JP2006122232A - 手術用顕微鏡 - Google Patents

手術用顕微鏡 Download PDF

Info

Publication number
JP2006122232A
JP2006122232A JP2004312821A JP2004312821A JP2006122232A JP 2006122232 A JP2006122232 A JP 2006122232A JP 2004312821 A JP2004312821 A JP 2004312821A JP 2004312821 A JP2004312821 A JP 2004312821A JP 2006122232 A JP2006122232 A JP 2006122232A
Authority
JP
Japan
Prior art keywords
observation
optical system
distance
circuit
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004312821A
Other languages
English (en)
Other versions
JP4668581B2 (ja
Inventor
Koji Yasunaga
浩二 安永
Kenji Hirose
憲志 廣瀬
Yasushi Namii
泰志 浪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004312821A priority Critical patent/JP4668581B2/ja
Publication of JP2006122232A publication Critical patent/JP2006122232A/ja
Application granted granted Critical
Publication of JP4668581B2 publication Critical patent/JP4668581B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

【課題】この発明は、簡易な構成で、且つ、広い範囲の高精度な観察を実現し得るようにして、使い勝手の向上を図ることにある。
【解決手段】オートフォーカス機構を介して術部Qの光学像を取得する焦準可変対物光学系9の焦点を自動合焦すると共に、その被写界深度範囲内において、オートフォーカス機構による、焦準可変対物光学系9の解像力が最も高い焦点位置を、術部Qから所定距離、乖離した位置に可変設定するように構成した。
【選択図】 図2

