状の凹部34を形成する内壁面に沿って形成された幅狭で且つ長形状の金属バンプであって、底面部から平面に形成された先端面方向に次第に横断面積が小さくなる先細り状の金属バンプであった。
ここで、金粒子とヘリウムガスとのノズル25からの噴射時間を、図5(a)に示す形状の金属バンプを形成したときよりも長くすると、図5(b)に示す金属バンプを得ることができる。図5(b)に示す金属バンプは、図2(b)に示す開口形状が幅狭で且つ長形状の逆テーパ状の凹部34を形成する内壁面に沿って形成された幅狭で且つ長形状の金属バンプであって、底面部から尖っている先端部方向に次第に横断面積が小さくなる先細り状の金属バンプを形成できる。
1 and 4, a conical metal bump 14 is formed by a gas deposition method by forming a concave portion 34 having a circular opening shape as shown in FIG. However, as shown in FIG. 2B, the resin layer 30 provided on the one surface side of the substrate 10 is formed with a narrow, long, reverse tapered recess 34, and this substrate 10 is formed. By inserting into the chamber 26 of the gas deposition apparatus shown in FIG. 7 and forming the metal bump in the recess 34, a metal bump having a shape different from that of the conical metal bump 14 can be formed.
At this time, in the gas deposition apparatus, as shown in FIG. 1B, gold fine particles obtained by heating and evaporating gold as the metal 22 in the crucible 20 inserted in the chamber 18 to 1500 ° C. Were jetted from a nozzle 25 heated to 300 ° C. together with helium gas as a carrier gas.
After the injection is continued for a predetermined time, the injection of gold particles and helium gas from the nozzle 25 is stopped and the resin layer 30 is peeled off. As a result, each of the plurality of patterns 12, 12,. The metal bumps shown in FIG. 5A could be formed at the locations. The metal bump shown in FIG. 5 (a) has a narrow and long opening formed along the inner wall surface in which the opening shape shown in FIG. It was a metal bump having a shape, and was a tapered metal bump that gradually decreased in cross-sectional area in the direction of the tip surface formed in a plane from the bottom surface.
Here, when the injection time of gold particles and helium gas from the nozzle 25 is made longer than when the metal bump having the shape shown in FIG. 5A is formed, the metal bump shown in FIG. 5B is obtained. Can do. The metal bump shown in FIG. 5 (b) has a narrow and long opening formed along the inner wall surface forming the concave portion 34 having a narrow and long reverse tapered shape as shown in FIG. 2 (b). It is possible to form a tapered metal bump which is a shaped metal bump and gradually decreases in the cross-sectional area in the direction of the tip portion sharpened from the bottom surface portion.

図3に示すレーザ加工装置40において、第2収束レンズ50として、図6(a)に示す第2収束レンズ50を用いることができる。図6(a)に示す第2収束レンズ50は、図6(b)に示す様に、湾曲した二枚の反射鏡52,54が、その反射面が向き合うように設けられている。反射鏡54の中央部に形成された開口部を通過したビームは、反射鏡52によって反射鏡54の方向に反射された後、反射鏡54の開口部を除く部分で再度反射されて樹脂層30に集光されて照射される。
以上の説明では、図7に示すガスデポジション装置の室18に挿入されているルツボ20内の金属22として金を用いているが、他の金属、例えはニッケルや銅を用いることができる。
更に、樹脂層30の剥離を機械的剥離によって行っているが、樹脂層30を化学エッチングによって除去してもよい。この化学エッチングでは、凹部34内に形成した金属バンプ14に損傷を与えないことを確認しておくことは勿論のことである。
In the laser processing apparatus 40 shown in FIG. 3, the second convergent lens 50 shown in FIG. 6A can be used as the second convergent lens 50. As shown in FIG. 6B, the second converging lens 50 shown in FIG. 6A is provided with two curved reflecting mirrors 52 and 54 so that the reflecting surfaces thereof face each other. The beam that has passed through the opening formed in the central portion of the reflecting mirror 54 is reflected by the reflecting mirror 52 in the direction of the reflecting mirror 54, and then reflected again at a portion other than the opening of the reflecting mirror 54, so that the resin layer 30. Is condensed and irradiated.
In the above description, gold is used as the metal 22 in the crucible 20 inserted in the chamber 18 of the gas deposition apparatus shown in FIG. 7, but other metals such as nickel and copper can be used.
Further, although the resin layer 30 is peeled off by mechanical peeling, the resin layer 30 may be removed by chemical etching. It goes without saying that the chemical etching does not damage the metal bumps 14 formed in the recesses 34.

本発明に係る微細金属バンプの形成方法の一例を説明する説明図である。It is explanatory drawing explaining an example of the formation method of the fine metal bump which concerns on this invention. 図1に示す凹部34の開口形状を示す正面図である。It is a front view which shows the opening shape of the recessed part 34 shown in FIG. 図1に示す凹部34を形成するためのレーザ加工装置を説明するための概略図である。It is the schematic for demonstrating the laser processing apparatus for forming the recessed part 34 shown in FIG. 基板の一面側に形成されたパターンのバンプ形成箇所に円錐状の金属バンプが形成された状態を示す部分斜視図である。It is a fragmentary perspective view which shows the state by which the conical metal bump was formed in the bump formation location of the pattern formed in the one surface side of a board | substrate. 基板の一面側に形成された幅狭で且つ長形状の先細り状の金属バンプを示す顕微鏡写真である。It is a microscope picture which shows the narrow and long tapered metal bump formed in the one surface side of a board | substrate. 図3に示すレーザ加工装置のレンズとして用いられる他のレンズを説明する概略図である。It is the schematic explaining the other lens used as a lens of the laser processing apparatus shown in FIG. ガスデポジション装置を説明する概略図である。It is the schematic explaining a gas deposition apparatus. 基板の一面側に形成した樹脂層に凹部を形成する工程を説明する工程図である。It is process drawing explaining the process of forming a recessed part in the resin layer formed in the one surface side of a board | substrate. 従来のレーザ加工によって樹脂層に形成されたテーパ形状の凹部を説明する部分断面図である。It is a fragmentary sectional view explaining the taper-shaped recessed part formed in the resin layer by the conventional laser processing. 基板の一面側に形成した、テーパ状の凹部を具備する樹脂層の表面に、ガスデポジション装置のノズルから金属微粒子を噴射する状態を説明する部分断面図である。It is a fragmentary sectional view explaining the state which ejects metal particulates from the nozzle of a gas deposition apparatus on the surface of the resin layer which comprises the taper-shaped crevice formed in the one surface side of a substrate. 図10に示すガスデポジション法によって、樹脂層の表面に金属微粒子が堆積した状態を説明する部分断面図である。FIG. 11 is a partial cross-sectional view illustrating a state in which metal fine particles are deposited on the surface of the resin layer by the gas deposition method illustrated in FIG. 10. 基板の一面側に形成した、内壁面が垂直の凹部を具備する樹脂層の表面にガスデポジション法によって金属微粒子を堆積状態を説明する部分断面図である。It is a fragmentary sectional view explaining the deposition state of metal fine particles by a gas deposition method on the surface of a resin layer formed on one surface side of a substrate and having a recess whose inner wall surface is vertical.

符号の説明Explanation of symbols

10 基板
12 パターン
14 バンプ
16 フィルタ
17,27 吸引管
18,26 室
20 ルツボ
22 金属
24 移送管
25 ノズル
30 樹脂層
32 堆積層
34 凹部
40 レーザ加工装置
42 円柱レンズ
44 焦点位置
46 収束レンズ
47 開口部
48 マスク板
50 収束レンズ
52 反射鏡
54 反射鏡
52,54 反射鏡
DESCRIPTION OF SYMBOLS 10 Substrate 12 Pattern 14 Bump 16 Filter 17, 27 Suction tube 18, 26 Chamber 20 Crucible 22 Metal 24 Transfer tube 25 Nozzle 30 Resin layer 32 Deposition layer 34 Recess 40 Laser processing device 42 Cylindrical lens 44 Focus position 46 Converging lens 47 Opening 48 Mask plate 50 Converging lens 52 Reflective mirror 54 Reflective mirrors 52 and 54 Reflective mirror

Claims (7)

基板の一面側に形成された金属部材の所定箇所に微細な金属バンプを形成する際に、
該基板の一面側を覆うマスク層として、前記金属部材のバンプ形成箇所が底面に露出する底面面積が前記マスク層の表面に開口する開口面積よりも大きい逆テーパ状の凹部を形成した樹脂層を、前記基板の一面側に形成した後、
前記凹部の底面に露出する金属部材のバンプ形成箇所に、金属を蒸発させて得られる金属微粒子をキャリアガスと共に搬送してノズルから噴射して堆積するガスデポジション法によって、底面部から先端部方向に次第に横断面積が小さくなる先細り状の金属バンプを形成し、
次いで、前記樹脂層を剥離することを特徴とする微細金属バンプの形成方法。
When forming fine metal bumps at predetermined locations on the metal member formed on one side of the substrate,
As a mask layer covering one surface side of the substrate, a resin layer having a reverse tapered concave portion in which a bottom surface area where a bump forming portion of the metal member is exposed on a bottom surface is larger than an opening area opening on the surface of the mask layer is formed. After forming on one side of the substrate,
The metal fine particles obtained by evaporating the metal are transported together with the carrier gas to the bump forming portion of the metal member exposed on the bottom surface of the concave portion, and ejected from the nozzle to be deposited by the gas deposition method. Tapered metal bumps that gradually reduce the cross-sectional area,
Next, the method for forming fine metal bumps is characterized in that the resin layer is peeled off.
逆テーパ状の凹部として、マスク層に開口する開口形状が円形状の逆テーパ状の凹部を形成し、前記逆テーパ状の凹部内に円錐状又は円錐台状の金属バンプを形成する請求項1記載の微細金属バンプの形成方法。   2. A reverse tapered recess having a circular opening shape in the mask layer is formed as the reverse tapered recess, and a conical or truncated cone-shaped metal bump is formed in the reverse tapered recess. The formation method of the fine metal bump of description. 逆テーパ状の凹部として、マスク層に開口する開口形状が幅狭で且つ長形状の逆テーパ状の凹部を形成し、前記逆テーパ状の凹部内に凹部内壁面に沿って幅狭で且つ長形状の先細り状の金属バンプを形成する請求項1記載の微細金属バンプの形成方法。   As the reverse tapered recess, an opening having a narrow and long opening shape in the mask layer is formed, and the reverse tapered recess has a narrow and long shape along the inner wall surface of the recess. The method for forming a fine metal bump according to claim 1, wherein a tapered metal bump having a shape is formed. マスク層としての樹脂層を基板の一面側に形成した後、前記樹脂層に逆テーパ状の凹部を形成する請求項1〜3のいずれか一項記載の微細金属バンプの形成方法。   The method for forming fine metal bumps according to any one of claims 1 to 3, wherein after the resin layer as the mask layer is formed on one side of the substrate, a reverse tapered recess is formed in the resin layer. 逆テーパ状の凹部を、レーザ加工によって形成する際に、前記レーザ加工に用いるレーザ加工装置として、複数のレーザビームに分割する分割手段と、前記分割手段から離れた位置を起点として分散された各レーザビームの分散ビームを再収束して再収束ビームとするように設けられた第1収束手段と、前記第1収束手段の収束位置に開口された開口部を通過する前記再収束ビームの各々によって、前記開口部の形状が前記樹脂層の表面に所定の大きさで投影されるように設けられたマスク板と、前記マスク板の開口部を通過し、前記凹部の開口部よりも外側に分散された分散ビームを所定の入射角度で前記凹部の開口部に照射する第2収束手段とを具備するレーザ加工装置を用いる請求項1〜4のいずれか一項記載の微細金属バンプの形成方法。   When forming the inversely tapered recess by laser processing, as a laser processing apparatus used for the laser processing, a splitting means for splitting into a plurality of laser beams, and each of the points dispersed from the position apart from the splitting means A first converging means provided so as to refocus the dispersed beam of the laser beam into a refocusing beam, and each of the refocusing beams passing through an opening opened at a convergence position of the first converging means. A mask plate provided so that the shape of the opening is projected on the surface of the resin layer with a predetermined size, and the opening passes through the opening of the mask plate and is distributed outside the opening of the recess. 5. The formation of fine metal bumps according to claim 1, further comprising: a laser processing apparatus including a second converging unit that irradiates the aperture of the concave portion with the dispersed beam at a predetermined incident angle. Law. レーザとして、エキシマレーザを用いる請求項5記載の微細金属バンプの形成方法。   6. The method for forming fine metal bumps according to claim 5, wherein an excimer laser is used as the laser. ガスデポジション法において、蒸発する金属として金を用い、キャリアガスとしてヘリウムガスを用いる請求項1〜6のいずれか一項記載の微細金属バンプの形成方法。
The method for forming fine metal bumps according to any one of claims 1 to 6, wherein gold is used as the metal to be evaporated and helium gas is used as the carrier gas in the gas deposition method.
JP2005262422A 2004-10-05 2005-09-09 Method for forming fine metal bumps Expired - Fee Related JP4856914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262422A JP4856914B2 (en) 2004-10-05 2005-09-09 Method for forming fine metal bumps

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004292166 2004-10-05
JP2004292166 2004-10-05
JP2005262422A JP4856914B2 (en) 2004-10-05 2005-09-09 Method for forming fine metal bumps

Publications (2)

Publication Number Publication Date
JP2006131991A true JP2006131991A (en) 2006-05-25
JP4856914B2 JP4856914B2 (en) 2012-01-18

Family

ID=36725799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262422A Expired - Fee Related JP4856914B2 (en) 2004-10-05 2005-09-09 Method for forming fine metal bumps

Country Status (1)

Country Link
JP (1) JP4856914B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049579A (en) * 2011-12-09 2012-03-08 Fujitsu Ltd Method of manufacturing wiring board
JP2020072114A (en) * 2018-10-29 2020-05-07 国立研究開発法人産業技術総合研究所 Method of forming fine metal bump and fine metal bump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381951A (en) * 1986-09-26 1988-04-12 Hitachi Ltd Manufacture of semiconductor device
JPH0547771A (en) * 1991-08-15 1993-02-26 Omron Corp Electronic circuit component
JPH07115097A (en) * 1993-10-18 1995-05-02 Mitsubishi Electric Corp Semiconductor device and method of manufacturing it
JPH08120443A (en) * 1994-10-21 1996-05-14 Fuji Elelctrochem Co Ltd Formation of film pattern by lifting-off
JPH10278279A (en) * 1997-02-10 1998-10-20 Toshiba Corp Manufacture of print head
JP2002026250A (en) * 2000-07-12 2002-01-25 Denso Corp Manufacturing method of laminated circuit module
JP2002052718A (en) * 1999-06-30 2002-02-19 Canon Inc Method for manufacturing ink jet recording head, ink jet recording head manufactured by that method and laser material processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381951A (en) * 1986-09-26 1988-04-12 Hitachi Ltd Manufacture of semiconductor device
JPH0547771A (en) * 1991-08-15 1993-02-26 Omron Corp Electronic circuit component
JPH07115097A (en) * 1993-10-18 1995-05-02 Mitsubishi Electric Corp Semiconductor device and method of manufacturing it
JPH08120443A (en) * 1994-10-21 1996-05-14 Fuji Elelctrochem Co Ltd Formation of film pattern by lifting-off
JPH10278279A (en) * 1997-02-10 1998-10-20 Toshiba Corp Manufacture of print head
JP2002052718A (en) * 1999-06-30 2002-02-19 Canon Inc Method for manufacturing ink jet recording head, ink jet recording head manufactured by that method and laser material processing method
JP2002026250A (en) * 2000-07-12 2002-01-25 Denso Corp Manufacturing method of laminated circuit module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049579A (en) * 2011-12-09 2012-03-08 Fujitsu Ltd Method of manufacturing wiring board
JP2020072114A (en) * 2018-10-29 2020-05-07 国立研究開発法人産業技術総合研究所 Method of forming fine metal bump and fine metal bump
JP7232502B2 (en) 2018-10-29 2023-03-03 国立研究開発法人産業技術総合研究所 Method for forming fine metal bumps and fine metal bumps

Also Published As

Publication number Publication date
JP4856914B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US7767574B2 (en) Method of forming micro metal bump
KR20170102984A (en) Sloping LIFT Jetting
US7919727B2 (en) Laser processing apparatus and laser processing method
TWI426964B (en) Organic EL display cleaning device, organic EL display manufacturing device, organic EL display and organic EL mask cleaning method
JP2011041962A (en) Laser machining apparatus
CN106061668B (en) Spray nozzle device and the manufacture method for being laminated moulder
TW201701978A (en) Method and device for producing a structured element, and structured element
JP5192216B2 (en) Laser processing equipment
US9333749B2 (en) Method for manufacturing liquid ejection head substrate
WO2010100635A1 (en) A method and system for electrical circuit repair
CN103586585A (en) Laser processing apparatus
WO1992011971A1 (en) Method and device for laser welding of galvanized steel sheets
US7776721B2 (en) Laser processing method for gallium arsenide wafer
KR20110114666A (en) A method for deposition of at least one electrically conducting film on a substrate
JP4856914B2 (en) Method for forming fine metal bumps
US6426481B1 (en) Method for manufacturing discharge nozzle of liquid jet recording head and method for manufacturing the same head
TWI678724B (en) Metal mask production equipment
US20080179302A1 (en) Via hole forming method
EP0968824A1 (en) Method for processing discharge port of ink jet head, and method for manufacturing ink jet head
JP2007185685A (en) Laser beam machining apparatus
JP2011177738A (en) Laser beam machining apparatus and laser beam machining method
EP1270231A1 (en) Method of manufacturing an ink discharge port of an ink jet recording head
EP3890979A1 (en) High resolution laser induced forward transfer
JP5062763B2 (en) Fine metal bump forming apparatus and forming method
KR100374274B1 (en) Method for manufacturing ink jet recording head, ink jet recording head manufactured by such method, and laser working method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees