JP2006131428A - Carbon nanotube and method for manufacturing the same - Google Patents

Carbon nanotube and method for manufacturing the same Download PDF

Info

Publication number
JP2006131428A
JP2006131428A JP2004318870A JP2004318870A JP2006131428A JP 2006131428 A JP2006131428 A JP 2006131428A JP 2004318870 A JP2004318870 A JP 2004318870A JP 2004318870 A JP2004318870 A JP 2004318870A JP 2006131428 A JP2006131428 A JP 2006131428A
Authority
JP
Japan
Prior art keywords
carbon nanotube
thioalkylthiol
group
bonded
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004318870A
Other languages
Japanese (ja)
Other versions
JP4779099B2 (en
Inventor
Takako Nakamura
挙子 中村
Masanori Ishihara
正統 石原
Tsuguyori Oohana
継頼 大花
Akihiro Tanaka
章浩 田中
Yoshinori Koga
義紀 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004318870A priority Critical patent/JP4779099B2/en
Publication of JP2006131428A publication Critical patent/JP2006131428A/en
Application granted granted Critical
Publication of JP4779099B2 publication Critical patent/JP4779099B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanotube which is manufactured by safely introducing a thioalkylthiol onto its surface in a simple fashion without using poisonous gas and applying complicated operation, and to provide a method for manufacturing the same. <P>SOLUTION: A compound in which thioalkylthiol groups are bonded on the surface of a carbon nanotube is obtained by irradiating the carbon nanotube and a cyclic disulfide expressed by formula (1) (wherein, (n) is an integer of 1-8) with ultraviolet light in a solution. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、チオアルキルチオール基がその表面に結合しているカーボンナノチューブ及びその製造方法に関する。   The present invention relates to a carbon nanotube having a thioalkylthiol group bonded to its surface and a method for producing the same.

カーボンナノチューブは、燃料電池および電子部品分野をはじめとし、種々な分野で用いられている。このカーボンナノチューブの表面に各種の処理を施すことにより、電気的、物理的、化学的に優れた高機能特性を付加することができることが期待されている。このようなことから、より広範囲の分野での利用が期待されている材料である。
その一例として表面に化学修飾を施すことにより、より高付加価値を有する材料となることが期待される。化学修飾を施す場合に、従来から特異な特性を有する官能基を導入することにより付加価値を高めることができる。
Carbon nanotubes are used in various fields including fuel cells and electronic parts. It is expected that highly functional characteristics excellent in electrical, physical, and chemical properties can be added by performing various treatments on the surface of the carbon nanotube. For these reasons, the material is expected to be used in a wider range of fields.
As an example, it is expected that a material having higher added value can be obtained by chemically modifying the surface. When chemical modification is performed, the added value can be increased by introducing a functional group having unique characteristics.

一般に、有機硫黄官能基を有する材料は、硫黄原子や硫黄原子含有官能基特有の特異な性質を有し、金属原子、特に金原子や銀原子などと良い親和性を示して自己組織化することから広く用いられている材料である。 In general, a material having an organic sulfur functional group has unique properties unique to sulfur atoms or sulfur atom-containing functional groups, and exhibits a good affinity with metal atoms, particularly gold atoms or silver atoms, and self-organizes. It is a widely used material.

従来、カーボンナノチューブ表面上に硫黄官能基を導入する方法としては、(イ)硫化水素中におけるボールミリング法、及び(ロ)強酸を用いた酸化によってカルボシキル基を導入後、還元反応を経て塩化チオニルを作用させる方法(非特許文献1、2参照)が、知られている。
しかしながら、(イ)の方法において使用するガスは、取り扱いが困難である有毒ガスを使用する必要がある。このような特殊材料ガスを使用する場合、特別な反応容器が必要となり操作も煩雑となる。また、(ロ)の方法としては強酸でカーボンナノチューブを酸化させる必要があり、この反応によってカーボンナノチューブ上に多数の欠陥が導入されることから、カーボンナノチューブ本来の構造及び特性を失う可能性が考えられる。
Conventional methods for introducing a sulfur functional group onto the surface of a carbon nanotube include (i) ball milling in hydrogen sulfide, and (b) introduction of a carboxyl group by oxidation with a strong acid, followed by a reduction reaction and thionyl chloride. There is known a method of causing the effect to act (see Non-Patent Documents 1 and 2).
However, the gas used in the method (a) needs to use a toxic gas that is difficult to handle. When such a special material gas is used, a special reaction vessel is required and the operation becomes complicated. Also, as the method (b), it is necessary to oxidize the carbon nanotube with a strong acid, and this reaction introduces many defects on the carbon nanotube, so there is a possibility that the original structure and characteristics of the carbon nanotube may be lost. It is done.

