JP2006128385A - Ceramic electronic componentt and stacked ceramic capacitor - Google Patents

Ceramic electronic componentt and stacked ceramic capacitor Download PDF

Info

Publication number
JP2006128385A
JP2006128385A JP2004314235A JP2004314235A JP2006128385A JP 2006128385 A JP2006128385 A JP 2006128385A JP 2004314235 A JP2004314235 A JP 2004314235A JP 2004314235 A JP2004314235 A JP 2004314235A JP 2006128385 A JP2006128385 A JP 2006128385A
Authority
JP
Japan
Prior art keywords
conductive layer
thick film
plating
layers
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004314235A
Other languages
Japanese (ja)
Inventor
Toshibumi Sakaguchi
俊文 坂口
Tsutomu Iemura
努 家村
Koji Oikawa
浩司 及川
Shinichi Suga
信一 菅
Susumu Shimomura
晋 下村
Yoshinori Kawasaki
芳範 河崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004314235A priority Critical patent/JP2006128385A/en
Publication of JP2006128385A publication Critical patent/JP2006128385A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic electronic component and a stacked ceramic capacitor which effectively increases the junction strength of a thick film conductive layer and a plated conductive layer. <P>SOLUTION: The ceramic electronic component 10 has external electrodes 5, 6 composed of thick film conductive layers 5a, 6a and plated conductive layers 5b, 6b formed on the surface of a ceramic material 1 in this order from the side of the ceramic material 1. The thick film conductive layers 5a, 6a have many recesses P on their outer surfaces, and the plated conductive layers 5b, 6b are covered with the thick film conductive layers 5a, 6a with filling the recesses P. The average thickness (a) of the solid part meets the relation 0.1b≤a for the average thickness (b) of the plated conductive layer inclusive of the solid part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セラミック電子部品及び積層セラミックコンデンサに関するものである。   The present invention relates to a ceramic electronic component and a multilayer ceramic capacitor.

代表的なセラミック電子部品として、積層セラミックコンデンサを用いて説明する。   A typical ceramic electronic component will be described using a multilayer ceramic capacitor.

図3は、従来の積層セラミックコンデンサを示す縦断面図である。   FIG. 3 is a longitudinal sectional view showing a conventional multilayer ceramic capacitor.

同図によれば、積層セラミックコンデンサ20は、矩形状をなす複数個の誘電体層22と内部電極23、24とが交互に積層された積層体(セラミック素体)21の側面に、内部電極23、24に電気的に接続される外部電極25、26が形成されている。   According to the figure, a multilayer ceramic capacitor 20 has an internal electrode on the side surface of a multilayer body (ceramic body) 21 in which a plurality of rectangular dielectric layers 22 and internal electrodes 23 and 24 are alternately stacked. External electrodes 25 and 26 that are electrically connected to 23 and 24 are formed.

外部電極25、26は、導電性ペーストを積層体21端部に塗布後焼き付けて形成される導体層25a、26aの表面に、Niメッキ層25b、26b、Snメッキ層25c、26cが順次形成されている(例えば、特許文献1参照)。
特開2002−75779号公報(2−4頁、図1−2)
The external electrodes 25 and 26 are formed by sequentially forming Ni plating layers 25b and 26b and Sn plating layers 25c and 26c on the surfaces of the conductor layers 25a and 26a formed by applying and pasting a conductive paste to the end of the laminate 21. (For example, refer to Patent Document 1).
JP 2002-75779A (page 2-4, FIG. 1-2)

しかしながら、上記積層セラミックコンデンサ20によれば、導体層25a、26aの表面とNiメッキ層25b、26bの接合強度が十分でなく、Niメッキ層25b、26bに外部応力が加わった際、Niメッキ層25b、26bが導体層25a、26aから剥離するという問題点があった。   However, according to the multilayer ceramic capacitor 20, the bonding strength between the surfaces of the conductor layers 25a and 26a and the Ni plating layers 25b and 26b is not sufficient, and when an external stress is applied to the Ni plating layers 25b and 26b, the Ni plating layer There was a problem that 25b and 26b peeled off from the conductor layers 25a and 26a.

本発明は、上述の問題点に鑑みて案出されたものであり、その目的は、厚膜導電層とメッキ導電層の接合強度を効果的に増大できるセラミック電子部品及び積層セラミックコンデンサを提供することにある。   The present invention has been devised in view of the above-mentioned problems, and an object thereof is to provide a ceramic electronic component and a multilayer ceramic capacitor capable of effectively increasing the bonding strength between a thick film conductive layer and a plated conductive layer. There is.

本発明は、セラミック素体の表面に、該セラミック素体側から順に、厚膜導電層、メッキ導電層を形成して成る外部電極を有するセラミック電子部品において、前記厚膜導電層は、その外表面に多数個の凹部を有するとともに、前記メッキ導電層は、前記凹部を充填しつつ前記厚膜導電層を被覆して成り、且つ、該充填部の平均厚みaは、充填部を含めた前記メッキ導電層の平均厚みbに対して、0.1b≦aの関係を満たすことを特徴とするものである。   The present invention provides a ceramic electronic component having an external electrode formed by forming a thick film conductive layer and a plated conductive layer in order from the ceramic element side on the surface of the ceramic element. The plating conductive layer covers the thick film conductive layer while filling the recess, and the average thickness a of the filling portion is the plating including the filling portion. It satisfies the relationship of 0.1b ≦ a with respect to the average thickness b of the conductive layer.

また、前記メッキ導電層の金属成分は、水素の標準電極電位より大きな標準電極電位を有することを特徴とするものである。   Further, the metal component of the plated conductive layer has a standard electrode potential larger than the standard electrode potential of hydrogen.

さらに、前記厚膜導電層及び前記メッキ導電層は、同一金属を主成分とすることを特徴とするものである。   Furthermore, the thick film conductive layer and the plated conductive layer are characterized by containing the same metal as a main component.

またさらに、前記凹部の開口面積は、開口部を除く凹部内において最大となることを特徴とするものである。   Furthermore, the opening area of the recess is maximized in the recess excluding the opening.

さらにまた、前記メッキ導電層の表面にNi及び/又はSnを主成分とする第2メッキ導電層が形成されていることを特徴とするものである。   Furthermore, a second plating conductive layer containing Ni and / or Sn as a main component is formed on the surface of the plating conductive layer.

また本発明は、セラミック積層体の表面に、該セラミック積層側から順に、厚膜導電層、メッキ導電層を形成して成る外部電極を有する積層セラミックコンデンサにおいて、前記厚膜導電層は、その外表面に多数個の凹部を有するとともに、前記メッキ導電層は、前記凹部を充填しつつ前記厚膜導電層を被覆して成り、且つ、該充填部の平均厚みaは、充填部を含めた前記メッキ導電層の平均厚みbに対して、0.1b≦aの関係を満たすことを特徴とするものである。   The present invention also provides a multilayer ceramic capacitor having an external electrode formed by forming a thick film conductive layer and a plated conductive layer in this order from the ceramic laminate side on the surface of the ceramic laminate. The plating conductive layer is formed by covering the thick film conductive layer while filling the recess, and the average thickness a of the filling portion includes the filling portion. The plating conductive layer satisfies the relationship of 0.1b ≦ a with respect to the average thickness b of the plated conductive layer.

本発明によれば、セラミック素体の表面に、該セラミック素体側から順に、厚膜導電層、メッキ導電層を形成して成る外部電極を有するセラミック電子部品において、前記厚膜導電層は、その外表面に多数個の凹部を有するとともに、前記メッキ導電層は、前記凹部を充填しつつ前記厚膜導電層を被覆して成り、且つ、該充填部の平均厚みaは、充填部を含めた前記メッキ導電層の平均厚みbに対して、0.1b≦aの関係を満たすようにしたことから、厚膜導電層とメッキ導電層との接合部において比較的大きなアンカー効果を得ることができ、両者間の接合強度を向上させることが可能となる。   According to the present invention, in a ceramic electronic component having an external electrode formed by forming a thick film conductive layer and a plated conductive layer in order from the ceramic element side on the surface of the ceramic element, the thick film conductive layer is The plated conductive layer covers the thick film conductive layer while filling the concave portion, and the average thickness a of the filled portion includes the filled portion. Since the relation of 0.1b ≦ a is satisfied with respect to the average thickness b of the plated conductive layer, a relatively large anchor effect can be obtained at the junction between the thick film conductive layer and the plated conductive layer. It is possible to improve the bonding strength between the two.

また、メッキ導電層の金属成分は、水素の標準電極電位より大きな標準電極電位を有することから、メッキ導電層の形成に際してメッキ液に電圧が印加されると、上記金属が、水の電気分解によって生じる水素よりも、優先的に厚膜導電層(陰極)表面に析出する。   In addition, since the metal component of the plated conductive layer has a standard electrode potential larger than the standard electrode potential of hydrogen, when a voltage is applied to the plating solution during the formation of the plated conductive layer, the metal is electrolyzed by water. It is preferentially deposited on the surface of the thick film conductive layer (cathode) over the generated hydrogen.

すなわち、Cuの析出が水素により阻害されるのを抑制することで、凹部内を含めて緻密なメッキ導電層を形成することが可能となる。特に、水素の発生に起因して厚膜導電層表面とメッキ導電層との間に空隙が生じることを有効に防止して、上記アンカー効果をより効果的に得ることができる。 That is, by suppressing the precipitation of Cu from being inhibited by hydrogen, a dense plated conductive layer including the inside of the recess can be formed. In particular, it is possible to effectively prevent the formation of voids between the surface of the thick film conductive layer and the plated conductive layer due to the generation of hydrogen, and the anchor effect can be obtained more effectively.

さらに、厚膜導電層及びメッキ導電層の主成分を同一金属で構成することから、厚膜導電層表面へのメッキ導電層の濡れ性が良好となり、メッキ導電層外表面の平滑性を高めることが可能となる。   Furthermore, since the main components of the thick film conductive layer and the plated conductive layer are made of the same metal, the wettability of the plated conductive layer to the surface of the thick film conductive layer is improved, and the smoothness of the outer surface of the plated conductive layer is improved. Is possible.

またさらに、凹部の開口面積を、開口部を除く凹部内において最大となるようにしたことから、メッキ導電層の充填部が厚膜導電層へのくさびとして働き、メッキ導電層への外力によって、メッキ導電層が厚膜導電層から剥離することを効果的に抑制できる。   Furthermore, since the opening area of the concave portion is maximized in the concave portion excluding the opening portion, the filling portion of the plated conductive layer works as a wedge to the thick film conductive layer, and by external force to the plated conductive layer, It can suppress effectively that a plating conductive layer peels from a thick film conductive layer.

さらにまた、メッキ導電層の表面にNiを主成分とする第2メッキ導電層が形成されていることから、半田実装などの際に、メッキ導電層の半田食われを好適に抑制することができる。他方、Snを主成分として第2メッキ導電層を形成した場合、半田濡れ性を向上させることができる。   Furthermore, since the second plated conductive layer containing Ni as a main component is formed on the surface of the plated conductive layer, it is possible to suitably suppress solder erosion of the plated conductive layer during solder mounting or the like. . On the other hand, when the second plating conductive layer is formed with Sn as a main component, the solder wettability can be improved.

また本発明は、セラミック積層体の表面に、該セラミック積層側から順に、厚膜導電層、メッキ導電層を形成して成る外部電極を有する積層セラミックコンデンサにおいて、前記厚膜導電層は、その外表面に多数個の凹部を有するとともに、前記メッキ導電層は、前記凹部を充填しつつ前記厚膜導電層を被覆して成り、且つ、該充填部の平均厚みaは、充填部を含めた前記メッキ導電層の平均厚みbに対して、0.1×b≦aの関係を満たすことから、厚膜導電層とメッキ導電層との接合部において比較的大きなアンカー効果を得ることができ、両者間の接合強度を向上させることが可能となる。当該効果は、セラミック積層体の一対の端部に外部電極が形成され、厚膜導電層からメッキ導電層を剥離する方向に応力が加わりやすい積層セラミックコンデンサにおいて特に有効である。   The present invention also provides a multilayer ceramic capacitor having an external electrode formed by forming a thick film conductive layer and a plated conductive layer in this order from the ceramic laminate side on the surface of the ceramic laminate. The plating conductive layer is formed by covering the thick film conductive layer while filling the recess, and the average thickness a of the filling portion includes the filling portion. Since the relationship of 0.1 × b ≦ a is satisfied with respect to the average thickness b of the plated conductive layer, a relatively large anchor effect can be obtained at the joint between the thick film conductive layer and the plated conductive layer. It is possible to improve the bonding strength between the two. This effect is particularly effective in a multilayer ceramic capacitor in which external electrodes are formed at a pair of end portions of a ceramic multilayer body, and stress is easily applied in a direction in which the plated conductive layer is peeled from the thick film conductive layer.

以下、本発明のセラミック電子部品を図面に基づいて説明する。   The ceramic electronic component of the present invention will be described below with reference to the drawings.

代表的なセラミック電子部品として、積層セラミックコンデンサを用いて説明する。   A typical ceramic electronic component will be described using a multilayer ceramic capacitor.

図1は、本発明の積層セラミックコンデンサを示す図であり、(a)は外観斜視図、(b)は縦断面図、(c)は(b)の外部電極周辺を拡大して示す図である。   FIG. 1 is a view showing a multilayer ceramic capacitor of the present invention, in which (a) is an external perspective view, (b) is a longitudinal sectional view, and (c) is an enlarged view of the periphery of an external electrode of (b). is there.

図において、10は積層セラミックコンデンサ(セラミック電子部品)、1は積層体、2は誘電体層、3、4は内部電極、5、6は外部電極である。   In the figure, 10 is a multilayer ceramic capacitor (ceramic electronic component), 1 is a multilayer body, 2 is a dielectric layer, 3 and 4 are internal electrodes, and 5 and 6 are external electrodes.

誘電体層2は、チタン酸バリウム(BaTiO)などを主成分とする非還元性誘電体材料からなり、その厚みは高容量化のために例えば1〜5μmとする。この誘電体層2は、その形状は0.6mm×0.3mmなどであり、多数積層することによって積層体1が構成される。なお、誘電体層2の形状、厚み及び積層数は、所望の容量値によって任意に変更することができる。 The dielectric layer 2 is made of a non-reducing dielectric material mainly composed of barium titanate (BaTiO 3 ) or the like, and has a thickness of, for example, 1 to 5 μm for increasing the capacity. The dielectric layer 2 has a shape of 0.6 mm × 0.3 mm or the like, and the laminate 1 is formed by laminating a large number. The shape, thickness, and number of layers of the dielectric layer 2 can be arbitrarily changed according to a desired capacitance value.

内部電極3、4は、例えばCu、Niを主成分とする材料から構成され、その厚みを0.5〜2μmとする。そして、誘電体層2の積層方向に隣接しあう2つの内部電極3、4は、互いに積層体1の異なる端面側に延出し、夫々異なる外部電極5、6に接続されている。   The internal electrodes 3 and 4 are made of, for example, a material mainly composed of Cu and Ni, and have a thickness of 0.5 to 2 μm. The two internal electrodes 3 and 4 adjacent to each other in the stacking direction of the dielectric layer 2 extend to different end face sides of the stacked body 1 and are connected to different external electrodes 5 and 6, respectively.

外部電極5、6は、図1(b)に示すように、積層体1側から順に、厚膜導電層5a、6a、Cuメッキ層(メッキ導電層)5b、6b、Niメッキ層5c、6c及びSnメッキ層5d、6d(Niメッキ層5c、6c及び/又はSnメッキ層5d、6dを第2メッキ導電層とする)を形成することによって構成されている。   As shown in FIG. 1B, the external electrodes 5 and 6 are, in order from the laminated body 1 side, thick film conductive layers 5a and 6a, Cu plating layers (plating conductive layers) 5b and 6b, Ni plating layers 5c and 6c. And Sn plating layers 5d and 6d (Ni plating layers 5c and 6c and / or Sn plating layers 5d and 6d are used as the second plating conductive layer).

まず、厚膜導電層5a、6aは、例えばCuを主とする金属成分、ガラス成分、バインダ、分散剤及び溶剤等からなる導電性ペーストを、積層体1の一対の端面に塗布した後焼き付けることで形成される。ガラス成分としては、例えばホウケイ酸亜鉛系ガラス成分を用いることができ、金属成分とガラス成分とを合計してなる固形分に対して3〜12wt%の割合で含有することが好ましい。   First, the thick film conductive layers 5 a and 6 a are baked after applying a conductive paste made of, for example, a metal component mainly composed of Cu, a glass component, a binder, a dispersant, a solvent, and the like to a pair of end surfaces of the laminate 1. Formed with. As the glass component, for example, a zinc borosilicate glass component can be used, and the glass component is preferably contained at a ratio of 3 to 12 wt% with respect to the solid content obtained by adding the metal component and the glass component.

ここで、凹部Pとは、厚膜導電層5a、6aの焼付け形成に際して発生するオープンポア(開気孔)のことをいう。凹部Pの大小及び多少等は、ガラス成分や金属成分の粒径、ガラス成分比率並びに焼付け条件を適宜設定することによって、所望の値に制御することができる。   Here, the concave portion P refers to open pores (open pores) generated when the thick film conductive layers 5a and 6a are formed by baking. The size, degree, etc. of the recess P can be controlled to desired values by appropriately setting the particle size of the glass component or metal component, the glass component ratio, and the baking conditions.

また、凹部Pの開口面積Sは、開口部を除く凹部内において最大となることが好ましい。ここで、開口面積Sとは、凹部Pを開口部に対する平行な切断面の面積のことをいい、例えば図1(c)において、開口部の開口面積はSa、最大となる部分の開口面積はSpで示される。   Moreover, it is preferable that the opening area S of the recessed part P becomes the largest in the recessed part except an opening part. Here, the opening area S means the area of the cut surface parallel to the opening of the recess P. For example, in FIG. 1C, the opening area of the opening is Sa, and the opening area of the maximum portion is Indicated by Sp.

この場合、凹部P内に形成されたメッキ導電層5b、6bの充填部が、厚膜導電層5a、6aへのくさびとして働くことから、メッキ導電層5b、6bへの外力によって、メッキ導電層5b、6bが厚膜導電層5a、6aから剥がれることを効果的に抑制できる。   In this case, since the filling portion of the plated conductive layers 5b and 6b formed in the recess P serves as a wedge to the thick film conductive layers 5a and 6a, the plated conductive layer is applied by an external force to the plated conductive layers 5b and 6b. It can suppress effectively that 5b and 6b peel from the thick film conductive layers 5a and 6a.

尚、全ての凹部Pにおいて、開口面積Sが開口部を除く凹部P内において最大となる必要はないものの、耐剥離性を効果的に得るためには所定割合の凹部Pにおいて上記構成を満たすことが望ましい。   In all the recesses P, the opening area S does not need to be maximized in the recesses P except for the opening, but in order to effectively obtain the peel resistance, the above-described configuration is satisfied in a predetermined proportion of the recesses P. Is desirable.

開口面積Sの測定方法としては、積層セラミックコンデンサ10の幅(W)方向または厚み(T)方向の外部電極5、6の断面をFIB(集束イオンビーム)等で複数切出してSEM(走査型電子顕微鏡)やSIM(走査型イオン顕微鏡)等で観察した像を画像処理装置で読み取り、各凹部Pについて開口面積Sa及びSpとなる部分の内径を測定し、円形であると仮定して算出した。   As a method for measuring the opening area S, a plurality of cross-sections of the external electrodes 5 and 6 in the width (W) direction or thickness (T) direction of the multilayer ceramic capacitor 10 are cut out by FIB (focused ion beam) or the like, and then SEM (scanning electron). The image observed with a microscope) or SIM (scanning ion microscope) was read with an image processing apparatus, and the inner diameter of each concave portion P corresponding to the opening areas Sa and Sp was measured and calculated assuming that it was circular.

次に、Cuメッキ層(メッキ導電層)5b、6bは、厚膜導電層5a、6aの外表面に形成された多数個の凹部Pを充填しつつ厚膜導電層5a、6aを被覆して成り、且つ、充填部の平均厚みaは、充填部を含めたCuメッキ層5b、6bの平均厚みbに対して、0.1b≦aの関係を満たすことである。たとえば、厚みbは、メッキが充填され凹部pの深さaと凹部pの開口を被覆するメッキ層の厚みを言い、多数の凹部pにおけるそれぞれの値を平均した値である。   Next, the Cu plating layers (plating conductive layers) 5b and 6b cover the thick film conductive layers 5a and 6a while filling a large number of recesses P formed on the outer surfaces of the thick film conductive layers 5a and 6a. The average thickness a of the filling portion satisfies the relationship of 0.1b ≦ a with respect to the average thickness b of the Cu plating layers 5b and 6b including the filling portion. For example, the thickness b refers to the depth a of the concave portion p filled with plating and the thickness of the plating layer covering the opening of the concave portion p, and is an average value of the respective values in a large number of concave portions p.

すなわち、0.1b≦aの関係を満たすため、厚膜導電層とメッキ導電層との接合部(5a−5b間、6a−6b間)において比較的大きなアンカー効果を得ることができ、両者間の接合強度を向上させることが可能となる。ここで、上記アンカー効果が充填部の平均厚みa自体ではなく、Cuメッキ層5b、6bの平均厚みbとの比率によって支配される理由は、Cuメッキ層5b、6bが厚膜導電層を被覆する厚み(b−a)が大きくなると、Cuメッキ層5b、6bが厚膜導電層を被覆する部分を支えるために、大きな力が必要であることによる。   That is, in order to satisfy the relationship of 0.1b ≦ a, a relatively large anchor effect can be obtained at the junction (between 5a-5b and 6a-6b) between the thick film conductive layer and the plated conductive layer. It is possible to improve the bonding strength. Here, the reason why the anchor effect is governed by the ratio of the average thickness b of the Cu plating layers 5b and 6b, not the average thickness a itself of the filling portion, is that the Cu plating layers 5b and 6b cover the thick film conductive layer. This is because when the thickness (b-a) to be increased is increased, a large force is required to support the portion where the Cu plating layers 5b and 6b cover the thick film conductive layer.

ここで、Cuメッキ層5b、6bの充填部の平均厚みaの測定方法は、例えば積層セラミックコンデンサ10の幅(W)方向または厚み(T)方向の外部電極5、6の断面をFIB(集束イオンビーム)等で複数切出してSEM(走査型電子顕微鏡)やSIM(走査型イオン顕微鏡)等で観察した像を画像処理装置で読み取り、各充填部について厚みが最も大きい部分を測定し平均値を算出した。尚、充填部の平均厚みaの算出には、画像処理装置で読み取ることができる厚み(0.1μm以上)の充填部を用いればよい。他方、Cuメッキ層5b、6bの平均厚みbの測定方法は、外部電極5、6の断面をFIB(集束イオンビーム)等で複数切出してSEM(走査型電子顕微鏡)やSIM(走査型イオン顕微鏡)等で観察した像を画像処理装置で読み取り、積層体1の厚み方向の凹部Pが形成された領域について、Cuメッキ層5b、6bの厚みを連続的に測定し平均値を算出した。   Here, the method for measuring the average thickness a of the filling portions of the Cu plating layers 5b and 6b is, for example, that the cross section of the external electrodes 5 and 6 in the width (W) direction or thickness (T) direction of the multilayer ceramic capacitor 10 is FIB (focused). The image is read out with an image processing device, and the average value is obtained by measuring the portion with the largest thickness for each of the filling portions, and cutting out the images observed with an SEM (scanning electron microscope) or SIM (scanning ion microscope). Calculated. In addition, what is necessary is just to use the filling part of the thickness (0.1 micrometer or more) which can be read with an image processing apparatus for calculation of the average thickness a of a filling part. On the other hand, the average thickness b of the Cu plating layers 5b and 6b is measured by cutting out a plurality of cross-sections of the external electrodes 5 and 6 with an FIB (focused ion beam) or the like, and performing SEM (scanning electron microscope) or SIM (scanning ion microscope). ) And the like were read with an image processing apparatus, and the thickness of the Cu-plated layers 5b and 6b was continuously measured for the region where the concave portion P in the thickness direction of the laminate 1 was formed, and the average value was calculated.

また、メッキ導電層5b、6bの金属成分は、水素の標準電極電位より大きな標準電極電位を有することが好ましい。具体的には、上述のCuの他、Ag等が挙げられる。   Moreover, it is preferable that the metal component of the plating conductive layers 5b and 6b has a standard electrode potential larger than the standard electrode potential of hydrogen. Specifically, Ag etc. other than above-mentioned Cu are mentioned.

さらに、厚膜導電層5a、6a及びメッキ導電層5b、6bは、同一金属を主成分とすることが好ましい。例えば、厚膜導電層5a、6aがCuを主成分とする場合、メッキ導電層5b、6bはCuを主成分とし、厚膜導電層5a、6aがAgを主成分とする場合、メッキ導電層5b、6bはAgを主成分とする。これにより、厚膜導電層5a、6a表面へのメッキ導電層5b、6bの濡れ性が良好となり、メッキ導電層5b、6b外表面の平滑性を高めることができるとともに、両者の弾性係数や熱膨張係数等の機械的物性値の差が小さくなるため、メッキ導電層5b、6bへの外力によるメッキ導電層5b、6bの剥離を効果的に抑制することができる。尚、上記濡れ性が良好となる理由としては、金属原子の原子間距離や配向が同一で、厚膜導電層上にメッキ導電層の最初の原子が容易に結合するためと考えられる。   Furthermore, it is preferable that the thick film conductive layers 5a and 6a and the plated conductive layers 5b and 6b are mainly composed of the same metal. For example, when the thick film conductive layers 5a and 6a have Cu as the main component, the plating conductive layers 5b and 6b have Cu as the main component, and when the thick film conductive layers 5a and 6a have Ag as the main component, the plating conductive layer 5b and 6b have Ag as a main component. As a result, the wettability of the plated conductive layers 5b and 6b to the surfaces of the thick film conductive layers 5a and 6a is improved, and the smoothness of the outer surfaces of the plated conductive layers 5b and 6b can be improved. Since the difference in mechanical property values such as the expansion coefficient becomes small, it is possible to effectively suppress peeling of the plated conductive layers 5b and 6b due to an external force applied to the plated conductive layers 5b and 6b. The reason why the wettability is good is considered to be that the interatomic distance and orientation of metal atoms are the same, and the first atoms of the plated conductive layer are easily bonded on the thick film conductive layer.

さらに、Cuメッキ層5b、6bが厚膜導電層を被覆する厚み(b−a)は、は2〜15μm、好ましくは6〜10μmの範囲にあることが望ましい。すなわち、厚み(b−a)が2μm以上であるため、Cuメッキ層5b、6bが厚膜導電層5a、6aの凹部Pを充填できるとともに、Cuメッキ層5b、6b表面の面粗さを小さくすることができる。一方、厚み(b−a)が15μm以下であるため、積層セラミックコンデンサ10の小型化を実現できる。また、Niメッキ層5c、6cの厚みcは0.5〜1.5μm、Snメッキ層5d、6dの厚みdは3〜8μm、好ましくは4〜5μmであることが望ましい。すなわち、Niメッキ層の厚みcが0.5μm以上であるため、十分に半田食われ防止機能を持たせることができる。一方、Niメッキ層の厚みcが1.5μm以下であるため、積層セラミックコンデンサ10の耐熱衝撃性、温度サイクル試験における信頼性、たわみ強度を向上できる。また、Snメッキ層5d、6dの厚みdが3μm以上であるため、半田濡れ性を十分確保することができる。一方、Snメッキ層5d、6dの厚みdが8μm以下であるため、積層セラミックコンデンサ10の小型化を実現できる。   Further, the thickness (b−a) at which the Cu plating layers 5b and 6b cover the thick film conductive layer is 2 to 15 μm, preferably 6 to 10 μm. That is, since the thickness (b−a) is 2 μm or more, the Cu plating layers 5b and 6b can fill the concave portions P of the thick film conductive layers 5a and 6a, and the surface roughness of the Cu plating layers 5b and 6b is reduced. can do. On the other hand, since the thickness (b−a) is 15 μm or less, the multilayer ceramic capacitor 10 can be downsized. The thickness c of the Ni plating layers 5c and 6c is 0.5 to 1.5 [mu] m, and the thickness d of the Sn plating layers 5d and 6d is 3 to 8 [mu] m, preferably 4 to 5 [mu] m. That is, since the thickness c of the Ni plating layer is 0.5 μm or more, it is possible to provide a sufficient function of preventing solder erosion. On the other hand, since the thickness c of the Ni plating layer is 1.5 μm or less, the thermal shock resistance of the multilayer ceramic capacitor 10, the reliability in the temperature cycle test, and the flexural strength can be improved. In addition, since the thickness d of the Sn plating layers 5d and 6d is 3 μm or more, sufficient solder wettability can be ensured. On the other hand, since the thickness d of the Sn plating layers 5d and 6d is 8 μm or less, the multilayer ceramic capacitor 10 can be downsized.

さらに、Cuメッキ層5b、6bの表面粗さRaは2μm以下であることが望ましい。このことにより、Niメッキ層5c、6cの表面粗さRaを2μm以下にすることができ、配線基板上に半田付けにより表面実装した際に、半田フィレットがはい上がりやすくなり、半田濡れ性を向上できるとともに、セルフアライメント性を向上できる。   Furthermore, the surface roughness Ra of the Cu plating layers 5b and 6b is preferably 2 μm or less. As a result, the surface roughness Ra of the Ni plating layers 5c and 6c can be reduced to 2 μm or less, and when the surface mounting is performed by soldering on the wiring board, the solder fillet is easily lifted and the solder wettability is improved. In addition, self-alignment can be improved.

ここで、Cuメッキ層5b、6bの表面粗さの測定方法は、充填部の平均厚みa及び平均厚みbの測定方法と同様に、外部電極5、6の複数の断面をFIB(集束イオンビーム)等で切り出してSEM(走査型電子顕微鏡)やSIM(走査型イオン顕微鏡)等で観察した像を画像処理装置で読み取り、レーザー変位計により測定した。   Here, the method for measuring the surface roughness of the Cu plating layers 5b and 6b is the same as the method for measuring the average thickness a and the average thickness b of the filling portion, and a plurality of cross sections of the external electrodes 5 and 6 are subjected to FIB (focused ion beam). ) Or the like, and an image observed with an SEM (scanning electron microscope), SIM (scanning ion microscope) or the like was read with an image processing apparatus and measured with a laser displacement meter.

次に、メッキ導電層5b、6bの表面に、Niを主成分とするNiメッキ導電層5c、6cが形成されていることから、半田実装などの際に、メッキ導電層5b、6bの半田食われを好適に抑制することができる。他方、Snを主成分としてSnメッキ導電層5c、6cを形成した場合、半田濡れ性を向上させることができる。   Next, since the Ni plating conductive layers 5c and 6c containing Ni as a main component are formed on the surfaces of the plating conductive layers 5b and 6b, the solder corrosion of the plating conductive layers 5b and 6b during solder mounting or the like. Cracks can be suitably suppressed. On the other hand, when the Sn plating conductive layers 5c and 6c are formed with Sn as a main component, the solder wettability can be improved.

また、Snメッキ層5d、6dの表面粗さRaは0.5μm〜1μmの範囲にあることが望ましい。すなわち、Snメッキ層5d、6dの表面粗さRaが1μm以下であるため、積層セラミックコンデンサ10を配線基板上に実装する場合などにおいて、積層セラミックコンデンサ10に光を照射してその反射光により外観認識する際に、積層体1と外部電極5、6との光沢の差が十分大きくなり、積層体1と外部電極5、6を確実に区別することができ、積層セラミックコンデンサ10を正確に認識することができる。また、セラミック電子部品を配線基板に半田付けにより表面実装する際に、セルフアライメント性が向上するという効果もある。一方、Snメッキ層5d、6dの表面粗さRaは0.5μm以上であるため、上記反射光が強すぎて、逆に積層セラミックコンデンサ10を正確に認識しにくくなることもない。   Further, the surface roughness Ra of the Sn plating layers 5d and 6d is preferably in the range of 0.5 μm to 1 μm. That is, since the surface roughness Ra of the Sn plating layers 5d and 6d is 1 μm or less, when the multilayer ceramic capacitor 10 is mounted on a wiring board, the multilayer ceramic capacitor 10 is irradiated with light and the reflected light gives an appearance. When recognizing, the difference in gloss between the multilayer body 1 and the external electrodes 5 and 6 is sufficiently large, so that the multilayer body 1 and the external electrodes 5 and 6 can be reliably distinguished, and the multilayer ceramic capacitor 10 is accurately recognized. can do. Further, when the ceramic electronic component is surface-mounted on the wiring board by soldering, there is an effect that self-alignment property is improved. On the other hand, since the surface roughness Ra of the Sn plating layers 5d and 6d is 0.5 μm or more, the reflected light is not so strong that the multilayer ceramic capacitor 10 is not easily recognized.

以下、本発明の積層セラミックコンデンサ10の製造方法について説明する。   Hereinafter, a method for manufacturing the multilayer ceramic capacitor 10 of the present invention will be described.

なお、各符号は焼成の前後で区別しないことにする。   Each symbol is not distinguished before and after firing.

まず、誘電体層となるセラミックグリーンシート2の所定の領域に、導電性ペーストをスクリーン印刷により塗布後乾燥し、内部電極となる導体パターン3、4を形成する。   First, a conductive paste is applied by screen printing to a predetermined region of the ceramic green sheet 2 to be a dielectric layer and then dried to form conductor patterns 3 and 4 to be internal electrodes.

そして、このようなセラミックグリーンシートを、導体パターン3、4が互いに対向するように所定の積層枚数重ねた後、切断して積層体1とし、所定の雰囲気、温度、時間を加えて焼成する。これにより、積層体1の一対の端面には、内部電極3、4が露出している。   Then, after stacking a predetermined number of laminated layers such that the conductor patterns 3 and 4 face each other, such ceramic green sheets are cut to form a laminated body 1 and fired by adding a predetermined atmosphere, temperature and time. Thereby, the internal electrodes 3 and 4 are exposed at the pair of end faces of the multilayer body 1.

次に、上記積層体1の両端面に外部電極5、6を形成する。   Next, external electrodes 5 and 6 are formed on both end faces of the laminate 1.

具体的には、まず積層体1の両端部に、夫々導電性ペーストを塗布後、脱バインダー、焼成し、厚膜導電層5a、6aを形成する。   Specifically, first, a conductive paste is applied to both ends of the laminated body 1, and then the binder is removed and baked to form the thick film conductive layers 5a and 6a.

次に、例えば、銅メッキ浴中に、積層体1を浸漬し、バレルメッキ法にて厚膜導電層5a、6aの表面にCuメッキ層5b、6bを形成する。メッキ浴としては、ピロ燐酸銅、硫酸銅及びシアン化銅などを用いればよいが、ピロ燐酸銅のメッキ浴中においては、Cu2+イオンはCu(P 6−の状態で存在し、Cuメッキ層5b、6bを均一且つ緻密にすることができるとともに、凹部P内に残渣が残りにくく安全性が高いことから、ピロ燐酸銅を用いることが好ましい。 Next, for example, the laminate 1 is immersed in a copper plating bath, and Cu plating layers 5b and 6b are formed on the surfaces of the thick film conductive layers 5a and 6a by a barrel plating method. The plating bath, copper pyrophosphate, may be used such as copper sulfate and copper cyanide, in a plating bath of copper pyrophosphate, Cu 2+ ions is present in Cu (P 2 O 7) 2 6- states In addition, it is preferable to use copper pyrophosphate because the Cu plating layers 5b and 6b can be made uniform and dense, and the residue does not easily remain in the recess P, and the safety is high.

さらに、Cuメッキ層5b、6bの金属成分Cuは、水素の標準電極電位より大きな標準電極電位を有することから、Cuメッキ層5b、6bの形成に際してメッキ液に電圧が印加されると、Cuが、水の電気分解によって生じる水素よりも、優先的に厚膜導電層(陰極)5a、6a表面に析出する。そのためCuの析出が水素により阻害されることがなく、緻密なCuメッキ層5b、6bを形成することができる。また、Cuメッキ層5b、6bが凹部P内部にも析出しやすいことから、確実に凹部Pを充填することができる。しかもこの場合、水素の発生に起因して厚膜導電層表面とCuメッキ層(5a−6a、5b−6b)との間に空隙が生じることを有効に防止できるため、上記アンカー効果を効果的に得ることができるとともに、水分の積層体1への侵入を抑制して、耐湿性を向上させることができる。さらに、Cuの電化当量は0.66mg/クーロンはNiの電化当量の0.30mg/クーロンの約2倍である為、Cuメッキ層5b、6bはNiメッキ層25b、26bの約2倍の速度で析出するし、メッキ工程を簡略化できる。また、Cuメッキ層5b、6bは、厚膜導電層5a、6aの表面にガラス成分の一部が析出している場合も、これらのガラス成分に跨るように成長しやすいため、均一なメッキ導電層を形成できる。さらに、上記理由から、メッキ導電層5b、6bとして、Agメッキなどを用いても良い。   Furthermore, since the metal component Cu of the Cu plating layers 5b and 6b has a standard electrode potential larger than the standard electrode potential of hydrogen, when a voltage is applied to the plating solution when forming the Cu plating layers 5b and 6b, the Cu is Preferentially deposits on the surfaces of the thick film conductive layers (cathodes) 5a and 6a rather than hydrogen generated by electrolysis of water. Therefore, precipitation of Cu is not hindered by hydrogen, and dense Cu plating layers 5b and 6b can be formed. Further, since the Cu plating layers 5b and 6b are likely to be deposited inside the recess P, the recess P can be reliably filled. In addition, in this case, it is possible to effectively prevent the formation of voids between the surface of the thick film conductive layer and the Cu plating layer (5a-6a, 5b-6b) due to the generation of hydrogen. In addition, the moisture penetration can be suppressed and moisture resistance can be improved. Further, since the electrification equivalent of Cu is about 0.66 mg / coulomb is about twice that of 0.30 mg / coulomb of Ni, the Cu plating layers 5b and 6b are about twice as fast as the Ni plating layers 25b and 26b. And the plating process can be simplified. Further, the Cu plating layers 5b and 6b easily grow so as to straddle these glass components even when a part of the glass components is deposited on the surfaces of the thick film conductive layers 5a and 6a. Layers can be formed. Further, for the above reason, Ag plating or the like may be used as the plated conductive layers 5b and 6b.

そして、Cuメッキ層5b、6bの表面粗さRaを小さくするために、ピロ燐酸銅メッキ浴に、光沢剤を添加しても良い。   In order to reduce the surface roughness Ra of the Cu plating layers 5b and 6b, a brightener may be added to the copper pyrophosphate plating bath.

次に、セラミック電子部品に用いられる一般的なメッキ液を用いて、Niメッキ層5b、6c、Snメッキ層5d、6dを形成することで、図1に示すような積層セラミックコンデンサ10が得られる。   Next, the Ni plating layers 5b and 6c and the Sn plating layers 5d and 6d are formed using a general plating solution used for ceramic electronic components, whereby the multilayer ceramic capacitor 10 as shown in FIG. 1 is obtained. .

このようにして得られた本発明の積層セラミックコンデンサ10は、緻密なメッキ導電層5b、6bが得られるとともに、メッキ導電層5b、6bが厚膜導電層5a、6aの凹部Pを確実に充填することから、凹部Pに残留したメッキ液の残渣が、厚膜導電層5a、6aを腐食させて積層セラミックコンデンサ10の絶縁信頼性を低下させる等という問題を防止することが可能となる。   In the multilayer ceramic capacitor 10 of the present invention thus obtained, dense plated conductive layers 5b and 6b are obtained, and the plated conductive layers 5b and 6b surely fill the concave portions P of the thick film conductive layers 5a and 6a. Therefore, it is possible to prevent the problem that the residue of the plating solution remaining in the recess P corrodes the thick film conductive layers 5a and 6a and decreases the insulation reliability of the multilayer ceramic capacitor 10.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention.

例えば、上記実施の形態では、本発明のセラミック電子部品10を積層セラミックコンデンサに適用した例を用いて説明したが、本発明は、積層型圧電部品、チップ型抵抗器、回路基板、半導体部品など、さまざまなセラミック電子部品10に適用できる。   For example, in the above embodiment, the ceramic electronic component 10 of the present invention has been described using an example in which the ceramic electronic component 10 is applied to a multilayer ceramic capacitor. However, the present invention is not limited to multilayer piezoelectric components, chip resistors, circuit boards, semiconductor components, and the like. It can be applied to various ceramic electronic components 10.

図2は、本発明の積層セラミックコンデンサの他の実施形態を示す拡大断面図である。同図によれば、凹部Pの少なくとも一部は、略U字状となっているため、厚膜導電層5a、6aからNiメッキ層5b、6bを剥離する方向に応力が加わった場合、凹部Pに充填されるNiメッキ層5b、6bが、凹部Pに錨として引っ掛かることにより、Niメッキ層5b、6bが厚膜導電層5a、6aから剥離することを防止できる。   FIG. 2 is an enlarged cross-sectional view showing another embodiment of the multilayer ceramic capacitor of the present invention. According to the figure, since at least a part of the recess P is substantially U-shaped, when stress is applied in the direction in which the Ni plating layers 5b and 6b are peeled from the thick film conductive layers 5a and 6a, the recess When the Ni plating layers 5b and 6b filled in P are caught in the recesses P as ridges, the Ni plating layers 5b and 6b can be prevented from peeling off from the thick film conductive layers 5a and 6a.

さらに、Cuメッキ層5b、6bの表面にSnメッキ層5d、6dを直接形成しても良い。すなわち、Snメッキ液の残渣は、Niメッキ液の残渣に比べて、Cuメッキ層5b、6bの凹部P内に残留しにくいことから、メッキ液の残渣が積層体1の内部電極3、4と反応して腐食することや、あるいは、積層体1内部に残留したメッキ液の残渣が、連続通電状態で電気化学的変化を発生させ、絶縁抵抗、耐熱衝撃性、長期信頼性が劣化することを防止できる。このとき、Cuメッキ層5b、6bが、凹部Pに充填されるため、半田食われが問題になることはない。   Further, the Sn plating layers 5d and 6d may be directly formed on the surfaces of the Cu plating layers 5b and 6b. That is, the residue of the Sn plating solution is less likely to remain in the recesses P of the Cu plating layers 5b and 6b than the residue of the Ni plating solution. Corrosion due to reaction, or plating solution residue remaining in the laminate 1 causes an electrochemical change in a continuous energization state, resulting in deterioration of insulation resistance, thermal shock resistance, and long-term reliability. Can be prevented. At this time, since the Cu plating layers 5b and 6b are filled in the recesses P, solder erosion does not become a problem.

また、Cuメッキ層5b、6bとNiメッキ層5c、6cの間に、Auメッキ層などの他のメッキ層を形成しても良い。すなわち、Auメッキ層の表面粗さRaは、Cuメッキ層5a、6aの表面粗さRaよりさらに小さくできるため、Niメッキ層5b、6bの厚みtbを小さくした場合も、厚みtbを均一にできるとともに、また、Auメッキ層をフラッシュメッキ法により形成することにより、メッキ析出時間を短縮できるとともに、メッキ液がCuメッキ層5a、6a内への浸入することによる問題点も解決できる。   Further, another plating layer such as an Au plating layer may be formed between the Cu plating layers 5b and 6b and the Ni plating layers 5c and 6c. That is, the surface roughness Ra of the Au plating layer can be made smaller than the surface roughness Ra of the Cu plating layers 5a and 6a. Therefore, even when the thickness tb of the Ni plating layers 5b and 6b is reduced, the thickness tb can be made uniform. In addition, by forming the Au plating layer by the flash plating method, the plating deposition time can be shortened, and the problems caused by the penetration of the plating solution into the Cu plating layers 5a and 6a can be solved.

そして、Cuメッキ層5b、6bの表面に、貴金属メッキ導電層など、Niメッキ層5c、6c、Snメッキ層5d、6d以外の第2メッキ導電層を形成しても良い。あるいは、Cuメッキ層5、6cの表面に、導電性樹脂層などを形成しても良い。   A second plating conductive layer other than the Ni plating layers 5c and 6c and the Sn plating layers 5d and 6d, such as a noble metal plating conductive layer, may be formed on the surfaces of the Cu plating layers 5b and 6b. Alternatively, a conductive resin layer or the like may be formed on the surfaces of the Cu plating layers 5 and 6c.

本発明者は、チタン酸バリウム(BaTiO)などを主成分とする誘電体層2を積層してなるとともに、一対の端面に内部電極3、4が露出している焼成後の積層体1を形成した。次に、ディップ法により、積層体1の端面に外部電極5、6となる導電性ペーストを塗布した後、850℃で焼き付けることによって外部電極5、6を形成した。次に、厚膜導電層5a、6aの表面に電解メッキ法により、Cuメッキ層(メッキ導電層)5b、6b、Niメッキ層5c、6c及びSnメッキ層5d、6d(以上、第2メッキ導電層)を順次形成し、図1に示すような積層セラミックコンデンサ(寸法:0.6mm×0.3mm×0.3mm)10を作製した。 The inventor has laminated the dielectric layer 2 mainly composed of barium titanate (BaTiO 3 ) or the like, and the fired laminated body 1 in which the internal electrodes 3 and 4 are exposed on a pair of end faces. Formed. Next, a conductive paste to be the external electrodes 5 and 6 was applied to the end face of the laminate 1 by a dip method, and then the external electrodes 5 and 6 were formed by baking at 850 ° C. Next, Cu plating layers (plating conductive layers) 5b and 6b, Ni plating layers 5c and 6c, and Sn plating layers 5d and 6d (hereinafter, second plating conductive layers) are formed on the surfaces of the thick film conductive layers 5a and 6a by electrolytic plating. The multilayer ceramic capacitor (dimensions: 0.6 mm × 0.3 mm × 0.3 mm) 10 as shown in FIG. 1 was produced.

得られた積層セラミックコンデンサ10について、熱衝撃(ΔT)試験、温度サイクル試験を行った。また、同一条件で金属板上に形成した外部電極5、6について、厚膜導電層5a、6a−メッキ導電層5b、6b間の機械的接合強度の測定を行った。   The obtained multilayer ceramic capacitor 10 was subjected to a thermal shock (ΔT) test and a temperature cycle test. Further, for the external electrodes 5 and 6 formed on the metal plate under the same conditions, the mechanical bonding strength between the thick film conductive layers 5a and 6a and the plated conductive layers 5b and 6b was measured.

熱衝撃(ΔT)試験は、試料100個を270℃の半田槽に60秒間浸漬し、クラックが発生した割合を評価した。そして、クラック発生率が0%である場合を良品として丸印、クラックが発生した場合を不良品としてバツ(×)印とした。   In the thermal shock (ΔT) test, 100 samples were immersed in a solder bath at 270 ° C. for 60 seconds, and the rate of occurrence of cracks was evaluated. A case where the crack occurrence rate was 0% was marked as a non-defective product, and a case where a crack occurred was marked as a cross (x) as a defective product.

温度サイクル試験は、試料100個を−55℃⇔−125℃×1000サイクルの条件下に放置し、クラック発生率が0%である場合を良品として丸印、クラックが発生した場合を不良品としてバツ(×)印とした。   In the temperature cycle test, 100 samples are left under the condition of −55 ° C. to −125 ° C. × 1000 cycles, and when the crack occurrence rate is 0%, a round mark is given as a non-defective product. A cross (×) mark was used.

機械的接合強度の評価方法は、金属板上に導電性ペーストを塗布後焼き付けることにより、厚み40μmの導体パターン5a(6a)を形成後、a、bの値を変化させて、Cuメッキ層(メッキ導電層)5b(6b)、Niメッキ層5c(6c)及びSnメッキ層5d(6d)(以上、第2メッキ導電層)を順次形成することにより、積層セラミックコンデンサ10の外部電極5、6に相当する外部電極5、6を金属板上に形成した。そして、この外部電極5、6に0.5mmΦのスズメッキ線を半田付けし、引っ張った際に剥離が生じた強度(接合強度)を測定した。ここで、上記接合強度が50kg/cm以上を良品として丸印、50kg/cm未満を不良品としてバツ(×)印とした。 The mechanical bonding strength is evaluated by applying a conductive paste on a metal plate and baking it to form a conductor pattern 5a (6a) having a thickness of 40 μm, and then changing the values of a and b to obtain a Cu plating layer ( The plated conductive layer 5b (6b), the Ni plated layer 5c (6c), and the Sn plated layer 5d (6d) (hereinafter, the second plated conductive layer) are sequentially formed, thereby forming the external electrodes 5 and 6 of the multilayer ceramic capacitor 10. External electrodes 5 and 6 corresponding to are formed on a metal plate. Then, a 0.5 mmΦ tin-plated wire was soldered to the external electrodes 5 and 6, and the strength (bonding strength) at which peeling occurred when pulled was measured. Here, the bonding strength of 50 kg / cm 2 or more was indicated as a round mark as a non-defective product, and less than 50 kg / cm 2 was defined as a defective (X) mark as a defective product.

評価方法として、熱衝撃(ΔT)試験におけるクラック発生率が0%であるとともに、接合強度が50kg/cm以上である場合を良品として丸(○)印とした。良品の内、温度サイクル試験におけるクラック発生率が0%である場合を二重丸(◎)印とした。 As an evaluation method, a case where the crack occurrence rate in the thermal shock (ΔT) test was 0% and the joint strength was 50 kg / cm 2 or more was marked as a circle (◯) as a good product. Among the non-defective products, the case where the crack occurrence rate in the temperature cycle test was 0% was marked as a double circle (◎).

結果を表1に示す。

Figure 2006128385
The results are shown in Table 1.
Figure 2006128385

表1に示すように、厚膜導電層5a、6aは、その外表面に多数個の凹部Pを有するとともに、メッキ導電層5b、6bが、凹部Pを充填しつつ厚膜導電層5a、6aを被覆して成り、且つ、充填部の平均厚みaは、充填部を含めたメッキ導電層5b、6bの平均厚みbに対して、0.1b≦aの関係を満たす本実施例(試料番号2、4〜13、15)は、熱衝撃(ΔT)試験におけるクラック発生率が0%、温度サイクル試験におけるクラック発生率が0%、厚膜導電層5a、6a−メッキ導電層5b、6b間の接合強度が50kg/cm以上となった。特に、a≦0.8bの関係を満たす場合(試料番号2、4〜5、7〜10、12〜13、15)、温度サイクル試験におけるクラック発生率が0%となった。このことは、厚膜導電層5a、6aの主成分がAg、メッキ導電層5b、6bの主成分がAgである場合(試料番号15)も、同じ結果となった。 As shown in Table 1, the thick film conductive layers 5a and 6a have a large number of recesses P on their outer surfaces, and the plated conductive layers 5b and 6b fill the recesses P while the thick film conductive layers 5a and 6a are filled. In this example (sample number), the average thickness a of the filling portion satisfies the relationship of 0.1b ≦ a with respect to the average thickness b of the plated conductive layers 5b and 6b including the filling portion. 2, 4 to 13, 15), the crack occurrence rate in the thermal shock (ΔT) test is 0%, the crack occurrence rate in the temperature cycle test is 0%, and between the thick film conductive layer 5a, 6a and the plated conductive layer 5b, 6b The bonding strength was 50 kg / cm 2 or more. In particular, when the relationship of a ≦ 0.8b was satisfied (sample numbers 2, 4 to 5, 7 to 10, 12 to 13 and 15), the crack generation rate in the temperature cycle test was 0%. The same result was obtained when the main component of the thick film conductive layers 5a and 6a was Ag and the main component of the plated conductive layers 5b and 6b was Ag (sample number 15).

これに対し、a=0.09bである比較例(試料番号1)は、厚膜導電層5a、6a−メッキ導電層5b、6b間の接合強度が50kg/cm未満、熱衝撃(ΔT)試験におけるクラック発生率が2%となった。また、a=0.09bである比較例(試料番号3)は、厚膜導電層5a、6a−メッキ導電層5b、6b間の接合強度が50kg/cm未満、熱衝撃(ΔT)試験におけるクラック発生率が1%となった。 On the other hand, in the comparative example (sample number 1) in which a = 0.09b, the bonding strength between the thick film conductive layer 5a, 6a-plated conductive layer 5b, 6b is less than 50 kg / cm 2 and thermal shock (ΔT) The crack occurrence rate in the test was 2%. Further, in the comparative example (sample number 3) in which a = 0.09b, the bonding strength between the thick film conductive layer 5a, 6a-plated conductive layer 5b, 6b is less than 50 kg / cm 2 , and in the thermal shock (ΔT) test. The crack generation rate was 1%.

ここで、試料番号1及び3は、Cuメッキ層5b、6bが厚膜導電層を被覆する厚み(b−a)は同じ(10μm)であるが、試料番号1がa=1μmであるのに対し、試料番号3はa=2μmと異なるため、試料番号1は良品、試料番号3は不良品となったと考えられる。一方、試料番号2〜4は、充填部の平均厚みaは同じ(2μm)であるが、試料番号2、4が夫々(b−a)=10μm、8μmであるのに対し、試料番号3は(b−a)=20μmと異なるため、試料番号2、4は良品、試料番号3は不良品となったと考えられる。   Here, Sample Nos. 1 and 3 have the same thickness (ba) where the Cu plating layers 5b and 6b cover the thick film conductive layer (10 μm), but Sample No. 1 has a = 1 μm. On the other hand, since sample number 3 is different from a = 2 μm, it is considered that sample number 1 is a non-defective product and sample number 3 is a defective product. On the other hand, sample numbers 2 to 4 have the same average thickness a of the filling portion (2 μm), but sample numbers 2 and 4 are (b−a) = 10 μm and 8 μm, respectively, whereas sample number 3 is Since (b−a) = 20 μm, it is considered that sample numbers 2 and 4 were non-defective products and sample number 3 was defective products.

また、メッキ導電層5b、6bがNiである比較例(試料番号14)は、メッキ導電層5b、6bが凹部Pを完全に充填せず、厚膜導電層5a、6a−メッキ導電層5b、6b間の接合強度が50kg/cm未満、熱衝撃(ΔT)試験におけるクラック発生率が2%となった。 Further, in the comparative example (sample number 14) in which the plated conductive layers 5b and 6b are Ni, the plated conductive layers 5b and 6b do not completely fill the recess P, and the thick film conductive layers 5a and 6a-plated conductive layers 5b, The joint strength between 6b was less than 50 kg / cm 2 , and the crack generation rate in the thermal shock (ΔT) test was 2%.

これらの結果から、本発明の積層セラミックコンデンサ10は、厚膜導電層5a、6aは、その外表面に多数個の凹部Pを有するとともに、メッキ導電層5b、6bが、凹部Pを充填しつつ厚膜導電層5a、6aを被覆して成り、且つ、充填部の平均厚みaは、充填部を含めたメッキ導電層5b、6bの平均厚みbに対して、0.1b≦aの関係を満たすため、メッキ導電層と厚膜導電層の機械的接合強度が増大し、熱衝撃(ΔT)試験におけるクラック発生率が0%、厚膜導電層5a、6a−メッキ導電層5b、6b間の接合強度が50kg/cm以上となることがわかった。 From these results, in the multilayer ceramic capacitor 10 of the present invention, the thick film conductive layers 5a and 6a have a large number of concave portions P on the outer surface, and the plated conductive layers 5b and 6b fill the concave portions P. The thick film conductive layers 5a and 6a are covered, and the average thickness a of the filling portion has a relationship of 0.1b ≦ a with respect to the average thickness b of the plated conductive layers 5b and 6b including the filling portion. Therefore, the mechanical joint strength between the plated conductive layer and the thick film conductive layer is increased, the crack occurrence rate in the thermal shock (ΔT) test is 0%, and the thickness between the thick film conductive layers 5a and 6a and the plated conductive layers 5b and 6b. It was found that the bonding strength was 50 kg / cm 2 or more.

本発明の積層セラミックコンデンサを示す図であり、(a)は外観斜視図、(b)は縦断面図、(c)は(b)の外部電極周辺を拡大して示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the multilayer ceramic capacitor of this invention, (a) is an external appearance perspective view, (b) is a longitudinal cross-sectional view, (c) is a figure which expands and shows the external electrode periphery of (b). 本発明の積層セラミックコンデンサの他の実施形態を示す拡大断面図である。It is an expanded sectional view showing other embodiments of the multilayer ceramic capacitor of the present invention. 従来の積層セラミックコンデンサの問題点を示す縦断面図である。It is a longitudinal cross-sectional view which shows the problem of the conventional multilayer ceramic capacitor.

符号の説明Explanation of symbols

10・・・・積層セラミックコンデンサ(セラミック電子部品)
1・・・・・積層体(セラミック素体)
2・・・・・誘電体層
3、4・・・内部電極
5、6・・・外部電極
5a、6a・厚膜導電層
5b、6b・Cuメッキ層(メッキ導電層)
5c、6c・Niメッキ層
5d、6d・Snメッキ層
P・・・・・凹部
10 .... Multilayer ceramic capacitors (ceramic electronic components)
1 ... Laminated body (ceramic body)
2... Dielectric layers 3, 4... Internal electrodes 5, 6... External electrodes 5 a and 6 a .Thick film conductive layers 5 b and 6 b .Cu plating layer (plating conductive layer)
5c, 6c · Ni plating layer 5d, 6d · Sn plating layer P ··· concave

Claims (6)

セラミック素体の表面に、該セラミック素体側から順に、厚膜導電層、メッキ導電層を形成して成る外部電極を有するセラミック電子部品において、
前記厚膜導電層は、その外表面に多数個の凹部を有するとともに、
前記メッキ導電層は、前記凹部を充填しつつ前記厚膜導電層を被覆して成り、且つ、該充填部の平均厚みaは、充填部を含めた前記メッキ導電層の平均厚みbに対して、0.1b≦aの関係を満たすことを特徴とするセラミック電子部品。
In a ceramic electronic component having external electrodes formed by forming a thick film conductive layer and a plated conductive layer in order from the ceramic body side on the surface of the ceramic body,
The thick film conductive layer has a large number of recesses on its outer surface,
The plated conductive layer is formed by covering the thick film conductive layer while filling the recess, and the average thickness a of the filled portion is relative to the average thickness b of the plated conductive layer including the filled portion. A ceramic electronic component satisfying the relationship of 0.1b ≦ a.
前記メッキ導電層の金属成分は、水素の標準電極電位より大きな標準電極電位を有することを特徴とする請求項1記載のセラミック電子部品。 2. The ceramic electronic component according to claim 1, wherein the metal component of the plated conductive layer has a standard electrode potential larger than a standard electrode potential of hydrogen. 前記厚膜導電層及び前記メッキ導電層は、同一金属を主成分とすることを特徴とする請求項1記載のセラミック電子部品。 2. The ceramic electronic component according to claim 1, wherein the thick film conductive layer and the plated conductive layer are mainly composed of the same metal. 前記凹部の開口面積は、開口部を除く凹部内において最大となることを特徴とする請求項1記載のセラミック電子部品。 The ceramic electronic component according to claim 1, wherein the opening area of the recess is maximized in the recess except the opening. 前記メッキ導電層の表面にNi及び/又はSnを主成分とする第2メッキ導電層が形成されていることを特徴とする請求項1記載のセラミック電子部品。 2. The ceramic electronic component according to claim 1, wherein a second plated conductive layer mainly composed of Ni and / or Sn is formed on a surface of the plated conductive layer. セラミック積層体の表面に、該セラミック積層側から順に、厚膜導電層、メッキ導電層を形成して成る外部電極を有する積層セラミックコンデンサにおいて、
前記厚膜導電層は、その外表面に多数個の凹部を有するとともに、
前記メッキ導電層は、前記凹部を充填しつつ前記厚膜導電層を被覆して成り、且つ、該充填部の平均厚みaは、充填部を含めた前記メッキ導電層の平均厚みbに対して、0.1b≦aの関係を満たすことを特徴とする積層セラミックコンデンサ。
In a multilayer ceramic capacitor having an external electrode formed by forming a thick film conductive layer and a plated conductive layer in order from the ceramic laminate side on the surface of the ceramic laminate,
The thick film conductive layer has a large number of recesses on its outer surface,
The plated conductive layer is formed by covering the thick film conductive layer while filling the recess, and the average thickness a of the filled portion is relative to the average thickness b of the plated conductive layer including the filled portion. A multilayer ceramic capacitor satisfying the relationship of 0.1b ≦ a.
JP2004314235A 2004-10-28 2004-10-28 Ceramic electronic componentt and stacked ceramic capacitor Pending JP2006128385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004314235A JP2006128385A (en) 2004-10-28 2004-10-28 Ceramic electronic componentt and stacked ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314235A JP2006128385A (en) 2004-10-28 2004-10-28 Ceramic electronic componentt and stacked ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2006128385A true JP2006128385A (en) 2006-05-18

Family

ID=36722769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314235A Pending JP2006128385A (en) 2004-10-28 2004-10-28 Ceramic electronic componentt and stacked ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2006128385A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038917A (en) * 2010-08-06 2012-02-23 Murata Mfg Co Ltd Ceramic electronic component and method for manufacturing the same
JP2013098533A (en) * 2011-11-04 2013-05-20 Samsung Electro-Mechanics Co Ltd Manufacturing method for multilayer ceramic electronic component
JP2014110417A (en) * 2012-12-04 2014-06-12 Samsung Electro-Mechanics Co Ltd Board built-in multilayer ceramic electronic component and manufacturing method therefor, printed circuit board including board built-in multilayer ceramic electronic component
JP2014207254A (en) * 2013-04-10 2014-10-30 株式会社村田製作所 Ceramic electronic part
JP2015057810A (en) * 2013-09-16 2015-03-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component embedded in board and multilayer ceramic electronic component-embedded printed circuit board
KR101574462B1 (en) * 2015-01-16 2015-12-11 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic electronic component
KR101579704B1 (en) * 2015-01-22 2015-12-22 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic electronic component
KR101579703B1 (en) * 2015-01-21 2015-12-31 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic electronic component
US20170103853A1 (en) * 2015-10-09 2017-04-13 Murata Manufacturing Co., Ltd. Electronic component
US10861650B2 (en) 2018-05-28 2020-12-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same
CN112201477A (en) * 2019-07-08 2021-01-08 三星电机株式会社 Capacitor assembly

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038917A (en) * 2010-08-06 2012-02-23 Murata Mfg Co Ltd Ceramic electronic component and method for manufacturing the same
JP2013098533A (en) * 2011-11-04 2013-05-20 Samsung Electro-Mechanics Co Ltd Manufacturing method for multilayer ceramic electronic component
JP2014110417A (en) * 2012-12-04 2014-06-12 Samsung Electro-Mechanics Co Ltd Board built-in multilayer ceramic electronic component and manufacturing method therefor, printed circuit board including board built-in multilayer ceramic electronic component
JP2014207254A (en) * 2013-04-10 2014-10-30 株式会社村田製作所 Ceramic electronic part
JP2015057810A (en) * 2013-09-16 2015-03-26 サムソン エレクトロ−メカニックス カンパニーリミテッド. Multilayer ceramic electronic component embedded in board and multilayer ceramic electronic component-embedded printed circuit board
KR101574462B1 (en) * 2015-01-16 2015-12-11 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic electronic component
KR101579703B1 (en) * 2015-01-21 2015-12-31 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic electronic component
KR101579704B1 (en) * 2015-01-22 2015-12-22 가부시키가이샤 무라타 세이사쿠쇼 Laminated ceramic electronic component
US20170103853A1 (en) * 2015-10-09 2017-04-13 Murata Manufacturing Co., Ltd. Electronic component
US10242802B2 (en) * 2015-10-09 2019-03-26 Murata Manufacturing Co., Ltd. Electronic component with an external electrode including a conductive material-containing resin layer
US10861650B2 (en) 2018-05-28 2020-12-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and method of manufacturing the same
CN112201477A (en) * 2019-07-08 2021-01-08 三星电机株式会社 Capacitor assembly
US11646161B2 (en) 2019-07-08 2023-05-09 Samsung Electro-Mechanics Co., Ltd. Capacitor component
CN112201477B (en) * 2019-07-08 2023-07-21 三星电机株式会社 Capacitor assembly

Similar Documents

Publication Publication Date Title
JP5127703B2 (en) Multilayer electronic component and manufacturing method thereof
JP3918851B2 (en) Multilayer electronic component and method of manufacturing multilayer electronic component
JP5835357B2 (en) Electronic component and manufacturing method thereof
KR102076145B1 (en) Multi-layered ceramic electronic part, board for mounting the same and manufacturing method thereof
JP3861927B1 (en) Electronic component, electronic component mounting structure, and electronic component manufacturing method
JP2006186316A (en) Ceramic electronic component and laminated ceramic capacitor
JP2007036003A (en) Laminated capacitor
JP5282678B2 (en) Multilayer electronic component and manufacturing method thereof
US9536669B2 (en) Laminated ceramic electronic component and manufacturing method therefor
US9424989B2 (en) Embedded multilayer ceramic electronic component and printed circuit board having the same
JP2007281400A (en) Surface mounted ceramic electronic component
JP2012253292A (en) Electronic component
JP2009277715A (en) Multilayer ceramic electronic component and method for manufacturing the same
JP6020502B2 (en) Multilayer ceramic electronic components
JP2012237033A (en) Electronic component
JP2006128385A (en) Ceramic electronic componentt and stacked ceramic capacitor
JP2012099786A (en) Multilayer ceramic capacitor and manufacturing method therefor
JP2012151175A (en) Ceramic electronic component, ceramic electronic component mounting structure, and ceramic electronic component manufacturing method
JP2005159121A (en) Laminated ceramic electronic component
JP5835047B2 (en) Ceramic electronic components
JP5796643B2 (en) Multilayer ceramic electronic components
JP4359919B2 (en) Conductive paste for external electrode formation and multilayer ceramic electronic component using the same
JP5915798B2 (en) Multilayer ceramic electronic components
JP6587727B2 (en) Multilayer ceramic capacitor and multilayer ceramic capacitor mounted circuit board
JP3000825B2 (en) Ceramic electronic components