JP2006107995A - Large capacity secondary battery excellent in heat dissipation and safety - Google Patents

Large capacity secondary battery excellent in heat dissipation and safety Download PDF

Info

Publication number
JP2006107995A
JP2006107995A JP2004295105A JP2004295105A JP2006107995A JP 2006107995 A JP2006107995 A JP 2006107995A JP 2004295105 A JP2004295105 A JP 2004295105A JP 2004295105 A JP2004295105 A JP 2004295105A JP 2006107995 A JP2006107995 A JP 2006107995A
Authority
JP
Japan
Prior art keywords
battery
heat dissipation
safety
secondary battery
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004295105A
Other languages
Japanese (ja)
Inventor
Noritaka Ibuki
伊吹典高
Kenji Kato
加藤憲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoi Electronics Co Ltd
Original Assignee
Aoi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoi Electronics Co Ltd filed Critical Aoi Electronics Co Ltd
Priority to JP2004295105A priority Critical patent/JP2006107995A/en
Publication of JP2006107995A publication Critical patent/JP2006107995A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery excellent in heat dissipation and safety regardless of capacity and shape of a battery. <P>SOLUTION: The hazard of heating of a battery is related to the value of surface area/volume. A large capacity battery which is excellent in heat dissipation for safety is provided by employing a certain value or higher of surface area per volume compared to a conventional battery product, and employing a lamination type manufacturing method for impregnation with electrolyte in advance, by noticing the fact that surface area=heat dissipation area, volume=electric capacity which battery stores. As safety standard, (1) the battery is manufactured by a lamination type method for impregnation with electrolyte in advance, and (2) a surface area ratio against volume of the battery (surface area/volume) is 0.8 or higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、放熱性及び安全性に優れた二次電池に関し、より具体的には積層型製法による表面積/体積値が一定値以上である大判薄型ポリマー電解質電池に関する。   The present invention relates to a secondary battery excellent in heat dissipation and safety, and more specifically to a large-sized thin polymer electrolyte battery having a surface area / volume value of a certain value or more by a laminated manufacturing method.

ポリマー電解質電池は、電極および電解質をシート状にすることができるため、薄型の電池を製造することが可能である。ポリマー電解質を用いた電池は、特に耐漏液性を含めた安全性、貯蔵性が優れているという点で、今までの電池にない特徴を有するものである。しかし、図1に示すような捲回型による製造手法では、前者は端部が厚くなること、内部まで電解液を浸透できないことから、薄型の電池を製造することはできなかった。   Since the polymer electrolyte battery can be formed into a sheet shape of the electrode and the electrolyte, a thin battery can be manufactured. Batteries using polymer electrolytes have characteristics not found in conventional batteries in that they are particularly excellent in safety and storage properties including leakage resistance. However, in the manufacturing method using the winding type as shown in FIG. 1, since the former has a thick end portion and the electrolyte cannot penetrate into the inside, a thin battery cannot be manufactured.

そこで、複数の電極を積層することで平板形状の薄型電池を製造する方法が提言されている(例えば、特許文献1、特許文献3)。しかしながら、この積層型電池では、電極の積層枚数を増やし電気容量や電気容量密度が高くなると発熱し、発煙、発火、破裂などの事故に至るおそれがあった。   Therefore, a method of manufacturing a flat thin battery by laminating a plurality of electrodes has been proposed (for example, Patent Document 1 and Patent Document 3). However, in this multilayer battery, when the number of stacked electrodes is increased and the electric capacity and electric capacity density are increased, heat is generated, which may lead to accidents such as smoke, fire, and explosion.

そこで、短絡形成兼放熱促進部材を設けた積層型電池や(特許文献2)、導電性平板部材を/電子絶縁性平板部材/導電性平板部材の積層構造部を有する電池(特許文献3)が提言されている。   Therefore, there is a laminated battery provided with a short-circuit forming and heat dissipation promoting member (Patent Document 2), a battery having a laminated structure part of an electrically conductive flat plate member / an electronic insulating flat plate member / an electrically conductive flat plate member (Patent Document 3). It has been recommended.

特開2000−30747号公報JP 2000-30747 特開2001−68157号公報JP 2001-68157 A 特開2001−297795号公報JP 2001-297795 A

電池温度が上昇すると、発煙、発火、爆発などの危険な状態に達するため、安全性を高めるためには電池の温度を一定以下とすることが望ましい。なかでも、リチウム二次電池は放電容量が大きく、何らかの原因で電池温度が上昇するとそれをきっかけに電池が自己発熱し、電池温度がさらに上昇するため熱対策は不可欠である。
一方で、従来から熱に対する安全性の基準は確立されておらず、電池の容量や形状に応じて、各メーカーが独自基準で対策を施しているに過ぎなかった。
When the battery temperature rises, it reaches a dangerous state such as smoke, fire, or explosion, so it is desirable to keep the battery temperature below a certain level in order to improve safety. Among them, lithium secondary batteries have a large discharge capacity, and when the battery temperature rises for some reason, the battery self-heats as a result, and the battery temperature further rises, so a countermeasure against heat is indispensable.
On the other hand, the standard for heat safety has not been established so far, and each manufacturer has only taken measures according to its own standard according to the capacity and shape of the battery.

また、ノート型パソコンなどのポータブル製品においては、大容量化の要求と共に形状の自由度の高い電池が要望されている。昨今では、電気自動車用バッテリーとしても室内空間を圧迫しない大判薄型電池のニーズは高い。   In portable products such as notebook computers, batteries with a high degree of freedom in shape are demanded along with a demand for large capacity. Nowadays, there is a great need for large-sized thin batteries that do not compress indoor spaces as batteries for electric vehicles.

上記課題を鑑み、本発明は、電池の容量や形状にかかわらず、放熱性及び安全性に優れた二次電池を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a secondary battery excellent in heat dissipation and safety regardless of the capacity and shape of the battery.

本発明者は、電池の発熱に伴う危険性は、表面積/体積の値に関連があること、すなわち表面積=放熱面積、体積=電池の蓄える電気容量であることに着目し、従来の電池製品と比べ体積あたりの表面積を一定値以上とすること、予め電解液を含浸させる積層型製法を用いることにより、放熱性に優れた安全な大容量電池を提供することを可能とした。   The inventor of the present invention pays attention to the fact that the risk associated with the heat generation of the battery is related to the value of the surface area / volume, that is, the surface area = the heat radiation area and the volume = the electric capacity stored in the battery. In comparison, it was possible to provide a safe large-capacity battery excellent in heat dissipation by setting the surface area per volume to a certain value or more and using a laminated manufacturing method in which an electrolytic solution was impregnated in advance.

すなわち、本発明は以下の(1)〜(7)の放熱性及び安全性に優れた二次電池を要旨とする。
(1)安全基準として、以下の(あ)および(い)を満足していることを特徴とする放熱性及び安全性に優れた二次電池。
(あ)予め電解液を含浸させる積層型製法を用いて製造された電池であること。
(い)電池の体積に対する表面積比(表面積/体積)を0.8以上とすること。
(2)上記の(あ)で製造された電池が、平板形状の単位電池要素がハウジング内で複数積層されて構成される平板積層型電池である(1)の放熱性及び安全性に優れた二次電池。
(3)正極、負極および電解質層を有する電池要素が平板形状ハウジング内で複数枚積層された大容量電池である請求項2の放熱性及び安全性に優れた二次電池。
(4)電池容量が18Wh以上である(3)の放熱性及び安全性に優れた二次電池。
(5)前記ハウジングは、高分子−金属を複合したラミネートフィルムである(2)、(3)または(4)の放熱性及び安全性に優れた二次電池。
(6)前記ラミネートフィルムは、アルミニウム層を水分バリア層とし、ポリオレフィン層を最内層とし、ナイロン層を最外層とする三層構造のラミネートフィルムである(5)の放熱性及び安全性に優れた二次電池。
(7)電解質層が非流動性のリチウム二次電池である(1)ないし(6)のいずれかに記載の放熱性及び安全性に優れた二次電池。
That is, the gist of the present invention is a secondary battery excellent in heat dissipation and safety of the following (1) to (7).
(1) A secondary battery excellent in heat dissipation and safety characterized by satisfying the following (A) and (I) as safety standards.
(A) The battery is manufactured using a laminated manufacturing method in which the electrolytic solution is impregnated in advance.
(Ii) The surface area ratio (surface area / volume) with respect to the battery volume should be 0.8 or more.
(2) The battery manufactured in the above (a) is a flat plate type battery in which a plurality of flat unit battery elements are stacked in a housing, and is excellent in heat dissipation and safety of (1). Secondary battery.
(3) The secondary battery excellent in heat dissipation and safety according to claim 2, wherein the battery element having a positive electrode, a negative electrode, and an electrolyte layer is a large-capacity battery in which a plurality of battery elements are laminated in a flat plate-shaped housing.
(4) The secondary battery excellent in heat dissipation and safety of (3) having a battery capacity of 18 Wh or more.
(5) The secondary battery having excellent heat dissipation and safety according to (2), (3), or (4), wherein the housing is a polymer-metal composite laminate film.
(6) The laminate film is a three-layer laminate film having an aluminum layer as a moisture barrier layer, a polyolefin layer as an innermost layer, and a nylon layer as an outermost layer. Secondary battery.
(7) The secondary battery excellent in heat dissipation and safety according to any one of (1) to (6), wherein the electrolyte layer is a non-fluid lithium secondary battery.

本発明によれば、電池の大容量化に伴う熱の問題を解決することで、安全性に優れた大容量電池を製造することが可能となった。   According to the present invention, it is possible to manufacture a high-capacity battery excellent in safety by solving the problem of heat accompanying the increase in capacity of the battery.

ラミネート容器を用いることにより、外装の電位が中立となり、クラッシュ時の安全性を高めることが可能となった。   By using a laminate container, the external potential becomes neutral, and the safety at the time of crash can be improved.

本発明の平板積層型電池の構成について詳細に説明する。
板版形状の単位電池要素である、正極、負極、セパレータから成るシングルセルを積層し、高分子−金属を複合したラミネートフィルムバッグに封入したものである。
図10は、シングルセルの構造の一例を示したものであり、集電体はアルミ箔、その下側に改良遷移金属リチウム酸化物(LiNi1-x-yCox(Met)yO2等)にゲル電解液を含浸させたものからなる正極、その下側に多孔質ポリマーフィルムからなるセパレータ、その下側に表面改質グラファイトにゲル電解液を含浸させたものからなる負極、そしてその下側に銅箔を有する。図示された上側には、電池要素として正極が位置しているが、負極を位置させてもよい。
平板積層型電池は、シングルセルを、図11に示すように、ハウジング内で複数積層して構成される。ハウジングは、高分子−金属を複合したラミネートフィルムで容器(例.パウチ)を構成し、内部に積層した電池を真空封入することのできる容器である。封入は主にポリオレフィンフィルム同士を熱融着することで行われる。
The configuration of the flat laminated battery of the present invention will be described in detail.
A single cell consisting of a positive electrode, a negative electrode, and a separator, which is a plate-shaped unit battery element, is laminated and enclosed in a polymer-metal composite laminate film bag.
Fig. 10 shows an example of the structure of a single cell. The current collector is an aluminum foil, and the lower transition metal lithium oxide (LiNi1-x-yCox (Met) yO2 etc.) is used as a gel electrolyte. A positive electrode made of a material impregnated with a separator, a separator made of a porous polymer film on the lower side, a negative electrode made of a surface-impregnated graphite impregnated with a gel electrolyte, and a copper foil on the lower side Have. Although the positive electrode is positioned as a battery element on the upper side in the drawing, the negative electrode may be positioned.
As shown in FIG. 11, the flat battery stack is configured by stacking a plurality of single cells in a housing. The housing is a container in which a container (for example, a pouch) is constituted by a laminate film in which a polymer and a metal are combined, and a battery laminated inside can be vacuum-sealed. Encapsulation is performed mainly by heat-sealing polyolefin films.

ハウジングは、高分子−金属を複合したラミネートフィルムを使用するが、該フィルムとしては特に制限されるべきものではなく、高分子フィルム間に金属フィルムを配置し全体を積層一体化してなる従来公知のものを使用することができる。正極端子リード部近傍は、高分子フィルムからなる外装保護層(ラミネート最外層)、金属フィルム層、高分子フィルムからなる熱融着層(ラミネート最内層)のように配置し、より詳細には、金属フィルム層の両面に、高分子フィルムとして耐熱絶縁樹脂フィルムが形成され、少なくとも片面側の耐熱絶縁樹脂フィルム上に熱融着絶縁性フィルムが積層 されたものであり、全体を積層一体化してなるものが挙げられる。かかるラミネートフィルムは、適当な方法にて熱融着させることにより、熱融着絶縁性フィルム部分が融着して接合し熱融着部が形成される。   As the housing, a polymer-metal composite laminate film is used. However, the film is not particularly limited, and is a conventionally known structure in which a metal film is disposed between polymer films and the whole is laminated and integrated. Things can be used. The vicinity of the positive electrode terminal lead portion is arranged as an outer protective layer made of a polymer film (laminate outermost layer), a metal film layer, a heat fusion layer made of a polymer film (laminate innermost layer), and more specifically, A heat-resistant insulating resin film is formed as a polymer film on both sides of the metal film layer, and a heat-sealing insulating film is laminated on at least one side of the heat-resistant insulating resin film. Things. Such a laminate film is heat-sealed by an appropriate method, whereby the heat-welding insulating film portion is fused and joined to form a heat-sealing portion.

上記金属フィルムの好ましい例示としてはアルミニウムフィルムがあげられる。また、上記絶縁性樹脂フィルムとしては、ナイロンフィルム(耐熱絶縁性フィルム)、ポリエチレンフィルム(熱融着絶縁性フィルム)、ポリプロピレンフィルム(熱融着絶縁性フィルム)ポリエチレンテトラフタレートフィルム(耐熱絶縁性フィルム)等が例示できるが、これらに制限されるべきものではない。該ラミネートフィルムは、超音波融着等により熱融着絶縁性フィルムを利用して1対ないし1枚(袋状、容器状)のラミネートフィルムの熱融着による接合を容易かつ確実に行うことができる。なお、電池の長期信頼性を最大限高めるためには、ラミネートシートの構成要素である金属フィルム同士を直接接合してもよい。金属フィルム間にある熱融着性樹脂を除去もしくは破壊して金属フィルム同士を接合するには超音波溶着を用いることができる。   A preferable example of the metal film is an aluminum film. In addition, as the insulating resin film, nylon film (heat-resistant insulating film), polyethylene film (heat-bonding insulating film), polypropylene film (heat-bonding insulating film) polyethylene tetraphthalate film (heat-resistant insulating film) However, the present invention should not be limited to these. The laminated film can be easily and reliably joined by heat fusion of one to one (bag-like, container-like) laminated film using a heat fusion insulating film by ultrasonic fusion or the like. it can. In order to maximize the long-term reliability of the battery, metal films that are constituent elements of the laminate sheet may be directly joined. Ultrasonic welding can be used to join the metal films by removing or destroying the heat-fusible resin between the metal films.

本発明において、正極板、セパレータおよび負極板を積層した単位電池要素については、従来の単位電池要素と同様に構成される。例えば、正極板は正極集電体の反応部の片面に上記した正極活物質を塗布乾燥してなり、負極板は負極集電体の反応部の両面に上記したような負極活物質を塗布乾燥してなり、セパレータはポリオレフィン多孔質フィルムからなるものが例示できる。また、正極板には正極集電体が形成され、負極板には負極集電体が形成され、これらは超音波溶接等により正極端子リードおよび負極端子リードにそれぞれ接合されている。この接合は抵抗溶接によって行ってもよい。ただし、本発明の単位電池要素は、これらに何ら制限されるものではない。   In the present invention, a unit cell element in which a positive electrode plate, a separator, and a negative electrode plate are laminated is configured in the same manner as a conventional unit cell element. For example, the positive electrode plate is formed by applying and drying the above-described positive electrode active material on one side of the reaction part of the positive electrode current collector, and the negative electrode plate is formed by applying and drying the negative electrode active material as described above on both sides of the reaction part of the negative electrode current collector. Thus, the separator can be exemplified by a polyolefin porous film. Further, a positive electrode current collector is formed on the positive electrode plate, and a negative electrode current collector is formed on the negative electrode plate, and these are joined to the positive electrode terminal lead and the negative electrode terminal lead by ultrasonic welding or the like. This joining may be performed by resistance welding. However, the unit cell element of the present invention is not limited to these.

ハウジングがアルミラミネートであることの技術的な意義について説明する。この容器はリチウム塩を内包するため水分バリア層を持つことが必要であり、例えば、水分バリア層として厚さ40μmのアルミニウムフィルム、その内側は厚さ40μmのポリオレフィンフィルム(ラミネート最内層)を、外側は30μmの66ナイロン層(ラミネート最外層)を配置し、熱または接着剤で貼り付けたラミネートフィルムであり、かかるラミネートフィルムは、適当な方法にて熱融着させることにより、ポリオレフィンフィルム部分が融着して接合し熱融着部が形成される。   The technical significance of the housing being an aluminum laminate will be described. This container needs to have a moisture barrier layer to contain lithium salt. For example, a 40 μm thick aluminum film as the moisture barrier layer, a polyolefin film (lamination innermost layer) with a thickness of 40 μm inside, and an outer side Is a laminated film in which a 66 μm nylon layer (laminate outermost layer) with a thickness of 30 μm is placed and adhered with heat or an adhesive. The laminated film is melt-bonded by an appropriate method to melt the polyolefin film part. And bonded to form a heat-sealed portion.

本発明の平板積層型電池は、最も広い平板の面積が105mm×148mm以上(すなわちA6版以上)であり、かつ出力が18Wh以上であることに技術的な意義がある。図3に示すように、一般に市販されている電池は3.7Vx2.15A=8Whが最大であり、角型の形状は63mmx68.5mm=4316mm2が最大である。これは、電池の安全性に起因する技術的課題であり、大型化・大容量化しつつ安全性を確保した電池の製造は内包するエネルギーから困難であった。
そこで、本発明では、体積の表面積比(表面積/体積)が0.8以上とすることで、安全性を確保しつつ大容量化することを可能とした。
The flat laminated battery of the present invention is technically significant in that the area of the widest flat plate is 105 mm × 148 mm or more (that is, A6 size or more) and the output is 18 Wh or more. As shown in FIG. 3, the batteries commonly available a maximum 3.7Vx2.15A = 8Wh, the shape of the square is 63mmx68.5mm = 4316mm 2 is maximum. This is a technical problem caused by the safety of the battery, and it has been difficult to manufacture a battery that ensures safety while increasing its size and capacity.
Therefore, in the present invention, by setting the volume surface area ratio (surface area / volume) to 0.8 or more, it is possible to increase the capacity while ensuring safety.

図2は、市販2次電池の電流容量と体積の表面積比の関係を示した図面である。三洋電機株式会社のホームページに掲載されている2003年10月現在の2次電池の表面積を計算して算出したものと、発煙・発火の問題によりリコールとなったS社の釣用電池(品番:BT−021B、販売期間:2003年11月〜2004年8月、他)と、出願人の試作した2次電池についてプロットしたものである(仕様の詳細については図3参照)。角型電池における体積の表面積比は、電池の厚みをT、幅をW、高さをHとすると、表面積は2x(TxL+WxH+HxT)、体積はTxWxHにより算出できる。円筒型電池における表面積は、直径をD、高さをHとすると表面積は2xπD2/4xL+πDxH、体積はD2/4xLxHで算出できる。
同図を見ると分かるとおり、リコールとなった電池においては、極めて体積の表面積比の値が低く、発熱に伴う発煙・発火の危険性が高いことが分かる。
FIG. 2 is a diagram showing the relationship between the current capacity and the volume surface area ratio of a commercially available secondary battery. Calculated by calculating the surface area of the secondary battery as of October 2003 posted on the Sanyo Electric Co., Ltd. website, and the fishing battery of Company S that was recalled due to smoke and ignition problems (Part No .: BT-021B, sales period: November 2003 to August 2004, etc.) and a plot of the secondary battery prototyped by the applicant (see FIG. 3 for details of the specifications). The surface area ratio of the volume in the rectangular battery can be calculated by 2x (TxL + WxH + HxT) and the volume by TxWxH, where T is the thickness of the battery, W is the width, and H is the height. The surface area of the cylindrical battery can be calculated as 2 × πD 2 / 4xL + πDxH and the volume is D 2 / 4xLxH, where D is the diameter and H is the height.
As can be seen from the figure, the recalled battery has a very low volumetric surface area ratio, indicating that there is a high risk of smoke and ignition associated with heat generation.

以下に、本発明の好ましい実施の形態を、図を使って説明する。
図3に示したALPLK001は、負極両面塗布のB5版Ni系電池であり、図4はそのALPLK001の試作品の写真である。本試作品においては、ラミネート容器を採用することにより、防湿性が缶タイプの電池よりも高く、電池の寿命を15年程度の長期間とすることが可能となる。本試作品においては、アルミ箔を表面側ナイロン、内側ポリエチレンでラミネートしたアルミラミネートフィルムを用いた。電解液にはアクリル系モノマーを重合してポリマーとしたものを用いた。
本電池は、図12に示すように銅泊の両面にグラファイト等の活物質を塗布した負極と、アルミ箔の片面にニッケル酸リチウム等の活物質を塗布した正極2枚とをポリオレフィン多孔質フィルムでできたセパレータを挟み込んだ構造であり、いわゆるバイセルという単位セルを3枚重ねたものである。
このバイセルを3枚積層し、水分バリア層として厚さ40μmのアルミニウムフィルムに内側に厚さ40μmのポリオレフィンフィルムを外側には30μmの66ナイロン層を熱または接着剤で貼り付けたフィルムで真空封止した。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
ALPLK001 shown in FIG. 3 is a B5 Ni-type battery coated on both sides of the negative electrode, and FIG. 4 is a photograph of the prototype of ALPLK001. By adopting a laminate container in this prototype, the moisture resistance is higher than that of a can-type battery, and the battery life can be extended to about 15 years. In this prototype, an aluminum laminate film obtained by laminating aluminum foil with surface side nylon and inner polyethylene was used. As the electrolytic solution, a polymer obtained by polymerizing an acrylic monomer was used.
As shown in FIG. 12, this battery is a polyolefin porous film composed of a negative electrode with an active material such as graphite applied on both sides of a copper plate and two positive electrodes with an active material such as lithium nickelate applied on one side of an aluminum foil. This is a structure with sandwiched separators, and is a stack of three unit cells called bi-cells.
Three layers of this bicell are laminated and vacuum sealed with a film in which a 40 μm thick polyolefin film is used as a moisture barrier layer and a polyolefin film with a thickness of 40 μm inside and a 66 μm nylon layer with 30 μm on the outside are attached with heat or adhesive. did.

本発明に係る電池の適用場面としては、ノート型パソコンへの適用が考えられる。積層型電池では、図5に示すように、従来の円筒形電池や角形電池と比べ、何倍も薄くすることが可能である。
ALPLK001の出力は20Whであり、現在市販されているノート型パソコンの出力は33〜50Wh程度であるから、本試作品を2枚用いることにより好ましい出力を得ることができる。液晶画面の背面に配置してもよいし、本体(キーボード)底面に配置してもよい。
また、図3のALPLEシリーズは、過充電防止剤の入った安全性重視のCo系電池であり、出力は18Whであるから、これを2枚用いてもよい。
The battery according to the present invention can be applied to a notebook personal computer. As shown in FIG. 5, the stacked battery can be made many times thinner than a conventional cylindrical battery or square battery.
Since the output of ALPLK001 is 20 Wh and the output of a notebook personal computer currently on the market is about 33 to 50 Wh, a preferable output can be obtained by using two prototypes. You may arrange | position on the back surface of a liquid crystal screen, and may arrange | position on the main body (keyboard) bottom face.
In addition, the ALPLE series in FIG. 3 is a safety-oriented Co-based battery containing an overcharge inhibitor, and the output is 18 Wh, so two of them may be used.

本発明の実施例を以下に説明する。本発明はこの実施例によって何ら制限されるものではない。   Examples of the present invention will be described below. The present invention is not limited in any way by this embodiment.

本実施例に係る電池の過充電特性を測定すべく、下記の電池において過充電時の電池温度を測定した。
(1)各電池の仕様
従来型電池1(過充電防止剤なし):43×62×5.0mm、C=1233mAh、体積の表面積比0.47
従来型電池2(過充電防止剤あり):43×62×5.0mm、C=1233mAh、体積の表面積比0.47
本実施例電池(過充電防止剤なし):186×255×1.2mm、C=5500mAh、体積の表面積比1.69
In order to measure the overcharge characteristics of the battery according to this example, the battery temperature during overcharge was measured in the following batteries.
(1) Specifications of each battery Conventional battery 1 (without overcharge prevention agent): 43 x 62 x 5.0 mm, C = 1233 mAh, volume surface area ratio 0.47
Conventional battery 2 (with overcharge prevention agent): 43 x 62 x 5.0 mm, C = 1233 mAh, volume surface area ratio 0.47
Example battery (without overcharge inhibitor): 186 × 255 × 1.2 mm, C = 5500 mAh, volume surface area ratio 1.69

従来型電池1は、前述のバイセルを13層積層することで容量を高めたもので、例えばPDAなどの電子機器に使われている。また、従来型電池2は、電解液に過充電防止剤を添加してある点でのみ従来型電池1と相違する。
本実施例電池は、前述のバイセルを3層積層したものであるが、いわゆるB5サイズであり体積が大きいことから容量も5500mAhと非常に大きくなっている。
The conventional battery 1 has a capacity increased by laminating 13 layers of the above-mentioned bicell, and is used in electronic devices such as PDAs, for example. Further, the conventional battery 2 is different from the conventional battery 1 only in that an overcharge inhibitor is added to the electrolytic solution.
The battery of this example is formed by laminating three layers of the above-mentioned bicell, but because of the so-called B5 size and the large volume, the capacity is also very large at 5500 mAh.

(2)過充電条件
放電状態より、1.8C−5Vで3時間充電した。通常の電池はよく最高電流0.6C(電池容量Cの0.6倍)−最高電圧4.2Vの条件で充電されるが、本実施例では誤用乱使用を予測して通常の3倍の条件で充電した。
(2) Overcharge condition From the discharge state, the battery was charged at 1.8 C-5 V for 3 hours. Ordinary batteries are often charged under the conditions of maximum current 0.6C (battery capacity C 0.6 times)-maximum voltage 4.2V, but in this example, misuse was predicted and charging was performed under normal conditions three times. .

従来型電池1においては、充電開始後、時間と共に電池温度が上昇し、1時間経過後に発火した。電池の最高温度は150℃以上となった(図6参照)。
従来型電池2においては、電池の最高温度は80℃程度となった(図7参照)。
本実施例の電池は、過充電防止剤を入れていないにもかかわらず、最高温度が35℃程度までしかならず、極めて安全性が高いことが分かった(図8参照)。
In the conventional battery 1, the battery temperature increased with time after the start of charging, and ignited after 1 hour. The maximum battery temperature was over 150 ° C (see Fig. 6).
In the conventional battery 2, the maximum temperature of the battery was about 80 ° C. (see FIG. 7).
The battery of the present example was found to be extremely safe because the maximum temperature was only up to about 35 ° C. despite the absence of an overcharge inhibitor (see FIG. 8).

図9はいわゆる携帯電話サイズの電池を色々な条件で充電試験したもので、コバルト系正極の電池(容量600mAh)とニッケル系正極の電池(容量800mAh)を種々の条件で比較したものである。同図から、コバルト系電池に比べニッケル系電池はFire(即ち発火)する領域が広くより危険であることがわかる。   FIG. 9 shows a charge test of a so-called mobile phone size battery under various conditions, and compares a cobalt-based positive battery (capacity 600 mAh) and a nickel-based positive battery (capacity 800 mAh) under various conditions. From the figure, it can be seen that the nickel-based battery has a wider fire area (ie, fire) than the cobalt-based battery, and is more dangerous.

本発明は、ノートパソコン等の情報機器や携帯型テレビでの利用の他、電動自動車やハイブリッド電動自動車用バッテリーへ、家庭用電力貯蔵用電池としての利用が想定される。   The present invention is assumed to be used as an electric power storage battery for home use in electric vehicles and hybrid electric vehicle batteries, in addition to use in information devices such as notebook computers and portable televisions.

捲回型電池の構成を拡大して示す模式的な斜視図である。It is a typical perspective view which expands and shows the structure of a wound type battery. 市販電池の電池容量と体積の表面積比の関係を示した図である。It is the figure which showed the relationship between the battery capacity of a commercial battery, and the surface area ratio of a volume. 図2に係る市販電池の仕様詳細を示した図(1/2)である。FIG. 3 is a diagram (1/2) showing detailed specifications of a commercially available battery according to FIG. 図2に係る市販電池の仕様詳細を示した図(2/2)である。FIG. 3 is a diagram (2/2) showing the detailed specifications of the commercially available battery according to FIG. B5版Ni系電池の試作品の写真である。This is a photograph of a prototype of a B5 Ni-type battery. 従来の円筒形電池、角形電池及び本発明に係る大判薄型電池の試作品のノート型パソコンへの適用を説明する図面である。6 is a diagram illustrating application of a prototype of a conventional cylindrical battery, a square battery, and a large thin battery according to the present invention to a notebook computer. 従来型電池(過充電防止剤なし)の過充電特性を示した図である。It is the figure which showed the overcharge characteristic of the conventional battery (no overcharge prevention agent). 従来型電池(過充電防止剤あり)の過充電特性を示した図である。It is the figure which showed the overcharge characteristic of the conventional battery (with an overcharge prevention agent). 実施例1の電池(過充電防止剤なし)の過充電特性を示した図である。FIG. 3 is a graph showing the overcharge characteristics of the battery of Example 1 (without an overcharge inhibitor). Ni系電池とCo系電池における過充電特性を示した図である。It is the figure which showed the overcharge characteristic in Ni system battery and Co system battery. 本発明に係る電池のシングルセル構造の一例を示した図である。It is the figure which showed an example of the single cell structure of the battery which concerns on this invention. シングルセルを積層したベアセル(素電池)の構造を示した図である。It is the figure which showed the structure of the bare cell (unit cell) which laminated | stacked the single cell. 本発明に係る電池の構造説明図である。It is structure explanatory drawing of the battery which concerns on this invention.

Claims (7)

安全基準として、以下の(あ)および(い)を満足していることを特徴とする放熱性及び安全性に優れた二次電池。
(あ)予め電解液を含浸させる積層型製法を用いて製造された電池であること。
(い)電池の体積に対する表面積比(表面積/体積)を0.8以上とすること。
A secondary battery excellent in heat dissipation and safety characterized by satisfying the following (A) and (I) as safety standards.
(A) The battery is manufactured using a laminated manufacturing method in which the electrolytic solution is impregnated in advance.
(Ii) The surface area ratio (surface area / volume) with respect to the battery volume should be 0.8 or more.
上記の(あ)で製造された電池が、平板形状の単位電池要素がハウジング内で複数積層されて構成される平板積層型電池である請求項1の放熱性及び安全性に優れた二次電池。   2. The secondary battery excellent in heat dissipation and safety according to claim 1, wherein the battery manufactured in (a) is a flat-plate laminated battery in which a plurality of flat-plate unit battery elements are stacked in a housing. . 正極、負極および電解質層を有する電池要素が平板形状ハウジング内で複数枚積層された大容量電池である請求項2の放熱性及び安全性に優れた二次電池。   The secondary battery excellent in heat dissipation and safety according to claim 2, wherein the battery element having a positive electrode, a negative electrode, and an electrolyte layer is a large-capacity battery in which a plurality of battery elements are stacked in a flat plate-shaped housing. 電池容量が18Wh以上である請求項3の放熱性及び安全性に優れた二次電池。   The secondary battery excellent in heat dissipation and safety according to claim 3, wherein the battery capacity is 18 Wh or more. 前記ハウジングは、高分子−金属を複合したラミネートフィルムである請求項2、3または4の放熱性及び安全性に優れた二次電池。   The secondary battery according to claim 2, 3 or 4, wherein the housing is a laminate film composed of a polymer and a metal. 前記ラミネートフィルムは、アルミニウム層を水分バリア層とし、ポリオレフィン層を最内層とし、ナイロン層を最外層とする三層構造のラミネートフィルムである請求項5の放熱性及び安全性に優れた二次電池。   6. The secondary battery excellent in heat dissipation and safety according to claim 5, wherein the laminate film is a laminate film having a three-layer structure in which an aluminum layer is a moisture barrier layer, a polyolefin layer is an innermost layer, and a nylon layer is an outermost layer. . 電解質層が非流動性のリチウム二次電池である請求項1ないし6のいずれかに記載の放熱性及び安全性に優れた二次電池。

The secondary battery excellent in heat dissipation and safety according to any one of claims 1 to 6, wherein the electrolyte layer is a non-fluid lithium secondary battery.

JP2004295105A 2004-10-07 2004-10-07 Large capacity secondary battery excellent in heat dissipation and safety Pending JP2006107995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004295105A JP2006107995A (en) 2004-10-07 2004-10-07 Large capacity secondary battery excellent in heat dissipation and safety

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004295105A JP2006107995A (en) 2004-10-07 2004-10-07 Large capacity secondary battery excellent in heat dissipation and safety

Publications (1)

Publication Number Publication Date
JP2006107995A true JP2006107995A (en) 2006-04-20

Family

ID=36377443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004295105A Pending JP2006107995A (en) 2004-10-07 2004-10-07 Large capacity secondary battery excellent in heat dissipation and safety

Country Status (1)

Country Link
JP (1) JP2006107995A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070932A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp Lithium secondary battery
CN114256555A (en) * 2019-01-09 2022-03-29 比亚迪股份有限公司 Battery cell, battery pack without module frame, vehicle and energy storage device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068157A (en) * 1999-08-24 2001-03-16 Hitachi Maxell Ltd Stacked polymer electrolyte battery
JP2001297795A (en) * 2000-04-11 2001-10-26 Mitsubishi Chemicals Corp Battery
JP2002042884A (en) * 2000-07-19 2002-02-08 Mitsubishi Chemicals Corp Plate laminated battery and method of manufacturing plate laminated battery
JP2002289193A (en) * 2001-03-27 2002-10-04 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2003007345A (en) * 2001-04-16 2003-01-10 Mitsubishi Chemicals Corp Lithium secondary battery
JP2003257393A (en) * 2002-03-01 2003-09-12 Tdk Corp Electrochemical device
JP2003282057A (en) * 2002-03-26 2003-10-03 Osaka Gas Co Ltd Non-aqueous secondary battery
JP2004193072A (en) * 2002-12-13 2004-07-08 Sharp Corp Polymer battery and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068157A (en) * 1999-08-24 2001-03-16 Hitachi Maxell Ltd Stacked polymer electrolyte battery
JP2001297795A (en) * 2000-04-11 2001-10-26 Mitsubishi Chemicals Corp Battery
JP2002042884A (en) * 2000-07-19 2002-02-08 Mitsubishi Chemicals Corp Plate laminated battery and method of manufacturing plate laminated battery
JP2002289193A (en) * 2001-03-27 2002-10-04 Osaka Gas Co Ltd Nonaqueous secondary battery
JP2003007345A (en) * 2001-04-16 2003-01-10 Mitsubishi Chemicals Corp Lithium secondary battery
JP2003257393A (en) * 2002-03-01 2003-09-12 Tdk Corp Electrochemical device
JP2003282057A (en) * 2002-03-26 2003-10-03 Osaka Gas Co Ltd Non-aqueous secondary battery
JP2004193072A (en) * 2002-12-13 2004-07-08 Sharp Corp Polymer battery and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011070932A (en) * 2009-09-25 2011-04-07 Toyota Motor Corp Lithium secondary battery
CN114256555A (en) * 2019-01-09 2022-03-29 比亚迪股份有限公司 Battery cell, battery pack without module frame, vehicle and energy storage device
CN114256555B (en) * 2019-01-09 2023-10-17 比亚迪股份有限公司 Single battery, battery pack without module frame, vehicle and energy storage device

Similar Documents

Publication Publication Date Title
US20210351463A1 (en) Pouch Type Case And Battery Pack Including The Same
JP6292583B2 (en) Secondary battery with improved energy density
JP5248069B2 (en) Pouch type secondary battery
JP6131501B2 (en) Battery cell including step structure
KR101216422B1 (en) Secondary Battery Having Sealing Portion of Improved Insulating Property
JP5508313B2 (en) Electrode assembly and secondary battery using the same
KR100496305B1 (en) Pouched-type lithium secondary battery and the fabrication method thereof
JP6714686B2 (en) Venting structure battery cell using taping
JP4628682B2 (en) Battery unit and lithium secondary battery using the same
JP4620552B2 (en) Secondary battery having jelly roll type electrode assembly
US20120028100A1 (en) Prismatic secondary battery
JP6530423B2 (en) Pouch for secondary battery with enhanced insulation characteristics and method for manufacturing the same
KR20140033585A (en) Secondary battery
KR102179687B1 (en) Battery pack and method for manufacturing the same
JP2009181899A (en) Laminated battery
KR101655275B1 (en) Secondary battery including layered welding zone having PTC-characteristics and Manufacturing method thereof
KR100601549B1 (en) Pouch type lithium secondary battery
JP2000200593A (en) Battery pack
JP2006107995A (en) Large capacity secondary battery excellent in heat dissipation and safety
KR102637306B1 (en) Battery pack and method for manufacturing the same
JP2000231914A (en) Layered polymer electrolyte battery
JP2006164863A (en) Flat battery pack and method for manufacturing it
KR20200016638A (en) Secondary Battery and Secondary Battery Pack Having the Same
KR20140014982A (en) Battery pack having electrode lead combined with two kinds of metal
CN113725523B (en) Battery monomer and battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110209