Description

この発明は、例えば脳神経外科等で微細部位の対象物を観察もしくは撮像するのに用いられる手術用顕微鏡に関する。
一般に、脳神経外科領域においては、術部を拡大観察するために手術用顕微鏡が使用されている。このような手術用顕微鏡は、術部を立体観察するための立体光学系を備えた鏡体(光学ユニット)が配される顕微鏡部と、この顕微鏡部を術部に対し移動可能に支持する架台より構成されている。
また、近年、術部をTVカメラ等の撮像部により立体撮影し、これにより得られる画像により立体観察を行う手術用顕微鏡も種々提案されている(例えば,特許文献1参照。)。
ところで、このような手術用顕微鏡にあっては、肉眼観察、画像観察の両方式とも、術部を拡大観察(撮影)するための対物光学系と、術部にピントを合わせるためのフォーカス(合焦)機構が備えられている。このピント合わせに構成に関しては、手術中のピント合わせのわずらわしさを軽減するために、いわゆるオートフォーカス(自動合焦)機構を備えたものが提案されている(例えば,特許文献2、特許文献3参照。)。
ここで、オートフォーカス機構によるピントを合わせの原理について、図13、図14、図15を参照して説明する。
即ち、手術用顕微鏡の鏡体70には、対物レンズ71が配される。この対物レンズ71の左右の観察光路72L,72Rは、その光軸が手術用顕微鏡の焦点位置Pで一致され、この焦点位置Pが左右の観察光路72L,72Rの解像力の最高の位置となる(図13参照)。このようなオートフォーカス機構は、一般的に、焦点位置Pが被写体(測距対象)位置に一致するように制御されている。
ここで、対物レンズ71から焦点位置Pまでの距離Sは、いわゆる焦点距離となる。この手術用顕微鏡の焦点位置Pに対して、図14に示すように観察物体が前後方向にずれた場合(ピントズレ)と解像力の関係を有する。
このように解像力の最高の位置が焦点位置P(=焦点距離S)と設定され、実際に手術において、観察者によりピントが合っていると認識できる範囲である被写界深度Wが、焦点位置P(焦点距離S)を中心として略対称に配分されるように設定される。
ところで、このような手術用顕微鏡を用いる手術においては、一般的に図15に示すように小さい開口部を通して穴の底部を観察したりする使用形態が多く、例えば観察点である術部Qにピントを合わせた場合(P=Q)、術部Qより浅い部分(手前側)は、被写界深度Wの半分の範囲(W/2)までピントがあって見えることになる。言い換えると、観察点より深い方向にもW/2の被写界深度があるが、この範囲は、観察できない領域(必要ない領域)となる。すなわち、従来の手術用顕微鏡を使った手術においては、被写界深度Wの半分を有効に使用した観察が行われている。
特開2003−272760号公報 特開平8−136813号公報 特開平5−107447号公報
しかしながら、上記手術用顕微鏡では、被写界深度の半分しか有効に使われていないために、広い範囲の観察を行う場合、その調整の頻度が多く、調整に多くの時間を費やすために、その使い勝手が劣るという問題を有する。
この発明は上記の事情に鑑みてなされたもので、簡易な構成で、且つ、広い範囲の高精度な観察を実現し得るようにして、使い勝手の向上を図った手術用顕微鏡を提供することを目的とする。
この発明は、対象物の光学像を取得する一対の光学系が配される顕微鏡部と、前記顕微鏡部の一対の光学系の焦点を合焦する自動合焦手段と、前記前記一対の光学系の被写界深度範囲内において、前記自動合焦手段による、前記一対の光学系の解像力が最も高い焦点位置を、前記対象物から所定距離、乖離した位置に可変設定する制御手段とを備えて手術用顕微鏡を構成した。
上記構成によれば、手術作業を行うにあたり、制御手段により、焦点位置を、被写界深度Wが深くなる対象物から乖離した所定の位置に設定し、その前後方向に一度に観察可能な観察範囲を広げることにより、広い範囲における術部等の対象物を特定することが可能となる。これにより、手術において、例えば作業位置(観察対象位置)が前後方向に変化した場合においても、ピント調整頻度の軽減が図れ、最小限のピント調整で容易に対象物の特定が可能となるため、使い勝手の向上が図れて、手術作業の迅速化を図ることが可能となる。
以上述べたように、この発明によれば、簡易な構成で、且つ、広い範囲の高精度な観察を実現し得るようにして、使い勝手の向上を図った手術用顕微鏡を提供することができる。
以下、この発明の実施の形態について、図面を参照して詳細に説明する。
(第1の実施の形態)
図1は、この発明の第1の実施の形態に係る手術用顕微鏡を光学観察構成に適用した外観構成を示すもので、架台部1には、ベース1aが、例えば臨床室の床面を移動自在に設けられ、このベース1a上には、図示しない顕微鏡用電源部の配される支柱1bが立設される。
この架台部1の支柱1bの上端には、第1アーム2の一端が鉛直な軸0a回りに回転自在に取り付けられ、この第1アーム2には、図示しない顕微鏡用光源が内蔵される。この第1アーム2の他端には、例えばリンク機構で構成される第2アーム3が鉛直な軸0b回りに回転自在で、水平な軸0cを中心に上下移動操作可能に連結される。この第2アーム3の先端には、俯仰アーム4の一端が軸0dまわりに回転自在で、軸0e及び0fまわりに回転可能に取付けられる。
上記軸Oa〜Ofには、それぞれの軸回りの回転を固定/解除可能な図示しない電磁ブレーキが配設される。
また、上記俯仰アーム4には、顕微鏡部7が配設される。この顕微鏡部7は、鏡体部5に観察鏡筒6が組付けられて構成される。このうち鏡体部5には、操作用ハンドル8が設けられ、このハンドル8を介して空間的に自由な位置に移動可能に配される。このハンドル8には、後述するロックフリースイッチ8a(図4)が設けられ、このロックフリースイッチ8aの操作に応動して上記電磁ブレーキ(図示せず)が動作制御されて上記鏡体部5の移動/固定の切り替えが行われる。
さらに、上記顕微鏡部7には、図示しない照明光学系が内蔵され、この照明光学系(図示せず)には、上記第1アーム2内に設けられた上記顕微鏡用光源(図示せず)からの照明光が図示しないライトガイド等光伝達手段によって導かれ、該照明光を対象物体である術部等の対象物に照射する。
上記顕微鏡部7の端部には、図2に示ように光軸23を有する焦点距離可変対物光学系9が配される。この焦点距離可変対物光学系9は、図示しないレンズ移動手段により焦点距離を変化させ得るレンズ群を備え、詳細を後述する入力手段、例えばフットスイッチ等の入力スイッチ26(図4参照)の操作に応動して上記レンズ移動手段(図示せず)を駆動制御し、上記レンズ群(図示せず)のレンズ間隔を変化させて焦点距離が可変設定される。
焦点距離可変対物光学系9は、その光軸23に対応して左右一対の観察光軸15L,15Rが形成され、この観察光軸15L,15R上には、左右一対の変倍光学系10L,10Rが配される。この変倍光学系10L,10Rは、図示しないレンズ移動手段が設けられ、このレンズ移動手段(図示せず)を介して、そのレンズ群の間隔が可変調整されて観察倍率が可変設定される。ここで、上記左右一対の観察光軸15L,15Rは、それぞれの解像力が最高となる位置が上記光軸23上で一致され、この位置が焦点位置Pを形成する。
また、観察鏡筒6内には、左右一対の結像レンズ11L,11R、立体接眼光学系を構成する左右一対の接眼レンズ12L,12Rが、上記左右一対の変倍光学系10L,10Rに対応して順に設けられる。
上記鏡体部5には、オートフォーカス機構を構成する赤外投影指標発光用の赤外発光素子13が発光光学系14及びミラー16を介して上記焦点距離可変対物光学系9の光軸23上に配設される。これにより、赤外発光素子13から発光された赤外光は、発光光学系14、ミラー16を介して焦点距離可変対物光学系9の光軸23に導かれて術部Qに投影される。このオートフォーカス機構においては、赤外発光素子13で発光した赤外光を、術部Qに照射するアクティブ方式を採用していることで、目的位置へ焦点移動を迅速に行うことができる。
また、上記鏡体部5の赤外発光素子13を避けた側方位置には、術部Qからの赤外光の反射光を受光する光電変換素子18が受光光学系17を介して配設される。そして、受光光学系17の中心軸(受光光軸22)と、左側の観察光軸15Lとが交差する位置には、ダイクロイックプリズム19が配設される。このダイクロイックプリズム19は、その反射面20において可視光を全透過し、赤外光を受光光学系17側へ全反射する。ここで、焦点位置Pは、上記左右一対の観察光軸15L,15Rのピント位置及び交点に一致されると共に、上記光電変換素子18上の基準位置Tが光学的に共役な位置関係に設定されている。
このように構成したオートフォーカス機構は、図3に示すように焦点位置P(左右一対の観察光軸15L、15Rのピント位置および交点)より、常に距離Dほど遠点側に離れた乖離位置Fが観察しようとする対象物(手術においては術部Q)に一致するよう作動される。
ここで、図3中22及び22′は、焦点位置Pと乖離位置Fにおける受光光軸を示し、受光光軸22が上記観察光路15Lと一部同一となる。そして、上記光電変換素子18上の位置T′は、乖離位置Fと光学的に共役となる関係の位置となる。また、光電変換素子18の(焦点位置Pと共役な基準)位置Tと位置T′の距離Δdは、物体側の距離Dに対応される。この距離Dは、後述する測距演算回路25(図4参照)を介して、例えば焦点位置Pから遠方に被写界深度範囲Wの1/4ずらした位置に設定される。
次に、顕微鏡制御系について図4を参照して説明する。即ち、上記入力スイッチ26には、例えば図示しない(マニュアル)焦準、変倍、オートフォーカス操作子が設けられ、その各出力端には、変倍手段を構成する変倍駆動回路27、焦準手段を構成する焦準駆動回路29、自動合焦手段における制御手段を構成する測距演算回路25の入力端が接続される。変倍駆動回路27は、その出力端が変倍駆動モータ28に接続され、上記入力スイッチ26からの操作信号に基づいて駆動信号を生成して変倍駆動モータ28に出力する。変倍駆動モータ28は、駆動信号に応動して上記変倍光学系10L,10Rにおける図示しないレンズ移動手段を駆動する。
上記変倍駆動モータ28の出力部には、エンコーダ24が設けられ、このエンコーダ24には、倍率検出回路31が接続される。エンコーダ24は、変倍駆動モータ28の駆動量を検出して倍率検出回路31に出力する。倍率検出回路31は、上記測距演算回路25に接続され、エンコーダ24からの検出信号に基づいて変倍光学系10におけるレンズ変位に対応する観察倍率信号を生成して測距演算回路25に出力し、上記変倍光学系10L,10Rを可変制御する。
また、焦準駆動回路29は、焦準駆動モータ30に接続され、上記入力スイッチ26からの操作信号に基づいて駆動信号を生成して焦準駆動モータ30を駆動制御する。この焦準駆動モータ30は、駆動信号に基づいて上記焦点距離可変対物光学系9の図示しないレンズ移動手段を駆動制御する。
上記測距演算回路25には、ロックフリースイッチ8aが入力回路21を介して接続され、この入力回路21には、上記電磁ブレーキ(図示せず)に接続されるブレーキ駆動回路32が接続される。入力回路21は、ロックフリースイッチ8aが押圧操作されたオン状態で、ブレーキ駆動回路32に駆動信号を出力して上記電磁ブレーキ(図示せず)を駆動制御してロックフリースイッチ8aの押圧操作が解除されてオフされると、測距演算回路25にオフ信号を出力する。
また、測距演算回路25には、測距手段を構成する発光回路35及び受光回路33が接続される。このうち発光回路35は、上記ロックフリースイッチ8a及び入力スイッチ26が操作されて各操作信号が測距演算回路25に入力されると、該測距演算回路25から駆動信号が入力される。すると、発光回路35は、駆動信号に応動して上記赤外発光素子13に発光信号を出力して、該赤外発光素子13を点灯駆動する。他方の受光回路33は、上記光電変換素子18からの出力を受けて増幅処理を行う駆動回路と増幅回路から構成され、光電変換素子18からの出力に基づいて距離情報信号を生成して測距演算回路25に出力する。
さらに、測距演算回路25には、上記焦準駆動回路29の入力端が接続される。測距演算回路25は、上述した観察倍率信号、距離情報信号、被写界深度データに基づいて焦準信号を生成して焦準駆動回路29に出力する。焦準駆動回路29は、入力した制御駆動信号に基づいて上記焦準駆動モータ30を駆動制御して上記焦点距離可変対物光学系9の図示しないレンズ移動手段を駆動する。
また、測距演算回路25には、記憶手段であるメモリ34が接続され、該メモリ34には、観察倍率に対応した被写界深度データが記憶される。
上記構成において、術部Qの立体観察を行う場合には、顕微鏡部7に内蔵された図示しない照明光学系により、照明光を術部Qに照射する。すると、術部Qで反射された光は、焦点距離可変対物光学系9、左右一対の変倍光学系10L,10R、左右一対の結像レンズ11L,11R及び左右一対の接眼レンズ12L,12Rを介して術者の眼Eに到達され、立体像として観察される。
ここで、立体像の観察倍率は、入力スイッチ26によって手術に適した所望の値に可変設定される。この倍率設定において、変倍光学系10による変倍操作時、倍率検出回路31において、エンコーダ24の検出値に基づいて鏡体部5の観察倍率が算出され、測距演算回路25に出力される。
次に、術中、観察視野を移動させる場合、術者は、ハンドル8を握り、ロックフリースイッチ8aを押圧操作する。すると、入力回路21及びブレーキ駆動回路32を介して、図示しない電磁ブレーキが解除される。これにより、第1アーム2、第2アーム3、俯仰アーム4の固定が解除され、顕微鏡部7が自在に移動可能になり、術者は、ハンドル8を操作して観察鏡部7を所望の位置に移動させることが可能となる。例えば、観察鏡筒6の接眼レンズ12L,12Rを覗いて、その観察視野の中心に観察対象物が来るように移動操作する。
このように顕微鏡部7を移動させ、視野を目的位置に合わせた後、ロックフリースイッチ8aをオフ操作し、あるいは入力スイッチ26のオートフォーカス操作子を操作すると、オートフォーカスによる焦準調整が行われる。
即ち、ロックフリースイッチ8aを開放してオフ操作すると、入力回路21を介して測距演算回路25に、オフ信号が入力され、あるいは上記入力スイッチ26のオートフォーカス操作子が操作されると、オートフォーカス作動信号が測距演算回路25に入力される。すると、測距演算回路25は、発光回路35に駆動信号を出力し、該発光回路35が、予め設定されている、微小の赤外指標を術部Qに投影すべく、赤外発光素子13を点灯させる。この赤外発光素子13によって発せられた赤外投影指標は、発光光学系14を介してミラー16により、術部Qの方向に反射されて、焦点距離可変対物光学系9を介して術部Qに照射される。この赤外発光素子13は、オートフォーカス作動中、常に連続発光される。
この術部Qで反射された赤外投影指標は、上記焦点距離可変対物光学系9に入射されて、一方の観察光軸15L上に配置されたダイクロイックプリズム19の反射面20に導かれて反射され、受光光学系17を介して光電変換素子18の受光面上に光学像として結像される。光電変換素子18は、入射した光像を光電変換して電気信号を生成し、受光回路33に出力する。
ここで、上記術部Qまでの測距の原理について説明する。即ち、オートフォーカス機構は、図5で示す投光光学系と受光光学系の如く、術部Qが焦点位置Pから大きく離れて(被写界深度W外)、ピントが合っていない状態において、乖離位置Fを術部Qに一致するように移動させるように作動する。ここで、乖離位置F及び術部Qは、受光光軸22′及び22″を有し、光電変換素子18の受光面上の位置T′及び位置T″と共役である。そして、この光電変換素子18上の位置T′と位置T″間の距離Δuは、乖離位置Fと術部Qの距離Uに対応される。
上記受光回路33には、光電変換素子18上のT″位置に対応した出力信号が入力され、入力した信号を信号処理して距離情報信号を生成し、上記測距演算回路25に出力する。すると、測距演算回路25は、先ず倍率検出回路31からの入力される倍率情報信号に対応する被写界深度情報(=現倍率における被写界深度W)をメモリ34から呼び出し、現在の観察倍率に対応した距離D(=W/4)を算出する。次に、測距演算回路25は、算出した距離D情報に基づいて上記光電変換素子18上の(仮想位置)T′位置を算出し、この算出したT′の位置情報と、受光回路33から入力された、ピントを合わせる術部Qにおける変換素子18上の(受光位置)T″の位置情報との位置のズレ量「ΔU」を算出する。
さらに、測距演算回路25は、ズレ量「Δu」の正負に応じた駆動信号を生成して、焦準駆動回路29に出力する。すると、この出力に基づいて焦準駆動回路29は、上記焦準駆動モータ30を駆動し、焦点距離可変対物光学系9の図示しないレンズ駆動手段を駆動させる。これによって、それを構成するレンズ群が移動せしめられ、その焦点距離可変対物光学系9による焦点距離が変化される。
そして、上記測距演算回路25は、逐一、上記受光回路33から入力されるT″の位置情報に基づいて、ズレ量「Δu」を算出し、図5における乖離位置Fが術部Qに一致するまで、すなわち、「Δu」の値が零になるまで、上記焦準駆動回路29を介して駆動信号を焦準駆動モータ30に出力し、上記焦点距離可変対物光学系9を移動制御する。そして、測距演算回路25は、上記ズレ量「Δu」の値が零(0)になると、演算処理を停止し、上記赤外発光素子13の発光を停止させて、測距ならびに焦準動作を終了する。
上記ピント位置のズレ量「Δu」は、被写界深度範囲に対して一定の割合になるよう制御していることで、術者は、倍率により被写界深度が変化してもピントズレ等の違和感なく使用することが可能となる。
ここで、上記顕微鏡部7は、図3に示すように術部Qに対して、その焦点位置Pが距離Dだけ離れた位置に設定される。これにより、術者は、術部Qから3W/4の範囲(図3中X)のピントが合った状態で観察できる。この観察においては、従来のオートフォーカスでは実際の観察に有効に使われていた被写界深度がW/2であったのに対して1.5倍の被写界深度を得ることができて、ピント合わせを行う頻度を減らすことが可能となり、手術時間の短縮化に寄与することができる。
このように、上記手術用顕微鏡は、オートフォーカス機構を介して術部Qの光学像を取得する焦準可変対物光学系9の焦点を自動合焦すると共に、その被写界深度範囲内において、オートフォーカス機構による、焦準可変対物光学系9の解像力が最も高い焦点位置を、術部Qから所定距離、乖離した位置に可変設定するように構成した。
これによれば、手術作業を行うにあたり、その焦点位置を、被写界深度Wが深くなる術部Qから乖離した所定の位置に設定し、その前後方向に一度に観察可能な観察範囲を広げるように設定することにより、広い範囲における術部等の対象物を特定することが可能となる。この結果、手術において、例えば作業位置(観察対象位置)が前後方向に変化した場合においても、ピント調整頻度の軽減が図れ、最小限のピント調整で容易に術部Qの特定が可能となるため、使い勝手の向上が図れて、手術作業の迅速化を図ることが可能となる。
(第2の実施の形態)
図6は、第2の実施の形態に係る手術用顕微鏡を示すもので、画像観察構成に適用した外観構成を示すものである。但し、この図6を含む第2の実施の形態においては、上記第1の実施の形態と同様に構成される同一部分について同一符号を付して、その詳細な説明を省略する。
即ち、この第2の実施の形態は、上記オートフォーカス光学系とこれに伴う測距演算手段の構成が異なり、鏡体部39には、後述する左右一対のCCD42L,42R(図8参照)が配される。そして、このCCD42L,42Rには、表示装置である3Dディスプレイ37が周知の画像処理装置38を介して接続される。
ここで、第2の実施の形態を説明するに先立ち、図8を参照して光学観察と画像観察における解像力の差異について記述する。即ち、図中において、縦軸は、解像力を示し、横軸は、焦点距離可変対物光学系9(図7参照)から観察位置までの距離を表している。そして、線Aは、光学観察の解像力特性を示し、線Bは、画像観察の解像力特性を示す。画像観察の解像力特性Bは、接続される撮像手段であるCCD42L,42Rの画素数及び3Dディスプレイ37の解像力に大きく左右される。
現状一般的には、CCD画素ピッチは、光学的な分解能より大きいため、画像観察は、光学観察より中心解像力が低くなっている。図中の範囲Cは、画像観察の手術用顕微鏡においてピントズレにより光学的解像力が変化しても、観察画像上に解像力変化が認識されにくい範囲を示しており、第2の実施の形態においては、この範囲Cを被写界深度Wとして設定する。
なお、解像度の限界値は、撮像素子(CCD)により異なり、任意に設定できることが可能である。
即ち、上記鏡体部39には、図7に示すように上記左右一対のCCD42L,42Rが焦準可変対物光学系9の左右一対の撮影光軸41L,41R上の結像レンズ40L,40Rの結像位置に配設され、上記3Dディスプレイ37が画像処理装置38を介して接続されている。
また、焦点距離可変対物光学系9の光軸23上には、いわゆるパッシブ方式のフォーカス機構の受光側を構成する測距対物レンズ43、ミラー44が配設される。そして、ミラー44により反射された光軸上には、測距手段を構成するフィールドレンズ45、セパレータレンズ46、ラインセンサ47(検出素子)による測距光学系48が配設される。この測距光学系48は、焦点距離可変対物光学系9を経た術部Qからの測距用光束が、測距対物レンズ43によりミラー44に導かれて反射された後、フィールドレンズ45近くに結像され、この結像した像がフィールドレンズ45を通りセパレータレンズ46に導かれ、このセパレータレンズ46により2つに分離されてラインセンサ47上の2位置に結像される。
すなわち、上記測距光学系48の検出原理は、フィールドレンズ45近くに結像した像の合焦位置からの結像位置ずれ(ずれ量Δ)に対応して、ラインセンサ47上に再結像した2つの像の間隔h(ピッチ)が変化され、この間隔hに基づいて上記ずれ量Δが算出される。このずれ量Δが所定範囲内となるように焦点距離可変対物光学系9を駆動して自動合焦を行うものである。
そして、ピントがずれた場合には、オートフォーカス作動前、図9に示すように焦点位置Pから術部Qが距離Gだけ離れた状態となる。そこで、この第2の実施の形態においては、焦点位置Pから距離Kだけ離れた乖離位置Fが、観察対象である術部Qに一致するように合焦する。
即ち、術者は、焦点位置Pから観察物体(乖離位置F)をどのくらい遠方に設定するか、言い換えると、距離Kの値を被写界深度Wの何パーセントに設定するかを後述するダイヤルスイッチ51(図10参照)により入力操作する。実際の観察において、焦点位置Pと乖離位置Fが距離Kだけ離間されている場合には、乖離位置Fに対応するラインセンサ47上の像がΔkだけ離間されて結像される。ここで、術部Qに対応するラインセンサ47上の像はΔgだけ離間されて結像される。
ここで、上記パッシブ方式のオートフォーカス機構について図10を参照して説明する。但し、図10においては、上記第1の実施の形態で説明した図4と同一部分について、同一符号を付して、その詳細な説明を省略する。即ち、上記ラインセンサ47には、図10に示すように測距演算回路50が受光回路49を介して接続される。そして、この測距演算回路50には、術者が観察対象位置Fと焦点位置Pをずらす割合を任意に設定可能な上記ダイヤルスイッチ51が接続される。
また、上記焦準駆動モータ30の図示しない出力軸には、焦点距離可変対物光学系9の図示しないレンズ位置を検出するためのエンコーダ53が配設され、このエンコーダ53は焦準距離検出回路54に接続される。この焦準距離検出回路54は測距演算回路50に接続され、エンコーダ53の検出情報に基づいて焦点距離情報を算出して測距演算回路50に出力する。
この測距演算回路50は、上記焦点距離情報と共に、上述した観察倍率信号、距離情報信号、被写界深度データが入力され、これに基づいて駆動信号を算出して上記焦準駆動回路29を駆動制御する。
上記構成により、術部Qの画像は、焦点距離可変対物光学系9、測距対物レンズ43、ミラー44、フィールドレンズ45、セパレータレンズ46を介して、ラインセンサ47上でΔgだけ離間されて結像される。そして、観察視野を移動させる場合には、ロックフリースイッチ8aあるいは入力スイッチ26を操作すると、上記第1の実施の形態と略同様に、測距演算回路50に操作信号が入力される。同時に、測距演算回路50は、ラインセンサ47の出力情報に基づいて受光回路49で算出したΔgに対応する距離情報が入力される。
ここで、測距演算回路50は、先ず倍率検出回路31からの倍率情報に対応する被写界深度W(すなわち、現在の観察状態の被写界深度)を上記メモリ34から呼び出し、ダイヤルスイッチ51の操作量に応じた「設定値」に従い、この被写界深度Wに対して、焦点位置Pと乖離位置Fのずらすべき距離Kを算出する。例えば所望の倍率時の被写界深度がYのとき、ダイヤルスイッチ51で「10%」を設定すると、測距演算回路50は、値「距離K=Y/10」を算出する。
続いて、測距演算回路50は、設定された乖離位置Fに物体が存在する場合、その物体がラインセンサ47上に結像される場合の像の仮想ズレ量Δkを演算し、入力されたΔgの情報とΔkを比較して、この差がゼロ(Δg=Δk)になるように焦点距離可変対物光学系9の駆動量を算出し、上記焦準駆動回路29に駆動信号を出力する。焦準駆動回路29は、入力情報に基づいて上記焦準駆動モータ30を駆動し、焦点距離可変対物光学系9の図示しないレンズ駆動手段を駆動する。これによって、それを構成するレンズ群が移動されて、その焦点距離可変対物光学系9による焦点距離が変化され、乖離位置Fが術部Qに一致される。
上記説明では、距離Kの値を被写界深度の10%としたが、これに限るものでなく、手術に合わせて術者が任意に設定して使用することが可能である。これにより、手術スタイルに応じ最適な設定が可能となり、術式を問わず観察において被写界深度範囲を最大限に有効活用することができるため、その使い勝手の向上が図れて、手術作業の迅速化を図ることができる。
また、この第2の実施の形態によれば、測距手段として発光手段がないパッシブ方式のフォーカス機構を採用していることにより、鏡体部39がシンプル化されるため、顕微鏡部の小型化を図ることができる。
さらに、第2の実施の形態によれば、オートフォーカス開始時に術部Qまでの距離情報を入力し、この情報に対して、所定量焦準を移動させる、いわゆるフィードバックがない構成となっていることにより、所望の位置への焦点位置の移動を迅速に行うことが可能となる。
また、電子画像観察式の顕微鏡構成を採用していることにより、被写界深度が深いため、被写界深度の拡大の作用がさらに拡大される。
(第3の実施の形態)
図11及び図12は、この発明の第3の実施の形態に係る手術用顕微鏡を示すものである。但し、この図11及び図12の説明においては、上記第2の実施の形態において説明した図7及び図10と同様に構成される部分について同一符号を付して、その詳細な説明を省略する。
この第3の実施の形態においては、上記第2の実施の形態の構成に加えて、上記左右一対の観察光路上15L,15R上の変倍光学系10L,10RとCCD42L,42Rの間に、それぞれ可変式の開口絞り50L,50Rが配設される。この開口絞り50L,50Rは、互いに連結され、図示しない操作ツマミにより、開口径が変更調整自在に設けられる。そして、上記操作ツマミ(図示せず)には、開口径検出手段を構成する例えばエンコーダ57(図12参照)が組付けられ、このエンコーダ57により、開口絞り50L,50Rの開口径に対応するその操作量が検出される。
このエンコーダ57には、絞り開口径検出回路59が接続される。この絞り開口径検出回路59には、上記測距演算回路50が接続され、エンコーダ57の検出情報に基づいて上記開口絞り50L,50Rの開口径を算出して測距演算回路50に出力する。
また、測距演算回路50には、記憶手段を構成するメモリ60が接続され、このメモリ60には、上記観察倍率に応じた被写界深度情報と共に、開口絞り50L,50Rの開口径に対応した被写界深度情報が記憶される。
上記構成により、測距演算回路50は、観察倍率に応じた被写界深度情報、及び絞り情報検出回路59から入力される開口絞り50L,50Rの開口径に基づく被写界深度情報をメモリ60から呼び出し、この各被写界深度情報と、ダイヤルスイッチ51による術者の設定値に基づいて焦点位置Pと乖離位置F点との距離Kを算出する。
ここで、測距演算回路50は、設定された乖離位置Fに物体が存在する場合、上記第2の実施の形態と略同様に、その物体がラインセンサ47上に結像される場合の像の仮想ズレ量Δkを演算し、入力されたΔgの情報とΔkを比較して、この差がゼロ(Δg=Δk)になるように焦点距離可変対物光学系9の駆動量を算出し、上記焦準駆動回路29に駆動信号を出力する(上記図9参照)。すると、焦準駆動回路29は、入力情報に基づいて上記焦準駆動モータ30を駆動し、焦点距離可変対物光学系9の図示しないレンズ駆動手段を駆動する。
これによって、それを構成するレンズ群が移動されて、その焦点距離可変対物光学系9による焦点距離が変化され、乖離位置Fが術部Qに一致される。
この第3の実施の形態によれば、開口絞り50L,50Rを備えていることにより、通常の手術においても任意の被写界深度に設定できる可能となるため、さらに使い勝手の向上が図れて、手術作業の迅速化の促進が図れる。
よって、この発明は、上記実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、上記実施形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。
例えば実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
また、この発明は、上記各実施の形態によれば、次のような手術用顕微鏡を構成することもできる。
(付記1)
対象物体の光学像を取得する一対の光学系が配される鏡体と、
前記鏡体の一対の光学系の焦点を合焦する自動合焦手段と、
前記前記一対の光学系の被写界深度範囲内において、前記自動合焦手段による、前記一対の光学系の解像力が最も高い焦点位置を、前記対象物から所定距離、乖離した位置に可変設定する制御手段と、
を具備することを特徴とする手術用顕微鏡。
(付記2)
前記制御手段は、前記自動合焦手段による焦点位置を前記対象物の近点側に設定することを特徴とする付記1記載の手術用顕微鏡。
(付記3)
前記制御手段は、入力手段を備え、前記入力手段の入力操作に応動して前記自動合焦手段による焦点位置を、前記被写界深度内で可変設定可能に構成されることを特徴とする付記1又は2記載の手術用顕微鏡。
(付記4)
前記自動合焦手段は、対称物体までの距離を検出する測距手段と、前記立体観察用または立体撮影用光学系の焦点距離を変更する焦準手段と、前記立体観察用または立体撮影用光学系の倍率を検出する倍率検出手段とを具備し、
前記制御手段は、予め倍率に応じた被写界深度が記憶されている記憶手段を備え、前記記憶手段からの被写界深度情報と、前記測距手段からの情報に基づき、演算を行い、前記焦準手段を所定量駆動させることを特徴とする付記1乃至3のいずれか記載の手術用顕微鏡。
(付記5)
前記自動合焦手段は、対称物体までの距離を検出する測距手段と、前記立体観察用または立体撮影用光学系の焦点距離を変更する焦準手段と、前記立体観察用または立体撮影用光学系の倍率を検出する倍率検出手段と、前記立体観察用または立体撮影用光学系の被写界深度を変更可能な開口絞りと、前記開口絞りの開口径情報を検出する開口径検出手段を具備し、
前記制御手段は、予め倍率および絞り開口径に応じた被写界深度が記憶されている記憶手段を備え、前記記憶手段からの被写界深度情報と、前記測距手段からの情報に基づき、演算を行い、前記焦準手段を所定量駆動させることを特徴とする付記1乃至3いずれか記載の手術用顕微鏡。
(付記6)
前記自動合焦手段は、アクティブ式であることを特徴とする付記1乃至5のいずれか記載の手術用顕微鏡。
(付記7)
前記自動合焦手段は、パッシブ式であることを特徴とする付記1乃至5のいずれか記載の手術用顕微鏡。
この発明の第1の実施の形態に係る手術用顕微鏡の外観構成を示した構成説明図である。 図1の顕微鏡部の光学系を示した構成図である。 図1のオートフォーカス機構の動作を説明するために示した説明図である。 図1の顕微鏡制御系を取出して示したブロック図である。 図1の焦点位置検出の動作原理を説明するために示した説明図である。 この発明の第2の実施の形態に係る手術用顕微鏡の外観構成を示した構成説明図である。 図6の顕微鏡部の光学系を示した構成図である。 この発明の適用される光学観察と画像観察による解像力の差異を説明するために示した説明図である。 図6の焦点位置検出の動作原理を説明するために示した説明図である。 図6の顕微鏡制御系を取出して示したブロック図である。 この発明の第3の実施の形態に係る手術用顕微鏡の顕微鏡部の光学系を示した構成図である。 図11の顕微鏡制御系を取出して示したブロック部である。 従来の手術用顕微鏡の配置構成を示した説明図である。 手術用顕微鏡における焦点位置のズレと解像度の関係を示した特性図である。 従来の手術用顕微鏡の問題点を説明するために示した説明図である。
符号の説明
1…架台部、1a…ベース、1b…支柱、2…第1アーム、3…第2アーム、4…俯仰アーム、5…鏡体部、6…観察鏡筒、7…顕微鏡部、8…ハンドル、8a…ロックフリースイッチ、9…焦点距離可変対物光学系、10L,10R…変倍光学系、11L,11R…結像レンズ、12L,12R…接眼レンズ、13…赤外発光素子、14…発光光学系、15L,15R…観察光軸、16…ミラー、17…受光光学系、18…光電変換素子、19…ダイクロイックプリズム、20…反射面、21…入力回路、22,22′…受光光軸、23…光軸、24…エンコーダ、25…測距演算回路、26…入力スイッチ、27…変倍駆動回路、28…変倍駆動モータ、29…焦準駆動回路、30…焦準駆動モータ、31…倍率検出回路、32…ブレーキ駆動回路、33…受光回路、34…メモリ、35…発光回路、37…3Dディスプレイ、38…画像処理装置、39…鏡体部、40L,40R…結像レンズ、41L,41R…撮影光軸、42L,42R…CCD、43…測距対物レンズ、44…ミラー、45…フィールドレンズ、46…セパレータレンズ、47…ラインセンサ、48…測距光学系、49…受光回路、50…測距演算回路、50L,50R…開口絞り、51…ダイヤルスイッチ、53…エンコーダ、54…焦準距離検出回路、57…エンコーダ、59…絞り開口径検出回路、60…メモリ。

Claims (3)

  1. 対象物の光学像を取得する一対の光学系が配される顕微鏡部と、
    前記顕微鏡部の一対の光学系の焦点を合焦する自動合焦手段と、
    前記前記一対の光学系の被写界深度範囲内において、前記自動合焦手段による、前記一対の光学系の解像力が最も高い焦点位置を、前記対象物から所定距離、乖離した位置に可変設定する制御手段と、
    を具備することを特徴とする手術用顕微鏡。
  2. 前記制御手段は、前記自動合焦手段による焦点位置を前記対象物の近点側に設定することを特徴とする請求項1記載の手術用顕微鏡。
  3. 前記制御手段は、入力手段を備え、前記入力手段の入力操作に応動して前記自動合焦手段による焦点位置を、前記被写界深度内で可変設定可能に構成されることを特徴とする請求項1又は2記載の手術用顕微鏡。
JP2004312821A 2004-10-27 2004-10-27 手術用顕微鏡 Expired - Fee Related JP4668581B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004312821A JP4668581B2 (ja) 2004-10-27 2004-10-27 手術用顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004312821A JP4668581B2 (ja) 2004-10-27 2004-10-27 手術用顕微鏡

Publications (2)

Publication Number Publication Date
JP2006122232A true JP2006122232A (ja) 2006-05-18
JP4668581B2 JP4668581B2 (ja) 2011-04-13

Family

ID=36717515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004312821A Expired - Fee Related JP4668581B2 (ja) 2004-10-27 2004-10-27 手術用顕微鏡

Country Status (1)

Country Link
JP (1) JP4668581B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218103A (ja) * 2005-02-10 2006-08-24 Olympus Corp 医療用撮影装置
JP2006247399A (ja) * 2005-03-11 2006-09-21 Carl Zeiss Surgical Gmbh 焦点ずれ型眼手術用顕微鏡
JP2007075338A (ja) * 2005-09-14 2007-03-29 Olympus Medical Systems Corp 医療用立体観察装置
WO2010017944A1 (de) * 2008-08-15 2010-02-18 Carl Zeiss Surgical Gmbh Mikroskopieanordnung mit einheit zur berechnung der tiefenschärfe und daraus bestimmten fokusversatz
JP2013065015A (ja) * 2011-09-15 2013-04-11 Leica Microsystems (Schweiz) Ag 顕微鏡の自動焦点合わせ方法及び装置
JP2015192697A (ja) * 2014-03-31 2015-11-05 ソニー株式会社 制御装置および制御方法、並びに撮影制御システム
WO2018100885A1 (ja) * 2016-12-01 2018-06-07 ソニー株式会社 医療用観察装置、及び制御方法
JP2019508076A (ja) * 2016-01-19 2019-03-28 マケ・ソシエテ・パール・アクシオン・サンプリフィエMaquet Sas オフセットアームを有する医療サスペンション装置
JP2019194680A (ja) * 2018-05-03 2019-11-07 カール・ツアイス・メディテック・アーゲー 物体を撮像する顕微鏡法及び顕微鏡
CN112835192A (zh) * 2021-01-18 2021-05-25 浙江未来技术研究院(嘉兴) 一种面向手术显微镜的立体图像互补增强装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265773A (ja) * 1993-02-02 1994-09-22 Nec Corp 顕微鏡自動焦点装置
JPH0836134A (ja) * 1993-11-27 1996-02-06 Carl Zeiss:Fa 立体撮像装置
JPH08136813A (ja) * 1994-11-07 1996-05-31 Olympus Optical Co Ltd 手術用顕微鏡の焦準装置
JP2001249264A (ja) * 2000-03-02 2001-09-14 Nec Corp 焦点合わせ方法および焦点検知装置
JP2004151490A (ja) * 2002-10-31 2004-05-27 Olympus Corp 手術用顕微鏡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265773A (ja) * 1993-02-02 1994-09-22 Nec Corp 顕微鏡自動焦点装置
JPH0836134A (ja) * 1993-11-27 1996-02-06 Carl Zeiss:Fa 立体撮像装置
JPH08136813A (ja) * 1994-11-07 1996-05-31 Olympus Optical Co Ltd 手術用顕微鏡の焦準装置
JP2001249264A (ja) * 2000-03-02 2001-09-14 Nec Corp 焦点合わせ方法および焦点検知装置
JP2004151490A (ja) * 2002-10-31 2004-05-27 Olympus Corp 手術用顕微鏡