Z.Konya, I. Vesselenyi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J.Delhalle, Z. Mekhalif, J. B. Nagy, A. A. Koos, Z. Osvath, A. Kocsonya, L. P.Biro, I. Kiricsi, Chem. Phys. Lett., 360, 429 (2002)Z. Konya, I. Vesselenyi, K. Niesz, A. Kukovecz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, JB Nagy, AA Koos, Z. Osvath, A. Kocsonya, LPBiro, I Kiricsi, Chem. Phys. Lett., 360, 429 (2002) J. K.Lim, W. S. Yun, M. H. Yoon, S. K. Lee, C. H. Kim, K. Kim, S. K. Kim, Synth.Metal, 139, 521 (2003)J. K. Lim, W. S. Yun, M. H. Yoon, S. K. Lee, C. H. Kim, K. Kim, S. K. Kim, Synth.Metal, 139, 521 (2003)

本発明は、従来この種の方法に用いられてきた有毒ガスを使用することなく、カーボンナノチューブ本来の構造及び特性を失うことなく、安全、かつ簡便にカーボンナノチューブ表面上に有機硫黄官能基を導入する(結合した)カーボンナノチューブ及びその製造方法を提供することを目的とする。   The present invention introduces organic sulfur functional groups on the surface of carbon nanotubes safely and easily without losing the original structure and properties of carbon nanotubes without using toxic gases that have been used in this type of method. An object of the present invention is to provide (bonded) carbon nanotubes and a method for producing the same.

本発明者らは、紫外線照射下、カーボンナノチューブと環状ジスルフィドを反応させると、意外にも、カーボンナノチューブ表面上にチオアルキルチオール基が化学的に結合することを見いだし、本発明を完成するに至った。
すなわち、この出願によれば、以下の発明が提供される。
(1)チオアルキルチオール基がその表面に結合していることを特徴とするカーボンナノチューブ。
(2) チオアルキルチオール基の炭素数が3〜10であることを特徴とする上記(1)に記載のカーボンナノチューブ。
(3) 紫外線照射下、カーボンナノチューブと下記一般式(1)で表される環状ジスルフィドを反応させることを特徴とする上記(1)又は(2)に記載のチオアルキルチオールがその表面に結合したカーボンナノチューブの製造方法。

Figure 2006131428
(式中、nは1〜8の整数を示す。)
(4) 有機溶媒中に環状ジスルフィドを添加することを特徴とする上記(3)又は(4)に記載のカーボンナノチューブの製造方法。
(5)上記(1)又は(2)に記載のカーボンナノチューブのチオアルキルチオール基を介して金微粒子が結合した金微粒子修飾カーボンナノチューブ。 The present inventors have unexpectedly found that when carbon nanotubes and cyclic disulfides are reacted under ultraviolet irradiation, a thioalkylthiol group is chemically bonded to the carbon nanotube surface, and the present invention has been completed. It was.
That is, according to this application, the following invention is provided.
(1) A carbon nanotube characterized in that a thioalkylthiol group is bonded to the surface thereof.
(2) The carbon nanotube as described in (1) above, wherein the thioalkylthiol group has 3 to 10 carbon atoms.
(3) The thioalkylthiol described in the above (1) or (2) is bonded to the surface thereof by reacting a carbon nanotube with a cyclic disulfide represented by the following general formula (1) under ultraviolet irradiation A method for producing carbon nanotubes.
Figure 2006131428
(In the formula, n represents an integer of 1 to 8.)
(4) The method for producing carbon nanotubes as described in (3) or (4) above, wherein cyclic disulfide is added to the organic solvent.
(5) A gold fine particle modified carbon nanotube in which gold fine particles are bonded via the thioalkylthiol group of the carbon nanotube according to the above (1) or (2).

本発明に係る、カーボンナノチューブの表面上にチオアルキルチオール基が導入された(結合した)、カーボンナノチューブは新規物質であり、金属原子、特に金原子や銀原子などと良い親和性を示して自己組織化、抗菌特性等の機能を有し、電子デバイス、機能性材料、抗菌剤として極めて有用なものである。また、本発明の製造方法によれば、有毒ガスを使用することなく、常温の溶液中で紫外光照射をするだけの簡便な反応操作により、カーボンナノチューブ表面上にチオアルキルチオール基を導入した(結合した)、新規なカーボンナノチューブを得ることができる。   According to the present invention, a thioalkylthiol group is introduced (bonded) onto the surface of the carbon nanotube, and the carbon nanotube is a novel substance and exhibits a good affinity with a metal atom, particularly a gold atom or a silver atom. It has functions such as organization and antibacterial properties, and is extremely useful as an electronic device, functional material, and antibacterial agent. In addition, according to the production method of the present invention, a thioalkylthiol group was introduced onto the surface of a carbon nanotube by a simple reaction operation simply by irradiating ultraviolet light in a solution at room temperature without using a toxic gas ( New carbon nanotubes can be obtained.

本発明に係るカーボンナノチューブは、その表面にチオアルキルチオール基が結合していることを特徴としている。
このものは、概略的には下記一般式(2)で表すことができる。

Figure 2006131428
The carbon nanotube according to the present invention is characterized in that a thioalkylthiol group is bonded to the surface thereof.
This can be schematically represented by the following general formula (2).
Figure 2006131428

原材料であるカーボンナノチューブとしては、単層あるいは多層の何れのものも使用することができる。   As the carbon nanotube as a raw material, either single-walled or multi-walled carbon nanotubes can be used.

チオアルキルチオール基は−S(CHSHで示され、その炭素数が3〜10、好ましくは、4〜9、更に好ましくは炭素数が4〜6のものである。 The thioalkylthiol group is represented by —S (CH 2 ) n SH, and has 3 to 10 carbon atoms, preferably 4 to 9 carbon atoms, and more preferably 4 to 6 carbon atoms.

本発明に係るカーボンナノチューブは、紫外線照射下、カーボンナノチューブと下記一般式(1)で示される環状ジスルフィドと反応させることによって製造することができる。

Figure 2006131428
(式中、nは3〜10の整数を示す。) The carbon nanotube according to the present invention can be produced by reacting a carbon nanotube with a cyclic disulfide represented by the following general formula (1) under ultraviolet irradiation.
Figure 2006131428
(In the formula, n represents an integer of 3 to 10.)

前記環状ジスルフィドの炭素数は、反応の簡便さ及び高機能性の発現という理由から3〜10とする。好ましくは4〜9、より好ましくは4〜6である。
本発明方法の反応においては、これらの環状ジスルフィドの鎖長による反応性の差はない。
The number of carbon atoms of the cyclic disulfide is 3 to 10 because of the simplicity of the reaction and the expression of high functionality. Preferably it is 4-9, More preferably, it is 4-6.
In the reaction of the method of the present invention, there is no difference in reactivity due to the chain length of these cyclic disulfides.

本発明の方法では、前記一般式(1)で表される環状ジスルフィドの開裂反応によるラジカルの発生が必要であることから、このために紫外光照射下に行う。波長は200nm〜300nmのものを使用することが望ましい。   In the method of the present invention, since generation of radicals by the cleavage reaction of the cyclic disulfide represented by the general formula (1) is necessary, this is performed under irradiation with ultraviolet light. It is desirable to use a wavelength of 200 nm to 300 nm.

光源としては公知のものが用いられ、低圧水銀灯、高圧水銀灯、ArFまたはXeClエキシマレーザー、エキシマランプ等が適用でき、広範囲の波長の光を利用できる。
反応の高効率化のためには、254nm以下の波長を有する紫外光照射下に反応を行うことが好ましい。光量は、0.1〜100mW/cmの範囲で照射される。
照射時間は1〜8時間程度が必要である。
A known light source is used, and a low-pressure mercury lamp, a high-pressure mercury lamp, an ArF or XeCl excimer laser, an excimer lamp, or the like can be applied, and light having a wide wavelength range can be used.
In order to increase the efficiency of the reaction, the reaction is preferably performed under irradiation with ultraviolet light having a wavelength of 254 nm or less. The amount of light is irradiated in the range of 0.1 to 100 mW / cm 2 .
The irradiation time needs about 1 to 8 hours.

本発明の方法に際しては、原料物質である前記環状ジスルフィドを、溶媒中に添加するのが望ましい。推奨される溶媒は、アセトニトリルである。溶媒量は、環状ジスルフィドの使用量に応じて決定する。この反応原料を溶媒中に保存することができる量であれば差し支えないが、十分に溶媒中に混和することができ、かつ反応に際して光照射を十分に行うことができる量を必要とする。
このようなことを考慮して、環状ジスルフィド2.5mgに対して、0.5ml以上、4ml以下のアセトニトリルを使用することが望ましい。
In the method of the present invention, it is desirable to add the cyclic disulfide as a raw material into a solvent. The recommended solvent is acetonitrile. The amount of solvent is determined according to the amount of cyclic disulfide used. Any amount can be used as long as the reaction raw material can be stored in the solvent, but an amount that can be sufficiently mixed in the solvent and can be sufficiently irradiated with light during the reaction is required.
In consideration of the above, it is desirable to use 0.5 ml or more and 4 ml or less of acetonitrile with respect to 2.5 mg of cyclic disulfide.

本発明の反応は、加熱する必要がなく、室温下で容易に進行させることができる。本発明の反応を行うにあたっては、アルゴンまたは窒素雰囲気を介して懸濁液に光照射を行うのが望ましい。   The reaction of the present invention does not need to be heated and can easily proceed at room temperature. In carrying out the reaction of the present invention, it is desirable to irradiate the suspension with light through an argon or nitrogen atmosphere.

また、本発明方法においては、反応終了後、溶媒を除去する。ついでカーボンナノチューブを溶剤により洗浄し、不必要な付着物を除去する。溶剤には前記アセトニトリルを用いることができる。
このようにして得られるチオアルキルチオール化カーボンナノチューブの同定は、表面に前記チオアルキルチオール基が化学結合しているかどうかを各種の分析機器たとえばXPSなどを利用することにより行われる。
In the method of the present invention, the solvent is removed after completion of the reaction. Next, the carbon nanotubes are washed with a solvent to remove unnecessary deposits. As the solvent, acetonitrile can be used.
Identification of the thioalkylthiolated carbon nanotube thus obtained is performed by using various analytical instruments such as XPS to determine whether or not the thioalkylthiol group is chemically bonded to the surface.

上記カーボンナノチューブのチオアルキルチオール基を介して金微粒子が結合した金微粒子修飾カーボンナノチューブは、チオアルキルチオール化カーボンナノチューブと金微粒子溶液を反応させることにより得ることができる。
また、このものの同定は、前記と同様な各種の分析機器たとえばXPSなどを利用することにより行われる。
The gold fine particle modified carbon nanotube in which the gold fine particle is bonded through the thioalkylthiol group of the carbon nanotube can be obtained by reacting the thioalkylthiolated carbon nanotube with the gold fine particle solution.
In addition, this is identified by using various analytical instruments similar to those described above, such as XPS.

以下、実施例により本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
合成石英製の反応容器に、六員環ジスルフィド(5mg)をアセトニトリル(4ml)に溶解させ、カーボンナノチューブを入れた。
アルゴン雰囲気下で攪拌しつつ低圧水銀灯を室温で7時間照射した。その後、アセトニトリル溶液を除去し、カーボンナノチューブをアセトニトリルで洗浄し、減圧下で乾燥を行った。
反応後のカーボンナノチューブのXPS測定を行った。図1に示すように、硫黄に由来するピークが観測され、表面上にチオブチルチオール基(HSCHCHCHCHS−)が導入されたことが確認された。
実施例2
Example 1
Six-membered ring disulfide (5 mg) was dissolved in acetonitrile (4 ml) in a reaction vessel made of synthetic quartz, and carbon nanotubes were placed therein.
While stirring in an argon atmosphere, a low-pressure mercury lamp was irradiated for 7 hours at room temperature. Thereafter, the acetonitrile solution was removed, the carbon nanotubes were washed with acetonitrile, and dried under reduced pressure.
The XPS measurement of the carbon nanotube after reaction was performed. As shown in FIG. 1, a peak derived from sulfur was observed, and it was confirmed that a thiobutylthiol group (HSCH 2 CH 2 CH 2 CH 2 S—) was introduced on the surface.
Example 2

合成石英製の反応容器に、七員環ジスルフィド(2mg)をアセトニトリル(4ml)に溶解させ、カーボンナノチューブを入れた。
アルゴン雰囲気下で攪拌しつつ低圧水銀灯を室温で7時間照射した。その後、アセトニトリル溶液を除去し、カーボンナノチューブをアセトニトリルで洗浄し、減圧下で乾燥を行った。
反応後のカーボンナノチューブのXPS測定を行った。図2に示すように、硫黄に由来するピークが観測され、表面上に表面上にチオペンチルチオール基(HSCHCHCHCHCHS−)が導入されたことが確認された。
実施例3
In a reaction vessel made of synthetic quartz, seven-membered ring disulfide (2 mg) was dissolved in acetonitrile (4 ml), and carbon nanotubes were placed.
While stirring in an argon atmosphere, a low-pressure mercury lamp was irradiated for 7 hours at room temperature. Thereafter, the acetonitrile solution was removed, the carbon nanotubes were washed with acetonitrile, and dried under reduced pressure.
The XPS measurement of the carbon nanotube after reaction was performed. As shown in FIG. 2, a peak derived from sulfur was observed, and it was confirmed that a thiopentylthiol group (HSCH 2 CH 2 CH 2 CH 2 CH 2 S—) was introduced on the surface.
Example 3

合成石英製の反応容器に、八員環ジスルフィド(2mg)をアセトニトリル(4ml)に溶解させ、カーボンナノチューブを入れた。
アルゴン雰囲気下で攪拌しつつ低圧水銀灯を室温で7時間照射した。その後、アセトニトリル溶液を除去し、カーボンナノチューブをアセトニトリルで洗浄し、減圧下で乾燥を行った。
反応後のカーボンナノチューブのXPS測定を行った。図3に示すように、硫黄に由来するピークが観測され、表面上に表面上に表面上にチオヘキシルチオール基(HSCHCHCHCHCHCHS−)が導入されたことが確認された。有機硫黄官能基が導入されたことが確認された。
実施例4
In a reaction vessel made of synthetic quartz, eight-membered ring disulfide (2 mg) was dissolved in acetonitrile (4 ml), and carbon nanotubes were placed.
While stirring in an argon atmosphere, a low-pressure mercury lamp was irradiated for 7 hours at room temperature. Thereafter, the acetonitrile solution was removed, the carbon nanotubes were washed with acetonitrile, and dried under reduced pressure.
The XPS measurement of the carbon nanotube after reaction was performed. As shown in FIG. 3, a peak derived from sulfur was observed, and a thiohexylthiol group (HSCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 S—) was introduced on the surface. Was confirmed. It was confirmed that an organic sulfur functional group was introduced.
Example 4

実施例1で得たカーボンナノチューブ(1.7mg)を水中に懸濁させ、金微粒子溶液(5ml)を加えて終夜攪拌した。その後、水溶液を除去し、カーボンナノチューブを水およびエタノールで洗浄し、減圧下に乾燥を行って金微粒子修飾カーボンナノチューブを得た。反応後の該微粒子修飾カーボンナノチューブのXPS測定を行った。図4に示すように、硫黄に由来するピークと金に由来するピークが観測され、表面上にAu−SCHCHCHCHS−基を介して金微粒子が導入されたことが確認された。 The carbon nanotubes (1.7 mg) obtained in Example 1 were suspended in water, a gold fine particle solution (5 ml) was added, and the mixture was stirred overnight. Thereafter, the aqueous solution was removed, the carbon nanotubes were washed with water and ethanol, and dried under reduced pressure to obtain gold fine particle modified carbon nanotubes. The XPS measurement of the fine particle-modified carbon nanotube after the reaction was performed. As shown in FIG. 4, a peak derived from sulfur and a peak derived from gold were observed, and it was confirmed that gold fine particles were introduced on the surface via Au—SCH 2 CH 2 CH 2 CH 2 S— groups. It was done.

実施例1で得た、チオアルキルチオール基がその表面に結合したカーボンナノチューブのXPSスペクトルを示す図である。It is a figure which shows the XPS spectrum of the carbon nanotube which the thioalkyl thiol group couple | bonded with the surface obtained in Example 1. FIG. 実施例2で得た、チオアルキルチオール基がその表面に結合したカーボンナノチューブのXPSスペクトルを示す図である。It is a figure which shows the XPS spectrum of the carbon nanotube which the thioalkyl thiol group obtained in Example 2 couple | bonded with the surface. 実施例3で得た、チオアルキルチオール基がその表面に結合したカーボンナノチューブのXPSスペクトルを示す図である。It is a figure which shows the XPS spectrum of the carbon nanotube which the thioalkyl thiol group couple | bonded with the surface obtained in Example 3. FIG. 実施例4で得た、金微粒子がチオアルキルチオール基を介してその表面に結合したカーボンナノチューブのXPSスペクトルを示す図である。It is a figure which shows the XPS spectrum of the carbon nanotube which the gold microparticles | fine-particles obtained in Example 4 couple | bonded with the surface through the thioalkylthiol group.

Claims (5)

チオアルキルチオール基がその表面に結合していることを特徴とするカーボンナノチューブ。 A carbon nanotube characterized in that a thioalkylthiol group is bonded to the surface thereof. チオアルキルチオール基の炭素数が3〜10であることを特徴とする請求項1記載のカーボンナノチューブ。 The carbon nanotube according to claim 1, wherein the thioalkylthiol group has 3 to 10 carbon atoms. 紫外線照射下、カーボンナノチューブと一般式(1)で表される環状ジスルフィドを反応させることを特徴とする請求項1又は2に記載のチオアルキルチオール基がその表面に結合したカーボンナノチューブの製造方法。
Figure 2006131428
(式中、nは1〜8の整数を示す。)
3. The method for producing a carbon nanotube having a thioalkylthiol group bonded to the surface thereof according to claim 1, wherein the carbon nanotube and the cyclic disulfide represented by the general formula (1) are reacted under ultraviolet irradiation.
Figure 2006131428
(In the formula, n represents an integer of 1 to 8.)
有機溶媒中に環状ジスルフィドを添加することを特徴とする請求項3又は4に記載のカーボンナノチューブの製造方法。 The method for producing carbon nanotubes according to claim 3 or 4, wherein cyclic disulfide is added to the organic solvent. 請求項1又は2に記載のカーボンナノチューブのチオアルキルチオール基を介して金微粒子が結合した金微粒子修飾カーボンナノチューブ。
A gold fine particle-modified carbon nanotube in which gold fine particles are bonded via a thioalkylthiol group of the carbon nanotube according to claim 1 or 2.
JP2004318870A 2004-11-02 2004-11-02 Carbon nanotube and method for producing the same Expired - Fee Related JP4779099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318870A JP4779099B2 (en) 2004-11-02 2004-11-02 Carbon nanotube and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318870A JP4779099B2 (en) 2004-11-02 2004-11-02 Carbon nanotube and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006131428A true JP2006131428A (en) 2006-05-25
JP4779099B2 JP4779099B2 (en) 2011-09-21

Family

ID=36725308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318870A Expired - Fee Related JP4779099B2 (en) 2004-11-02 2004-11-02 Carbon nanotube and method for producing the same

Country Status (1)

Country Link
JP (1) JP4779099B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123092A1 (en) * 2007-03-28 2008-10-16 Horiba, Ltd. Combustible gas sensor
WO2011096342A1 (en) 2010-02-04 2011-08-11 独立行政法人科学技術振興機構 Process for production of selectively chemically modified carbon nano-tube
JP2013129596A (en) * 2011-11-21 2013-07-04 Sekisui Chem Co Ltd Method for producing carbonaceous material-polymer composite material, and carbonaceous material-polymer composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503204A (en) * 1996-03-06 2002-01-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized nanotubes
JP2003512286A (en) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ Macroscopically arranged assemblies of carbon nanotubes
WO2003053846A2 (en) * 2001-07-10 2003-07-03 Universities Space Research Association Spatial localization of dispersed single walled carbon nanotubes into useful structures
JP2003300716A (en) * 2001-11-14 2003-10-21 Toray Ind Inc Method for treatment of carbonaceous material and method for obtaining carbon nanotube dispersion and solution
JP2004507436A (en) * 2000-09-06 2004-03-11 ファキュルテ ユニヴェルシテール ノートル−ダム ド ラ ペ Method for producing functionalized short carbon nanotubes and functionalized short carbon nanotubes obtained by the method
JP2004244490A (en) * 2003-02-13 2004-09-02 Toray Ind Inc Carbon nanotube-containing resin composite and method for producing the same, and high-modulus film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503204A (en) * 1996-03-06 2002-01-29 ハイピリオン カタリシス インターナショナル インコーポレイテッド Functionalized nanotubes
JP2003512286A (en) * 1999-10-27 2003-04-02 ウィリアム・マーシュ・ライス・ユニバーシティ Macroscopically arranged assemblies of carbon nanotubes
JP2004507436A (en) * 2000-09-06 2004-03-11 ファキュルテ ユニヴェルシテール ノートル−ダム ド ラ ペ Method for producing functionalized short carbon nanotubes and functionalized short carbon nanotubes obtained by the method
WO2003053846A2 (en) * 2001-07-10 2003-07-03 Universities Space Research Association Spatial localization of dispersed single walled carbon nanotubes into useful structures
JP2003300716A (en) * 2001-11-14 2003-10-21 Toray Ind Inc Method for treatment of carbonaceous material and method for obtaining carbon nanotube dispersion and solution
JP2004244490A (en) * 2003-02-13 2004-09-02 Toray Ind Inc Carbon nanotube-containing resin composite and method for producing the same, and high-modulus film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123092A1 (en) * 2007-03-28 2008-10-16 Horiba, Ltd. Combustible gas sensor
WO2011096342A1 (en) 2010-02-04 2011-08-11 独立行政法人科学技術振興機構 Process for production of selectively chemically modified carbon nano-tube
CN102741163A (en) * 2010-02-04 2012-10-17 独立行政法人科学技术振兴机构 Process for production of selectively chemically modified carbon nano-tube
US20130030217A1 (en) * 2010-02-04 2013-01-31 Yutaka Maeda Method for producing selectively functionalized carbon nanotubes
US8940937B2 (en) * 2010-02-04 2015-01-27 Japan Science And Technology Agency Method for producing selectively functionalized carbon nanotubes
JP2013129596A (en) * 2011-11-21 2013-07-04 Sekisui Chem Co Ltd Method for producing carbonaceous material-polymer composite material, and carbonaceous material-polymer composite material
KR101844622B1 (en) * 2011-11-21 2018-04-02 세키스이가가쿠 고교가부시키가이샤 Method for producing carbonaceous material-polymer composite material, and carbonaceous material-polymer composite material

Also Published As

Publication number Publication date
JP4779099B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
Nakamura et al. Chemical modification of single-walled carbon nanotubes with sulfur-containing functionalities
Xiang et al. L-cysteine-assisted synthesis and optical properties of Ag2S nanospheres
US9260653B2 (en) Enhancement of photoluminescence of nanodiamond particles
JP6362704B2 (en) Photocatalytic system promoted by constrained transition metals for efficient hydrogen release
Velamakanni et al. Site-specific deposition of Au nanoparticles in CNT films by chemical bonding
JP3851276B2 (en) Structure selection method of carbon nanotubes by light irradiation
Zhang et al. Non-metallic gold nanoclusters for oxygen activation and aerobic oxidation
JP2008529952A (en) Carbon nanotube processing method
Maeda et al. Helicity-selective photoreaction of single-walled carbon nanotubes with organosulfur compounds in the presence of oxygen
Wetzl et al. The Covalent Functionalization of Surface‐Supported Graphene: An Update
JP4779099B2 (en) Carbon nanotube and method for producing the same
Sartori et al. Multi-walled carbon nanotubes photochemistry: A mechanistic view of the effect of impurities and oxygen-containing surface groups
JP2007055863A (en) Surface-modified carbon and its manufacturing method
Gandra et al. Photosensitized singlet oxygen production upon two-photon excitation of single-walled carbon nanotubes and their functionalized analogues
JP4853919B2 (en) Functionalized carbon nanotube and method for producing the same
Dhakshinamoorthy et al. Boron nitride nanoplatelets as a solid radical initiator for the aerobic oxidation of thiophenol to diphenyldisulfide
JP3837567B2 (en) Carbon nanotube and method for producing the same
JP2007137715A (en) Diamond material and its producing method
JP4389058B2 (en) Method for decomposing fluorocarboxylic acids
WO2007067079A1 (en) Functionalised carbon nanotubes and methods of preparation
JP5150772B2 (en) Method for producing selectively chemically modified carbon nanotubes
JP6143099B2 (en) Surface treatment method for polymer material
JP2004033824A (en) Ultraviolet-resistant self-organized monomolecular film made of multiple aromatic ring compound
JPH0781936A (en) Production of surface modified metallic sulfide superfine particles
JP4119973B2 (en) Method for surface treatment of diamond powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4779099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees