JP2006104565A - Method for producing metal composite powder and metal composite powder - Google Patents

Method for producing metal composite powder and metal composite powder Download PDF

Info

Publication number
JP2006104565A
JP2006104565A JP2004296576A JP2004296576A JP2006104565A JP 2006104565 A JP2006104565 A JP 2006104565A JP 2004296576 A JP2004296576 A JP 2004296576A JP 2004296576 A JP2004296576 A JP 2004296576A JP 2006104565 A JP2006104565 A JP 2006104565A
Authority
JP
Japan
Prior art keywords
metal
composite powder
particles
metal composite
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004296576A
Other languages
Japanese (ja)
Inventor
Akira Kikutake
亮 菊竹
Kazunori Onabe
和憲 尾鍋
Shoji Mimura
彰治 味村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004296576A priority Critical patent/JP2006104565A/en
Publication of JP2006104565A publication Critical patent/JP2006104565A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing metal composite powder obtained by sticking noble metal grains to the surfaces of metal grains. <P>SOLUTION: In the method for producing metal composite powder, while rolling spherical metal grains 20, e.g., with a mean grain size of about ≥50 nm in a sputtering system, noble metal grains are stuck thereto by a sputtering process. In this way, the metal composite powder stuck with the noble metal grains having a mean grain size of about 5 to 10 nm can be obtained, and excellent catalytic action, antibacterial action, or the like, can be expected. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属粒子表面に貴金属粒子を添着させてなる金属複合粉末の製造方法、及びこれにより得られる金属複合粉末に関するものである。   The present invention relates to a method for producing a metal composite powder obtained by attaching noble metal particles to the surface of metal particles, and a metal composite powder obtained thereby.

自動車用の排ガス浄化用触媒などにおいては、白金の触媒作用が利用されている。しかし、白金は貴金属として高価であるため、通常比表面積の大きな触媒担体の表面に高分散状態で担持させて、触媒作用を最大限に発揮する技術が開発されている。また、貴金属の抗菌作用に着目した技術の開発も行われている。   The catalytic action of platinum is used in exhaust gas purification catalysts for automobiles and the like. However, since platinum is expensive as a noble metal, a technique has been developed that maximizes the catalytic action by supporting it in a highly dispersed state on the surface of a catalyst carrier having a large specific surface area. Technology that focuses on the antibacterial action of precious metals has also been developed.

このような貴金属を触媒担体側に担持させた金属複合粉末として、例えば酸化物粒子の表面に球形状でその粒径がnmオーダーの貴金属を添着させた金属複合粉末が提案されている(特許文献1)。さらに、燃料電池(ダイレクトメタノール形のもの)のメタノール酸化用触媒などにおいては、カーボンブラックなどの炭素微粉末に白金を担持させた金属複合粉末も利用されている。
特開2000−103606号公報
As a metal composite powder in which such a noble metal is supported on the catalyst carrier side, for example, a metal composite powder in which a noble metal having a spherical shape and a particle size of nm order is attached to the surface of oxide particles has been proposed (Patent Document). 1). Further, in a methanol oxidation catalyst for a fuel cell (direct methanol type), a metal composite powder in which platinum is supported on a carbon fine powder such as carbon black is also used.
JP 2000-103606 A

このような金属複合粉末について、本発明者等が種々検討したところ、以下のような問題点があることを見い出した。先ず、触媒作用や抗菌作用などを十分に発揮されるためには、添着された貴金属粒子が空間的になるべく均一に分散していることが必要であると推測されるが、実際の金属複合粉末にあっては、貴金属粒子側の粒径が不揃いであったり、さらには担持側粒子にあっても、粒径が不揃いであることが分かった。   As a result of various studies by the present inventors on such a metal composite powder, it has been found that there are the following problems. First, in order to sufficiently exhibit catalytic action and antibacterial action, it is presumed that the precious metal particles that have been added need to be dispersed as uniformly as possible, but the actual metal composite powder In this case, it has been found that the particle diameters on the noble metal particle side are uneven, and even on the support-side particles, the particle diameters are uneven.

そこで、本発明者等は、粒径の揃ったものが入手し易い、金属粒子に着目し、これを担持側粒子として用いる一方、この金属粒子に貴金属を添着させるにおいて、スパッタ法(スパッタリング法ともいう)を用い、種々の試験を行ったところ、金属粒子の平均粒径や、スパッタ装置の通電量、通電時間の調整により、良好な結果が得られた。
つまり、平均粒径が約50nm以上の金属粒子を用いたとき、優れた触媒作用や抗菌作用などを発揮する大きさである、平均粒子径が約5〜10nmの貴金属粒子が1個の金属粒子の表面に複数個ほぼ均一に添着させることができた。
Therefore, the present inventors have focused on metal particles that are easily available in a uniform particle size, and used them as support-side particles. On the other hand, in attaching noble metals to the metal particles, the sputtering method (also called sputtering method) is used. When various tests were performed, favorable results were obtained by adjusting the average particle diameter of the metal particles, the energization amount of the sputtering apparatus, and the energization time.
In other words, when metal particles having an average particle diameter of about 50 nm or more are used, noble metal particles having an average particle diameter of about 5 to 10 nm, each having a size exhibiting excellent catalytic action and antibacterial action, are one metal particle. It was possible to attach a plurality of particles almost uniformly to the surface.

本発明は、このような観点に立ってなされたもので、基本的には、貴金属粒子をスパッタ法により、金属粒子にほぼ均一に添着させた金属複合粉末の製造方法、及びこれにより得られる金属複合粉末を提供するものである。   The present invention has been made from such a viewpoint, and basically, a method for producing a metal composite powder in which noble metal particles are substantially uniformly attached to metal particles by sputtering, and a metal obtained thereby. A composite powder is provided.

請求項1記載の本発明は、球状の金属粒子をスパッタ装置内でローリングさせつつ、スパッタ法により貴金属粒子を添着させることを特徴とする金属複合粉末の製造方法にある。   The present invention according to claim 1 lies in a method for producing a metal composite powder, characterized in that noble metal particles are attached by sputtering while rolling spherical metal particles in a sputtering apparatus.

請求項2記載の本発明は、前記金属粒子の平均粒径が約50nm以上であることを特徴とする請求項1記載の金属複合粉末の製造方法にある。   The present invention according to claim 2 is the method for producing a metal composite powder according to claim 1, wherein the average particle diameter of the metal particles is about 50 nm or more.

請求項3記載の本発明は、前記金属粒子の平均粒径のCV値が30%以下であることを特徴とする請求項2記載の金属複合粉末の製造方法にある。   The present invention according to claim 3 is the method for producing a metal composite powder according to claim 2, wherein the CV value of the average particle diameter of the metal particles is 30% or less.

請求項4記載の本発明は、前記請求項1〜3記載の製造方法の一つにより得られた金属複合粉末であって、前記金属粒子に添着される貴金属粒子の平均粒子径が約5〜10nmであることを特徴とする金属複合粉末にある。   The present invention according to claim 4 is a metal composite powder obtained by one of the production methods according to claims 1 to 3, wherein the average particle diameter of the noble metal particles attached to the metal particles is about 5 to 5. The metal composite powder is characterized by being 10 nm.

請求項5記載の本発明は、前記貴金属粒子の平均粒径のCV値が20%以下であることを特徴とする請求項4記載の金属複合粉末にある。   The present invention according to claim 5 is the metal composite powder according to claim 4, wherein the CV value of the average particle diameter of the noble metal particles is 20% or less.

請求項1記載の金属複合粉末の製造方法によると、球状の金属粒子をローリングさせつつ、スパッタ法により貴金属粒子を添着させるため、スパッタ法によりターゲット(貴金属成分含有材料)からはじき出された貴金属粒子(スパッタ粒子)を金属粒子表面にほぼ均一に添着させた金属複合粉末を得ることができる。   According to the method for producing a metal composite powder according to claim 1, noble metal particles ejected from a target (a noble metal component-containing material) by a sputtering method are used to attach the noble metal particles by a sputtering method while rolling spherical metal particles. It is possible to obtain a metal composite powder in which sputtered particles are substantially uniformly attached to the surface of the metal particles.

請求項2記載の金属複合粉末の製造方法によると、金属粒子の平均粒径が約50nm以上であるため、後述する図面代用写真から明らかなように、平均粒子径が約5〜10nmである貴金属粒子を、1個の金属粒子の表面に複数の貴金属粒子をほぼ均一に添着させることができる。   According to the method for producing a metal composite powder according to claim 2, since the average particle diameter of the metal particles is about 50 nm or more, as is apparent from a drawing substitute photo described later, the noble metal having an average particle diameter of about 5 to 10 nm. A plurality of noble metal particles can be substantially uniformly attached to the surface of one metal particle.

請求項3記載の金属複合粉末の製造方法によると、金属粒子の平均粒径のCV値が30%以下であるため、粒径の揃った金属粒子により、優れた触媒作用や抗菌作用などを発揮する金属複合粉末が得られる。   According to the method for producing a metal composite powder according to claim 3, since the CV value of the average particle diameter of the metal particles is 30% or less, the metal particles having a uniform particle diameter exhibit excellent catalytic action and antibacterial action. A metal composite powder is obtained.

請求項4記載の金属複合粉末によると、請求項1〜3記載の製造方法の一つにより得られた金属複合粉末であって、金属粒子に添着される貴金属粒子の平均粒子径が約5〜10nmであるため、1個の金属粒子の表面に複数の貴金属粒子をほぼ均一に添着させれた活性に富んだ金属複合粉末が得られる。   According to the metal composite powder according to claim 4, the metal composite powder obtained by one of the production methods according to claims 1 to 3, wherein the average particle diameter of the noble metal particles attached to the metal particles is about 5 to 5. Since the thickness is 10 nm, it is possible to obtain a highly active metal composite powder in which a plurality of noble metal particles are substantially uniformly attached to the surface of one metal particle.

請求項5記載の金属複合粉末によると、貴金属粒子の平均粒径のCV値が20%以下であるため、粒径の揃った貴金属粒子により、優れた触媒作用や抗菌作用などを発揮する金属複合粉末が得られる。   According to the metal composite powder according to claim 5, since the CV value of the average particle diameter of the noble metal particles is 20% or less, the metal composite exhibiting excellent catalytic action, antibacterial action and the like by the noble metal particles having a uniform particle diameter. A powder is obtained.

図1は、本発明に係る金属複合粉末の製造方法により使用されるスパッタ装置の要部の概略を示したものである。このスパッタ装置10は、例えば2個の駆動ローラー11、11により回転される、例えば円筒状の金属粒子用容器12を有し、この金属粒子用容器12の底面側(図中下方側)には、球状の金属粒子20がローリング(回転)されながら収納される。なお、金属粒子20に対するローリング運動は、回転に限定されず、首振り運動や前後・左右などの進退運動などでもよい。また、この金属粒子用容器12で、収納された金属粒子20に対向する位置(例えば容器中央)などには、貴金属をスパッタ粒子としてはじき出す材料であるターゲット30が設置してある。   FIG. 1 shows an outline of a main part of a sputtering apparatus used in the method for producing a metal composite powder according to the present invention. The sputtering apparatus 10 includes, for example, a cylindrical metal particle container 12 that is rotated by, for example, two drive rollers 11, 11. The metal particle container 12 has a bottom surface side (lower side in the drawing). The spherical metal particles 20 are stored while being rolled (rotated). Note that the rolling motion with respect to the metal particles 20 is not limited to rotation, and may be a swing motion, forward / backward / backward / backward motion, or the like. Further, in this metal particle container 12, a target 30 that is a material that ejects noble metal as sputtered particles is installed at a position (for example, the center of the container) facing the stored metal particles 20.

この金属粒子用容器12自体は、図示しないより大きな真空槽(容器)内に設置され、この真空槽内には、外部からスパッタ用ガス(アルゴンなど)が導入されるようになっている。また、上記ターゲット30側には、外部からスパッタ用の電極線が接続され、通電されるようになっている。なお、もう一方の対向電極は、図示しないが、通電時、ターゲット30側にスパッタ用ガスが効率的に衝突する位置に設けてある。   The metal particle container 12 itself is installed in a larger vacuum chamber (container) (not shown), and a sputtering gas (such as argon) is introduced into the vacuum chamber from the outside. Further, an electrode wire for sputtering is connected to the target 30 side from the outside and is energized. Although not shown, the other counter electrode is provided at a position where the sputtering gas efficiently collides with the target 30 when energized.

このスパッタ装置10において、本発明では、球状の金属粒子として、平均粒径が約50nm以上、好ましくは約50〜100nmの球状である、ニッケル、銅、銀、鉄などの粒子(粉末)を用いる。これらはそれぞれ単独で用いてもよく、或いは、これらの2種以上を適宜組み合わせて併用することもできる。このような粒径の金属粒子は、例えば金属溶融流に対してガスを吹き付ける所謂アトマイズ法やCVD法などにより合成した球状粉を用いることにより得られる。この金属粒子の平均粒径の測定にあたっては、CV値〔coefficient of variation、変動係数=(標準偏差/平均値)・100〕で求め、30%以下のものを使用する。   In the sputtering apparatus 10, in the present invention, particles (powder) such as nickel, copper, silver, iron, etc. having an average particle diameter of about 50 nm or more, preferably about 50 to 100 nm, are used as the spherical metal particles. . These may be used alone, or two or more of these may be used in appropriate combination. The metal particles having such a particle diameter can be obtained by using, for example, a spherical powder synthesized by a so-called atomizing method or CVD method in which a gas is blown against a molten metal flow. In measuring the average particle diameter of the metal particles, the CV value [coefficient of variation, coefficient of variation = (standard deviation / average value) · 100], which is 30% or less, is used.

ここで、金属粒子の平均粒径を約50nm以上としたのは、添着される貴金属粒子の大きさを考慮したためである。つまり、得られる金属複合粉末の触媒作用や抗菌作用などを考えると、添着される貴金属粒子において、その平均粒径は小さいほど活性が高いものの、平均粒径が約5nm未満になると、その効果の持続性に問題があり、逆に、平均粒径が10nmを超えると、活性が低下し、十分な反応性が期待できなくなる。
このような貴金属粒子の大きさに対して、金属粒子の平均粒径を約50nm以上としておけば、1個の金属粒子の表面に複数の貴金属粒子をほぼ均一に添着させることができるからである。
Here, the reason why the average particle size of the metal particles is about 50 nm or more is that the size of the noble metal particles to be attached is taken into consideration. In other words, when considering the catalytic action and antibacterial action of the obtained metal composite powder, the precious metal particles to be added have higher activity as the average particle diameter is smaller, but when the average particle diameter is less than about 5 nm, the effect is increased. There is a problem in sustainability, and conversely, if the average particle diameter exceeds 10 nm, the activity decreases and sufficient reactivity cannot be expected.
This is because, when the average particle diameter of the metal particles is about 50 nm or more with respect to the size of such noble metal particles, a plurality of noble metal particles can be attached almost uniformly to the surface of one metal particle. .

また、本発明で添着される貴金属粒子としては、白金、金、銀、パラジウム、ロジウム、ルテニウムなどを挙げることができる。具体的には、これらの単独の成分、又は複合成分からなるターゲットによって提供する。   In addition, examples of the noble metal particles added in the present invention include platinum, gold, silver, palladium, rhodium, and ruthenium. Specifically, it provides by the target which consists of these single components or a composite component.

本発明方法の実施にあたっては、平均粒径が約50nmの粉末状の金属粒子を、分散剤、例えば1%のヘキサメタリン酸ナトリウム水溶液中に投入し、この金属粒子粉末を均一に分散させる。この後、金属粒子粉末を濾過し乾燥させる。このようにして得られた金属粒子の粉末を、上記したスパッタ装置10の金属粒子用容器12中に収納させる。   In carrying out the method of the present invention, powdery metal particles having an average particle diameter of about 50 nm are introduced into a dispersant, for example, 1% sodium hexametaphosphate aqueous solution, and the metal particle powder is uniformly dispersed. Thereafter, the metal particle powder is filtered and dried. The metal particle powder thus obtained is stored in the metal particle container 12 of the sputtering apparatus 10 described above.

そして、スパッタ装置10を駆動させ、金属粒子用容器12を回転させ、金属粒子20をローリングさせながら、真空槽内にスパッタ用ガスを導入すると共に、スパッタ用電極線に所定の通電量で、所定の時間通電する。そうすると、スパッタ用のガスが、貴金属成分含有のターゲット30に衝突して、スパッタ粒子、即ち貴金属粒子がはじき出され、ローリング中の金属粒子の表面にほぼ均一に添着され、目的とする金属粒子と貴金属粒子とからなる、金属複合粉末が得られる。   Then, the sputtering apparatus 10 is driven, the metal particle container 12 is rotated, and the metal particles 20 are rolled, while the sputtering gas is introduced into the vacuum chamber, and the sputtering electrode wire is supplied with a predetermined energization amount. Energize for hours. Then, the sputtering gas collides with the target 30 containing the noble metal component, the sputtered particles, that is, the noble metal particles are ejected, and are almost uniformly attached to the surface of the rolling metal particles. A metal composite powder composed of particles is obtained.

このようにして得られた金属複合粉末は、図2の図面代用写真(電界放射型走査型電子顕微鏡、FE−SEMによる写真)に示すように、比較的大きな1個の金属粒子の表面に対して、平均粒径が約5〜10nmである小さな貴金属粒径の複数個が埋め込まれた形で添着されていることが分かる。この貴金属粒子の平均粒径の測定にあたって、CV値〔coefficient of variation、変動係数=(標準偏差/平均値)・100〕で求めると、20%以下であった。つまり、バラツキの小さい粒径の揃った貴金属粒子であることが分かる。また、複合される両材料が共に金属材料であるため、上述した従来の金属複合粉末のように、担持側の粒子が酸化物粒子やカーボンブラック粒子などの場合とは異なり、容易に剥離などしない、安定した結合状態が得られる。勿論結果として、経時的変化に強い安定した触媒作用や抗菌作用などが得られる。   The metal composite powder obtained in this way was applied to the surface of one relatively large metal particle as shown in the drawing-substituting photograph (field emission scanning electron microscope, photograph by FE-SEM) of FIG. Thus, it can be seen that a plurality of small noble metal particle diameters having an average particle diameter of about 5 to 10 nm are embedded. In measuring the average particle diameter of the noble metal particles, the CV value [coefficient of variation, coefficient of variation = (standard deviation / average value) · 100] was 20% or less. That is, it can be seen that the particles are precious metal particles having a small variation in particle diameter. Also, since both composite materials are metal materials, unlike the conventional metal composite powders described above, unlike the case where the particles on the support side are oxide particles, carbon black particles, etc., they do not easily peel off. A stable binding state is obtained. Of course, as a result, a stable catalytic action and antibacterial action resistant to changes with time can be obtained.

〈実施例1〜2、比較例1〜3〉
先ず、分散剤として、ヘキサメタリン酸ナトリウムを1%溶解した水溶液中に平均粒径約80nm、CV値28%の球状のニッケル粒子(粉末)を加えて、超音波を印加しながら攪拌し分散させた。この分散されたニッケル粒子を濾過し、80℃で乾燥させた。
<Examples 1-2 and Comparative Examples 1-3>
First, spherical nickel particles (powder) having an average particle size of about 80 nm and a CV value of 28% were added to an aqueous solution in which 1% of sodium hexametaphosphate was dissolved as a dispersant, and the mixture was stirred and dispersed while applying ultrasonic waves. . The dispersed nickel particles were filtered and dried at 80 ° C.

得られたニッケル粒子を、図1に示したスパッタ装置10の金属粒子用容器12に入れてローリングさせながら、真空度約10Pa下で、スパッタ電流(mA)、スパッタ時間(秒)を適宜変更して、金成分含有のターゲットから金をスパッタさせた。また、同様の手順で、白金、銀、パラジウム、ロジウム、ルテニウムについても、スパッタさせた。
その結果を、表1に併記した。一例として貴金属が金の場合の得られた金属複合粉末について、上述したように、電界放射型走査型電子顕微鏡により観察すると、実施例1の場合、図2(図面代用写真)の如くであった。つまり、球状のニッケル粒子の表面に平均粒径が約5〜10nm、CV値20%以下の金粒子がほぼ均一に多数添着していることが観察された。
While the obtained nickel particles are put in the metal particle container 12 of the sputtering apparatus 10 shown in FIG. 1 and rolled, the sputtering current (mA) and the sputtering time (seconds) are appropriately changed under a vacuum degree of about 10 Pa. Then, gold was sputtered from a target containing a gold component. Also, platinum, silver, palladium, rhodium, and ruthenium were sputtered in the same procedure.
The results are also shown in Table 1. As an example, the obtained metal composite powder when the noble metal is gold was observed with a field emission scanning electron microscope as described above, and in the case of Example 1, it was as shown in FIG. 2 (drawing substitute photograph). . That is, it was observed that a large number of gold particles having an average particle diameter of about 5 to 10 nm and a CV value of 20% or less were attached to the surface of the spherical nickel particles almost uniformly.

しかし、比較例1〜3の場合、上記と同様にして金をスパッタするものの、比較例1において、真空度約10Pa、スパッタ電流30mA、スパッタ時間35秒間としたところ、添着された金粒子の平均粒径が約18〜30nmで、そのCV値42%であった。これでは、所望の優れた触媒作用や抗菌作用などを期待することは不可能である。また、比較例2において、真空度約10Pa、スパッタ電流30mA、スパッタ時間50秒間としたところ、ニッケル粒子の表面を添着された金粒子が膜状(層状)に形成されていた。この場合には、優れた触媒作用や抗菌作用などを期待することは殆ど不可能である。さらに、比較例3の場合、真空度約10Pa、スパッタ電流30mA、スパッタ時間20秒間としたところ、ニッケル粒子の表面を添着された金粒子の平均粒径が小さく、触媒作用や抗菌作用などの持続性が期待できないことが判った。   However, in Comparative Examples 1 to 3, although gold was sputtered in the same manner as described above, in Comparative Example 1, when the degree of vacuum was about 10 Pa, the sputtering current was 30 mA, and the sputtering time was 35 seconds, the average of the attached gold particles The particle size was about 18-30 nm and its CV value was 42%. In this case, it is impossible to expect desired excellent catalytic action and antibacterial action. Further, in Comparative Example 2, when the degree of vacuum was about 10 Pa, the sputtering current was 30 mA, and the sputtering time was 50 seconds, the gold particles to which the surface of the nickel particles was attached were formed in a film shape (layer shape). In this case, it is almost impossible to expect excellent catalytic action and antibacterial action. Further, in the case of Comparative Example 3, when the degree of vacuum is about 10 Pa, the sputtering current is 30 mA, and the sputtering time is 20 seconds, the average particle diameter of the gold particles with the nickel particle surface attached is small, and the catalytic action and antibacterial action are sustained. It turned out that sex cannot be expected.

Figure 2006104565
Figure 2006104565

〈実施例3〉
分散剤として、ヘキサメタリン酸ナトリウムを1%溶解した水溶液中に平均粒径約100nm、CV値26%の球状の銅粒子(粉末)を加えて、超音波を印加しながら攪拌し分散させた。この分散された銅粒子を濾過し、80℃で乾燥させた。
<Example 3>
As a dispersant, spherical copper particles (powder) having an average particle diameter of about 100 nm and a CV value of 26% were added to an aqueous solution in which 1% of sodium hexametaphosphate was dissolved, and the mixture was stirred and dispersed while applying ultrasonic waves. The dispersed copper particles were filtered and dried at 80 ° C.

得られた銅粒子を、図1に示したスパッタ装置10の金属粒子用容器12に入れてリングさせながら、上記実施例1と同様にして、表2に示すスパッタ条件下で、金、白金、銀、パラジウム、ロジウム、ルテニウムをスパッタさせた。その結果は表2に併記した。   While putting the obtained copper particles in the metal particle container 12 of the sputtering apparatus 10 shown in FIG. 1 and causing them to ring, in the same manner as in Example 1 above, under the sputtering conditions shown in Table 2, gold, platinum, Silver, palladium, rhodium and ruthenium were sputtered. The results are also shown in Table 2.

Figure 2006104565
Figure 2006104565

〈実施例4〉
分散剤として、ヘキサメタリン酸ナトリウムを1%溶解した水溶液中に平均粒径約90nm、CV値29%の球状の銀粒子(粉末)を加えて、超音波を印加しながら攪拌し分散させた。この分散された銀粒子を濾過し、80℃で乾燥させた。
<Example 4>
As a dispersant, spherical silver particles (powder) having an average particle diameter of about 90 nm and a CV value of 29% were added to an aqueous solution in which 1% of sodium hexametaphosphate was dissolved, and the mixture was stirred and dispersed while applying ultrasonic waves. The dispersed silver particles were filtered and dried at 80 ° C.

得られた銀粒子を、図1に示したスパッタ装置10の金属粒子用容器12に入れてリングさせながら、上記実施例1と同様にして、表3に示すスパッタ条件下で、金、白金、銀、パラジウム、ロジウム、ルテニウムをスパッタさせた。その結果は表3に併記した。   While the obtained silver particles were put in the metal particle container 12 of the sputtering apparatus 10 shown in FIG. 1 and ringed, gold, platinum, and the like under the sputtering conditions shown in Table 3 in the same manner as in Example 1 above. Silver, palladium, rhodium and ruthenium were sputtered. The results are also shown in Table 3.

Figure 2006104565
Figure 2006104565

〈実施例5〉
分散剤として、ヘキサメタリン酸ナトリウムを1%溶解した水溶液中に平均粒径約70nm、CV値29%の球状の鉄粒子(粉末)を加えて、超音波を印加しながら攪拌し分散させた。この分散された鉄粒子を濾過し、80℃で乾燥させた。
<Example 5>
As a dispersant, spherical iron particles (powder) having an average particle size of about 70 nm and a CV value of 29% were added to an aqueous solution in which 1% of sodium hexametaphosphate was dissolved, and the mixture was stirred and dispersed while applying ultrasonic waves. The dispersed iron particles were filtered and dried at 80 ° C.

得られた鉄粒子を、図1に示したスパッタ装置10の金属粒子用容器12に入れてリングさせながら、上記実施例1と同様にして、表4に示すスパッタ条件下で、金、白金、銀、パラジウム、ロジウム、ルテニウムをスパッタさせた。その結果は表4に併記した。   While putting the obtained iron particles in the metal particle container 12 of the sputtering apparatus 10 shown in FIG. 1 and ringing, under the sputtering conditions shown in Table 4, gold, platinum, Silver, palladium, rhodium and ruthenium were sputtered. The results are also shown in Table 4.

Figure 2006104565
Figure 2006104565

本発明に係る金属複合粉末の製造方法を実施するためのスパッタ装置の要部を示した概略説明図である。It is the schematic explanatory drawing which showed the principal part of the sputtering device for enforcing the manufacturing method of the metal composite powder which concerns on this invention. 金属複合粉末の図面代用写真である。It is a drawing substitute photograph of metal composite powder.

符号の説明Explanation of symbols

10・・・スパッタ装置、12・・・金属粒子用容器、20・・・金属粒子、30・・・ターゲット
DESCRIPTION OF SYMBOLS 10 ... Sputtering device, 12 ... Metal particle container, 20 ... Metal particle, 30 ... Target

Claims (5)

球状の金属粒子をスパッタ装置内でローリングさせつつ、スパッタ法により貴金属粒子を添着させることを特徴とする金属複合粉末の製造方法。 A method for producing a metal composite powder, comprising rolling precious metal particles by sputtering while rolling spherical metal particles in a sputtering apparatus. 前記金属粒子の平均粒径が約50nm以上であることを特徴とする請求項1記載の金属複合粉末の製造方法。 The method for producing a metal composite powder according to claim 1, wherein the average particle diameter of the metal particles is about 50 nm or more. 前記金属粒子の平均粒径のCV値が30%以下であることを特徴とする請求項2記載の金属複合粉末の製造方法。 The method for producing a metal composite powder according to claim 2, wherein a CV value of an average particle diameter of the metal particles is 30% or less. 前記請求項1〜3記載の製造方法の一つにより得られた金属複合粉末であって、前記金属粒子に添着される貴金属粒子の平均粒子径が約5〜10nmであることを特徴とする金属複合粉末。 A metal composite powder obtained by one of the production methods according to claims 1 to 3, wherein the noble metal particles attached to the metal particles have an average particle diameter of about 5 to 10 nm. Composite powder. 前記貴金属粒子の平均粒径のCV値が20%以下であることを特徴とする請求項4記載の金属複合粉末。
The metal composite powder according to claim 4, wherein a CV value of an average particle diameter of the noble metal particles is 20% or less.
JP2004296576A 2004-10-08 2004-10-08 Method for producing metal composite powder and metal composite powder Pending JP2006104565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296576A JP2006104565A (en) 2004-10-08 2004-10-08 Method for producing metal composite powder and metal composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296576A JP2006104565A (en) 2004-10-08 2004-10-08 Method for producing metal composite powder and metal composite powder

Publications (1)

Publication Number Publication Date
JP2006104565A true JP2006104565A (en) 2006-04-20

Family

ID=36374637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296576A Pending JP2006104565A (en) 2004-10-08 2004-10-08 Method for producing metal composite powder and metal composite powder

Country Status (1)

Country Link
JP (1) JP2006104565A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156520A (en) * 2010-02-04 2011-08-18 Sumitomo Metal Mining Co Ltd Method of classifying metal fine powder
CN102759578A (en) * 2011-04-28 2012-10-31 光洋应用材料科技股份有限公司 Sputtering target detection mechanism
CN103160795A (en) * 2011-12-19 2013-06-19 北京有色金属研究总院 Target magnetron sputtering device and film coating method used for powder particle surface film coating
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
CN110039044A (en) * 2019-05-29 2019-07-23 北京金航智造科技有限公司 A kind of powder surface cladding coating apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156520A (en) * 2010-02-04 2011-08-18 Sumitomo Metal Mining Co Ltd Method of classifying metal fine powder
CN102759578A (en) * 2011-04-28 2012-10-31 光洋应用材料科技股份有限公司 Sputtering target detection mechanism
CN102759578B (en) * 2011-04-28 2015-03-18 光洋应用材料科技股份有限公司 Sputtering target detection mechanism
CN103160795A (en) * 2011-12-19 2013-06-19 北京有色金属研究总院 Target magnetron sputtering device and film coating method used for powder particle surface film coating
JP2016015312A (en) * 2014-06-11 2016-01-28 積水化学工業株式会社 Conductive particle, method of producing conductive particle, conductive material and connection structure
CN110039044A (en) * 2019-05-29 2019-07-23 北京金航智造科技有限公司 A kind of powder surface cladding coating apparatus and method

Similar Documents

Publication Publication Date Title
Lu Nanoporous noble metal-based alloys: a review on synthesis and applications to electrocatalysis and electrochemical sensing
Huang et al. Multimetallic high-index faceted heterostructured nanoparticles
JP2005097642A (en) Noble metal-metal oxide composite cluster
US8871300B2 (en) Method for making carbon nanotube based composite
TWI378150B (en) Al-ni-la-si system al-based alloy sputtering target and process for producing the same
Luo et al. Synthesis and characterization of monolayer-capped PtVFe nanoparticles with controllable sizes and composition
US20150255802A1 (en) Preparing method of alloy catalyst using polydopamine coating and alloy catalyst thereby
KR20080027839A (en) Catalyst and process for its manufacture
Tang et al. Key parameters governing metallic nanoparticle electrocatalysis
JP2011089143A (en) Method for producing mono-component system and bi-component system cubic type metal nanoparticle
US20120135862A1 (en) Methods of preparing electrocatalysts for fuel cells in core-shell structure and electrocatalysts
WO1999008790A8 (en) Shell catalyst, method for its production and use, in particular for gaseous phase oxidation of ethylene and acetic acid into vinyl acetate
Jana Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis
JP2001054735A (en) Metallic catalyst, its production and its use
JP2003164761A (en) Metal oxide sintered structure and method for manufacturing the same
JP2006104565A (en) Method for producing metal composite powder and metal composite powder
JP4853498B2 (en) Method for producing gold fine particle supported carrier catalyst for fuel cell and catalyst for polymer electrolyte fuel cell containing gold fine particle produced by the method
JP2012216292A (en) High durability fuel cell catalyst and production method therefor
JP2007277613A (en) Gold porous body having fine pore and manufacturing method thereof
JP2002060805A (en) Method for producing multicomponent composite metallic grain colloid dispersed liquid
JPH07185351A (en) Method of producing catalytic layer composed of palladium or platinum alloy having high degree of porocity
JP3904112B2 (en) Raw material powder for sintering, granulated powder for sintering, sintered body using the same, and method for producing sintered body
US20060224027A1 (en) Shaped catalyst body, particularly for use as catalysts in hydrogenation
JP4041952B2 (en) Gold ultrafine particle support and catalyst comprising the support
JP2005262082A (en) Hydrogen separation membrane, production method therefor, and hydrogen separation method