JP2006117814A - Thermoplastic resin composition, its molded article and method for producing the same - Google Patents

Thermoplastic resin composition, its molded article and method for producing the same Download PDF

Info

Publication number
JP2006117814A
JP2006117814A JP2004307590A JP2004307590A JP2006117814A JP 2006117814 A JP2006117814 A JP 2006117814A JP 2004307590 A JP2004307590 A JP 2004307590A JP 2004307590 A JP2004307590 A JP 2004307590A JP 2006117814 A JP2006117814 A JP 2006117814A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
filler
molded article
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004307590A
Other languages
Japanese (ja)
Inventor
Koichi Shimizu
清水晃一
Masafumi Tsukada
雅史 塚田
Atsushi Takahashi
淳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004307590A priority Critical patent/JP2006117814A/en
Priority to PCT/JP2005/019324 priority patent/WO2006043641A1/en
Publication of JP2006117814A publication Critical patent/JP2006117814A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Combustion & Propulsion (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition easily injection-moldable to form a heat-dissipation member and a case of a heat-generating electronic part and having excellent rigidity, impact strength, heat-resistance and heat-dissipation property and provide a molded article of the composition and method for producing the molded article. <P>SOLUTION: The thermoplastic resin composition is composed of a thermoplastic resin and a specific filler and has a thermal conductivity of 0.4-1.5 W/mK, a melt mass flow rate of 2-200 g/10min and a flexural modulus of 1,000-8,000 Mpa. The invention further provides a molded article of the composition and a method for forming the molded article. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放熱性に優れた熱可塑性樹脂組成物及びその成形体に関するものである。 The present invention relates to a thermoplastic resin composition excellent in heat dissipation and a molded body thereof.

近年、発熱性電子部品の高密度化、高集積化により発熱量が増大し、電子部品の温度上昇を極力抑えるため、発生した熱を効率良く放熱する要求が益々高まっている。また、携帯用パソコンなどの電子機器は小型化、薄型化、軽量化が進み、これらに用いられる部材、筐体も良放熱性のものが要求されている。従来、それらに用いられる部材の放熱性を向上させる方法として、例えば、部材をアルミニウム等の金属製にする方法や、部材表面に高熱伝導率塗料を塗布する方法、高熱伝導性フィラーとして酸化アルミニウム粉末を樹脂やゴムに高濃度で配合する方法等が提案されている(特許文献1参照)。しかしながら、金属製の場合は、成形性の悪さから形状の自由度が低下するという問題があり、塗布型の場合は、部材の成形の後に更に塗布処理工程が必要でコストアップとなる場合があるという問題、フィラーをゴム等に高濃度に配合する場合は射出成形が難しくなる場合があるという問題があった。更に、これらの熱伝統率の高い材料を用いて、部材の熱伝導率を向上できても、放熱性を向上させるには別の技術思想が必要であった。 In recent years, the amount of heat generation has increased due to higher density and higher integration of heat-generating electronic components, and in order to suppress the temperature rise of electronic components as much as possible, there has been an increasing demand for efficiently radiating the generated heat. In addition, electronic devices such as portable personal computers are becoming smaller, thinner, and lighter, and members and casings used for these devices are required to have good heat dissipation. Conventionally, as a method for improving the heat dissipation of members used in them, for example, a method of making a member made of metal such as aluminum, a method of applying a high thermal conductivity paint on the surface of a member, aluminum oxide powder as a high thermal conductivity filler There has been proposed a method of blending a resin or rubber with a high concentration (see Patent Document 1). However, in the case of a metal, there is a problem that the degree of freedom of shape is lowered due to poor formability. In the case of a coating die, a coating process step is further required after forming a member, which may increase the cost. There is a problem that injection molding may be difficult when the filler is blended with rubber or the like at a high concentration. Furthermore, even if the heat conductivity of the member can be improved by using these materials having a high heat traditional rate, another technical idea is required to improve the heat dissipation.

特開昭64−24859号公報Japanese Patent Laid-Open No. 64-24859

本発明は上記の問題を解決すべく、成形加工性、剛性、衝撃強度、耐熱性、放熱性に優れた射出成形可能な熱可塑性樹脂組成物と、それを射出成形して得られた成形体、並びのその製造方法を提供することを課題とした。 In order to solve the above problems, the present invention provides an injection-moldable thermoplastic resin composition excellent in molding processability, rigidity, impact strength, heat resistance and heat dissipation, and a molded product obtained by injection molding the same. It was an object to provide an array of manufacturing methods.

本発明は、
1)熱可塑性樹脂とフィラーからなる熱伝導率が0.4〜1.5W/mK、メルトマスフローレイトが2〜200g/10分かつ曲げ弾性率1000〜8000Mpaであることを特徴とする熱可塑性樹脂組成物。
2)フィラーが球形度0.80〜1.0である球状無機物粉末であることを特徴とする1)の熱可塑性樹脂組成物。
3)フィラー充填量が10〜50体積%であることを特徴とする1)または2)の熱可塑性樹脂組成物。
4)フィラーの平均粒径が1〜50μmであることを特徴とする1)〜3)の熱可塑性樹脂組成物。
5)フィラーの熱伝導率が1.0〜150W/mkであることを特徴とする1)〜4)のの熱可塑性樹脂組成物。
6)フィラーが球状アルミナ、球状シリカから選ばれる少なくとも一種であることを特徴とする1)〜5)の熱可塑性樹脂組成物。
7)1)〜6)の熱可塑性樹脂組成物を射出成形してなることを特徴とする成形体の製造方法。
8)1)〜6)の熱可塑性樹脂組成物から得られる放熱部材である。
9)8)の放熱部材を組み入れた機器。
10)電源アダプター、パソコン用部品、携帯電話用部品、自動車部品、光学式ディスプレー装置、半導体材料であることを特徴とする9)の機器。
The present invention
1) Thermoplastic resin composition characterized by a thermal conductivity of 0.4 to 1.5 W / mK comprising a thermoplastic resin and a filler, a melt mass flow rate of 2 to 200 g / 10 min and a flexural modulus of 1000 to 8000 Mpa. object.
2) The thermoplastic resin composition according to 1), wherein the filler is a spherical inorganic powder having a sphericity of 0.80 to 1.0.
3) The thermoplastic resin composition according to 1) or 2), wherein a filler filling amount is 10 to 50% by volume.
4) The thermoplastic resin composition according to 1) to 3), wherein the filler has an average particle size of 1 to 50 μm.
5) The thermoplastic resin composition according to 1) to 4), wherein the filler has a thermal conductivity of 1.0 to 150 W / mk.
6) The thermoplastic resin composition according to 1) to 5), wherein the filler is at least one selected from spherical alumina and spherical silica.
7) A method for producing a molded article, which is obtained by injection molding the thermoplastic resin composition of 1) to 6).
8) A heat dissipating member obtained from the thermoplastic resin composition of 1) to 6).
9) Equipment incorporating the heat radiation member of 8).
10) The apparatus according to 9), which is a power adapter, a PC part, a mobile phone part, an automobile part, an optical display device, or a semiconductor material.

本発明によれば容易に射出成形可能な剛性、衝撃強度、耐熱性、放熱性に優れた組成物およびその成形体を提供することができ、発熱性電子部品の放熱部材、例えば電源アダプター、パソコン用部品、携帯電話用部品、自動車部品、光学式ディスプレー装置、半導体及び熱を発する部分に接触している部品などの筐体用途に好適に用いることができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a composition excellent in rigidity, impact strength, heat resistance, and heat dissipation that can be easily injection-molded, and a molded body thereof. It can be suitably used for housing applications such as parts for mobile phones, parts for mobile phones, automobile parts, optical display devices, semiconductors, and parts in contact with heat-generating parts.

以下、更に詳しく本発明について説明する。本発明における大きな特徴は特定の無機フィラーを熱可塑性樹脂に充填することにより、射出成形可能な高放熱性組成物が得られることにある。 Hereinafter, the present invention will be described in more detail. A major feature of the present invention is that a high heat dissipation composition capable of injection molding can be obtained by filling a thermoplastic resin with a specific inorganic filler.

熱可塑性樹脂組成物の熱伝導率は0.4〜1.5W/mkであることが必要であるが、好ましくは0.5〜1.5W/mk、さらに好ましくは0.5〜1.3W/mkである。熱伝導率が小さいと放熱性が不十分となりやすく、熱伝導率を高めるためだけに高熱伝導率が高い無機フィラーを大量に配合すると、得られる熱可塑性樹脂組成物の射出成形性が劣る傾向となる。 The thermal conductivity of the thermoplastic resin composition needs to be 0.4 to 1.5 W / mk, preferably 0.5 to 1.5 W / mk, more preferably 0.5 to 1.3 W. / Mk. When the thermal conductivity is small, the heat dissipation tends to be insufficient, and when a large amount of an inorganic filler having a high thermal conductivity is added only in order to increase the thermal conductivity, the injection moldability of the resulting thermoplastic resin composition tends to be inferior. Become.

熱可塑性樹脂組成物の流動性の指標であるメルトマスフローレイト(MFR)については、2〜200g/10分であることが成形加工性の点から必要である。
MFRの測定は、基材の熱可塑性樹脂により異なるが、HIPS樹脂、ABS樹脂、AAS樹脂、SAS樹脂、SEBS樹脂、MBS樹脂、MES樹脂(メタクリル酸アルキル−エチレン・αオレフィン系ゴム−スチレン共重合体)及びACS樹脂等のゴム強化スチレン系熱可塑性樹脂、ABS/PCアロイ樹脂、メタクリル−スチレン共重合体、メタクリル樹脂、芳香族ビニル単量体単位、不飽和ジカルボン酸イミド誘導体単位、及びこれらと共重合可能なビニル単量体単位からなるマレイミド系共重合体、及びこれらの樹脂に難燃剤、着色剤、耐候剤等の各種添加剤からなる樹脂から選ばれる少なくとも一種の樹脂を用いた場合には、220℃、10kgで測定した条件に於いて2〜200g/10分が好ましいが、さらに好ましくは3〜30g/10分、特に好ましくは6〜20g/10分である。MFRの値が2g/10分未満では成形加工性が劣る傾向になりやすく、MFRが200g/10分を越えると成形性と衝撃強度とのバランスが劣りやすくなる傾向がある。
The melt mass flow rate (MFR), which is an index of fluidity of the thermoplastic resin composition, is required to be 2 to 200 g / 10 minutes from the viewpoint of moldability.
The measurement of MFR differs depending on the thermoplastic resin of the base material, but HIPS resin, ABS resin, AAS resin, SAS resin, SEBS resin, MBS resin, MES resin (alkyl methacrylate-ethylene / α-olefin rubber-styrene copolymer) And rubber-reinforced styrene-based thermoplastic resins such as ACS resin, ABS / PC alloy resin, methacryl-styrene copolymer, methacrylic resin, aromatic vinyl monomer unit, unsaturated dicarboxylic imide derivative unit, and these When using at least one resin selected from resins consisting of various additives such as flame retardants, colorants, weathering agents, and the like, and maleimide copolymers composed of copolymerizable vinyl monomer units, and these resins. Is preferably 2 to 200 g / 10 min under the conditions measured at 220 ° C. and 10 kg, more preferably 3 30 g / 10 min, particularly preferably 6~20g / 10 min. If the MFR value is less than 2 g / 10 min, the moldability tends to be inferior, and if the MFR exceeds 200 g / 10 min, the balance between the moldability and the impact strength tends to be inferior.

熱可塑性樹脂がポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレート、ビスフェノールAや4,4’−ジヒドロキシ−ジフェニルエーテル等のビスフェノールとイソフタル酸、テレフタル酸等の2塩基酸又はその誘導体から合成される芳香族ポリエステルやp−ヒドロキシ安息香酸/ビスフェノール/テレフタル酸、p−ヒドロキシ安息香酸/6−ヒドロキシ−2−ナフタレンカルボン酸/テレフタル酸、p−ヒドロキシ安息香酸/ポリブチレンテレフタレート等の液晶性ポリエステル等の芳香族ポリエステル樹脂から選ばれる少なくとも一種の樹脂を用いた場合にのMFRは、265℃、10kgで測定した条件において2〜200g/10分が好ましいが、さらに好ましくは3〜30g/10分、特に好ましくは10〜30g/10分である。MFRの値が2g/10分未満では成形加工性が劣る傾向になりやすく、MFRが200g/10分を越えると成形性と衝撃強度とのバランスが劣りやすくなる傾向がある。 Thermoplastic resin is polyamide-based resin, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycyclohexanedimethylene terephthalate, bisphenol such as bisphenol A and 4,4'-dihydroxy-diphenyl ether, isophthalic acid, terephthalic acid Aromatic polyesters synthesized from dibasic acids such as p-hydroxybenzoic acid / bisphenol / terephthalic acid, p-hydroxybenzoic acid / 6-hydroxy-2-naphthalenecarboxylic acid / terephthalic acid, p-hydroxybenzoic acid MFR when using at least one resin selected from aromatic polyester resins such as liquid crystalline polyesters such as acid / polybutylene terephthalate is measured at 265 ° C. and 10 kg. Although preferred 2 to 200 g / 10 min at condition, more preferably 3 to 30 g / 10 min, particularly preferably 10 to 30 g / 10 min. If the MFR value is less than 2 g / 10 min, the moldability tends to be inferior, and if the MFR exceeds 200 g / 10 min, the balance between the moldability and the impact strength tends to be inferior.

熱可塑性樹脂がPPS樹脂、またはポリカーボネート樹脂の場合のMFRは、300℃、1.2kgで測定した条件において2〜200g/10分が好ましいが、さらに好ましくは2〜30g/10分、特に好ましくは2〜5g/10分である。MFRの値が2g/10分未満では成形加工性が劣る傾向になりやすく、MFRが200g/10分を越えると成形性と衝撃強度とのバランスが劣りやすくなる傾向がある。 In the case where the thermoplastic resin is a PPS resin or a polycarbonate resin, the MFR is preferably 2 to 200 g / 10 minutes, more preferably 2 to 30 g / 10 minutes, particularly preferably 300 ° C. and 1.2 kg. 2-5 g / 10 min. If the MFR value is less than 2 g / 10 min, the moldability tends to be inferior, and if the MFR exceeds 200 g / 10 min, the balance between the moldability and the impact strength tends to be inferior.

熱可塑性樹脂組成物の剛性は、曲げ弾性率が1000〜8000Mpaであることが必要であるが、好ましくは2000〜7000MPa、特に好ましくは2700〜6500MPaである。曲げ弾性率が1000Mpa未満では成形体としたときの剛性が低く実用性に問題が生じる傾向がある。 The rigidity of the thermoplastic resin composition needs to have a flexural modulus of 1000 to 8000 Mpa, preferably 2000 to 7000 MPa, and particularly preferably 2700 to 6500 MPa. When the flexural modulus is less than 1000 Mpa, the rigidity when formed into a molded product tends to be low, causing problems in practicality.

フィラーは、球状の無機フィラーが好ましい。その無機フィラーの平均球形度は0.80〜1.0であり、好ましくは0.80〜0.95、更に好ましくは0.90〜0.92である。平均球形度が0.80未満では、熱可塑性樹脂組成物への充填するための溶融混練が困難となりやすく、得られる熱可塑性樹脂組成物の強度が低下する傾向がある。また、無機フィラーの分散性が悪くなり、得られた成形体の放熱効果が小さくなる傾向がある。 The filler is preferably a spherical inorganic filler. The average sphericity of the inorganic filler is 0.80 to 1.0, preferably 0.80 to 0.95, and more preferably 0.90 to 0.92. If the average sphericity is less than 0.80, melt kneading for filling into the thermoplastic resin composition tends to be difficult, and the strength of the resulting thermoplastic resin composition tends to decrease. Further, the dispersibility of the inorganic filler is deteriorated, and the heat dissipation effect of the obtained molded body tends to be reduced.

なお、平均球形度は、実体顕微鏡(例えばニコン社製モデル「SMZ−10型」)、走査型電子顕微鏡等にて撮影した粒子像を画像解析装置(日本アビオニクス社製)に取り込み、以下に示す方法にて測定することができる。この方法以外にも、粒子像分析装置(例えばシスメックス社製商品名「FPIA−1000」)にて定量的に自動計測された個々の粒子の新円度から、式、球形度=(新円度)2 により換算して求めることもできる。
すなわち、粒子像から粒子の投影面積(A)と周辺長(PM)を測定する。周辺長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2 であるから、B=π×(PM/2π)2 となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2 として算出することができる。このようにして得られた任意の粒子の200個の球形度を求め、その平均値を平均球形度とした。
In addition, the average sphericity is obtained by taking a particle image photographed with a stereomicroscope (for example, model “SMZ-10 type” manufactured by Nikon Corporation), a scanning electron microscope or the like into an image analyzer (manufactured by Nippon Avionics Co., Ltd.). It can be measured by the method. In addition to this method, the formula, sphericity = (new circularity) is calculated from the new circularity of individual particles quantitatively automatically measured by a particle image analyzer (for example, trade name “FPIA-1000” manufactured by Sysmex Corporation). ) 2 can also be obtained by conversion.
That is, the projected area (A) and peripheral length (PM) of the particle are measured from the particle image. When the area of a perfect circle corresponding to the peripheral length (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), since PM = 2πr and B = πr2, B = π × (PM / 2π) 2, The sphericity can be calculated as sphericity = A / B = A × 4π / (PM) 2. The 200 sphericities of the arbitrary particles thus obtained were determined, and the average value was defined as the average sphericity.

フィラーの含有量は、10〜50体積%であり、好ましくは20〜40体積%である。含有量が10体積%より少ないと放熱性の向上効果小さくなりやすく、含有量が50体積%より多いと得られる熱可塑性樹脂組成物の強度低下が大きくなる傾向があり、成形品によっては射出成形が困難となる場合がある。 Content of a filler is 10-50 volume%, Preferably it is 20-40 volume%. If the content is less than 10% by volume, the effect of improving heat dissipation tends to be small, and if the content is more than 50% by volume, the resulting thermoplastic resin composition tends to decrease in strength. May be difficult.

フィラーの平均粒径は、1〜50μmであり、好ましくは5〜20μmである。平均粒径が1μmより小さくなると放熱性の向上効果が小さくなりやすく、平均粒径が50μmより大きくなると得られる熱可塑性樹脂組成物の強度低下が著しく成る傾向がある。 The average particle diameter of a filler is 1-50 micrometers, Preferably it is 5-20 micrometers. When the average particle size is smaller than 1 μm, the effect of improving heat dissipation tends to be small, and when the average particle size is larger than 50 μm, the strength of the resulting thermoplastic resin composition tends to be significantly reduced.

フィラーの熱伝導率は、1.0〜150W/mk、好ましくは1.0〜120W/mk、特に好ましくは1.0〜50W/mkである。このような無機フィラーとして、例えば、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、窒化ケイ素、窒化アルミニウム、窒化ホウ素、膨張性黒鉛、金属アルミ、ムライト、酸化カルシウム、チタニア、ジルコニア等が挙げられる。好ましくは、酸化アルミニウム(アルミナ)及び酸化ケイ素(シリカ)である。これらは、1種のみ使用しても良く、または2種以上を混合して用いても良い。 The thermal conductivity of the filler is 1.0 to 150 W / mk, preferably 1.0 to 120 W / mk, particularly preferably 1.0 to 50 W / mk. Examples of such an inorganic filler include aluminum oxide (alumina), silicon oxide (silica), silicon nitride, aluminum nitride, boron nitride, expansive graphite, metallic aluminum, mullite, calcium oxide, titania, zirconia and the like. Aluminum oxide (alumina) and silicon oxide (silica) are preferable. These may be used alone or in combination of two or more.

熱可塑性樹脂は、例えば、HIPS樹脂、ABS樹脂、AAS樹脂、SAS樹脂、SEBS樹脂、MBS樹脂、MES樹脂(メタクリル酸アルキル−エチレン・αオレフィン系ゴム−スチレン共重合体)及びACS樹脂等のゴム強化スチレン系熱可塑性樹脂、メタクリル−スチレン共重合体、メタクリル樹脂、芳香族ビニル単量体単位、不飽和ジカルボン酸イミド誘導体単位、及びこれらと共重合可能なビニル単量体単位からなるマレイミド系共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレート、ビスフェノールAや4,4’−ジヒドロキシ−ジフェニルエーテル等のビスフェノールとイソフタル酸、テレフタル酸等の2塩基酸又はその誘導体から合成される芳香族ポリエステルやp−ヒドロキシ安息香酸/ビスフェノール/テレフタル酸、p−ヒドロキシ安息香酸/6−ヒドロキシ−2−ナフタレンカルボン酸/テレフタル酸、p−ヒドロキシ安息香酸/ポリブチレンテレフタレート等の液晶性ポリエステル等の芳香族ポリエステル、ポリアミド(PA)、ポリアミド/酸変性エチレン−プロピレンゴム、ポリアミド/酸変性エチレン−プロピレンゴム/マレイミド系共重合体アロイ、ポリカーボネート、ABS/PCアロイ、ポリフェニレンスルフィド(PPS)、ポリエチレン、ポリプロピレン等が使用できる。これらの中で、相溶性または混和性がよい樹脂同士であれば、混合して用いることもできる。 Examples of the thermoplastic resin include rubbers such as HIPS resin, ABS resin, AAS resin, SAS resin, SEBS resin, MBS resin, MES resin (alkyl methacrylate-ethylene / α-olefin rubber-styrene copolymer), and ACS resin. Maleimide copolymer comprising reinforced styrene thermoplastic resin, methacryl-styrene copolymer, methacrylic resin, aromatic vinyl monomer unit, unsaturated dicarboxylic imide derivative unit, and vinyl monomer unit copolymerizable therewith. Polymers, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycyclohexanedimethylene terephthalate, bisphenol A such as bisphenol A and 4,4'-dihydroxy-diphenyl ether, isophthalic acid, terephthalic acid Aromatic polyesters synthesized from dibasic acids or derivatives thereof, p-hydroxybenzoic acid / bisphenol / terephthalic acid, p-hydroxybenzoic acid / 6-hydroxy-2-naphthalenecarboxylic acid / terephthalic acid, p-hydroxybenzoic acid / Aromatic polyester such as liquid crystalline polyester such as polybutylene terephthalate, polyamide (PA), polyamide / acid-modified ethylene-propylene rubber, polyamide / acid-modified ethylene-propylene rubber / maleimide copolymer alloy, polycarbonate, ABS / PC Alloys, polyphenylene sulfide (PPS), polyethylene, polypropylene and the like can be used. Among these, resins having good compatibility or miscibility can be mixed and used.

熱可塑性樹脂組成物は、ハロゲン系難燃剤、酸化アンチモン、リン酸エステル系の難燃剤等を含有させることにより難燃性を付与することができる。 The thermoplastic resin composition can impart flame retardancy by containing a halogen flame retardant, antimony oxide, a phosphate ester flame retardant, or the like.

熱可塑性樹脂組成物は、カーボンブラック、アセチレンブラック等を含有させることにより良導電性を付与することができる。 The thermoplastic resin composition can impart good electrical conductivity by containing carbon black, acetylene black or the like.

熱可塑性樹脂組成物は、カーボンブラックのような黒色系の着色剤を添加して熱放射率を上げて、更に放熱性を上げることもできる。 The thermoplastic resin composition can be further improved in heat dissipation by adding a black colorant such as carbon black to increase the thermal emissivity.

熱可塑性樹脂組成物は、放熱性、強度、成形性に影響のない範囲であれば、必要に応じて外部滑剤、内部滑剤、酸化防止剤、光安定剤、紫外線吸収剤、ガラス繊維、カーボン繊維等の補強材、各色着色剤等を添加することができ、無機フィラーは、シラン系およびまたはチタネート系カップリング剤などの粉体表面改質剤で表面改質して使用することも可能である。 The thermoplastic resin composition has an external lubricant, an internal lubricant, an antioxidant, a light stabilizer, an ultraviolet absorber, a glass fiber, and a carbon fiber as necessary as long as it does not affect heat dissipation, strength, and moldability. It is also possible to add a reinforcing material such as a colorant, a colorant, and the like, and the inorganic filler can be used after being surface-modified with a powder surface modifier such as a silane-based and / or titanate-based coupling agent. .

熱可塑性樹脂組成物は、通常の溶融混練装置を用いて得ることができるが、好適に使用できる溶融混練装置としては、単軸押出機、噛合形同方向回転または噛合形異方向回転二軸押出機、非または不完全噛合形二軸押出機等のスクリュー押出機、バンバリーミキサー、コニーダー及び混合ロール等がある。 The thermoplastic resin composition can be obtained by using an ordinary melt-kneading apparatus. Examples of a melt-kneading apparatus that can be suitably used include a single-screw extruder, a meshing-type co-rotating or a meshing-type counter-rotating twin-screw extrusion. Machines, screw extruders such as non- or incompletely meshing twin screw extruders, Banbury mixers, kneaders and mixing rolls.

熱可塑性樹脂組成物は、成形して筐体に用いることができるが、その成形法は、熱可塑性樹脂を成形する方法が利用でき、例えば、プレス法、押出し法、射出成形法、二色成形等が挙げられるが、量産性、デザイン性を勘案すると射出成形法が好適である。 The thermoplastic resin composition can be molded and used for a casing, and as the molding method, a method of molding a thermoplastic resin can be used, for example, a press method, an extrusion method, an injection molding method, a two-color molding. In view of mass production and design, an injection molding method is preferable.

特に、成形時に、成形体表面を低光沢あるいはシボ面になるような金型を用いることにより、より放熱性に優れた成形体を得ることができる。 In particular, at the time of molding, it is possible to obtain a molded body having more excellent heat dissipation by using a mold having a surface with a low gloss or texture.

以下に、実施例及び比較例をあげて更に本発明を説明する。またこれらは何れも例示的なものであって本発明の内容を限定するものではない。 Hereinafter, the present invention will be further described with reference to examples and comparative examples. Moreover, these are all illustrative and do not limit the contents of the present invention.

無機フィラーは下記の球状アルミナ、破砕タイプアルミナ、球状シリカ、破砕タイプシリカを使用した。
A−1:球状アルミナ 平均粒径0.5μm、平均球形度0.92
A−2:球状アルミナ 平均粒径5μm、平均球形度0.78
A−3:球状アルミナ 平均粒径5μm、平均球形度0.82
A−4:球状アルミナ 平均粒径5μm、平均球形度0.92
A−5:球状アルミナ 平均粒径10μm、平均球形度0.92
A−6:球状アルミナ 平均粒径45μm、平均球形度0.92
A−7:球状アルミナ 平均粒径60μm、平均球形度0.92
A−8:破砕タイプアルミナ 平均粒径10μm、平均球形度0.69
S−1:球状シリカ 平均粒径0.5μm、平均球形度0.92
S−2:球状シリカ 平均粒径5μm、平均球形度0.78
S−3:球状シリカ 平均粒径5μm、平均球形度0.82
S−4:球状シリカ 平均粒径5μm、平均球形度0.92
S−5:球状シリカ 平均粒径20μm、平均球形度0.88
S−6:球状シリカ 平均粒径45μm、平均球形度0.88
S−7:球状シリカ 平均粒径60μm、平均球形度0.92
S−8:破砕タイプシリカ 平均粒径60μm、平均球形度0.88
尚、フィラーの熱伝導率(W/mk)はアルミナ30、シリカ1.2のものを使用した。
As the inorganic filler, the following spherical alumina, crushed alumina, spherical silica, and crushed silica were used.
A-1: Spherical alumina Average particle size 0.5 μm, average sphericity 0.92
A-2: Spherical alumina Average particle diameter 5 μm, average sphericity 0.78
A-3: Spherical alumina Average particle diameter 5 μm, average sphericity 0.82
A-4: Spherical alumina Average particle size 5 μm, average sphericity 0.92
A-5: Spherical alumina Average particle size 10 μm, Average sphericity 0.92
A-6: Spherical alumina Average particle size 45 μm, Average sphericity 0.92
A-7: Spherical alumina Average particle size 60 μm, Average sphericity 0.92
A-8: Crush type alumina Average particle diameter 10 μm, average sphericity 0.69
S-1: Spherical silica Average particle size 0.5 μm, average sphericity 0.92
S-2: Spherical silica Average particle diameter 5 μm, average sphericity 0.78
S-3: Spherical silica Average particle diameter 5 μm, average sphericity 0.82
S-4: Spherical silica Average particle diameter 5 μm, average sphericity 0.92
S-5: Spherical silica Average particle diameter 20 μm, average sphericity 0.88
S-6: Spherical silica Average particle diameter 45 μm, Average sphericity 0.88
S-7: Spherical silica Average particle size 60 μm, Average sphericity 0.92
S-8: Crushed type silica Average particle diameter 60 μm, Average sphericity 0.88
The filler had a thermal conductivity (W / mk) of alumina 30 and silica 1.2.

熱可塑性樹脂は以下のものを用いた。
N−1:難燃ABS/PC樹脂 電気化学工業(株)製、HS−N60(密度:1.20)
N−2:難燃ABS樹脂 電気化学工業(株)製、NA2860(密度:1.19)
N−3:PA系アロイ 電気化学工業(株)製、N1000ST(密度:1.08)
これは、PA(ポリアミド6)/EPR(酸変性エチレン−プロピレンゴム)/SMI(ス
チレン−Nフェニルマレイミド共重合体からなる樹脂組成物である。
N−4:PPS樹脂 大日本インキ化学工業(株)製、FZ−2200−A5(密度1.
34)
The following thermoplastic resins were used.
N-1: Flame-retardant ABS / PC resin, manufactured by Denki Kagaku Kogyo Co., Ltd., HS-N60 (density: 1.20)
N-2: Flame retardant ABS resin, manufactured by Denki Kagaku Kogyo Co., Ltd., NA2860 (density: 1.19)
N-3: PA alloy, manufactured by Denki Kagaku Kogyo Co., Ltd., N1000ST (density: 1.08)
This is a resin composition comprising PA (polyamide 6) / EPR (acid-modified ethylene-propylene rubber) / SMI (styrene-N phenylmaleimide copolymer).
N-4: PPS resin Dainippon Ink & Chemicals, FZ-2200-A5 (density 1.
34)

[実施例、比較例]
表1〜4に示した配合になるように、ヘンシェルミキサーに各無機フィラーと各熱可塑性樹脂を仕込み、低速回転で3分間混合した。この混合物を真空ベント付きの40mm単軸押出し機・ダルメージスクリュー(IKG製、MS40−32V)で下記設定温度、スクリュー回転数80〜100rpmで、溶融混練し、ペレットを得た。
熱可塑性樹脂 溶融混練時の温度設定
N−1 250〜280℃
N−2 220〜250℃
N−3 250〜280℃
N−4 300〜330℃
このペレットを使用して、射出成形機により評価用試験片を作成し、各種物性を評価し、結果を表1〜4に示した。
[Examples and Comparative Examples]
Each inorganic filler and each thermoplastic resin were charged into a Henschel mixer so as to have the composition shown in Tables 1 to 4, and mixed at a low speed for 3 minutes. This mixture was melt-kneaded with a 40 mm single-screw extruder / dull image screw (manufactured by IKG, MS40-32V) with a vacuum vent at the following set temperature and screw rotation speed of 80 to 100 rpm to obtain pellets.
Thermoplastic resin Temperature setting during melt-kneading N-1 250-280 ° C
N-2 220-250 ° C
N-3 250-280 ° C
N-4 300-330 ° C
Using this pellet, a test piece for evaluation was prepared by an injection molding machine, various physical properties were evaluated, and the results are shown in Tables 1 to 4.

Figure 2006117814
Figure 2006117814

表1 実施例8 難燃性outについて:燃焼時間30秒以上 Table 1 Example 8 About flame retardancy out: Combustion time 30 seconds or more

Figure 2006117814
Figure 2006117814

表2 MFR測定条件
難燃ABS/PC、難燃ABS:220℃、10kg
PA/EPR/IP:265℃、10kg(220℃では流れない)
PPS:300℃、1.2kg(265℃では流れない)
Table 2 MFR measurement conditions Flame retardant ABS / PC, Flame retardant ABS: 220 ° C., 10 kg
PA / EPR / IP: 265 ° C, 10kg (does not flow at 220 ° C)
PPS: 300 ° C, 1.2 kg (does not flow at 265 ° C)

Figure 2006117814
Figure 2006117814

Figure 2006117814
Figure 2006117814

尚、実施例で得られた熱可塑性樹脂組成物を射出成形して得られた成形体を用いた電源アダプター、パソコン用部品、携帯電話用部品、自動車部品、光学式ディスプレー装置、半導体材料を作成したところ従来製品に比較して良好な放熱性の優れた製品が得られた。 In addition, power adapters, parts for personal computers, parts for mobile phones, automobile parts, optical display devices, and semiconductor materials using molded products obtained by injection molding of the thermoplastic resin compositions obtained in the examples are prepared. As a result, a product excellent in heat dissipation compared with the conventional product was obtained.

なお、各種物性の評価測定法は下記の通りである。
(1)流動性:JIS K−7210に従い、メルトマスフローレイト(MFR)を測定した。
(2)衝撃強度:JIS K−7111に従い、ノッチ有りシャルピー衝撃強度を測定した。
(3)耐熱性:JIS K−7106に従い、50N荷重、ビカット軟化点を測定した。
(4)難燃性:射出成形機・東芝IS80G−2Aにより、長さ5インチ×幅1/2インチ×厚さ1/16インチの試験片を作成し、米国におけるアンダーライターズ・ラボラトリーズ(UL)で規格化されたサブジェクト94号(略称UL−94)に基づき難燃性の判定を行った。
(5)放熱性評価:次の方法に従って評価した。
射出成形機・東芝機械IS50EPNにより、外寸100×50×高さ15mm(2mm厚)の箱型成形品を射出成形し、得られた成形品を2個貼り合わせ、外寸100×50×高さ30mm(2mm厚)の半密閉六面体筐体(温度測定用熱電対および発熱部電子部品への通電用リード線用に50×30mm面側面中央部に約8mmφの穴を開けてある)を作成した。横置き(100×50面下側)した半密閉筐体内部に発熱体としてNEC製IC素子(C2335、K34S)をハンダで取り付けたアルミニウム板(40×30×2mm)を筐体内側底部中央部壁面に密着させた。半密閉筐体温度23℃(室温23℃)から測定を開始し、IC素子に3.4W負荷で通電を行い、通電開始後から上記発熱体直近アルミニウム(以下発熱部)の温度を測定した。発熱部温度がほぼ一定化する30分後の温度を比較し、放熱性の評価とした。発熱部温度が低いほど(温度上昇が低いほど)外部への熱放出が多く、熱可塑性樹脂組成物の放熱性が優れることとなる。
(6)剛性の測定方法:曲げ弾性率:JIS K−7171に従い、曲げ弾性率を測定した。
(7)熱伝導率:熱伝導率測定装置(アグネ社製「ART−TC−1型」)を用い、射出成形したプレートを直径28mm、厚さ3mmの円盤状サイズに加工後、室温において温度傾斜法で測定した。
(8)射出成形性:射出成形機・東芝機械IS50EPNにより、一点ピンゲート(1mmφ)外寸100×50×15mm(2mm厚)の箱型成形品を下記設定温度で射出成形し成形性をA〜Dランク評価した。
熱可塑性樹脂 射出成形時の温度設定
N−1 250〜280℃
N−2 220〜250℃
N−3 250〜280℃
N−4 300〜330℃
A:特に問題なく容易に箱型成形品射出成形可能。
B:箱型成形品に多少フラッシュ等の外観不良見られるが成形可能。
C:箱型成形品にフラッシュ、焼け、フローマーク等の外観不良目立つが成形可能。
D:樹脂組成物が金型に完全に充填できず射出成形により箱型成形品得られない。
(9)平均粒径
コールター社製レーザー回折散乱法粒度分布測定装置を用いて測定した平均径(体積平均径)。
In addition, the evaluation measuring method of various physical properties is as follows.
(1) Fluidity: Melt mass flow rate (MFR) was measured according to JIS K-7210.
(2) Impact strength: Notched Charpy impact strength was measured according to JIS K-7111.
(3) Heat resistance: 50N load and Vicat softening point were measured according to JIS K-7106.
(4) Flame retardancy: Test pieces of length 5 inches x width 1/2 inches x thickness 1/16 inch were made by an injection molding machine Toshiba IS80G-2A, and underwriters laboratories (UL in the United States) The flame retardancy was determined on the basis of Subject No. 94 (abbreviation UL-94) standardized.
(5) Heat dissipation evaluation: Evaluation was made according to the following method.
Using an injection molding machine / Toshiba machine IS50EPN, a box-shaped molded product with an outer size of 100 x 50 x height 15 mm (2 mm thickness) is injection-molded. A semi-enclosed hexahedral housing with a thickness of 30 mm (2 mm thick) (with a hole of about 8 mmφ in the center of the 50 × 30 mm side surface for the lead wire for energizing the thermocouple for temperature measurement and the heat generating part electronic components) did. An aluminum plate (40 × 30 × 2 mm) with a NEC IC element (C2335, K34S) attached as a heating element with solder inside a semi-sealed housing placed horizontally (100 × 50 bottom side) Adhered to the wall. The measurement was started from a semi-sealed housing temperature of 23 ° C. (room temperature of 23 ° C.), the IC element was energized with a load of 3.4 W, and the temperature of the aluminum immediately adjacent to the heating element (hereinafter referred to as the heat generating portion) was measured after the energization started. The temperature after 30 minutes when the temperature of the heat generating part became almost constant was compared to evaluate heat dissipation. The lower the temperature of the heat generating part (the lower the temperature rise), the more heat is released to the outside, and the better the heat dissipation of the thermoplastic resin composition.
(6) Rigidity measuring method: flexural modulus: The flexural modulus was measured according to JIS K-7171.
(7) Thermal conductivity: Using a thermal conductivity measuring device ("ART-TC-1 type" manufactured by Agne), the injection-molded plate was processed into a disk-like size having a diameter of 28 mm and a thickness of 3 mm, and then the temperature at room temperature. Measured by the gradient method.
(8) Injection moldability: A single-point pin gate (1 mmφ) outer size 100 × 50 × 15 mm (2 mm thick) box-shaped molded product is injection molded at the following set temperature using an injection molding machine / Toshiba machine IS50EPN. D rank evaluation.
Thermoplastic resin Temperature setting during injection molding
N-1 250-280 ° C
N-2 220-250 ° C
N-3 250-280 ° C
N-4 300-330 ° C
A: A box-shaped product can be easily injection-molded without any particular problems.
B: Although appearance defects such as flash are somewhat seen in the box-shaped molded product, molding is possible.
C: Appearance defects such as flashing, burning, and flow marks are conspicuous but can be molded into box-shaped molded products.
D: The resin composition cannot be completely filled in the mold, and a box-shaped product cannot be obtained by injection molding.
(9) Average particle diameter An average diameter (volume average diameter) measured using a laser diffraction scattering method particle size distribution analyzer manufactured by Coulter.

Claims (10)

熱可塑性樹脂とフィラーからなる熱伝導率が0.4〜1.5W/mK、メルトマスフローレイトが2〜200g/10分かつ曲げ弾性率1000〜8000Mpaであることを特徴とする熱可塑性樹脂組成物。 A thermoplastic resin composition comprising a thermoplastic resin and a filler having a thermal conductivity of 0.4 to 1.5 W / mK, a melt mass flow rate of 2 to 200 g / 10 min, and a flexural modulus of 1000 to 8000 Mpa. フィラーが球形度0.80〜1.0である球状無機物粉末であることを特徴とする請求項1記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the filler is a spherical inorganic powder having a sphericity of 0.80 to 1.0. フィラー充填量が10〜50体積%であることを特徴とする請求項1または請求項2記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 or 2, wherein a filler filling amount is 10 to 50% by volume. フィラーの平均粒径が1〜50μmであることを特徴とする請求項1〜3のいずれか1項記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 3, wherein the filler has an average particle size of 1 to 50 µm. フィラーの熱伝導率が1.0〜150W/mkであることを特徴とする請求項1〜4のいずれか1項記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 4, wherein the filler has a thermal conductivity of 1.0 to 150 W / mk. フィラーが球状アルミナ、球状シリカから選ばれる少なくとも一種であることを特徴とする請求項1〜5のいずれか1項記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 5, wherein the filler is at least one selected from spherical alumina and spherical silica. 請求項1〜6のいずれか1項記載の熱可塑性樹脂組成物を射出成形してなることを特徴とする成形体の製造方法。 A method for producing a molded article, comprising injection-molding the thermoplastic resin composition according to any one of claims 1 to 6. 請求項1〜6項記載のいずれか1項記載の熱可塑性樹脂組成物から得られる放熱部材。 The heat radiating member obtained from the thermoplastic resin composition of any one of Claims 1-6. 請求項8の放熱部材を組み入れた機器。 A device incorporating the heat dissipating member of claim 8. 電源アダプター、パソコン用部品、携帯電話用部品、自動車部品、光学式ディスプレー装置、半導体材料であることを特徴とする請求項9記載の機器。 10. The device according to claim 9, wherein the device is a power adapter, a component for a personal computer, a component for a mobile phone, an automotive component, an optical display device, or a semiconductor material.
JP2004307590A 2004-10-22 2004-10-22 Thermoplastic resin composition, its molded article and method for producing the same Pending JP2006117814A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004307590A JP2006117814A (en) 2004-10-22 2004-10-22 Thermoplastic resin composition, its molded article and method for producing the same
PCT/JP2005/019324 WO2006043641A1 (en) 2004-10-22 2005-10-20 Thermoplastic resin composition, molded body thereof and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307590A JP2006117814A (en) 2004-10-22 2004-10-22 Thermoplastic resin composition, its molded article and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006117814A true JP2006117814A (en) 2006-05-11

Family

ID=36203057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307590A Pending JP2006117814A (en) 2004-10-22 2004-10-22 Thermoplastic resin composition, its molded article and method for producing the same

Country Status (2)

Country Link
JP (1) JP2006117814A (en)
WO (1) WO2006043641A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063795A1 (en) * 2005-11-29 2007-06-07 Unitika Ltd. Resin composition and molded article obtained by molding same
JP2008094924A (en) * 2006-10-11 2008-04-24 Daicel Polymer Ltd Thermoconductive resin composition
JP2008239899A (en) * 2007-03-28 2008-10-09 Techno Polymer Co Ltd Heat-radiating resin composition and molded article containing the same
JP2010077269A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Thermoplastic resin extruded molding
JP2010077272A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Thermoplastic resin injection molded body
JP2010077270A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Thermoplastic resin composition
JP2010248342A (en) * 2009-04-14 2010-11-04 Denki Kagaku Kogyo Kk Thermoplastic resin composition and molded article thereof
US8222802B2 (en) 2008-03-28 2012-07-17 Sumitomo Chemical Company, Limited Resin composition, reflective plate and light-emitting device
US8557905B2 (en) 2010-04-07 2013-10-15 Denki Kagaku Kogyo Kabushiki Kaisha Heat-dissipating resin composition used for LED light housing and heat-dissipating housing for LED lighting

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003830A (en) * 2000-06-26 2002-01-09 Denki Kagaku Kogyo Kk Highly heat conductive composition and its application
JP2002146187A (en) * 2000-11-08 2002-05-22 Toray Ind Inc Polyphenylene sulfide resin composition
JP2003187757A (en) * 2001-10-11 2003-07-04 Sumitomo Chem Co Ltd Resin composition for rechargeable battery battery case

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063795A1 (en) * 2005-11-29 2007-06-07 Unitika Ltd. Resin composition and molded article obtained by molding same
JP5246646B2 (en) * 2005-11-29 2013-07-24 ユニチカ株式会社 Resin composition and molded product formed by molding the same
US8933160B2 (en) 2005-11-29 2015-01-13 Unitika Ltd. Resin composition and product molded from the same
JP2008094924A (en) * 2006-10-11 2008-04-24 Daicel Polymer Ltd Thermoconductive resin composition
JP2008239899A (en) * 2007-03-28 2008-10-09 Techno Polymer Co Ltd Heat-radiating resin composition and molded article containing the same
US8222802B2 (en) 2008-03-28 2012-07-17 Sumitomo Chemical Company, Limited Resin composition, reflective plate and light-emitting device
JP2010077269A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Thermoplastic resin extruded molding
JP2010077272A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Thermoplastic resin injection molded body
JP2010077270A (en) * 2008-09-25 2010-04-08 Panasonic Electric Works Co Ltd Thermoplastic resin composition
JP2010248342A (en) * 2009-04-14 2010-11-04 Denki Kagaku Kogyo Kk Thermoplastic resin composition and molded article thereof
US8557905B2 (en) 2010-04-07 2013-10-15 Denki Kagaku Kogyo Kabushiki Kaisha Heat-dissipating resin composition used for LED light housing and heat-dissipating housing for LED lighting

Also Published As

Publication number Publication date
WO2006043641A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
US8487042B2 (en) Polyarylene sulfide resin composition and a molded article formed therefrom
WO2006043641A1 (en) Thermoplastic resin composition, molded body thereof and method for producing same
TWI762742B (en) Liquid crystal polyester resin composition and molded article
JP6851979B2 (en) Liquid crystal polyester composition and molded article
JP5914935B2 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and molded article
TWI773853B (en) Liquid crystal polyester resin composition and molded article
JP5088160B2 (en) Liquid crystalline resin composition and molded product
JP2006328352A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
US20080021146A1 (en) Thermal conductive resin composition
JP5256716B2 (en) Resin composition and molded product obtained therefrom
US20130202882A1 (en) Highly thermally conductive resin molded article, and manufacturing method for same
US8262933B2 (en) Thermoplastic resin composition, method for producing the same, and molded article obtained from the same
TWI716509B (en) Liquid crystal polyester composition and molded article
WO2017012119A1 (en) Thermally conductive core-shell structured particles
JP2008260830A (en) Heat-conductive resin composition
JP2011225648A (en) Heat radiation member for lighting
JP2017039901A (en) Housing
JP2010043229A (en) Thermally conductive resin composition and resin molding of the composition
JP2003049081A (en) Thermoplastic resin composition excellent in heat radiation property
JP2021095484A (en) Molding for laser welding, and variation inhibitor of laser transmittance of molding for laser welding
JP2007146129A (en) Resin composition, method for producing tablet therefrom and molded article
JP5388665B2 (en) Thermoplastic resin composition and molded article thereof
JP3839120B2 (en) Polybutylene terephthalate resin composition and molded article
JP2021113308A (en) Thermally conductive resin composition and molded article comprising the same
JP2021181541A (en) Heat-conductive resin composition, and compact comprising the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508