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218103A (ja) * 2005-02-10 2006-08-24 Olympus Corp 医療用撮影装置
JP2006247399A (ja) * 2005-03-11 2006-09-21 Carl Zeiss Surgical Gmbh 焦点ずれ型眼手術用顕微鏡
JP2007075338A (ja) * 2005-09-14 2007-03-29 Olympus Medical Systems Corp 医療用立体観察装置
WO2010017944A1 (de) * 2008-08-15 2010-02-18 Carl Zeiss Surgical Gmbh Mikroskopieanordnung mit einheit zur berechnung der tiefenschärfe und daraus bestimmten fokusversatz
DE102008041290A1 (de) 2008-08-15 2010-02-25 Carl Zeiss Surgical Gmbh Mikroskopieanordnung mit Fokusversatz
JP2013065015A (ja) * 2011-09-15 2013-04-11 Leica Microsystems (Schweiz) Ag 顕微鏡の自動焦点合わせ方法及び装置
JP2015192697A (ja) * 2014-03-31 2015-11-05 ソニー株式会社 制御装置および制御方法、並びに撮影制御システム
JP2019508076A (ja) * 2016-01-19 2019-03-28 マケ・ソシエテ・パール・アクシオン・サンプリフィエMaquet Sas オフセットアームを有する医療サスペンション装置
US10451217B2 (en) 2016-01-19 2019-10-22 Maquet Sas Medical suspension device comprising an offset arm
WO2018100885A1 (ja) * 2016-12-01 2018-06-07 ソニー株式会社 医療用観察装置、及び制御方法
CN109804290A (zh) * 2016-12-01 2019-05-24 索尼公司 医疗观察装置和控制方法
JPWO2018100885A1 (ja) * 2016-12-01 2019-07-11 ソニー株式会社 医療用観察装置、及び制御方法
US10992852B2 (en) 2016-12-01 2021-04-27 Sony Corporation Medical observation device and control method
CN109804290B (zh) * 2016-12-01 2022-01-04 索尼公司 医疗观察装置和控制方法
JP2019194680A (ja) * 2018-05-03 2019-11-07 カール・ツアイス・メディテック・アーゲー 物体を撮像する顕微鏡法及び顕微鏡
JP7201505B2 (ja) 2018-05-03 2023-01-10 カール・ツアイス・メディテック・アーゲー 物体を撮像する顕微鏡法及び顕微鏡
CN112835192A (zh) * 2021-01-18 2021-05-25 浙江未来技术研究院(嘉兴) 一种面向手术显微镜的立体图像互补增强装置及方法
CN112835192B (zh) * 2021-01-18 2023-01-24 浙江未来技术研究院(嘉兴) 一种面向手术显微镜的立体图像互补增强装置及方法

Also Published As

Publication number Publication date
JP4668581B2 (ja) 2011-04-13

Similar Documents

Publication Publication Date Title
JP2005284136A (ja) 観察装置および観察装置の焦点合わせ方法
JP2020114491A (ja) データユニットを有する手術用顕微鏡及び画像をオーバレイするための方法
JP4668581B2 (ja) 手術用顕微鏡
JP5896763B2 (ja) 光学機器および自動焦点調節を行う方法
JP2016528531A (ja) 顕微鏡システムのための像取得方法および対応する顕微鏡システム
JP6619996B2 (ja) 手術用立体観察装置
JP4767550B2 (ja) 医療用撮影装置
JP5389483B2 (ja) 観察装置
KR101654589B1 (ko) 초점 및 물체 거리 자동 변환 기능을 구비한 3차원 입체 영상 기반의 의료 현미경 시스템
JP5121970B2 (ja) 医療用撮影装置
JP5792401B2 (ja) オートフォーカス装置
JPH0836134A (ja) 立体撮像装置
JP4727165B2 (ja) 画像顕微鏡
JP2007102102A (ja) 共焦点顕微鏡及び合焦カラー画像の生成方法
US7912364B2 (en) Optical observation apparatus and image-pickup apparatus
JP5278489B2 (ja) 顕微鏡、顕微鏡の焦点調節制御方法
JP2001296467A (ja) 自動焦点検出装置
JP6635783B2 (ja) 顕微鏡装置
JP4398200B2 (ja) 立体観察装置
JP2007148159A (ja) 顕微鏡
KR20190129050A (ko) 촬상 장치와 포커스 제어 방법 및 포커스 판정 방법
JPH1184252A (ja) 自動焦点顕微鏡
WO2019107359A1 (ja) 撮像装置
JP2017106994A (ja) 手術用立体観察装置
US6532343B1 (en) Camera finder device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4668581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees