JP2006125195A - Floor structure - Google Patents

Floor structure Download PDF

Info

Publication number
JP2006125195A
JP2006125195A JP2006028658A JP2006028658A JP2006125195A JP 2006125195 A JP2006125195 A JP 2006125195A JP 2006028658 A JP2006028658 A JP 2006028658A JP 2006028658 A JP2006028658 A JP 2006028658A JP 2006125195 A JP2006125195 A JP 2006125195A
Authority
JP
Japan
Prior art keywords
floor
floor structure
frame
granular
hollow portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006028658A
Other languages
Japanese (ja)
Inventor
Akio Sugimoto
明男 杉本
Yorio Hiura
順夫 日浦
Mikiji Harada
幹司 原田
Kazuki Tsugibashi
一樹 次橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006028658A priority Critical patent/JP2006125195A/en
Publication of JP2006125195A publication Critical patent/JP2006125195A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a floor structure which can improve sound insulation performance while maintaining a framed structure comprised of a frame material and a beam shape made of a metal shapes. <P>SOLUTION: A granule 13 such as reduced pellets is encapsulated in a space part 11 of the beam member 3 made of metal shape. Then the framed structure, which is comprised of the frame material and the beam material 3, is constructed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属形材製の枠材と、この枠材の内側に掛け渡される金属形材製の梁材との骨組みを有する床構造に関し、特に防音性能に優れたものに関する。   The present invention relates to a floor structure having a frame made of a metal-shaped frame member and a metal-shaped beam member spanned on the inner side of the frame member, and particularly relates to a floor structure excellent in soundproof performance.

近年、在来工法による住宅建設において、木材の骨組みに床板を接合した床構造に代わり、金属形材製の枠材と梁材とによる骨組みに床板を接合した床構造が採用されるようになってきた。金属形材製の枠材及び梁材による骨組みを用いるため、耐震性及び耐久性が優れたものになる。   In recent years, in the construction of houses by conventional construction methods, instead of a floor structure in which a floor plate is joined to a timber frame, a floor structure in which a floor plate is joined to a frame made of a metal frame and beam material has been adopted. I came. Since a frame made of a metal shape material and a frame made of a beam material are used, it has excellent earthquake resistance and durability.

特に、板厚が1〜3mmの薄い形材を枠材及び梁材に用いると、現場施工のタップネジ止め又はクギ止めが可能になり、在来工法と同様の施工ができる。   In particular, when a thin profile having a plate thickness of 1 to 3 mm is used for the frame material and the beam material, it is possible to perform tap screw fixing or nail fixing in the field construction, and construction similar to the conventional construction method can be performed.

このような金属形材製の枠材及び梁材による骨組みを有する床構造を共同住宅の上下階の境界にある界床として用いる場合には、軽量且つ簡便であるものの、重量や剛性が少ないために防音対策が必要になる。とくに、人の飛びはねや歩行を模擬して、界床に直接タイヤを落下させたときに、階下に発生する衝撃音(以下、重量床衝撃音とよぶ)の大きさや床振動を測定し、階上での歩行などにより発生する衝撃への対策を講じておく必要がある。   When using a floor structure having a frame made of a metal shape frame material and a beam material as a boundary floor at the boundary between the upper and lower floors of an apartment house, it is lightweight and simple, but it has little weight and rigidity. Soundproofing measures are required. In particular, by simulating human jumping and walking, the size of the impact sound (hereinafter referred to as heavy floor impact sound) generated when the tire is dropped directly on the floor is measured and the floor vibration is measured. It is necessary to take measures against impacts caused by walking on the floor.

この重量床衝撃音の低減方法としては、(1)床構造の重量を増加させる方法、(2)床構造の曲げ剛性を増加させる方法がある。また、(1)(2)のかけ算に相当するインピーダンスを増加する方法もある。さらに、衝撃力作用後の床振動を早く減衰させて、不快感を抑制する方法として、(3)床に制振性を付与する方法もある。この制振性の付与により、とくに、金属を多用した構造で発生する、中高周波数の音いわゆる金属音の抑制も実現される。   There are (1) a method of increasing the weight of the floor structure and (2) a method of increasing the bending rigidity of the floor structure as a method of reducing the heavy floor impact sound. There is also a method of increasing the impedance corresponding to the multiplication of (1) and (2). Further, as a method of quickly attenuating the floor vibration after the impact force action and suppressing the uncomfortable feeling, there is (3) a method of imparting vibration damping to the floor. By imparting this vibration damping property, it is possible to suppress the mid-high frequency sound, that is, the so-called metal sound generated particularly in the structure using a lot of metal.

(1)の床構造の重量を増加させる方法として、金属形材製の枠材と梁材とによる骨組みの上に、セメント板等のように重量がある床板の複数枚を積層状態にして載せる方法がある。しかしながら、重量のある床板を載せるとなると、金属形材製の骨組みを用いて、軽量且つ簡便に床構造を形成するという本来の趣旨に反する結果となる。   As a method for increasing the weight of the floor structure in (1), a plurality of heavy floorboards such as cement boards are placed in a laminated state on a frame made of metal shape frame material and beam material. There is a way. However, when a heavy floorboard is placed, the result is contrary to the original purpose of forming a floor structure lightly and easily using a metal-made frame.

(2)の床構造の剛性を増加させる方法として、金属形材製の枠材や梁材などの構成部材の曲げ剛性を増加させる方法がある。具体的には、断面寸法、本数、床板の板厚の増加により、断面2次モーメントを増加させること、あるいは、これらの部材を弾性係数の高い材料で構成することにより達成される。しかしながら、枠材と梁材、床板の大断面化や本数の増加は、重量と占有体積の増加を招き、部品点数の増加により、材料、建設コストが増大するという欠点がある。また、(3)の方法として、床板や梁材に制振材を貼り付ける方法があるが、不快感の大きな、低い周波数(例えば100Hz以下)では大きな効果を得ることができない。前記(1)(3)を実現する為に、重量のある床板に代わり、特開平10−205043号公報に開示のように、成形セメントパネルの内部の複数の中空部に、砂状粒を充填した遮音床や、前記(3)を実現する為に、特開平11−217891号公報に開示のように、対向する2枚の間に多数のセル空間(ハニカムコア)を形成し、このセル空間内に弾性粉粒体を封入した制振パネルを、床板に使用することも考えられるが、複雑構造で分厚い床板を使用するため、占有体積の増加を招き、建設コストが増大するという欠点がある。   As a method for increasing the rigidity of the floor structure in (2), there is a method for increasing the bending rigidity of components such as a frame member or a beam member made of a metal shape. Specifically, this is achieved by increasing the secondary moment of the cross-section by increasing the cross-sectional dimensions, number, and thickness of the floor board, or by configuring these members with a material having a high elastic coefficient. However, the increase in the number of sections and the number of frames, beams, and floorboards increase the weight and occupied volume, and there is a drawback that the material and construction costs increase due to the increase in the number of parts. Further, as the method (3), there is a method of attaching a damping material to a floor board or a beam material. However, a large effect cannot be obtained at a low frequency (for example, 100 Hz or less) where discomfort is large. In order to realize the above (1) and (3), instead of a heavy floorboard, as disclosed in JP-A-10-205043, a plurality of hollow portions inside a molded cement panel are filled with sand-like grains. In order to realize the sound insulation floor and (3) described above, a large number of cell spaces (honeycomb cores) are formed between two facing sheets as disclosed in JP-A-11-217891. Although it is conceivable to use a vibration control panel in which elastic powder particles are encapsulated in the floor plate, the use of a thick floor plate with a complicated structure has the disadvantage of increasing the occupied volume and increasing the construction cost.

そこで、金属形材製の骨組みを維持したままで、重量床衝撃音を低減する方法として、特に振動が大きい部分におもりを集中的に配置するとともに、例えば100Hz以下の低い周波数で床に制振性を効果的に付与できる動吸振器(またはダイナミックダンパー:おもりとバネから構成される振動系)を配置する方法が考えられる。床構造を金属形材製の骨組みで20〜30kg/m2 程度の軽量にすると、床に歩行などによる加振力が作用して床が振動する際、床が外壁で挟まれているため、壁にも力が伝わり振動するので、壁の慣性質量が床の慣性質量に加わり、床が最も大きく振動する位置での等価質量は100〜300kgにもなる。そのため、重量床衝撃音低減用のおもりにより例えば重量床衝撃音で3デシベル下げるためには、等価質量を倍の600kgにする必要があり、そのため300kgのおもりが必要となる。さらに、動吸振器による制振効果は、動吸振器を構成するおもりの質量の増大とともに大きくなることから、重量床衝撃音低減用のおもりが付加され、重くなった床への動吸振器による制振効果を付与するためには、動吸振器のおもりを重くする必要があり、結果として床重量が増大し床構造が軽量且つ簡便という特徴が損なわれる。また、動吸振器の固有振動数を、床構造の固有振動数に非常に近づける必要があることから、動吸振器を設置する床構造の固有振動数を一件ごとに測定するか、予め、様々な間取りの床構造について、数値解析を実施して固有振動数を予測することは、現実的には非常に難しい。
特開平10−205043号公報 特開平11−217891号公報
Therefore, as a method of reducing the heavy floor impact sound while maintaining the framework made of the metal shape, the weight is intensively arranged especially in the portion where the vibration is large, and the floor is damped at a low frequency of 100 Hz or less, for example. It is conceivable to arrange a dynamic vibration absorber (or dynamic damper: a vibration system composed of a weight and a spring) that can effectively impart the property. When the floor structure is made of a metal-made frame and lightened to about 20-30 kg / m 2 , the floor is sandwiched between outer walls when the floor vibrates due to the excitation force caused by walking, etc. Since the force is also transmitted to the wall and vibrates, the inertial mass of the wall is added to the inertial mass of the floor, and the equivalent mass at the position where the floor vibrates most is 100 to 300 kg. Therefore, in order to lower, for example, 3 decibels with a heavy floor impact sound by a weight for reducing the heavy floor impact sound, the equivalent mass needs to be doubled to 600 kg, and therefore a 300 kg weight is required. Furthermore, since the vibration damping effect of the dynamic vibration absorber increases with an increase in the mass of the weight constituting the dynamic vibration absorber, a weight for reducing heavy floor impact noise is added, and the dynamic vibration absorber is applied to the heavier floor. In order to impart a vibration damping effect, it is necessary to increase the weight of the dynamic vibration absorber. As a result, the floor weight increases, and the characteristics that the floor structure is light and simple are impaired. In addition, since the natural frequency of the dynamic vibration absorber needs to be very close to the natural frequency of the floor structure, the natural frequency of the floor structure where the dynamic vibration absorber is installed is measured for each case, In practice, it is very difficult to predict the natural frequency by performing numerical analysis on various floor structures.
JP-A-10-205043 JP-A-11-217891

そこで本発明は、金属形材製の枠材や梁材による骨組み構造を維持したまま、防音性能を高めることができる床構造を提供することを目的とする。   Then, an object of this invention is to provide the floor structure which can improve soundproof performance, maintaining the frame structure by the frame material and beam material made from a metal shape material.

前記課題を解決する請求項1に記載の床構造は、金属形材製の枠材と、この枠材の内側に掛け渡される金属形材製の梁材とを有する床構造であって、前記梁材の全部又は一部を中空部を有するものとし、前記中空部に粒状体を収容したものである。この請求項1の構成によると、梁材の中空部に粒状体を収容すると、枠材と梁材の骨組みの外形を維持したまま重量アップさせることができる。また、衝撃力作用後の床振動は梁材の部分を腹として大きく現れるため、梁材の重量アップによる重量床衝撃音低減作用が有効に発揮される。また、粒状体が振動により中空部内で跳躍することにより、床への制振効果が発揮される。   The floor structure according to claim 1, which solves the above-described problem, is a floor structure having a frame member made of a metal shape member and a beam member made of a metal shape member that is suspended inside the frame member. All or part of the beam material has a hollow portion, and a granular material is accommodated in the hollow portion. According to the configuration of the first aspect, when the granular material is accommodated in the hollow portion of the beam material, the weight can be increased while maintaining the outline of the frame material and the frame structure of the beam material. In addition, since the floor vibration after the impact force action appears greatly with the beam material portion as the belly, the effect of reducing the heavy floor impact sound by increasing the weight of the beam material is effectively exhibited. Moreover, the damping effect to a floor is exhibited when a granular body jumps in a hollow part by vibration.

例えば、板厚が1〜3mmの形鋼を枠材や梁材として用い、構造用合板のような木材を床板として用いると、床構造の質量は20〜30kg/m2 程度となり、軽量となる。ところが、床構造を構成する床板に衝撃力が作用すると、枠材、梁材、床板が一体となって振動を開始するとともに、床構造の周囲が固定される壁面も振動するので、床構造が最も大きく振動する位置で、等価質量は100kg〜300kgにもなる。そこで、梁材の中空部に粒状体を収容して、骨組みの重量をアップさせる。例えば、梁材の中空部に1mあたり10kgの粒状体を収納すると、部屋の寸法が3.64m×3.64mの8畳間の場合、梁1本あたり36kgとなり、455mm間隔で梁が設置されると、7本の梁が存在し、粒状体の総重量は288kgになる。このとき、粒状体収納後の等価質量m1 は、最低でも設置前m0 のおよそ2倍の588kgとなり、重量床衝撃音は、10log(m1 /m0 )=3デシベル低減することになる。また、重力加速度を越える振動が発生すると、粒状体は中空部内部で跳躍し、衝突を繰り返し、床の振動を抑制する方向に衝撃力を加えるので、床への制振効果が発揮される。 For example, when a steel plate having a thickness of 1 to 3 mm is used as a frame material or a beam material, and a wood such as a structural plywood is used as a floor board, the mass of the floor structure is about 20 to 30 kg / m 2 and is light. . However, when an impact force acts on the floor plate that constitutes the floor structure, the frame material, beam material, and floor plate start to vibrate together, and the wall surface around which the floor structure is fixed also vibrates. At the position where the vibration is largest, the equivalent mass is 100 kg to 300 kg. Therefore, the granular material is accommodated in the hollow portion of the beam material to increase the weight of the frame. For example, if 10kg of granular material is stored in the hollow part of the beam material, if the size of the room is between 8 tatami mats of 3.64m x 3.64m, the beam will be 36kg per beam and beams will be installed at 455mm intervals. Then, there are seven beams, and the total weight of the granular material is 288 kg. At this time, the equivalent mass m 1 after storing the granular material is at least 588 kg, which is approximately twice as large as m 0 before installation, and the heavy floor impact sound is reduced by 10 log (m 1 / m 0 ) = 3 dB. . Further, when vibration exceeding gravitational acceleration is generated, the granular material jumps inside the hollow portion, repeatedly collides, and an impact force is applied in a direction to suppress the vibration of the floor, so that the effect of damping the floor is exhibited.

請求項2に記載の床構造は、請求項1において、前記中空部の内壁と前記粒状体の間の全部又は一部に、弾性体又は粘弾性体を介在させたものである。この請求項2の構成によると、例えば梁材を形鋼で構成した場合、粒状体が梁材の中空部内で衝突を繰り返し、形鋼に衝撃力を与え、形鋼から2次的に衝撃音が発生させることになっても、弾性体または粘弾性体が、粒状体と中空部内壁との間に介在しているので、2次的な衝撃音の発生を防止する。   A floor structure according to a second aspect is the floor structure according to the first aspect, wherein an elastic body or a viscoelastic body is interposed between all or part of the inner wall of the hollow portion and the granular body. According to the configuration of claim 2, for example, when the beam material is formed of a shape steel, the granular material repeatedly collides in the hollow portion of the beam material, giving an impact force to the shape steel. However, since the elastic body or viscoelastic body is interposed between the granular body and the inner wall of the hollow portion, secondary impact sound is prevented from being generated.

請求項3に記載の床構造は、請求項2において、前記弾性体又は粘弾性体は、前記中空部に収納される袋体である。この請求項3の構成によると、例えば筒状の袋体内に粒状体を入れ、この袋体を形材の中空部に入れるだけで、粒状体と中空部内壁との間に弾性体又は粘弾性体を介在させる構造になる。   The floor structure according to claim 3 is the bag body according to claim 2, wherein the elastic body or the viscoelastic body is housed in the hollow portion. According to the configuration of the third aspect, for example, a granular body is put in a cylindrical bag body, and the elastic body or viscoelasticity is provided between the granular body and the inner wall of the hollow portion only by inserting the bag body into the hollow portion of the shape member. It becomes a structure that interposes the body.

請求項4に記載の床構造は、請求項1〜3のいずれかにおいて、前記粒状体は、還元ペレットである。この請求項4の構成によると、還元ペレットは鉄鉱石を原料とするので、鉄分を多く含んで比重が大きく、形状が揃っており、粒状体が容易に跳躍し、中空部内で粒状体が衝突を繰り返しても粒状体が磨耗したり、破砕しにくく制振機能を安定して発揮する。また、焼成後であるため水分が少なく、住宅に組み込んだ後のカビや細菌の繁殖の恐れがない。また、安定供給が可能で、安価に大量に入手できる。   A floor structure according to a fourth aspect of the invention is any one of the first to third aspects, wherein the granular material is a reduced pellet. According to the configuration of claim 4, since the reduced pellet is made of iron ore, it contains a large amount of iron, has a large specific gravity, has a uniform shape, the particles easily jump, and the particles collide in the hollow portion. Even if it repeats, the granular material is worn out or is not easily crushed, and exhibits a stable vibration control function. Moreover, since it is after baking, there is little water | moisture content and there is no fear of the growth of mold | fungi and bacteria after incorporating in a house. Moreover, stable supply is possible and it can be obtained in large quantities at low cost.

請求項5に記載の床構造は、請求項1〜4のいずれかにおいて、前記梁材は、前記中空部が閉空間となるよう、溝型断面の形材を組み合わせて形成されている。この請求項5の構成によると、溝型断面の形材を組み合わせて形成することにより、密閉空間が簡単に形成でき、梁材の断面係数も上がる。例えば、薄鋼板からロールフォーミングにより形成される2本の溝型形鋼を凹部を対向させ嵌め込んで中空部を形成する。   A floor structure according to a fifth aspect of the present invention is the structure according to any one of the first to fourth aspects, wherein the beam member is formed by combining groove-shaped cross-section members so that the hollow portion is a closed space. According to the fifth aspect of the present invention, by forming the groove-shaped cross sections in combination, the sealed space can be easily formed, and the cross section coefficient of the beam material is increased. For example, a hollow portion is formed by fitting two groove-shaped steels formed from a thin steel plate by roll forming with the concave portions facing each other.

請求項6に記載の床構造は、請求項1〜5のいずれかにおいて、前記枠材及び前記梁材の上面に床板が接合されたものである。この請求項6の構成によると、防音構造の骨組みであるため、床板に構造用合板のような木材を用い、この骨組みの上に現場施工などで床面を形成することができる。   A floor structure according to a sixth aspect is the floor structure according to any one of the first to fifth aspects, wherein a floor plate is bonded to the upper surfaces of the frame member and the beam member. According to the configuration of the sixth aspect, since the frame is a soundproof structure, it is possible to use a wood such as a structural plywood for the floor board, and to form a floor surface on the frame by on-site construction or the like.

請求項1に記載の発明によると、梁材の中空部に粒状体を封入することにより、枠材と梁材の骨組み構造の基本をそのままにしたまま、優れた防音効果を発揮させることができる。床板の全面に防音処理を施すものに比較して、全体を安価に製作することができる。また、床板の制約がないため、合成木材など種々の床板を組み合わせて使用することができる。また、枠材と梁材に薄板形材を用いることができるため、現場施工が可能なスチールハウスなどに対して適用できる。   According to the first aspect of the present invention, by encapsulating the granular material in the hollow portion of the beam material, it is possible to exert an excellent soundproofing effect while keeping the basic structure of the frame material and the beam material. . The whole can be manufactured at a low cost as compared with the case where the entire surface of the floor board is subjected to soundproofing. Moreover, since there is no restriction | limiting of a floor board, it can be used combining various floor boards, such as a synthetic wood. Moreover, since a thin plate shape material can be used for the frame material and the beam material, it can be applied to a steel house or the like that can be constructed on site.

請求項2の発明によると、請求項1の効果に加えて、粒状体の梁材内部の振動により生じる二次的な衝撃音の発生を防止することができる。   According to invention of Claim 2, in addition to the effect of Claim 1, generation | occurrence | production of the secondary impact sound produced by the vibration inside the beam material of a granular material can be prevented.

請求項3の発明によると、請求項2の効果に加えて、粒状体を入れた筒状袋体を梁材内に挿入するため、梁材の長手方向に複数の袋体を直列配置したり、梁材の高さ方向に複数の袋体を積み重ねたりして、粒状体を梁材内部に簡単且つ適所に収容できる。   According to invention of Claim 3, in addition to the effect of Claim 2, in order to insert the cylindrical bag body which put the granular material in a beam material, several bag bodies are arrange | positioned in series in the longitudinal direction of a beam material. By stacking a plurality of bags in the height direction of the beam material, the granular material can be easily accommodated inside the beam material.

請求項4の発明によると、請求項1〜3の効果に加えて、防音効果が効果的に発する安価な粒状体を用いることができる。   According to the invention of claim 4, in addition to the effects of claims 1 to 3, it is possible to use an inexpensive granular material that effectively produces a soundproofing effect.

請求項5の発明によると、請求項1〜4の効果に加えて、閉じた内部空間を有する梁材を簡便に得ることができる。   According to invention of Claim 5, in addition to the effect of Claims 1-4, the beam material which has the closed internal space can be obtained simply.

請求項6の発明によると、請求項1〜5の効果に加えて、床板の選択が自由にできる。   According to invention of Claim 6, in addition to the effect of Claims 1-5, selection of a floor board can be made freely.

以下本発明の実施形態を図面を参照しつつ説明する。図1は、本発明の実施形態の床構造の骨組みを示す上面図であり、図2は、図1の梁材の断面構造を示す断面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a top view showing a framework of a floor structure according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a cross-sectional structure of the beam member of FIG.

図1において、1は床構造、2は枠材、3は梁材、4は床板である。枠材2は、2本の端根太2aと2本の側根太2bとを長方形に組み込んだものである。端根太2a及び側根太2bには、例えば、幅40mm×高さ235mm×板厚1.2mmの溝型の鋼製の薄肉形材が使用される。   In FIG. 1, 1 is a floor structure, 2 is a frame material, 3 is a beam material, and 4 is a floor board. The frame member 2 has two end joists 2a and two side joists 2b incorporated into a rectangle. For the end joist 2a and the side joist 2b, for example, a grooved steel thin-walled member having a width of 40 mm, a height of 235 mm, and a plate thickness of 1.2 mm is used.

梁材3は、端根太2aの間に側根太2bと平行に略等間隔で掛け渡される根太で形成され、鋼製の薄肉形材が使用される。梁材3の両端が端根太2aの溝内に嵌め込まれ、前記両端に形成されたフランジが端根太2aの溝底にタップネジ止めされることにより、梁材3は枠材2に接合される。この枠材2と梁材3により床構造1の骨組み5が形成される。この骨組み5の上に、床板4を載せ、クギ21などで床板4を骨組み5に接合して床構造1が形成される。この床板4は、骨組み5に対して、施工現場で接合されるのが通常であるが、骨組み5と床板4とからなるセットを工場で生産し、施工現場に搬入する場合もある。   The beam member 3 is formed of joists spanned between the end joists 2a in parallel with the side joists 2b at substantially equal intervals, and a thin steel member is used. Both ends of the beam member 3 are fitted in the groove of the end joist 2a, and the flanges formed at the both ends are tapped with the bottom of the groove of the end joist 2a, whereby the beam member 3 is joined to the frame member 2. A frame 5 of the floor structure 1 is formed by the frame member 2 and the beam member 3. The floor plate 4 is placed on the frame 5 and the floor plate 4 is joined to the frame 5 with a nail 21 or the like to form the floor structure 1. The floor board 4 is usually joined to the framework 5 at a construction site, but a set including the framework 5 and the floor board 4 may be produced at a factory and carried into the construction site.

図2に示すように、梁材3は、ロールフォーミングされた溝型の鋼製の第1薄肉形材3aの溝内に、ロールフォーミングされた溝型の鋼製の第2薄肉形材3bを溝同士が対面するように嵌め込み、内部に閉じた中空部11を形成するものである。嵌め込みによって中空部11が形成されるように、第1薄肉形材3aのリブの端はストレートであるが、第2薄肉形材3bのリブの端は内折りされている。例えば、幅40mm×高さ235mm×板厚1.0mmの形材3a,3bを用いて、梁材3が形成される。   As shown in FIG. 2, the beam member 3 includes a roll-formed groove-type steel second thin-walled member 3 b in a groove-formed groove-shaped steel-made first thin-walled member 3 a. The grooves 11 are fitted so that the grooves face each other, and a closed hollow portion 11 is formed inside. The end of the rib of the first thin section 3a is straight so that the hollow portion 11 is formed by fitting, but the end of the rib of the second thin section 3b is folded inward. For example, the beam member 3 is formed using the shape members 3a and 3b each having a width of 40 mm, a height of 235 mm, and a plate thickness of 1.0 mm.

前記中空部11内に、内外表面をゴム質でコーティングした弾性体の袋体12が挿入され、この袋体12の内部に粒状体13が充填されている。したがって、粒状体13と形材3a,3bの内壁との間に、弾性体又は粘弾性体の袋体12が介在する構造になっている。   An elastic bag body 12 whose inner and outer surfaces are coated with rubber is inserted into the hollow portion 11, and the bag body 12 is filled with a granular material 13. Therefore, the bag body 12 of an elastic body or a viscoelastic body is interposed between the granular body 13 and the inner walls of the shape members 3a and 3b.

図3は、他の実施形態の梁材103の断面を示す。ロールフォーミング成形とカシメなどの結合により一枚板から中空形鋼を形成し、この中空形鋼の内部の中空部111に粒状体113が収容されている。梁材103の結合部分が床板104に重ねられ、タップネジ122で接合されている。なお、図示が省略されているが、中空部111の内壁に弾性体又は粘弾性体の内貼りを施しておくことが好ましい。   FIG. 3 shows a cross section of the beam member 103 of another embodiment. A hollow steel is formed from a single plate by a combination of roll forming and caulking, and a granular material 113 is accommodated in a hollow portion 111 inside the hollow steel. The joint portion of the beam member 103 is overlapped on the floor plate 104 and joined by a tap screw 122. In addition, although illustration is abbreviate | omitted, it is preferable to give the inner wall of the hollow part 111 the inner_body | attachment of an elastic body or a viscoelastic body.

図4は、他の実施形態の梁材203の断面を示す。ロールフォーミング成形によって、溝の開口203aの両側にフランジ203bを形成する梁材203とし、合板製の床板204をフランジ203bの上に載せ、クギ221により両者を接合している。梁材203内の閉じた中空部211は、床板204との共同によって形成されている。この中空部211内に粒状体213が収容される。なお、図示が省略されているが、粒状体213は、弾性体又は粘弾性体の袋体内に入った状態にして、中空部211に収容されることが好ましい。   FIG. 4 shows a cross section of a beam member 203 of another embodiment. By roll forming, the beam 203 is formed with the flange 203b on both sides of the opening 203a of the groove, and a plywood floor plate 204 is placed on the flange 203b, and the two are joined together by a claw 221. A closed hollow portion 211 in the beam member 203 is formed in cooperation with the floor plate 204. The granular material 213 is accommodated in the hollow portion 211. Although illustration is omitted, it is preferable that the granular material 213 is accommodated in the hollow portion 211 in a state of entering an elastic body or a viscoelastic body bag.

梁材3,103,203内に収容される粒状体13,113,213は、重いこと、安価であること、形状が揃っていること、経年変化がないことの条件をある程度満足するものであれば何でも使用できる。中でも、鉄分を多く含むため比重が重たくなっている、還元鉄ペレット、スラグ(例えば高炉徐冷スラグ、高炉水砕スラグ、転炉スラグ、電炉スラグ等)、還元ペレット、玉銑、焼結鋼、コールドペレット(セメントにより鉄粉、ダスト、フラッシュアッシュ等をペレット状に固めたもの)等が粒状体13として好ましい。特に、還元ペレットは安価に入手でき、粒の大きさが揃っており、焼成されているため水分含有量も少なく、比重が高いため、特に好ましい。   The granular materials 13, 113, 213 accommodated in the beam members 3, 103, 203 should satisfy the conditions that they are heavy, inexpensive, have a uniform shape, and do not change over time. Anything can be used. Among them, reduced iron pellets, slag (eg, blast furnace slow-cooled slag, blast furnace granulated slag, converter slag, electric furnace slag, etc.), reduced pellets, onions, sintered steel, which contain a large amount of iron and have a high specific gravity. Cold pellets (iron powder, dust, flash ash or the like hardened in a pellet form with cement) or the like is preferable as the granular material 13. In particular, reduced pellets are particularly preferred because they are available at low cost, have a uniform particle size, are fired, have a low water content, and have a high specific gravity.

梁材3,103,203内に収容される粒状体13,113,213の充填の程度は、粒状体13,113,213の流動衝突が可能であれば、ほぼ充満している状態から、上方に空間にある状態まで許容できる。重量を稼ぐ場合、中空部11,111,211内で粒状体13,113,213が衝突を繰り返すことができる程度にほぼ充満させることができる。   The degree of filling of the granular bodies 13, 113, 213 accommodated in the beam members 3, 103, 203 is as follows. Can be tolerated even in space. When gaining weight, it can be made to fill to the extent that the granular material 13,113,213 can repeat a collision in the hollow parts 11,111,211.

転炉スラグ、高炉水砕スラグ、還元ペレットの3種類の粒状体について、加振実験により、粒径、充填量と動質量の関係を求め、充填量に対する動質量の比率が最も大きくなるように、ボックス断面根太鋼に封入する粒状体の種類と粒径、充填量の決定要因を探った。尚、長さ220mmに切断したボックス断面根太鋼の中に各種粒状体を封入し、インピーダンスヘッドを介して30kgfの加振器に取り付けて、正弦波掃引加振を行い、加振力と加振点振動加速度から、FFTを用いて伝達関数を求めることにより、着目する周波数領域での動質量を求めた。その結果、粒状体の種別による動質量の大きな差異は認められなかった。そのため、粒径がそろっており、より安価な還元ペレットの採用が好ましい。転炉スラグの粒径はφ5mm以下からφ22mm以上と広く分布しているものの、粒径による制振効果の差異は、31.5Hzバンド(22.4〜44.7Hz)でみると、φ5mm以下は小さく、それ以外の粒径では制振効果はほぼ同じであった。   Regarding the three types of granular materials of converter slag, granulated blast furnace slag, and reduced pellets, the relationship between particle size, filling amount and dynamic mass is obtained by an excitation experiment so that the ratio of dynamic mass to filling amount becomes the largest. Then, we investigated the determinants of the type, particle size, and filling amount of the granular material enclosed in the box joist steel. In addition, various granular materials are enclosed in box cross section steel cut to a length of 220 mm, attached to a 30 kgf vibrator through an impedance head, and subjected to a sine wave sweep excitation, and the excitation force and excitation From the point vibration acceleration, the dynamic mass in the frequency region of interest was obtained by obtaining a transfer function using FFT. As a result, there was no significant difference in dynamic mass depending on the type of granular material. For this reason, it is preferable to use reduced pellets that have a uniform particle size and are less expensive. Although the particle size of converter slag is widely distributed from φ5 mm or less to φ22 mm or more, the difference in vibration damping effect due to particle size is 31.5 Hz band (22.4 to 44.7 Hz). The damping effect was almost the same for other small particle sizes.

図5に、粒状体として還元ペレットを採用し、ほぼ充満の充填量3.95kgの場合と、やや空間がある充填量3.3kgの場合と、かなり空間がある充填量2.2kgの場合の、加振加速度と動質量の関係を示す。これによると、制振効果の目安となる動質量は、加振加速度に比例し、充填量には依存しない傾向にある。例えば、重量床衝撃試験の加振源として用いられるタイヤ落下により、粒状体の充填量によらず、上側の部分が跳躍し制振効果を発揮し、残りの部分が跳躍せず、重量床衝撃音低減用のおもりとして作用する。そのため、充填量は、重量床衝撃音の低減に必要なおもり重量から決めればよい。   In FIG. 5, when reduced pellets are used as the granular material, the filling amount is almost 3.95 kg, the filling amount with a little space is 3.3 kg, and the filling amount with a considerable space is 2.2 kg. The relationship between excitation acceleration and dynamic mass is shown. According to this, the dynamic mass that is a measure of the damping effect tends to be proportional to the excitation acceleration and not dependent on the filling amount. For example, due to the fall of the tire used as the excitation source for the heavy floor impact test, the upper part jumps and exhibits the damping effect regardless of the filling amount of the granular material, the remaining part does not jump, and the heavy floor impact Acts as a weight for sound reduction. Therefore, the filling amount may be determined from the weight weight necessary for reducing the heavy floor impact sound.

中空部11,111,211の内壁と粒状体13,113,213との間に介在される弾性体又は粘弾性体は、内壁への貼り付け又は、袋状筒体の挿入によって配設される。また、弾性体又は粘弾性体は、芯繊維の表面に樹脂又はゴムをコーティングしたもの、樹脂シート、ゴムシート、厚手の生地など、弾性又は粘弾性を示すものであれば、種々のものが使用できる。   The elastic body or viscoelastic body interposed between the inner wall of the hollow part 11, 111, 211 and the granular material 13, 113, 213 is disposed by being attached to the inner wall or by inserting a bag-like cylinder. . Various elastic bodies or viscoelastic bodies may be used as long as they exhibit elasticity or viscoelasticity, such as those obtained by coating the surface of the core fiber with resin or rubber, resin sheets, rubber sheets, thick fabrics, etc. it can.

弾性体または粘弾性体の例として、入手可能なゴム袋と厚肉排水ホースとを用いた。ゴムまたはホースに還元ペレット2.2kgを充填し、梁材に封入して、加振機により梁材を加振したときの放射騒音を、治具表面から10mm点に騒音計を設置して計測した。その結果を図6に示す。ゴム袋及び排水ホートともに、無い場合に比較して放射騒音レベルが低下しているが、排水ホースの方がゴム袋よりも放射音がやや小さい。その他、芯繊維+表面樹脂でコーティングの溶着生地、芯繊維+表面ゴム系材質でコーティングの生地、ゴムシート、表面のコーティング等は無く通気性がある織り生地の袋を用いて測定したが、いずれも同様の放射騒音の低下を示し、弾性体又は粘弾性体として使用可能であった。   As an example of the elastic body or viscoelastic body, an available rubber bag and a thick drainage hose were used. A rubber or hose is filled with 2.2 kg of reduced pellets, sealed in a beam, and the radiation noise when the beam is vibrated by a shaker is measured by installing a noise meter at a point 10 mm from the jig surface. did. The result is shown in FIG. Both the rubber bag and the drainage hoat have lower radiation noise levels compared to the case without them, but the drainage hose has a slightly lower radiation noise than the rubber bag. In addition, the measurement was made using a welded fabric coated with core fiber + surface resin, a fabric coated with core fiber + surface rubber material, a rubber sheet, and a woven fabric bag with air permeability without surface coating. Also showed a similar reduction in radiation noise and could be used as an elastic body or a viscoelastic body.

以上の実験結果から、弾性体または粘弾性体の縦弾性係数が、1×106 (Pa)〜1×109 (Pa)の高分子材料であるものが好ましい。また、弾性体または粘弾性体が、発泡材料であることが好ましい。また、粘弾性体の損失係数が、0.05〜5.0の高分子材料からなることが好ましい。また、弾性体または粘弾性体を用いて筒状の袋構造を形成し、該袋構造内に粒状体を封入したものが好ましい。また、この筒状袋構造を、長手方向に並べて、前記筒状中空部に設置するものが好ましい。また、この筒状袋構造を、床構造の高さ方向に並べて、前記中空部に設置することが好ましい。 From the above experimental results, it is preferable that the elastic body or the viscoelastic body is a polymer material having a longitudinal elastic modulus of 1 × 10 6 (Pa) to 1 × 10 9 (Pa). The elastic body or viscoelastic body is preferably a foam material. Moreover, it is preferable that the loss coefficient of a viscoelastic body consists of a high molecular material of 0.05-5.0. Further, it is preferable to form a cylindrical bag structure using an elastic body or a viscoelastic body and enclose the granular body in the bag structure. Moreover, it is preferable that the cylindrical bag structures are arranged in the longitudinal direction and installed in the cylindrical hollow portion. Moreover, it is preferable to arrange this cylindrical bag structure in the said hollow part along with the height direction of a floor structure.

つぎに、上述した床構造の床衝撃音の測定結果を以下に説明する。図7は、3.64m×3.64mの8畳間用の枠材の中に455mm間隔で7本の梁材を設置した床構造の振動モードを図示している。重量床衝撃音遮音性能を決定する63Hzオクターブバンド(44.7〜89.1Hz)に含まれる3次モード、4次モード、5次モードのいずれの場合も、梁材の部分で振幅が大きくなっている。そのため、梁材内部の中空部に仕込まれた粒状体の跳躍しない部分が重量床衝撃音を低減させるおもりの効果として有効に作動し、跳躍する部分が床への制振性付与の効果として有効に作動することが判る。なお、床材の全面に粒状体を仕込んでも良いが、部分的にしか粒状体が作動せず、効率は悪くなる。特に、全ての梁材に粒状体を仕込まなくとも、振動の腹となる梁材に粒状体を仕込むと、粒状体が効果的に作用する。   Next, the measurement results of the floor impact sound of the floor structure described above will be described below. FIG. 7 illustrates a vibration mode of a floor structure in which seven beam members are installed at an interval of 455 mm in a frame material for an 8 tatami mat space of 3.64 m × 3.64 m. The amplitude increases in the beam part in any of the 3rd order mode, 4th order mode and 5th order mode included in the 63Hz octave band (44.7 to 89.1Hz) that determines the sound insulation performance of the heavy floor impact sound. ing. Therefore, the non-jumping part of the granular material charged in the hollow part inside the beam works effectively as a weight effect to reduce the heavy floor impact sound, and the jumping part is effective as an effect of imparting vibration damping to the floor It can be seen that it works. In addition, although a granular material may be charged to the whole surface of a flooring, a granular material will operate | move only partially and efficiency will worsen. In particular, even if not all of the beam members are charged with a granular material, if the granular material is charged into a beam material that becomes an antinode of vibration, the granular material acts effectively.

本発明の床構造として、3.64m×3.64mの8畳間用の枠材の中に455mm間隔で7本の中空形材の梁材を設置し、梁材一本当たり36kgの還元ペレットを仕込んだものに関し、重量床衝撃音レベルを図8に示し、軽量床衝撃音レベルを図9に示し、ハンマー打撃加振時振動レベル(単位加振力あたりの床振幅)を図10に示す。なお、図8及び図10において、比較のために、重量のあるコンクリート床を用いた界床(1)と、おもりを梁に設置したうえで、ダイナミックダンパを設置した界床(2)のデータを併記している。なお、界床(1)及び界床(2)ともに、JIS(A)1418のLH65等級をクリアする。   As a floor structure of the present invention, seven hollow beam members are installed at intervals of 455 mm in a frame material for a space of 3.64 m × 3.64 m, and a reduced pellet of 36 kg per beam member. FIG. 8 shows the heavy floor impact sound level, FIG. 9 shows the light floor impact sound level, and FIG. 10 shows the vibration level (floor amplitude per unit excitation force) when hammering. . 8 and FIG. 10, for comparison, data of the floor (1) using a heavy concrete floor and the floor (2) where a dynamic damper is installed after installing a weight on the beam. Is also written. Note that both the floor (1) and the floor (2) pass the JIS (A) 1418 LH65 grade.

図8に示される重量床衝撃音等級では、粒状体封入例のものは、界床(1)及び界床(2)と同レベルであり、実用的に使用できる。図10に示される軽量床衝撃音等級では、粒状体封入例のものは、防音フローリングを併用することで、実用的に使用できるレベルまで下がる。図9のハンマー打撃加振時振動レベルによると、何の処理も施していない基本界床に比較して、10デシベル程度の振動が低下し、界床(1)及び界床(2)と同程度の制振効果がある。   In the heavy floor impact sound class shown in FIG. 8, the granular enclosure example has the same level as the boundary floor (1) and the boundary floor (2) and can be used practically. In the lightweight floor impact sound grade shown in FIG. 10, the particulate enclosure example is lowered to a practically usable level by using the soundproof flooring together. According to the vibration level at the time of hammering excitation in FIG. 9, the vibration is reduced by about 10 decibels compared to the basic floor without any treatment, and is the same as the floor (1) and the floor (2). There is a degree of vibration control effect.

なお、上述した実施形態は以下のように変更して実施することができる。
(1)梁材の全部に粒状体を収容することが好ましいが、多数本の梁材のうちの一部、又は梁材の長さ方向の一部に粒状体を収容することもできる。床構造の振動モードに応じて、粒状体を収納する部分を選択するものであってもよい。
(2)梁材は、根太に限らず、大引に相当する部分があってもよく、この大引の部分を中空形材にして粒状体を収納することもできる。また、枠材を中空形材にして粒状体を収納することもできる。
(3)制振鋼板など制振効果がある材料で梁材を構成する場合などは、梁材の中空部に配設される弾性体または粘弾性体を省略することができる。
(4)枠材及び梁材は、鋼材製に限らずアルミ合金製であってもよい。また、枠材及び梁材を形成する形材は、ロールフォーミングに限らず、押し出し成形品であってもよい。
(5)界床直下の天井裏空間に吸音材が充填されている場合など、天井と天井裏空間により、粒状体の作動が原因で梁から発生する二次的を騒音を防止できる場合には、梁材の中空部に配設される弾性体又は粘弾性体を省略することができる。
(6)梁材の中空部は、図2乃至図4のように、梁材自体又は床板と協同して閉じられたものに限らない。図11のように、梁材303がC形断面であり、底の凹部が中空部となったものでもよい。この場合、粒状体313を袋体312に入れ、袋体312が凹部に引っ掛かって中空部から落下しないようになっておればよい。また、梁材をコの字状断面とし、粒状体を入れた袋体が開口から落下しない様に、針金で止めておくものであってもよい。
The embodiment described above can be implemented with the following modifications.
(1) Although it is preferable to accommodate a granular material in the whole beam material, a granular material can also be accommodated in a part of many beam materials, or a part of the length direction of a beam material. Depending on the vibration mode of the floor structure, the part for storing the granular material may be selected.
(2) The beam material is not limited to joists, and may have a portion corresponding to a large drawing, and this large drawing portion can be made into a hollow shape to store a granular material. Moreover, a frame material can be made into a hollow shape and a granular material can also be accommodated.
(3) When the beam member is made of a material having a damping effect such as a damping steel plate, the elastic body or the viscoelastic body disposed in the hollow portion of the beam member can be omitted.
(4) The frame material and the beam material are not limited to the steel material, and may be made of an aluminum alloy. Moreover, the shape material which forms a frame material and a beam material is not restricted to roll forming, and may be an extruded product.
(5) When sound absorption material is filled in the space behind the ceiling directly below the floor, when the ceiling and the space behind the ceiling can prevent secondary noise generated from the beam due to the operation of the granular material The elastic body or viscoelastic body disposed in the hollow portion of the beam material can be omitted.
(6) The hollow portion of the beam material is not limited to the one closed in cooperation with the beam material itself or the floor board as shown in FIGS. As shown in FIG. 11, the beam member 303 may have a C-shaped cross section, and the bottom recess may be a hollow portion. In this case, it is sufficient that the granular body 313 is put in the bag body 312 so that the bag body 312 does not fall from the hollow portion by being caught in the recess. Alternatively, the beam member may have a U-shaped cross section, and may be secured with a wire so that the bag containing the granular material does not fall from the opening.

