JP2006114511A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2006114511A
JP2006114511A JP2005355004A JP2005355004A JP2006114511A JP 2006114511 A JP2006114511 A JP 2006114511A JP 2005355004 A JP2005355004 A JP 2005355004A JP 2005355004 A JP2005355004 A JP 2005355004A JP 2006114511 A JP2006114511 A JP 2006114511A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
negative electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005355004A
Other languages
Japanese (ja)
Other versions
JP3979429B2 (en
Inventor
Shunichi Hamamoto
俊一 浜本
Atsuo Hidaka
敦男 日高
Yukio Nakada
幸夫 仲田
Koji Abe
浩司 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2005355004A priority Critical patent/JP3979429B2/en
Publication of JP2006114511A publication Critical patent/JP2006114511A/en
Application granted granted Critical
Publication of JP3979429B2 publication Critical patent/JP3979429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery having excellent battery characteristics such as a cycle characteristic, an electric capacity, or a storage characteristic, and having an excellent low-temperature characteristic. <P>SOLUTION: This lithium secondary battery comprises: a positive electrode containing a positive electrode active material comprising a complex metallic compound of at least one kind of metal selected from a group comprising cobalt, manganese, nickel, chromium, iron and vanadium, and lithium; a negative electrode setting a carbon material as a negative electrode active material; and an electrolytic solution wherein an electrolyte is dissolved in a nonaqueous solvent. In the lithium secondary battery, the carbon material of the negative electrode active material is graphite, and the nonaqueous solvent contains ethylene carbonate, chain carbonate, and 1,3-propane sultone of 1.0-3.0 mass% to the whole nonaqueous solvent amount. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電池のサイクル特性や、電気容量、保存特性などの電池特性に優れたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery excellent in battery characteristics such as battery cycle characteristics, electric capacity, and storage characteristics.

近年、電子機器の小型化、携帯化が進んでおり、それらの駆動電源として、高エネルギ−密度の電池、特に二次電池の開発が求められている。その有力な候補として、正極には、LiCoO2、LiMn24、LiNiO2などのリチウム含有複合酸化物が高い起電力が取り出せるため正極材料として注目され、また負極にはコークス、黒鉛などの炭素材料がデンドライト状の電析リチウムの成長による正極との短絡、負極からのリチウムの脱落がないため、金属リチウム負極を用いたリチウム二次電池に替わる高性能且つ高い安全性を有する負極材料としてますます注目されるようになっている。 In recent years, electronic devices are becoming smaller and more portable, and as a driving power source for them, development of a high energy density battery, in particular, a secondary battery is required. As a promising candidate, the positive electrode has attracted attention as a positive electrode material because lithium-containing composite oxides such as LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 can extract high electromotive force, and the negative electrode has carbon such as coke and graphite. Since the material does not short-circuit with the positive electrode due to the growth of dendritic electrodeposited lithium and does not drop off lithium from the negative electrode, it is a negative electrode material with high performance and high safety that replaces lithium secondary batteries using metallic lithium negative electrodes. It is getting more and more attention.

しかしながら、前記炭素材料を負極に用いた場合には、充放電サイクル数とともに炭素負極上において、電解液として用いられる非水溶媒が分解して電池容量が次第に低下するという問題点があった。このため、電池のサイクル特性および電気容量などの電池特性は必ずしも満足なものではないのが現状である。   However, when the carbon material is used for the negative electrode, there is a problem in that the battery capacity gradually decreases due to decomposition of the nonaqueous solvent used as the electrolytic solution on the carbon negative electrode along with the number of charge / discharge cycles. For this reason, at present, battery characteristics such as battery cycle characteristics and electric capacity are not always satisfactory.

特に、正極材料として前記リチウム含有複合酸化物を用い、電池容量を大きくするために、例えば天然黒鉛や人造黒鉛などの高結晶化した炭素材料を用いたリチウム二次電池においては、炭素材料の剥離が観察され、現象の程度によって容量が不可逆となり、サイクル特性が低下するという問題点があった。この炭素材料の剥離は、電解液中の非水溶媒が充電時に分解することにより起こるのではないかと考えられ、この剥離をもたらす非水溶媒の分解は、炭素材料と電解液との界面における非水溶媒の電気化学的還元に起因するものと考えられている。   In particular, in the lithium secondary battery using a highly crystallized carbon material such as natural graphite or artificial graphite in order to increase the battery capacity by using the lithium-containing composite oxide as a positive electrode material, the carbon material is peeled off. As a result, the capacity becomes irreversible depending on the degree of the phenomenon, and the cycle characteristics deteriorate. This exfoliation of the carbon material may be caused by the decomposition of the non-aqueous solvent in the electrolyte during charging, and the decomposition of the non-aqueous solvent that causes the exfoliation is not caused at the interface between the carbon material and the electrolyte. It is thought to result from the electrochemical reduction of the aqueous solvent.

例えば、非水溶媒として環状カーボネートが好適に用いられているが、エチレンカーボネート(EC)のような環状カーボネートを用いたような場合には、充放電を繰り返す間に非水溶媒の分解が起こり、電池性能の低下が起こる。なかでも、融点が低くて誘電率の高いプロピレンカーボネート(PC)は、低温においても高い電気伝導を有しているため非水溶媒として好ましいが、高結晶化された黒鉛を負極材料して用いるような場合には、PCの分解が顕著となり、リチウム二次電池用の電解液としては使用できなかった。   For example, cyclic carbonate is preferably used as the non-aqueous solvent, but when cyclic carbonate such as ethylene carbonate (EC) is used, decomposition of the non-aqueous solvent occurs during repeated charge and discharge, Battery performance is degraded. Among them, propylene carbonate (PC) having a low melting point and a high dielectric constant is preferable as a non-aqueous solvent because it has high electrical conductivity even at low temperatures. However, highly crystallized graphite is used as a negative electrode material. In such a case, the decomposition of PC became remarkable, and it could not be used as an electrolytic solution for a lithium secondary battery.

本発明は、前記のようなリチウム二次電池用電解液に関する課題を解決し、電池のサイクル特性に優れ、さらに電気容量や充電状態での保存特性などの電池特性にも優れたリチウム二次電池を提供することを目的とする。   The present invention solves the above-described problems relating to the electrolyte for a lithium secondary battery, is excellent in battery cycle characteristics, and further excellent in battery characteristics such as electric capacity and storage characteristics in a charged state. The purpose is to provide.

本発明は、コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムからなる群より選ばれる少なくとも一種類の金属とリチウムとの複合金属化合物からなる正極活物質を含む正極と、炭素材料を負極活物質とする負極と、非水溶媒に電解質が溶解されてなる電解液とからなるリチウム二次電池において、負極活物質の炭素材料がグラファイトであって、前記非水溶媒が、エチレンカーボネート、鎖状カーボネート、そして非水溶媒全体量に対して1.0〜3.0質量%の1,3−プロパンスルトンを含有することを特徴とするリチウム二次電池にある。   The present invention includes a positive electrode including a positive electrode active material composed of a composite metal compound of at least one metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium and lithium, and a carbon material as a negative electrode active material. In a lithium secondary battery comprising a negative electrode and an electrolyte solution in which an electrolyte is dissolved in a nonaqueous solvent, the carbon material of the negative electrode active material is graphite, and the nonaqueous solvent is ethylene carbonate, chain carbonate, The lithium secondary battery contains 1.0 to 3.0% by mass of 1,3-propane sultone with respect to the total amount of the nonaqueous solvent.

本発明によれば、電池のサイクル特性、電気容量、保存特性などの電池特性に優れ、しかも低温特性に優れたリチウム二次電池を提供することができる。   According to the present invention, it is possible to provide a lithium secondary battery that is excellent in battery characteristics such as battery cycle characteristics, electric capacity, and storage characteristics, and also excellent in low-temperature characteristics.

本発明における非水溶媒には、エチレンカーボネート、鎖状カーボネートおよび1,3−プロパンスルトンが含有される。   The nonaqueous solvent in the present invention contains ethylene carbonate, chain carbonate, and 1,3-propane sultone.

鎖状カーボネートとしては、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)からなる群より選ばれる化合物であることが好ましい。   The chain carbonate is preferably a compound selected from the group consisting of dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), and diethyl carbonate (DEC).

本発明におけるリチウム二次電池用電解液において、前記非水溶媒中のエチレンカーボネートの含有量が10重量%以上であり、前記鎖状カーボネートの含有量が30重量%以上であることが好ましい。   In the electrolyte solution for a lithium secondary battery according to the present invention, the content of ethylene carbonate in the non-aqueous solvent is preferably 10% by weight or more, and the content of the chain carbonate is preferably 30% by weight or more.

本発明の電解液で用いられる電解質の例としては、LiPF6、LiBF4、LiClO4、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33などが挙げられる。これらの電解質は、一種類で使用してもよく、二種類以上組み合わせて使用してもよい。これらの電解質は、前記の非水溶媒に通常0.1〜3M、好ましくは0.5〜1.5Mの濃度で溶解されて使用される。 Examples of the electrolyte used in the electrolytic solution of the present invention include LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ). 3 etc. These electrolytes may be used alone or in combination of two or more. These electrolytes are used by being dissolved in the non-aqueous solvent usually at a concentration of 0.1 to 3M, preferably 0.5 to 1.5M.

本発明の電解液は、例えば、エチレンカーボネートおよび鎖状カーボネートを混合し、これに前記の電解質を溶解し、1,3−プロパンスルトンを溶解することにより得られる。   The electrolytic solution of the present invention can be obtained, for example, by mixing ethylene carbonate and chain carbonate, dissolving the above electrolyte therein, and dissolving 1,3-propane sultone.

二次電池を構成する電解液以外の構成部材については特に限定されず、従来使用されている種々の構成部材を使用できる。   The constituent members other than the electrolytic solution constituting the secondary battery are not particularly limited, and various conventionally used constituent members can be used.

正極材料(正極活物質)としてはコバルト、マンガン、ニッケル、クロム、鉄およびバナジウムからなる群より選ばれる少なくとも一種類の金属とリチウムとの複合金属酸化物が使用される。このような複合金属酸化物としては、例えば、LiCoO2、LiMn24、LiNiO2などが挙げられる。 As the positive electrode material (positive electrode active material), a composite metal oxide of lithium and at least one kind of metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium is used. Examples of such a composite metal oxide include LiCoO 2 , LiMn 2 O 4 , and LiNiO 2 .

正極は、前記の正極材料をアセチレンブラック、カーボンブラックなどの導電剤およびポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などの結着剤と混練して正極合剤とした後、この正極材料を集電体としてのアルミニウムやステンレス製の箔やラス板に圧延して、50℃〜250℃程度の温度で2時間程度真空下で加熱処理することにより作製される。   The positive electrode is prepared by kneading the positive electrode material with a conductive agent such as acetylene black or carbon black and a binder such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF) to form a positive electrode mixture. It is produced by rolling the material into a foil or a lath plate made of aluminum or stainless steel as a current collector and heat-treating it at a temperature of about 50 ° C. to 250 ° C. for about 2 hours under vacuum.

負極(負極活物質)としては、リチウムを吸蔵・放出可能なグラファイトが用いられる。格子面(002)の面間隔(d002)が3.35〜3.40Å(オングストローム)である黒鉛型結晶構造を有するグラファイトを使用することが好ましい。なお、グラファイトのような粉末材料はエチレンプロピレンジエンターポリマー(EPDM)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などの結着剤と混練して負極合剤として使用される。 As the negative electrode (negative electrode active material), graphite capable of inserting and extracting lithium is used. It is preferable to use graphite having a graphite-type crystal structure in which the lattice spacing ( 002 ) (d 002 ) is 3.35 to 3.40 Å (angstrom). A powder material such as graphite is used as a negative electrode mixture by kneading with a binder such as ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), or polyvinylidene fluoride (PVDF).

本発明において、電解液中に含有される1,3−プロパンスルトンは、炭素材料表面での不働態皮膜形成に寄与し、天然黒鉛や人造黒鉛などの活性で高結晶化した炭素材料を不働態皮膜で被覆し、電池の正常な反応を損なうことなく電解液の分解を抑制する効果を有するものと考えられる。   In the present invention, 1,3-propane sultone contained in the electrolytic solution contributes to the formation of a passive film on the surface of the carbon material, and the active and highly crystallized carbon material such as natural graphite or artificial graphite is in a passive state. It is thought that it has the effect which suppresses decomposition | disassembly of electrolyte solution, without impairing normal reaction of a battery, coat | covering with a film | membrane.

リチウム二次電池の構造は特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン型電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池や角型電池などが一例として挙げられる。なお、セパレータとしては公知のポリオレフィンの微多孔膜、織布、不織布などが使用される。   The structure of the lithium secondary battery is not particularly limited, and a coin-type battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, and a cylindrical battery and a square type having a positive electrode, a negative electrode, and a roll separator An example is a battery. A known polyolefin microporous film, woven fabric, non-woven fabric or the like is used as the separator.

次に、実施例および比較例を挙げて、本発明を具体的に説明するが、これらは、本発明を何ら限定するものではない。   Next, although an Example and a comparative example are given and this invention is demonstrated concretely, these do not limit this invention at all.

[参考例1]
〔電解液の調製〕
プロピレンカーボネート(PC)とジメチルカーボネート(DMC)とを重量比1:1となるように調製し、さらに1,3−プロパンスルトン(PS)を0.1重量%となるように加えた。これにLiPF6を1Mの濃度になるように溶解して電解液を調製した。
[Reference Example 1]
(Preparation of electrolyte)
Propylene carbonate (PC) and dimethyl carbonate (DMC) were prepared so as to have a weight ratio of 1: 1, and 1,3-propane sultone (PS) was further added so as to be 0.1% by weight. An electrolytic solution was prepared by dissolving LiPF 6 to a concentration of 1M.

〔リチウム二次電池の作製および電池特性の測定〕
LiCoO2(正極活物質)を80重量%、アセチレンブラック(導電剤)を10重量%、ポリテトラフルオロエチレン(結着剤)を10重量%の割合で混合し、これを圧縮成型して正極を調製した。天然黒鉛(負極活物質)を90重量%、ポリフッ化ビニリデン(結着剤)を10重量%の割合で混合し、これを圧縮成型して負極を調製した。そして、ポリプロピレン微多孔性フィルムのセパレータを用い、上記の電解液を注入させてコイン電池(直径20mm、厚さ3.2mm)を作製した。
[Production of lithium secondary battery and measurement of battery characteristics]
80% by weight of LiCoO 2 (positive electrode active material), 10% by weight of acetylene black (conductive agent) and 10% by weight of polytetrafluoroethylene (binder) are mixed, and this is compression-molded to form a positive electrode. Prepared. 90% by weight of natural graphite (negative electrode active material) and 10% by weight of polyvinylidene fluoride (binder) were mixed and compression molded to prepare a negative electrode. And using the separator of a polypropylene microporous film, said electrolyte solution was inject | poured and the coin battery (diameter 20mm, thickness 3.2mm) was produced.

このコイン電池を用いて、室温(25℃)において、0.8mAの定電流及び定電圧で、終止電圧4.2Vまで5時間充電し、次に0.8mAの定電流下、終止電圧2.7Vまで放電し、この充放電を繰り返した。初期充電容量は、EC/DMC(1/1)を電解液に用いた場合とほぼ同等であり、充放電50サイクル後の電池特性を測定したところ、初期放電容量を100%としたときの放電容量維持率は82.3%であった。これとは別に、室温(25℃)において、定電流及び定電圧0.8mAで終止電圧4.2Vまで5時間充電した後、−20℃にして定電流0.8mAで終止電圧2.7Vまで放電した。このときの初期放電容量は室温との初期放電容量比で88%であった。   Using this coin battery, at room temperature (25 ° C.), it was charged at a constant current and constant voltage of 0.8 mA for 5 hours to a final voltage of 4.2 V, and then at a constant current of 0.8 mA and a final voltage of 2. The battery was discharged to 7 V, and this charge / discharge was repeated. The initial charge capacity is almost the same as when EC / DMC (1/1) is used as the electrolyte, and the battery characteristics after 50 cycles of charge / discharge are measured. The capacity retention rate was 82.3%. Separately, at room temperature (25 ° C.), after charging for 5 hours to a final voltage of 4.2 V at a constant current and a constant voltage of 0.8 mA, it is set to −20 ° C. to a final voltage of 2.7 V at a constant current of 0.8 mA. Discharged. The initial discharge capacity at this time was 88% in terms of the initial discharge capacity ratio to room temperature.

[実施例1〜実施例3]
正極活物質、負極活物質、添加剤である1,3−プロパンスルトンの添加剤量、および電解液組成を表1に記載のようにした以外は参考例1と同様な方法により、コイン電池を作製し、電池特性を測定した。室温下、50サイクル後の放電容量維持率を表1に示す。
[Examples 1 to 3]
A coin battery was prepared in the same manner as in Reference Example 1 except that the positive electrode active material, the negative electrode active material, the additive amount of 1,3-propane sultone as an additive, and the electrolyte composition were as shown in Table 1. The battery characteristics were measured. Table 1 shows the discharge capacity retention ratio after 50 cycles at room temperature.

[比較例1]
電解液組成をEC/DMC(1/1)となるようにした以外は参考例1と同様にしてリチウム二次電池を作製して充放電試験を行った。室温下、50サイクル後の放電容量維持率を表1に示す。さらに−20℃での初期放電容量は室温との初期放電容量比で62%であった。
[Comparative Example 1]
A lithium secondary battery was produced in the same manner as in Reference Example 1 except that the electrolytic solution composition was EC / DMC (1/1), and a charge / discharge test was performed. Table 1 shows the discharge capacity retention ratio after 50 cycles at room temperature. Further, the initial discharge capacity at −20 ° C. was 62% in terms of the initial discharge capacity ratio to room temperature.

表1
────────────────────────────────────
正極活物質 負極活物質 PS添加量 放電容量維持率
────────────────────────────────────
実施例1 LiCoO2 天然黒鉛 1.0重量% 92.8%
実施例2 LiCoO2 天然黒鉛 3.0重量% 94.7%
────────────────────────────────────
比較例1 LiCoO2 天然黒鉛 − 84.5%
────────────────────────────────────
実施例3 LiMnO4 天然黒鉛 3.0重量% 95.5%
────────────────────────────────────
電解液基本組成: 1M LiPF6 EC/DMC(1/2、重量比)、但し、比較例の非水溶媒は、EC/DMC(1/1、重量比)である。
Table 1
────────────────────────────────────
Positive electrode active material Negative electrode active material Addition amount of PS Discharge capacity maintenance rate ────────────────────────────────────
Example 1 LiCoO 2 natural graphite 1.0% by weight 92.8%
Example 2 LiCoO 2 natural graphite 3.0% by weight 94.7%
────────────────────────────────────
Comparative Example 1 LiCoO 2 natural graphite-84.5%
────────────────────────────────────
Example 3 LiMnO 4 natural graphite 3.0% by weight 95.5%
────────────────────────────────────
Electrolyte basic composition: 1M LiPF 6 EC / DMC (1/2, weight ratio) However, the non-aqueous solvent of a comparative example is EC / DMC (1/1, weight ratio).

なお、本発明は記載の実施例に限定されず、発明の趣旨から容易に置換可能な様々な組み合わせが可能である。特に、上記実施例の溶媒の組み合わせは限定されるものではない。更には、上記実施例はコイン電池に関するものであるが、本発明は円筒型、角型の電池にも適用される。
In addition, this invention is not limited to the Example described, The various combination which can be substituted easily from the meaning of invention is possible. In particular, the combination of solvents in the above examples is not limited. Furthermore, although the said Example is related with a coin battery, this invention is applied also to a cylindrical type | mold and a square-shaped battery.

Claims (3)

コバルト、マンガン、ニッケル、クロム、鉄およびバナジウムからなる群より選ばれる少なくとも一種類の金属とリチウムとの複合金属化合物からなる正極活物質を含む正極と、炭素材料を負極活物質とする負極と、非水溶媒に電解質が溶解されてなる電解液とからなるリチウム二次電池において、負極活物質の炭素材料がグラファイトであって、前記非水溶媒が、エチレンカーボネート、鎖状カーボネート、そして非水溶媒全体量に対して1.0〜3.0質量%の1,3−プロパンスルトンを含有することを特徴とするリチウム二次電池。   A positive electrode including a positive electrode active material composed of a composite metal compound of lithium and at least one kind of metal selected from the group consisting of cobalt, manganese, nickel, chromium, iron and vanadium; a negative electrode using a carbon material as a negative electrode active material; In a lithium secondary battery comprising an electrolyte in which an electrolyte is dissolved in a nonaqueous solvent, the carbon material of the negative electrode active material is graphite, and the nonaqueous solvent is ethylene carbonate, chain carbonate, and a nonaqueous solvent. A lithium secondary battery comprising 1.0 to 3.0% by mass of 1,3-propane sultone based on the total amount. 鎖状カーボネートが、ジメチルカーボネート、ジエチルカーボネートおよびメチルエチルカーボネートからなる群より選ばれる化合物である請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the chain carbonate is a compound selected from the group consisting of dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. グラファイトが、格子面(002)の面間隔(d002)が3.35〜3.40オングストロームのグラファイトである請求項1に記載のリチウム二次電池。 2. The lithium secondary battery according to claim 1, wherein the graphite is graphite having a lattice spacing (002) with an interplanar spacing (d 002 ) of 3.35 to 3.40 Å.
JP2005355004A 1997-08-22 2005-12-08 Lithium secondary battery Expired - Lifetime JP3979429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005355004A JP3979429B2 (en) 1997-08-22 2005-12-08 Lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22615797 1997-08-22
JP10241598 1998-04-14
JP2005355004A JP3979429B2 (en) 1997-08-22 2005-12-08 Lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23106498A Division JP3978881B2 (en) 1997-08-22 1998-08-18 Non-aqueous electrolyte and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2006114511A true JP2006114511A (en) 2006-04-27
JP3979429B2 JP3979429B2 (en) 2007-09-19

Family

ID=36382812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005355004A Expired - Lifetime JP3979429B2 (en) 1997-08-22 2005-12-08 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3979429B2 (en)

Also Published As

Publication number Publication date
JP3979429B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3823683B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3815087B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3558007B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001243943A (en) Non-aqueous electrolyte secondary battery
JP3820748B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP3978882B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2012084426A (en) Nonaqueous electrolyte secondary battery
JP3632389B2 (en) Lithium secondary battery
JPH08115742A (en) Lithium secondary battery
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
JP4691775B2 (en) Lithium secondary battery
JP4042082B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4042083B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP4134414B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4016497B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
JP2000133305A (en) Non-aqueous electrolyte and lithium secondary battery using it
JP4075180B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP3610898B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2022534525A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP4147691B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190706

Year of fee payment: 12

EXPY Cancellation because of completion of term