JP2006124743A - Organic nickel compound for organo-metallic chemical vapor deposition, and method for producing nickel-containing film by using the compound - Google Patents

Organic nickel compound for organo-metallic chemical vapor deposition, and method for producing nickel-containing film by using the compound Download PDF

Info

Publication number
JP2006124743A
JP2006124743A JP2004312034A JP2004312034A JP2006124743A JP 2006124743 A JP2006124743 A JP 2006124743A JP 2004312034 A JP2004312034 A JP 2004312034A JP 2004312034 A JP2004312034 A JP 2004312034A JP 2006124743 A JP2006124743 A JP 2006124743A
Authority
JP
Japan
Prior art keywords
film
nickel
compound
containing film
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004312034A
Other languages
Japanese (ja)
Inventor
Akio Yanagisawa
明男 柳澤
Atsushi Sai
篤 齋
Nobuyuki Soyama
信幸 曽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004312034A priority Critical patent/JP2006124743A/en
Publication of JP2006124743A publication Critical patent/JP2006124743A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a film with high coplanarity and to form the film having a low content of impurities. <P>SOLUTION: The organic nickel compound is an organic nickel compound expressed by Ni(R-Cp)<SB>2</SB>, where Cp represents a cyclopentadienyl group and R represents hydrogen or a 1-4C straight chain or a branched alkyl group, respectively. Also, the production method for the nickel-containing film comprises manufacturing the nickel-containing film by an MOCVD using the organic nickel compound. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ニッケル含有膜を有機金属化学蒸着法(Metal Organic Chemical Vapor Deposition、以下、MOCVD法という。)により作製するための材料として好適な有機ニッケル化合物及び該化合物を用いたニッケル含有膜の製造方法に関するものである。更に詳しくは、高誘電体膜をゲート絶縁膜として使用する際に、その特長を引出すために必要とされるメタルゲート電極として有望視されているニッケルメタル膜、ニッケルシリサイド膜などのニッケル含有膜や、バリアメタルや拡散防止膜として有望視されているニッケルナイトライド膜などのニッケル含有膜を作製するための材料として好適な有機ニッケル化合物及び該化合物を用いたニッケル含有膜の製造方法に関するものである。   The present invention relates to an organic nickel compound suitable as a material for producing a nickel-containing film by metal organic chemical vapor deposition (hereinafter referred to as MOCVD method), and production of a nickel-containing film using the compound. It is about the method. More specifically, when a high dielectric film is used as a gate insulating film, a nickel-containing film such as a nickel metal film, a nickel silicide film, etc. The present invention relates to an organic nickel compound suitable as a material for producing a nickel-containing film such as a nickel nitride film, which is considered promising as a barrier metal or a diffusion prevention film, and a method for producing a nickel-containing film using the compound. .

近年、論理回路、RAM(Random Access Memory)、EPROM(Erasable Programmable Read Only Memory)、LCD(Liquid Crystal Display)等の半導体デバイスの高速化、高集積化、多種混載化が急速に進んでいる。このような半導体デバイスのMOS(Metal Oxide Semiconnductor)構造におけるゲート絶縁膜やトンネル絶縁膜等の絶縁膜には、SiO2よりなる絶縁膜が用いられていた。図1はMOS構造を有するn-チャネル-MOSトランジスタの断面構成図である。このn-チャネル-MOSトランジスタは、基板10中に間隔をあけてn型領域を2つ形成してソース領域10a及びドレイン領域10bとし、このソース領域10a及びドレイン領域10bの間をチャネル領域10cとする。チャネル領域10c直上にはゲート絶縁膜11が、更にゲート絶縁膜11の上にゲート電極12が形成される。またソース領域10a直上にソース電極14が、ドレイン領域10b直上にドレイン電極15がそれぞれ形成され、両端にフィールド酸化膜13を備えることで、トランジスタとして機能する。
しかしながら、半導体デバイスの微細化に伴って、ゲート絶縁膜やトンネル絶縁膜の薄膜化が進行すると、量子トンネル効果によって絶縁膜を透過して流れ出てしまうリーク電流が増大し、消費電力と発熱が増大するという難点が顕在化する問題点があった。
In recent years, semiconductor devices such as logic circuits, RAM (Random Access Memory), EPROM (Erasable Programmable Read Only Memory), LCD (Liquid Crystal Display), and the like have been rapidly increased, integrated, and mixedly developed. An insulating film made of SiO 2 has been used as an insulating film such as a gate insulating film or a tunnel insulating film in a MOS (Metal Oxide Semiconductor) structure of such a semiconductor device. FIG. 1 is a cross-sectional configuration diagram of an n-channel-MOS transistor having a MOS structure. In this n-channel-MOS transistor, two n-type regions are formed in the substrate 10 with a space therebetween to form a source region 10a and a drain region 10b, and a channel region 10c and a region between the source region 10a and the drain region 10b are formed. To do. A gate insulating film 11 is formed immediately above the channel region 10c, and a gate electrode 12 is further formed on the gate insulating film 11. Further, the source electrode 14 is formed immediately above the source region 10a, the drain electrode 15 is formed directly above the drain region 10b, and the field oxide film 13 is provided at both ends, thereby functioning as a transistor.
However, as gate devices and tunnel insulating films become thinner with the miniaturization of semiconductor devices, the leakage current that flows through the insulating film due to the quantum tunnel effect increases, resulting in increased power consumption and heat generation. There was a problem that the difficulty of doing became obvious.

かかる難点を解消するために、SiO2よりも誘電率の高い絶縁膜(以下、High−k材料という。)をゲート絶縁膜等として用い、ゲート絶縁膜等の物理膜厚を厚くすることが検討されている。このようなHigh−k材料として、その高い誘電率、シリコンとの高い反応自由エネルギー、高いバンドギャップ等の特性から酸化ハフニウム、ハフニウムアルミネート、酸化ジルコニウムが近年注目されている。
また、このようなHigh−k材料は、従来よりゲート電極に使われていたポリシリコンとの相性に問題があるため、このポリシリコンに代わる新しい材料が模索されている。ポリシリコンに代わる材料としては、金属膜、金属シリサイド膜、あるいはこれらの積層構造が検討されている(例えば、特許文献1参照。)。
特開平11−145407号公報(段落[0022]、[0023])
In order to solve this difficulty, it is considered to use an insulating film having a dielectric constant higher than that of SiO 2 (hereinafter referred to as “High-k material”) as a gate insulating film, etc., and to increase the physical film thickness of the gate insulating film or the like. Has been. As such a High-k material, hafnium oxide, hafnium aluminate, and zirconium oxide have recently attracted attention because of their high dielectric constant, high reaction free energy with silicon, and high band gap.
Moreover, since such a High-k material has a problem in compatibility with polysilicon conventionally used for a gate electrode, a new material that replaces this polysilicon is being sought. As a material to replace polysilicon, a metal film, a metal silicide film, or a laminated structure thereof has been studied (for example, see Patent Document 1).
Japanese Patent Laid-Open No. 11-145407 (paragraphs [0022] and [0023])

このうちゲート電極に使用される金属膜として、Niメタル膜、Niシリサイド膜等のNi含有膜が検討されているが、このNi含有膜を作製する際に、どのような化合物を用いればゲート電極として優れた膜を作製することができるのか、膜形成材料の選定は成されていなかった。
また、TiNやTaN等に代わる新たなバリアメタル、拡散防止膜に使用される金属含有膜としてNiナイトライド膜が検討されているが、Niナイトライド膜を形成する材料の選定も成されていなかった。
Among these, Ni-containing films such as Ni metal films and Ni silicide films have been studied as metal films used for the gate electrode. When this Ni-containing film is produced, any compound can be used as the gate electrode. As a result, selection of a film-forming material has not been made.
In addition, Ni nitride films have been studied as new barrier metals in place of TiN, TaN, etc., and metal-containing films used for diffusion prevention films, but materials for forming Ni nitride films have not been selected. It was.

本発明の目的は、高い平坦性の膜を形成することができる、有機ニッケル化合物及び該化合物を用いたニッケル含有膜の製造方法を提供することにある。
本発明の別の目的は、不純物含有量の少ない膜を形成することができる、有機ニッケル化合物及び該化合物を用いたニッケル含有膜の製造方法を提供することにある。
An object of the present invention is to provide an organic nickel compound and a method for producing a nickel-containing film using the compound, which can form a highly flat film.
Another object of the present invention is to provide an organic nickel compound and a method for producing a nickel-containing film using the compound, which can form a film with a small impurity content.

請求項1に係る発明は、次の式(1)に示される有機ニッケル化合物である。
Ni(R-Cp)2 …… (1)
但し、式中のCpはシクロペンタジエニル基を示し、Rは水素又は炭素数が1〜4の直鎖若しくは分岐状アルキル基をそれぞれ示す。
The invention according to claim 1 is an organonickel compound represented by the following formula (1).
Ni (R-Cp) 2 (1)
In the formula, Cp represents a cyclopentadienyl group, and R represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms.

請求項1に係る発明では、上記式(1)で表される有機ニッケル化合物は、価数が2価のニッケルを中心金属とし、Rを有するシクロペンタジエニル基が2つ配位した化合物である。2価のニッケル金属に配位するシクロペンタジエニル基に水素や特定のアルキル基を導入することで、分子の多量体化を防ぐことができるため、高い平坦性の膜を形成することができる。また、本発明の有機ニッケル化合物は配位不飽和であるため、この化合物を用いることで、不純物含有量の少ない膜を形成することができる。   In the invention according to claim 1, the organonickel compound represented by the above formula (1) is a compound in which two cyclopentadienyl groups having R are coordinated with nickel having a valence of 2 as a central metal. is there. By introducing hydrogen or a specific alkyl group into the cyclopentadienyl group coordinated to the divalent nickel metal, it is possible to prevent molecular multimerization, so that a highly flat film can be formed. . Further, since the organonickel compound of the present invention is coordination unsaturated, a film having a small impurity content can be formed by using this compound.

請求項2に係る発明は、請求項1記載の有機ニッケル化合物を用いてMOCVD法によりニッケル含有膜を作製することを特徴とするニッケル含有膜の製造方法である。   The invention according to claim 2 is a method for producing a nickel-containing film, characterized in that a nickel-containing film is produced by MOCVD using the organonickel compound according to claim 1.

本発明の有機ニッケル化合物は、Ni(R-Cp)2で表される有機ニッケル化合物である。上記構造を有する本発明の有機ニッケル化合物は分子の多量体化を防ぐことができるため、高い平坦性の膜を形成することができる。また、本発明の有機ニッケル化合物は配位不飽和であるため、この化合物を用いることで、不純物含有量の少ない膜を形成することができる。 The organonickel compound of the present invention is an organonickel compound represented by Ni (R—Cp) 2 . Since the organonickel compound of the present invention having the above structure can prevent molecular multimerization, a highly flat film can be formed. In addition, since the organonickel compound of the present invention is coordination-unsaturated, a film having a small impurity content can be formed by using this compound.

次に本発明を実施するための最良の形態を説明する。
本発明の有機ニッケル化合物は、次の式(1)に示される化合物である。
Ni(R-Cp)2 …… (1)
但し、式中のCpはシクロペンタジエニル基を示し、Rは水素又は炭素数が1〜4の直鎖若しくは分岐状アルキル基をそれぞれ示す。
Next, the best mode for carrying out the present invention will be described.
The organonickel compound of the present invention is a compound represented by the following formula (1).
Ni (R-Cp) 2 (1)
In the formula, Cp represents a cyclopentadienyl group, and R represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms.

上記式(1)で表される有機ニッケル化合物は、価数が2価のニッケルを中心金属とし、Rを有するシクロペンタジエニル基が2つ配位した化合物である。2価のニッケル金属に配位するシクロペンタジエニル基に水素や特定のアルキル基を導入することで、分子の多量体化を防ぐことができるため、高い平坦性の膜を形成することができる。また、本発明の有機ニッケル化合物は配位不飽和であるため、この化合物を用いることで、不純物含有量の少ない膜を形成することができる。   The organic nickel compound represented by the above formula (1) is a compound in which two cyclopentadienyl groups having R are coordinated with a bivalent nickel as a central metal. By introducing hydrogen or a specific alkyl group into the cyclopentadienyl group coordinated to the divalent nickel metal, it is possible to prevent molecular multimerization, so that a highly flat film can be formed. . Further, since the organonickel compound of the present invention is coordination unsaturated, a film having a small impurity content can be formed by using this compound.

上記式(1)で表される本発明の有機ニッケル化合物としては、Ni(HCp)2、Ni(MeCp)2、Ni(EtCp)2、Ni(n-PrCp)2、Ni(i-PrCp)2、Ni(n-BuCp)2、Ni(i-BuCp)2、Ni(s-BuCp)2、Ni(t-BuCp)2である。なお、Meはメチル基、Etはエチル基、n-Prはノルマルプロピル基、i-Prはイソプロピル基、n-Buはノルマルブチル基、i-Buはイソブチル基、s-Buはセカンダリーブチル基、t-Buはターシャリーブチル基である。 Examples of the organic nickel compound of the present invention represented by the above formula (1) include Ni (HCp) 2 , Ni (MeCp) 2 , Ni (EtCp) 2 , Ni (n-PrCp) 2 , Ni (i-PrCp). 2 , Ni (n-BuCp) 2 , Ni (i-BuCp) 2 , Ni (s-BuCp) 2 , and Ni (t-BuCp) 2 . Me is a methyl group, Et is an ethyl group, n-Pr is a normal propyl group, i-Pr is an isopropyl group, n-Bu is a normal butyl group, i-Bu is an isobutyl group, s-Bu is a secondary butyl group, t-Bu is a tertiary butyl group.

本発明の有機ニッケル化合物、例えばRをエチル基としたNi(EtCp)2を製造する方法としては、先ず、無水塩化ニッケル(II)を無水ジエチルエーテル等の有機溶媒に懸濁させ、この懸濁液に氷冷下で30分間〜1時間程度かけてゆっくりエチルリチウムシクロペンタジエンを添加する。次に、エチルリチウムシクロペンタジエンを添加した懸濁液をろ過し、得られたろ液を減圧濃縮し、更に再結晶することによりNi(EtCp)2が得られる。例えば、エチルリチウムシクロペンタジエンをメチルリチウムシクロペンタジエンに代えることでNi(MeCp)2が、リチウムシクロペンタジエンに代えることでNi(HCp)2がそれぞれ得られる。 As a method for producing the organic nickel compound of the present invention, for example, Ni (EtCp) 2 having R as an ethyl group, first, anhydrous nickel (II) chloride is suspended in an organic solvent such as anhydrous diethyl ether. Ethyllithium cyclopentadiene is slowly added to the solution over ice cooling for 30 minutes to 1 hour. Next, the suspension added with ethyllithium cyclopentadiene is filtered, and the obtained filtrate is concentrated under reduced pressure, and further recrystallized to obtain Ni (EtCp) 2 . For example, Ni (MeCp) 2 can be obtained by replacing ethyllithium cyclopentadiene with methyl lithium cyclopentadiene, and Ni (HCp) 2 can be obtained by replacing with lithium cyclopentadiene.

本発明のニッケル含有膜の製造方法は、上記方法により得られた有機ニッケル化合物を用いてMOCVD法により基材上、例えばシリコン基板上にニッケル含有膜を作製することを特徴とする。本発明の有機ニッケル化合物を用いてMOCVD法によりニッケル含有膜を作製すると、2価のニッケル金属に配位するシクロペンタジエニル基に水素や特定のアルキル基を導入した構造を有する本発明の有機ニッケル化合物は、分子の多量体化を防ぐことができるため、高い平坦性を有するニッケル含有膜が得られる。また、本発明の有機ニッケル化合物は配位不飽和であるため、不純物含有量の少ないニッケル含有膜が得られる。本発明の製造方法により作製されるニッケル含有膜のうち、Niメタル膜やNiシリサイド膜がメタルゲート電極の用途に、Niナイトライド膜がバリアメタルや拡散防止膜の用途にそれぞれ好適である。なおNiシリサイド膜は、Niメタル膜にSiが所定の濃度でドープして形成された膜であってもよい。   The method for producing a nickel-containing film of the present invention is characterized in that a nickel-containing film is produced on a substrate, for example, a silicon substrate, by MOCVD using the organic nickel compound obtained by the above method. When a nickel-containing film is produced by the MOCVD method using the organic nickel compound of the present invention, the organic of the present invention has a structure in which hydrogen or a specific alkyl group is introduced into a cyclopentadienyl group coordinated to a divalent nickel metal. Since nickel compounds can prevent molecular multimerization, a nickel-containing film having high flatness can be obtained. Moreover, since the organonickel compound of the present invention is coordination unsaturated, a nickel-containing film having a small impurity content can be obtained. Of the nickel-containing films produced by the production method of the present invention, the Ni metal film and the Ni silicide film are suitable for use as a metal gate electrode, and the Ni nitride film is suitable for use as a barrier metal and a diffusion prevention film. The Ni silicide film may be a film formed by doping Si into a Ni metal film at a predetermined concentration.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、無水塩化ニッケル(II)200gを無水ジエチルエーテル500mlに懸濁させ、この懸濁液を氷冷下で30分間かけてゆっくりエチルリチウムシクロペンタジエン200gを添加し、懸濁液を24時間冷却しながら攪拌した。次に、エチルリチウムシクロペンタジエンを添加した懸濁液をろ過し、得られたろ液を約399Pa(30torr)、30℃で減圧濃縮することにより固形物を得た。この固形物をN-ヘキサン100ccで再結晶することにより、Ni(EtCp)2の精製物を6g得た。
<実施例2>
エチルリチウムシクロペンタジエンをメチルリチウムシクロペンタジエンに代えた以外は実施例1と同様にして合成を行い、Ni(MeCp)2の精製物を得た。
<実施例3>
エチルリチウムシクロペンタジエンをイソプロピルリチウムシクロペンタジエンに代えた以外は実施例1と同様にして合成を行い、Ni(i-PrCp)2の精製物を得た。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, 200 g of anhydrous nickel (II) chloride was suspended in 500 ml of anhydrous diethyl ether, and 200 g of ethyllithium cyclopentadiene was slowly added over 30 minutes under ice cooling, and the suspension was cooled for 24 hours. While stirring. Next, the suspension added with ethyllithium cyclopentadiene was filtered, and the obtained filtrate was concentrated under reduced pressure at about 399 Pa (30 torr) at 30 ° C. to obtain a solid. This solid was recrystallized with 100 cc of N-hexane to obtain 6 g of a purified product of Ni (EtCp) 2 .
<Example 2>
Synthesis was performed in the same manner as in Example 1 except that ethyllithium cyclopentadiene was replaced with methyl lithium cyclopentadiene, and a purified product of Ni (MeCp) 2 was obtained.
<Example 3>
Synthesis was performed in the same manner as in Example 1 except that ethyllithium cyclopentadiene was replaced with isopropyl lithium cyclopentadiene, and a purified product of Ni (i-PrCp) 2 was obtained.

<比較例1>
従来よりゲート電極として使用されているポリシリコンを形成するための材料としてヘキサジクロロジシラン(HCD)を用意した。
<比較例2>
従来よりゲート電極として使用されているポリシリコンを形成するための材料としてトリクロロシラン(TCS)を用意した。
<比較例3>
従来よりゲート電極として使用されているポリシリコンを形成するための材料としてジクロロシラン(DCS)を用意した。
<Comparative Example 1>
Hexadichlorodisilane (HCD) was prepared as a material for forming polysilicon conventionally used as a gate electrode.
<Comparative example 2>
Trichlorosilane (TCS) was prepared as a material for forming polysilicon conventionally used as a gate electrode.
<Comparative Example 3>
Dichlorosilane (DCS) was prepared as a material for forming polysilicon conventionally used as a gate electrode.

<比較試験1>
実施例1〜3の有機ニッケル化合物及び比較例1〜3の有機シリコン化合物を形成材料として次に表1に示す成膜条件で基材上にNiメタル膜、ポリシリコン膜をそれぞれ作製した。なお、実施例1〜3の製造方法はMOCVD法により、比較例1〜3の製造方法は熱CVD法により行った。更に、成膜の際の反応ガス種類を実施例1〜3ではN2、H2及びHN=NHに、比較例1ではNH3、H2及びN2に、比較例2ではNH3、H2及びHN=NHに、比較例3ではNH3とした。
<Comparison test 1>
Using the organic nickel compounds of Examples 1 to 3 and the organic silicon compounds of Comparative Examples 1 to 3 as forming materials, Ni metal films and polysilicon films were respectively formed on the substrate under the film forming conditions shown in Table 1. In addition, the manufacturing method of Examples 1-3 was performed by MOCVD method, and the manufacturing method of Comparative Examples 1-3 was performed by thermal CVD method. Further, the reaction gas type in Example 1 to 3 N 2, H 2 and HN = NH during deposition, Comparative Example 1, NH 3, the H 2 and N 2, Comparative Example 2, NH 3, H 2 and HN = NH, and in Comparative Example 3, NH 3 was used.

Figure 2006124743
Figure 2006124743

続いて、以下に示すような成膜時間当たりの膜厚試験及び表面粗さ試験を行った。
(1)成膜時間あたりの膜厚試験
成膜を終えた基材上のNiメタル膜、ポリシリコン膜を断面SEM(走査型電子顕微鏡)像から膜厚を測定した。
(2)表面粗さ試験
成膜を終えた基材上のNiメタル膜、ポリシリコン膜をAFM(原子間力顕微鏡)アナライザーを用いて膜表面における表面粗さが一番高いRtopと一番低いRBottomをそれぞれ測定した。
Subsequently, a film thickness test and a surface roughness test per film formation time as shown below were performed.
(1) Film thickness test per film formation time The film thickness of a Ni metal film and a polysilicon film on a base material after film formation was measured from a cross-sectional SEM (scanning electron microscope) image.
(2) Surface roughness test R top and the highest surface roughness on the film surface of the Ni metal film and the polysilicon film on the substrate after film formation using an AFM (atomic force microscope) analyzer Low R Bottom was measured respectively.

<評価>
実施例1〜3の有機ニッケル化合物及び比較例1〜3の有機シリコン化合物でそれぞれ得られたNiメタル膜、ポリシリコン膜の結果を表2にそれぞれ示す。なお、表2中の表面粗さは、表面粗さ試験で測定したRTopとRBottomの差を示す。
<Evaluation>
Table 2 shows the results of the Ni metal films and the polysilicon films obtained with the organic nickel compounds of Examples 1 to 3 and the organic silicon compounds of Comparative Examples 1 to 3, respectively. The surface roughness in Table 2 indicates the difference between R Top and R Bottom measured in the surface roughness test.

Figure 2006124743
Figure 2006124743

表2より明らかなように、比較例1〜3の有機シリコン化合物を用いて形成したポリシリコン膜は、成膜時間に対する膜厚が不均一であり、十分な膜厚も得られていなかった。また、表面粗さは、RTopとRBottomの差が大きく、平坦性の悪いポリシリコン膜が得られていた。これは成膜の途中でパーティクルが発生して、成膜室へ至るまでの配管に閉塞が生じたため、膜厚や表面粗さが不均一になったのではないかと考えられる。 As is apparent from Table 2, the polysilicon film formed using the organic silicon compounds of Comparative Examples 1 to 3 had a non-uniform film thickness with respect to the film formation time, and a sufficient film thickness was not obtained. Further, the surface roughness was large between R Top and R Bottom , and a polysilicon film with poor flatness was obtained. This is probably because particles were generated in the middle of the film formation and the piping leading to the film formation chamber was clogged, resulting in non-uniform film thickness and surface roughness.

一方、実施例1〜3の有機ニッケル化合物を用いて形成したNiメタル膜は、成膜時間に比例して膜厚が厚くなる結果が得られており、成長速度が安定していることが判る。また、表面粗さは、RTopとRBottomの差が非常に小さく、高い平坦性を有するNiメタル膜が得られていた。また、実施例1〜3でそれぞれ作製したNiメタル膜を元素分析したところ、膜中に含まれる炭素不純物は数ppm以下であり、純度の高い膜が得られていた。これらの結果から実施例1〜3の有機ニッケル化合物は、ゲート電極として従来のポリシリコン膜に代わるNiメタル膜を作製するために好適な材料であることが判った。 On the other hand, the Ni metal film formed using the organic nickel compounds of Examples 1 to 3 has a result that the film thickness increases in proportion to the film formation time, and it can be seen that the growth rate is stable. . Further, the difference in surface roughness between R Top and R Bottom was very small, and a Ni metal film having high flatness was obtained. Moreover, when the Ni metal film produced in each of Examples 1 to 3 was subjected to elemental analysis, the carbon impurity contained in the film was several ppm or less, and a highly pure film was obtained. From these results, it was found that the organic nickel compounds of Examples 1 to 3 are suitable materials for producing a Ni metal film as a gate electrode in place of the conventional polysilicon film.

n-チャネル-MOSトランジスタの断面構造図。The cross-section figure of an n-channel-MOS transistor.

符号の説明Explanation of symbols

10 基板
10a ソース領域
10b ドレイン電極
10c チャネル領域
11 ゲート絶縁膜
12 ゲート電極
13 フィールド酸化膜
14 ソース電極
15 ドレイン電極
DESCRIPTION OF SYMBOLS 10 Substrate 10a Source region 10b Drain electrode 10c Channel region 11 Gate insulating film 12 Gate electrode 13 Field oxide film 14 Source electrode 15 Drain electrode

Claims (2)

次の式(1)に示される有機金属化学蒸着用有機ニッケル化合物。
Ni(R-Cp)2 …… (1)
但し、式中のCpはシクロペンタジエニル基を示し、Rは水素又は炭素数が1〜4の直鎖若しくは分岐状アルキル基をそれぞれ示す。
An organonickel compound for organometallic chemical vapor deposition represented by the following formula (1).
Ni (R-Cp) 2 (1)
In the formula, Cp represents a cyclopentadienyl group, and R represents hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms.
請求項1記載の有機ニッケル化合物を用いて有機金属化学蒸着法によりニッケル含有膜を作製することを特徴とするニッケル含有膜の製造方法。
A method for producing a nickel-containing film, comprising producing a nickel-containing film by an organic metal chemical vapor deposition method using the organonickel compound according to claim 1.
JP2004312034A 2004-10-27 2004-10-27 Organic nickel compound for organo-metallic chemical vapor deposition, and method for producing nickel-containing film by using the compound Withdrawn JP2006124743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312034A JP2006124743A (en) 2004-10-27 2004-10-27 Organic nickel compound for organo-metallic chemical vapor deposition, and method for producing nickel-containing film by using the compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312034A JP2006124743A (en) 2004-10-27 2004-10-27 Organic nickel compound for organo-metallic chemical vapor deposition, and method for producing nickel-containing film by using the compound

Publications (1)

Publication Number Publication Date
JP2006124743A true JP2006124743A (en) 2006-05-18

Family

ID=36719763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312034A Withdrawn JP2006124743A (en) 2004-10-27 2004-10-27 Organic nickel compound for organo-metallic chemical vapor deposition, and method for producing nickel-containing film by using the compound

Country Status (1)

Country Link
JP (1) JP2006124743A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081797A1 (en) * 2007-12-25 2009-07-02 Showa Denko K.K. Material for formation of nickel-containing film, and method for production thereof
WO2013046157A1 (en) * 2011-09-27 2013-04-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Nickel bis diazabutadiene precursors, their synthesis, and their use for nickel containing film depositions
US9109281B2 (en) 2008-06-25 2015-08-18 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films
KR20160057445A (en) * 2013-10-02 2016-05-23 다나카 기킨조쿠 고교 가부시키가이샤 METHOD FOR PRODUCING NICKEL THIN FILM ON Si SUBSTRATE BY CHEMICAL VAPOR DEPOSITION METHOD, AND METHOD FOR PRODUCING Ni SILICIDE THIN FILM ON Si SUBSTRATE
CN109468909A (en) * 2018-10-26 2019-03-15 河海大学 A kind of connected section bridge anti-freezing system of the bridge tunnel based on semiconductor laser technique
WO2019078195A1 (en) * 2017-10-19 2019-04-25 株式会社村田製作所 Cyclopentadienyl nickel complex compound

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009081797A1 (en) * 2007-12-25 2009-07-02 Showa Denko K.K. Material for formation of nickel-containing film, and method for production thereof
US9109281B2 (en) 2008-06-25 2015-08-18 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films
WO2013046157A1 (en) * 2011-09-27 2013-04-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Nickel bis diazabutadiene precursors, their synthesis, and their use for nickel containing film depositions
US9206507B2 (en) 2011-09-27 2015-12-08 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Nickel bis diazabutadiene precursors, their synthesis, and their use for nickel containing films depositions
KR20160057445A (en) * 2013-10-02 2016-05-23 다나카 기킨조쿠 고교 가부시키가이샤 METHOD FOR PRODUCING NICKEL THIN FILM ON Si SUBSTRATE BY CHEMICAL VAPOR DEPOSITION METHOD, AND METHOD FOR PRODUCING Ni SILICIDE THIN FILM ON Si SUBSTRATE
KR102066112B1 (en) * 2013-10-02 2020-01-14 다나카 기킨조쿠 고교 가부시키가이샤 METHOD FOR PRODUCING NICKEL THIN FILM ON Si SUBSTRATE BY CHEMICAL VAPOR DEPOSITION METHOD, AND METHOD FOR PRODUCING Ni SILICIDE THIN FILM ON Si SUBSTRATE
WO2019078195A1 (en) * 2017-10-19 2019-04-25 株式会社村田製作所 Cyclopentadienyl nickel complex compound
US11332487B2 (en) 2017-10-19 2022-05-17 Murata Manufacturing Co., Ltd. Cyclopentadienyl nickel complex compound
CN109468909A (en) * 2018-10-26 2019-03-15 河海大学 A kind of connected section bridge anti-freezing system of the bridge tunnel based on semiconductor laser technique

Similar Documents

Publication Publication Date Title
US11637014B2 (en) Methods for selective deposition of doped semiconductor material
US9994954B2 (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
US8017184B2 (en) β-diketiminate ligand sources and metal-containing compounds thereof, and systems and methods including same
TWI718220B (en) Tantalum compound, integrated circuit device and method of fabricating the same
JP4759126B2 (en) Organometallic compound for chemical vapor deposition, method for producing organometallic compound for chemical vapor deposition, noble metal thin film, and chemical vapor deposition method for noble metal compound thin film
TWI415855B (en) Hafnium-based compound, hafnium-based film-forming material, and hafnium-based film forming method
TWI557773B (en) Method of forming seed layer and method of forming silicon-containing thin film
JP2016540038A (en) Metal complexes containing amidoimine ligands
JP3598055B2 (en) Method for producing bis (alkylcyclopentadienyl) ruthenium and method for producing bis (alkylcyclopentadienyl) ruthenium and ruthenium thin film or ruthenium compound thin film produced by the method
US8309174B2 (en) Heteroleptic iridium precursors to be used for the deposition of iridium-containing films
KR20110116254A (en) Antimony and germanium complexes useful for cvd/ald of metal thin films
CN101248212A (en) Plasma treatment of hafnium-containing materials
US9269900B2 (en) Methods of depositing phase change materials and methods of forming memory
US20170117142A1 (en) Organic Germanium Amine Compound and Method for Depositing Thin Film Using the Same
TW201317245A (en) Ruthenium compound with excellent step coverage, and thin film formed by depositing the same
JP2007023388A (en) Production method and use of zirconium nitride coating film
KR101308572B1 (en) Metal organic precursor for deposition of silicon containing thin film
KR101959519B1 (en) transition metal compound, their preparation and composition for depositing a transition metal-containing thin film comprising the same
JP2006124743A (en) Organic nickel compound for organo-metallic chemical vapor deposition, and method for producing nickel-containing film by using the compound
US8558032B2 (en) Methods of forming a tellurium alkoxide and methods of forming a mixed halide-alkoxide of tellurium
JP2006124291A (en) Organic nickel compound and method for producing nickel-containing film by using the compound
JP2006063065A (en) Alkyltetrazole derivative and method for producing nitrogen-containing film by using the same derivative and method for refining alkyltetrazole derivative
KR102075418B1 (en) Method of manufacturing a nickel-containing thin film and a cobalt-containing thin film manufactured thereby
CN117865997A (en) Mixed hafnium amide complex and preparation method and application thereof
JP2005126334A (en) Organometallic compound and solution raw material and meal oxide thin film containing the same compound

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108