本発明の実施形態の床構造の骨組みを示す上面図である。It is a top view which shows the framework of the floor structure of embodiment of this invention. 図1の梁材の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of the beam material of FIG. 梁材の他の実施形態の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of other embodiment of a beam material. 梁材の更に他の実施形態の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of other embodiment of a beam material. 梁材への粒状体の充填量を変化させたときの加振加速度と動質量の関係を示すグラフ図である。It is a graph which shows the relationship between an excitation acceleration and dynamic mass when changing the filling amount of the granular material to a beam material. 消音処理材の使用による放射音の低減を示すグラフ図である。It is a graph which shows reduction of the radiation sound by use of a muffling processing material. 枠材と梁材の骨組みを有する床構造の振動モードを示す側面図である。It is a side view which shows the vibration mode of the floor structure which has a framework of a frame material and a beam material. 重量床衝撃音レベル測定結果を示すグラフ図である。It is a graph which shows a heavy floor impact sound level measurement result. 軽量床衝撃音レベル測定結果を示すグラフ図である。It is a graph which shows a lightweight floor impact sound level measurement result. ハンマー打撃加振時振動レベルを示すグラフ図である。It is a graph which shows a vibration level at the time of hammer striking vibration. 梁材の更に他の実施形態の断面構造を示す断面図である。It is sectional drawing which shows the cross-section of other embodiment of a beam material.

符号の説明Explanation of symbols

1 床構造
2 枠材
3 梁材
4 床板
5 骨組み
11 中空部
12 弾性体又は粘弾性体
13 粒状体
DESCRIPTION OF SYMBOLS 1 Floor structure 2 Frame material 3 Beam material 4 Floor board 5 Frame 11 Hollow part 12 Elastic body or viscoelastic body 13 Granular body

Claims (6)

金属形材製の枠材と、この枠材の内側に掛け渡される金属形材製の梁材とを有する床構造であって、前記梁材の全部又は一部を中空部を有するものとし、前記中空部に粒状体を収容した床構造。   It is a floor structure having a frame material made of a metal shape and a beam material made of a metal shape that is hung inside the frame material, and all or part of the beam material has a hollow portion, The floor structure which accommodated the granular material in the said hollow part. 前記中空部の内壁と前記粒状体の間の全部又は一部に、弾性体又は粘弾性体を介在させた請求項1に記載の床構造。   The floor structure according to claim 1, wherein an elastic body or a viscoelastic body is interposed between all or part of the inner wall of the hollow portion and the granular body. 前記弾性体又は粘弾性体は、前記中空部に収納される袋体である請求項2に記載の床構造。   The floor structure according to claim 2, wherein the elastic body or the viscoelastic body is a bag housed in the hollow portion. 前記粒状体は、還元ペレットである請求項1〜3のいずれかに記載の床構造。   The floor structure according to claim 1, wherein the granular material is a reduced pellet. 前記梁材は、前記中空部が閉空間となるよう、溝型断面の形材を組み合わせて形成される請求項1〜4のいずれかに記載の床構造。   The floor structure according to any one of claims 1 to 4, wherein the beam member is formed by combining groove-shaped cross-section members so that the hollow portion becomes a closed space. 前記枠材及び前記梁材の上面に床板が接合された請求項1〜6のいずれか記載の床構造。   The floor structure in any one of Claims 1-6 by which the floor board was joined to the upper surface of the said frame material and the said beam material.
JP2006028658A 2006-02-06 2006-02-06 Floor structure Pending JP2006125195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028658A JP2006125195A (en) 2006-02-06 2006-02-06 Floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028658A JP2006125195A (en) 2006-02-06 2006-02-06 Floor structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000307212A Division JP3892659B2 (en) 2000-10-06 2000-10-06 Floor structure

Publications (1)

Publication Number Publication Date
JP2006125195A true JP2006125195A (en) 2006-05-18

Family

ID=36720192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028658A Pending JP2006125195A (en) 2006-02-06 2006-02-06 Floor structure

Country Status (1)

Country Link
JP (1) JP2006125195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228237A (en) * 2008-03-19 2009-10-08 Nippon Steel Corp Panel floor structure
JP2009545703A (en) * 2006-08-04 2009-12-24 アーベーベー ターボ システムズ アクチエンゲゼルシャフト Particle vibration damper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545703A (en) * 2006-08-04 2009-12-24 アーベーベー ターボ システムズ アクチエンゲゼルシャフト Particle vibration damper
US7997857B2 (en) 2006-08-04 2011-08-16 Abb Turbo Systems Ag Particle vibration damper
JP2009228237A (en) * 2008-03-19 2009-10-08 Nippon Steel Corp Panel floor structure

Similar Documents

Publication Publication Date Title
JP5044109B2 (en) Damping floor structure
JP5950750B2 (en) Ceiling structure
JP3892659B2 (en) Floor structure
JP5015047B2 (en) Panel floor structure of building structure
JP6381759B2 (en) Sound absorption structure
JP6250498B2 (en) Concrete parts with excellent vibration reduction performance
JP2006125195A (en) Floor structure
KR20070067855A (en) Floor noise reduction device
JP4919673B2 (en) Damping structure for buildings
JP2006070494A (en) Floor structure
KR100658389B1 (en) Heavy-weight impact noise reducing structure for a wall slab type building
JP6105101B2 (en) Ceiling structure
JP4806253B2 (en) Floor structure
JP5102577B2 (en) Floor support and floor structure
JP6478516B2 (en) Floor structure
JP6270452B2 (en) Concrete member with excellent solid sound reduction performance
JP2021095759A (en) Sound reduction structure and sound reduction method
JP4680418B2 (en) Sound insulation wall structure
JPH046834B2 (en)
JP7090296B2 (en) Soundproof ceiling structure
JP2008019601A (en) Multimode damper
JP7132006B2 (en) Floor structures, buildings and vibration absorbers
JP5301204B2 (en) Building floor impact noise reduction structure
JP2009174120A (en) Ceiling structure, method of constructing ceiling structure, and building
Kim et al. Influence of Perforated Ceiling on Floor Impact Sound Insulation in Reinforced Concrete Buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202