JP2006100605A - Coated die member for cutting lead - Google Patents

Coated die member for cutting lead Download PDF

Info

Publication number
JP2006100605A
JP2006100605A JP2004285581A JP2004285581A JP2006100605A JP 2006100605 A JP2006100605 A JP 2006100605A JP 2004285581 A JP2004285581 A JP 2004285581A JP 2004285581 A JP2004285581 A JP 2004285581A JP 2006100605 A JP2006100605 A JP 2006100605A
Authority
JP
Japan
Prior art keywords
coated
hard coating
die
lead
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004285581A
Other languages
Japanese (ja)
Inventor
Takashi Kaminomura
俊 神之村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2004285581A priority Critical patent/JP2006100605A/en
Publication of JP2006100605A publication Critical patent/JP2006100605A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated die member for cutting a lead for extending a lifetime since a cutting tip section has improved wear-resistance characteristics and deposition-resistance characteristics for restraining the progress of wear. <P>SOLUTION: The coated die member for cutting a lead in which the surface of a substrate is coated with a hard coating has the hard coating at least near the cutting tip section of the die member. The hard coating comprises at least one type of metal constituent selected from 4a, 5a, 6a groups, Al, and Si in a periodic table; and at least one type of nonmetal constituent selected from C, N, O, and B. A corner and fillet radius R μm at the machining tip section of the die member is set to 0.05≤R≤3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、硬質皮膜を被覆したリード切断用金型について、加工先端部の皮膜部分の改善に関する。特に、ICリードフレーム用切断刃、リード抜き加工用工具に関する。   The present invention relates to improvement of a coating portion at a processing tip portion of a lead cutting die coated with a hard coating. In particular, the present invention relates to an IC lead frame cutting blade and a lead punching tool.

リード切断用被覆金型部材に関しては、金型部材の長寿命化や被削材の加工後の形態を考慮して技術が以下の特許文献に開示されている。
特許文献1は、半導体リード抜き加工用工具にダイヤモンドコーティング被膜を被覆した技術が開示されている。ここで、ダイヤモンドコーティング被膜の表面粗さをRy0.05から0.8μmの範囲としているが、加工先端部形状を規定した記載はない。
特許文献2は、超硬合金で形成されたICリードフレーム用切断刃の表面に、CVD法又はPVD法によるTiC、TiN、TiCN、Al2O3又はダイヤモンドライクカーボンの被覆層を設ける技術が開示されているが、加工先端部形状を規定した記載はない。
特許文献3は、リード切断用金型について、パンチの相平行する二つの長辺角部のうち、パッケージ本体寄りに配置される長辺角部が矩形端面に対して断面円弧状又は断面直線状に傾斜した状態で形成することが記載されている。しかし、硬質被膜を被覆した状態においての矩形端面形状を規定したものではない。
With regard to the lead cutting coated mold member, the technology is disclosed in the following patent documents in consideration of the longer life of the mold member and the form after processing the work material.
Patent Document 1 discloses a technique in which a semiconductor lead punching tool is coated with a diamond coating film. Here, although the surface roughness of the diamond coating film is in the range of Ry 0.05 to 0.8 μm, there is no description that defines the shape of the processed tip.
Patent Document 2 discloses a technique of providing a coating layer of TiC, TiN, TiCN, Al2O3 or diamond-like carbon by a CVD method or a PVD method on the surface of an IC lead frame cutting blade formed of a cemented carbide. However, there is no description that defines the processing tip shape.
Patent Document 3 describes a lead cutting die in which a long side corner disposed closer to a package body, out of two parallel long side corners of a punch, has a cross-sectional arc shape or a cross-sectional linear shape with respect to a rectangular end surface. It is described that they are formed in an inclined state. However, it does not define the rectangular end face shape in the state where the hard coating is applied.

特開2002−282958号公報JP 2002-282958 A 特開2000−144300号公報JP 2000-144300 A 特開平8−318328号公報JP-A-8-318328

本発明の目的は、基体の表面に硬質皮膜が被覆されたリード切断用被覆金型部材において、優れた耐摩耗性と耐溶着性を有し、摩耗の進行が抑えて長期の寿命化が可能となるようなリード切断用被覆金型部材を提供することである。   The object of the present invention is a lead cutting coated mold member with a hard coating coated on the surface of the substrate, which has excellent wear resistance and welding resistance, and can suppress the progress of wear and extend the service life for a long time. It is providing the covering die member for lead cutting which becomes.

本発明は、基体の表面に硬質皮膜が被覆されたリード切断用被覆金型部材において、該金型部材の少なくとも加工先端部近傍に硬質皮膜を有し、該硬質皮膜は周期律表4a、5a、6a族、Al、Siから選ばれる1種以上の金属成分と、C、N、O、Bから選ばれる1種以上の非金属成分とから構成されることを特徴とするリード切断用被覆金型部材である。更に、該金型部材の加工先端部における丸み半径Rμmを、0.05≦R≦3としたことを特徴とするリード切断用被覆金型部材である。上記構成を採用することにより、加工先端部は優れた耐摩耗性と耐溶着性を有し、摩耗の進行が抑えられるよになることから、長期の寿命化を可能となる。
本発明のリード切断用被覆金型部材は、該金型部材の基体はWC基超硬合金であり、該超硬合金に含まれるWC粒子の平均粒径が0.7μm以下、Co含有量は質量%で2%から9%であり、ダイ1に対向して相対的に離接可能なパンチ2を有し、側加工部を有し、該硬質皮膜が被覆されたダイ1の加工先端部3とパンチ2の加工先端部4とが交差する交差部によって切断する構成を有し、少なくとも該ダイ側加工先端部3及び/又は該パンチ側加工先端部4に硬質皮膜が被覆されていることが好ましい。更に該硬質皮膜表面は機械加工により平滑化することによって、耐溶着性が向上することから、より好ましい。
The present invention relates to a lead cutting coated mold member in which a hard film is coated on the surface of a substrate, and the hard film has a hard film at least in the vicinity of the processing tip, and the hard film is a periodic table 4a, 5a. A lead-cutting covering metal comprising one or more metal components selected from Group 6a, Al, and Si and one or more non-metal components selected from C, N, O, and B It is a mold member. Furthermore, the lead die is a coated die member for cutting a lead, wherein a rounding radius R μm at a processing tip of the die member is 0.05 ≦ R ≦ 3. By adopting the above configuration, the processing tip has excellent wear resistance and welding resistance, and the progress of wear can be suppressed, so that a long life can be achieved.
The coated die member for cutting leads according to the present invention is such that the base of the die member is a WC-based cemented carbide, the average particle size of WC particles contained in the cemented carbide is 0.7 μm or less, and the Co content is 2% to 9% by mass, having a punch 2 that can be relatively separated from and facing the die 1, having a side processed portion, and processing tip of the die 1 coated with the hard coating 3 and the processing tip 4 of the punch 2 are cut at an intersecting portion, and at least the die side processing tip 3 and / or the punch side processing tip 4 is coated with a hard coating. Is preferred. Furthermore, since the surface of the hard coating is smoothed by machining to improve the welding resistance, it is more preferable.

本発明のリード切断用被覆金型部材は、加工先端部が優れた耐摩耗性と耐溶着性を有し、摩耗の進行が抑えられるよになることから、長期の寿命化が可能となった。   The coated die member for cutting a lead according to the present invention has an excellent wear resistance and welding resistance at the processing tip, and the progress of wear can be suppressed, thereby enabling a long life. .

図1に本発明のリード切断用被覆金型部材の第1の実施形態を示す。図1に示すリード切断用被覆金型は、被加工材である半導体リード部の連結部分5を打ち抜き加工するために用いられる。加工装置にはダイ1が取り付けられ、ダイ1の上側にはパンチ2が取り付けられ、両者ダイ1とパンチ2とは互いに対向し、加工装置の可動機構により上下方向に相対的に離接可能となっている。例えば、ダイ1は加工装置に固定され、一方パンチ2は上下動作が可能である。本実施形態では、ダイ1、パンチ2はWC基超硬合金によって形成され、ダイ1に対向して相対的に離接可能なパンチ2を有する。図2はパンチ2が矢印方向に動作して、半導体リード部の連結部分5を打ち抜いた状態、図3はパンチ2が元の位置に動作して、加工が完了した状態を示す。ダイ1の加工先端部3は、幅の狭い断面が長方形をした四角柱状のピン6の集合体である。各ピン6は半導体リード部の連結部分5を抜き加工するピッチに合わせ、等間隔に並列に形成されている。一方、パンチ2の加工先端部4は、略長方形平板状に形成された櫛歯ピン7の集合体である。各櫛歯ピン7も半導体リード部の連結部分5を抜き加工するピッチに合わせ、等間隔に並列に形成されている。パンチ側の加工先端部4は、ピン6の集合体からなるダイ1側の加工先端部3に対し垂直となるように配置される。そして、第1の実施形態のパンチ2では、パンチ側の加工先端部4の表面に、その先端から該櫛歯ピン7の略全長に渡って硬質皮膜8が被覆されている。
第2の実施形態では、パンチ2に加えてダイ1にもダイ側加工先端部3の各ピン6の表面に、その先端から該ピン6の略全長に渡って硬質皮膜8が被覆されている。ここで、硬質皮膜8は、物理的蒸着法(以下、PVD法と言う。)や化学的蒸着法(以下、CVD法と言う。)によって被覆することができる。例えば、PVD法としては、アーク放電式イオンプレーティング法やスパッタリング法、真空蒸着法などから選択できる。CVD法としては、プラズマCVD法や熱フィラメントCVD法などから選択することができる。硬質皮膜の膜厚は3〜20μmの範囲とすることが、皮膜の密着性と耐摩耗性とのバランスが取れる範囲とすることがより好ましい。
FIG. 1 shows a first embodiment of a covering die member for cutting a lead according to the present invention. The lead cutting coating die shown in FIG. 1 is used for punching a connecting portion 5 of a semiconductor lead portion which is a workpiece. A die 1 is attached to the processing device, and a punch 2 is attached to the upper side of the die 1. Both the die 1 and the punch 2 are opposed to each other, and can be relatively separated from each other in the vertical direction by a movable mechanism of the processing device. It has become. For example, the die 1 is fixed to the processing apparatus, while the punch 2 can move up and down. In this embodiment, the die 1 and the punch 2 are formed of a WC-based cemented carbide and have a punch 2 that can be relatively separated from and attached to the die 1. FIG. 2 shows a state in which the punch 2 has moved in the direction of the arrow to punch the connecting portion 5 of the semiconductor lead portion, and FIG. 3 shows a state in which the punch 2 has moved to its original position and the processing has been completed. The processing tip portion 3 of the die 1 is an assembly of quadrangular columnar pins 6 whose narrow cross section is rectangular. Each pin 6 is formed in parallel at equal intervals according to the pitch at which the connecting portion 5 of the semiconductor lead portion is punched. On the other hand, the processing tip part 4 of the punch 2 is an assembly of comb-tooth pins 7 formed in a substantially rectangular flat plate shape. Each comb-tooth pin 7 is also formed in parallel at equal intervals according to the pitch at which the connecting portion 5 of the semiconductor lead portion is punched. The processing tip 4 on the punch side is arranged so as to be perpendicular to the processing tip 3 on the die 1 side, which is an assembly of pins 6. In the punch 2 of the first embodiment, the surface of the processing tip 4 on the punch side is covered with the hard coating 8 over the substantially entire length of the comb-tooth pin 7 from the tip.
In the second embodiment, in addition to the punch 2, the die 1 is also coated on the surface of each pin 6 of the die side processing tip 3 with a hard coating 8 over the substantially entire length of the pin 6 from the tip. . Here, the hard coating 8 can be coated by a physical vapor deposition method (hereinafter referred to as a PVD method) or a chemical vapor deposition method (hereinafter referred to as a CVD method). For example, the PVD method can be selected from an arc discharge ion plating method, a sputtering method, a vacuum deposition method, and the like. The CVD method can be selected from a plasma CVD method and a hot filament CVD method. The film thickness of the hard film is more preferably in the range of 3 to 20 μm, more preferably in a range where the adhesion between the film and the wear resistance can be balanced.

本発明のリード切断用被覆金型のダイ側加工先端部及びパンチ側加工先端部の両加工先端部の丸み半径Rμmを、0.05≦R≦3とすることが必要である。しかし、硬質皮膜8を被覆した直後の両加工先端部3、4は、被膜の膜厚分だけ先端部が丸みを帯びてしまう。このことは、被膜の靭性を低下させ被膜の欠損が生じや易くなるため、摩耗の進行や被加工材の加工面形状劣化を引き起こす原因となる。更に、切断時の抵抗が高くなる傾向もある。そこで、図1で示した丸印部分の拡大図を図4に示す。ここで本発明は、例えばパンチ側加工先端部にある角部9の丸み半径Rμmを、0.05≦R≦3とする形状に整えるために、硬質皮膜8の表面には被覆された後に、ピン6の四角柱の表面形状、櫛歯ピン7の長方形平板状の表面形状に合わせて機械加工を施した。図5は図4で示した部分の側面図を示し、図6は図5で示したA−A断面の様子を示す。角部9の丸み半径Rμmが硬質皮膜の肉厚によって形成されている。加工方法には、例えば研磨加工が挙げられる。加工によって該加工先端部の角部9の丸み半径Rμmを、0.05≦R≦3とする。R値が3μm以下であれば被加工材の切断加工に対して十分な丸み半径Rを得ることができると共に、切断面でのバリの発生を抑制するのに効果的である。一方、0.05μm以上としたのは、研削加工、研摩加工方法によって0.05μm未満に仕上げるのは困難なためである。本発明の実施形態においては、超硬合金からなる基体に硬質皮膜を被覆した後、金型部材の加工先端部における角部9の丸み半径を有したダイ側加工先端部3及び/又はパンチ側加工先端部4を研削加工、研摩加工方法によって形成した。またこの時、研摩又はラップ加工によって両加工先端部の角部9を仕上げるのと同時に、全体の硬質皮膜表面も仕上げ加工対象にして、平均面粗さRaを0.005μmから0.5μmの範囲にすることが好ましい。   It is necessary to set the rounding radius R μm of both the processing tip of the die side processing tip and the punch side processing tip of the lead cutting coating die of the present invention to 0.05 ≦ R ≦ 3. However, the two processing tip portions 3 and 4 immediately after coating the hard coating 8 are rounded at the tip portions by the thickness of the coating. This lowers the toughness of the coating and easily causes the coating to be lost. This causes the progress of wear and the processing surface shape deterioration of the workpiece. Furthermore, the resistance at the time of cutting also tends to increase. Therefore, an enlarged view of the circled portion shown in FIG. 1 is shown in FIG. Here, in the present invention, for example, in order to adjust the rounding radius Rμm of the corner portion 9 at the punch side processing tip to a shape satisfying 0.05 ≦ R ≦ 3, the surface of the hard coating 8 is coated, Machining was performed in accordance with the surface shape of the rectangular column of the pin 6 and the surface shape of the rectangular flat plate of the comb-tooth pin 7. FIG. 5 shows a side view of the portion shown in FIG. 4, and FIG. 6 shows the state of the AA cross section shown in FIG. The rounding radius R μm of the corner 9 is formed by the thickness of the hard coating. Examples of the processing method include polishing. By processing, the rounding radius R μm of the corner 9 of the processing tip is set to 0.05 ≦ R ≦ 3. If the R value is 3 μm or less, it is possible to obtain a sufficient radius R for cutting the workpiece, and it is effective to suppress the occurrence of burrs on the cut surface. On the other hand, the reason why the thickness is 0.05 μm or more is that it is difficult to finish to less than 0.05 μm by a grinding process or a polishing process. In the embodiment of the present invention, after coating a base made of cemented carbide with a hard film, the die side machining tip 3 and / or the punch side having the rounding radius of the corner 9 at the machining tip of the die member The processing tip 4 was formed by grinding and polishing methods. Also, at this time, the corners 9 at the front ends of both processings are finished by polishing or lapping, and at the same time, the entire hard coating surface is also subjected to finishing processing, and the average surface roughness Ra is in the range of 0.005 μm to 0.5 μm. It is preferable to make it.

本発明の金型部材の基体はWC基超硬合金であり、該超硬合金に含まれるWC粒子の平均粒径が0.7μm以下、Co含有量は重量%で2%から9%であることが好ましい。この理由は、WC粒子の平均粒径が0.7μm以下、Co含有量が2%から9%であるの微粒超硬合金は、硬さと伴に靭性も高いため各種小径部材などに適しているからである。
本発明の金型部材に被覆する硬質皮膜は、周期律表4a、5a、6a族、Al、Siから選ばれる1種以上の金属成分と、C、N、O、Bから選ばれる1種以上の非金属成分とから構成されていることが好ましい。被加工材の組成等を考慮し、本実施形態では硬質皮膜として、例えば、TiN、CrN、(TiAl)(CN)、(TiAlSi)(NO)、(CrAl)(NO)、(CrAlSi)(NO)、(TiSi)(CNO)、(CrSi)(CNO)、(TiB)(NO)、(CrSi)N等の材質から選択される少なくとも1種以上の皮膜で構成することによって、耐摩耗性を向上させ、加工先端部の寸法精度を長期間に渡って維持することを可能にして、部材寿命を大きく伸ばすことができる。更に、加工先端部の耐摩耗性が向上することによって、再研磨による減少分を見込んで、先端部の初期長さを大きくする必要がなくなることから必要最小限に設計し、先端部の剛性向上を可能にすることが出来る。微粒超硬合金に結合相として含まれるCoが、リード材に含まれるCuや他の非鉄金属と反応するのを回避して、溶着現象を低減させるのにも好ましい形態である。また、本発明のリード切断用被覆金型部材の基体に用いる材質は、サーメット合金、高速度鋼合金等を用いた場合、超硬合金程ではないが、大幅な改善効果が得られる。
The base of the mold member of the present invention is a WC-based cemented carbide, the average particle size of WC particles contained in the cemented carbide is 0.7 μm or less, and the Co content is 2% to 9% by weight. It is preferable. The reason for this is that a fine cemented carbide having an average particle size of WC particles of 0.7 μm or less and a Co content of 2% to 9% is suitable for various small diameter members because of its high hardness and toughness. Because.
The hard film coated on the mold member of the present invention is one or more metal components selected from periodic table 4a, 5a, 6a group, Al, Si, and one or more selected from C, N, O, B. It is preferable that it is comprised from these nonmetallic components. Considering the composition of the workpiece, etc., in this embodiment, for example, TiN, CrN, (TiAl) (CN), (TiAlSi) (NO), (CrAl) (NO), (CrAlSi) (NO ), (TiSi) (CNO), (CrSi) (CNO), (TiB) (NO), and (CrSi) N. It is possible to improve and maintain the dimensional accuracy of the processing tip for a long period of time, thereby greatly extending the life of the member. In addition, by improving the wear resistance of the processing tip, it is not necessary to increase the initial length of the tip in anticipation of a reduction due to re-polishing, so the tip is designed to the minimum and the rigidity of the tip is improved. Can be made possible. Co contained in the fine cemented carbide as a binder phase is a preferable form for reducing the welding phenomenon by avoiding reaction with Cu and other non-ferrous metals contained in the lead material. Further, when the material used for the base of the lead-cutting coating die member of the present invention is a cermet alloy, a high-speed steel alloy, or the like, it is not as hard as a cemented carbide, but a significant improvement effect can be obtained.

(実施例1)
本発明の金型部材の基体となる超硬合金は、原料粉末として、平均粒径0.6μmのWC粉末、同0.9μmのVC粉末、同1.5μmのCr粉末、同1.2μmのTaC粉末、同1.5μmのNbC粉末、同1.2μmのCo粉末を準備し、これら原料粉末を所定の配合組成に配合し、アトライターにて12時間湿式混合し乾燥した。この原料粉末は超硬合金製の成形用金型で油圧式にて圧力100MPaでプレスして所定の寸法の成形体とし、焼結条件は、1.3〜13.2Paの真空雰囲気中、1330度から1470度の温度で、30分から60分間保持後、雰囲気の圧力を980kPa以上の加圧雰囲気に変え、この加圧雰囲気に15〜60分間保持後、1200度までを50〜100度/分の冷却速度で急冷した。これにより、本発明の金型部材の基体を作成した。
WCの平均粒径は、焼結素材の断面を鏡面研磨した面を、村上試薬で0.5分、王水で0.5分エッチングすることにより結晶粒界を明確にして、走査型電子顕微鏡により倍率10kで撮影した画像を拡大コピーし、これを画像解析装置により解析することにより算出した。
次に、上記で作成した基体に硬質被膜を被覆した。超硬合金製の基体表面を脱脂するためにアルカリ洗浄液中で6分間洗浄し、純水で中和洗浄した。各組成からなるターゲットを配置したアークイオンプレーティング装置内に金型部材をセットし、真空中450度で1時間の脱ガス加熱工程を実施し、Arイオンによる被覆基体のクリーニング処理を行った。硬質皮膜の被覆には粉末法により作成した合金ターゲットを用いた。硬質皮膜内への炭素、酸素、硼素の添加には、反応ガスであるNガス、CHガス、Cガス、Arガス、Oガス、Bガスから目的の皮膜が得られるものを1種以上、もしくはその組合せによるガスを選択し、真空装置内へ導入した。各反応ガスを真空装置内に導入後、全圧を12Pa、負バイアス電圧を−160V/正バイアス電圧を+40Vのパルスバイアス電圧を用い、そのときの周波数を20kHz、振幅をマイナス側に80%で行った。被覆温度は450度とした。この時、膜厚は加工しろを考慮して約5μmとしたが、これは上記の被覆条件を採用することによって、硬質皮膜の残留応力を小さく制御することが可能となり、アークイオンプレーティング法による被覆としては厚膜化することができた。
続いて、被覆を施した金型部材に、研削加工と研磨加工とを行う事によって、金型部材としてのダイ側加工先端部とパンチ側加工先端部における角部の丸み半径Rμmを、0.05≦R≦3に形成した。ここで、ダイ側加工部の角部のR値は、略1μmの一定値とした。また、研磨加工後における金型部材の加工先端部の膜厚は、約3μm以上の膜厚を維持した。更に両加工先端部の硬質皮膜表面を機械加工により平滑化した。加工金型のパンチ側の加工先端部形状はリードフレームの打ち抜き加工を想定して幅Wを60μm、長さLを10mmとした。パンチ側の加工金型表面には表1に示す組成の硬質皮膜を被覆して、本発明例1から10を作成した。比較のために、R値の大きな比較例11から13に示すパンチ側の加工金型や、基体がサーメット合金、高速度鋼合金からなる比較例14、15も作成した。
Example 1
The cemented carbide used as the base of the mold member of the present invention includes WC powder with an average particle size of 0.6 μm, VC powder with 0.9 μm, Cr 3 C 2 powder with 1.5 μm, and 1 A 2 μm TaC powder, a 1.5 μm NbC powder, and a 1.2 μm Co powder were prepared, these raw material powders were blended into a predetermined blending composition, wet-mixed for 12 hours using an attritor, and dried. This raw material powder was pressed with a molding die made of cemented carbide at a pressure of 100 MPa in a hydraulic manner to form a molded body of a predetermined size. The sintering conditions were 1330 in a vacuum atmosphere of 1.3 to 13.2 Pa. After maintaining at a temperature of 1470 degrees for 30 minutes to 60 minutes, the pressure of the atmosphere is changed to a pressurized atmosphere of 980 kPa or more, held in this pressurized atmosphere for 15 to 60 minutes, and then up to 1200 degrees at 50 to 100 degrees / minute Quenched at a cooling rate of. Thereby, the base | substrate of the metal mold | die member of this invention was created.
The average grain size of WC is determined by scanning the mirror-polished surface of the sintered material for 0.5 minutes with Murakami reagent and 0.5 minutes with aqua regia to clarify the grain boundaries. Thus, an image taken at a magnification of 10k was enlarged and copied, and this was calculated by analyzing with an image analyzer.
Next, the base film prepared above was coated with a hard film. In order to degrease the surface of the substrate made of cemented carbide, it was washed in an alkaline cleaning solution for 6 minutes and neutralized with pure water. A mold member was set in an arc ion plating apparatus in which targets having respective compositions were arranged, and a degassing heating process was performed at 450 ° C. for 1 hour to clean the coated substrate with Ar ions. An alloy target prepared by a powder method was used for coating the hard film. For addition of carbon, oxygen, and boron into the hard coating, the target gases are N 2 gas, CH 4 gas, C 2 H 2 gas, Ar gas, O 2 gas, and B 3 N 3 H 6 gas. One or more kinds of gases capable of obtaining a film or a combination thereof were selected and introduced into a vacuum apparatus. After each reaction gas is introduced into the vacuum apparatus, a total pressure of 12 Pa, a negative bias voltage of −160 V / a positive bias voltage of +40 V and a pulse bias voltage of +40 V are used, the frequency at that time is 20 kHz, and the amplitude is 80% on the minus side. went. The coating temperature was 450 degrees. At this time, the film thickness was set to about 5 μm in consideration of the machining allowance. By adopting the above coating conditions, it becomes possible to control the residual stress of the hard film to be small, and by the arc ion plating method. The coating could be thickened.
Subsequently, by performing grinding and polishing on the coated mold member, the roundness radius Rμm of the corner at the die side machining tip and the punch side machining tip as the mold member is set to 0. 05 ≦ R ≦ 3. Here, the R value of the corner portion of the die side processed portion was a constant value of about 1 μm. Moreover, the film thickness of the processing tip part of the mold member after polishing was maintained at a film thickness of about 3 μm or more. Further, the surface of the hard coating at both processing tips was smoothed by machining. The processing tip shape on the punch side of the processing mold was set to a width W of 60 μm and a length L of 10 mm assuming punching of the lead frame. Inventive Examples 1 to 10 were prepared by coating the surface of the punch-side working mold with a hard film having the composition shown in Table 1. For comparison, punch-side working dies shown in Comparative Examples 11 to 13 having a large R value, and Comparative Examples 14 and 15 in which the base is made of a cermet alloy or a high-speed steel alloy were also prepared.

Figure 2006100605
Figure 2006100605

表1に示す本発明例1から10、比較例11から15のパンチ側の加工金型を用いて、以下の条件で試験を行い各種パンチ側の加工金型が夫々打ち抜き加工が可能な回数を評価した。評価方法は、パンチ側の加工金型の加工先端部である切断刃の欠損もしくは摩耗により切断した被加工材の切断面に0.1mm以上のバリが発生した時点を寿命と判定した。
(加工条件)
加工方法:打ち抜き加工
被削材:半導体用銅製リードフレーム材
Using the punch-side working dies of Invention Examples 1 to 10 and Comparative Examples 11 to 15 shown in Table 1, the test was performed under the following conditions, and the number of times the various punch-side working dies could be punched. evaluated. In the evaluation method, the lifetime was determined when a burr of 0.1 mm or more occurred on the cut surface of the workpiece cut by chipping or wear of the cutting blade, which is the processing tip of the punch-side processing die.
(Processing conditions)
Machining method: Punching work material: Copper lead frame material for semiconductor

表1の結果から、本発明例1から10の超硬合金を基体としたパンチ側の加工金型は、比較例11から15と比較して加工回数が多く優れていた。この理由は、本発明例のR値が3μm以下であったので被加工材の切断加工に対して十分な丸み半径Rを得ることができ、切断面でのバリの発生を抑制するのに効果的であった事及び、硬質皮膜の被覆により耐摩耗性に優れていたためである。また、摩耗形態も正常摩耗をしながら推移した。R値が小さい値である程バリ等の発生の少ない切断刃となり、被加工材の切断面も良好であった。特に、本発明例3と6から10は、高硬度を有する(TiSi)(NO)系被膜であることから、切断刃部の耐摩耗性に優れ、寸法の変化量も小さい効果を示した。また、被膜の平滑化処理も耐折損性の向上や、潤滑性の向上に効果的であった。一方、R値が本発明の範囲外の比較例11から13では、耐摩耗性に優れた被膜を施したにも拘らず、バリの発生によって加工回数は少ない結果となった。特にR値が15μmの比較例13は、加工寸法の変化量が大きい結果となった。基体材料が超硬合金以外のサーメット、高速度鋼合金では、基体の強度が超硬合金に劣るため、欠損が原因による短寿命の結果となった。   From the results shown in Table 1, the punch-side working molds based on the cemented carbides of Examples 1 to 10 of the present invention were superior to Comparative Examples 11 to 15 in terms of the number of processings. The reason for this is that since the R value of the example of the present invention is 3 μm or less, a sufficient radius R can be obtained for the cutting of the workpiece, and it is effective in suppressing the occurrence of burrs on the cut surface. This is because the coating film was hard and the wear resistance was excellent due to the coating of the hard film. The wear pattern also changed while wearing normal. The smaller the R value, the less the occurrence of burrs and the like, and the cut surface of the workpiece was better. In particular, Invention Examples 3 and 6 to 10 are (TiSi) (NO) -based coatings having high hardness, and thus have excellent wear resistance of the cutting blade portion and small dimensional change. Further, the smoothing treatment of the film was also effective in improving breakage resistance and improving lubricity. On the other hand, in Comparative Examples 11 to 13 where the R value was outside the range of the present invention, the number of processing was small due to the occurrence of burrs, despite the coating having excellent wear resistance. In particular, Comparative Example 13 having an R value of 15 μm resulted in a large amount of change in the processing dimension. When the base material is a cermet other than cemented carbide or a high-speed steel alloy, the strength of the base is inferior to that of cemented carbide, resulting in a short life due to defects.

図1は、本発明のリード切断用被覆金型部材を示す。FIG. 1 shows a coated die member for cutting a lead according to the present invention. 図2は、本発明のリード切断用被覆金型部材を示す。FIG. 2 shows the lead cutting coated mold member of the present invention. 図3は、本発明のリード切断用被覆金型部材を示す。FIG. 3 shows a coated die member for cutting a lead according to the present invention. 図4は、図1の丸印部分の拡大図を示す。FIG. 4 shows an enlarged view of the circled portion of FIG. 図5は、図4の側面図を示す。FIG. 5 shows a side view of FIG. 図6は、図5のA−A断面を示す。6 shows an AA cross section of FIG.

符号の説明Explanation of symbols

1:ダイ
2:パンチ
3:ダイ側の加工先端部
4:パンチ側の加工先端部
5:半導体リード部の連結部分
6:ピン
7:櫛歯ピン
8:硬質皮膜
9:角部
W:パンチ側の加工金型の先端形状の幅
L:パンチ側の加工金型の先端形状の長さ
R:丸み半径
1: Die 2: Punch 3: Processing tip on die side 4: Processing tip on punch side 5: Connection portion of semiconductor lead portion 6: Pin 7: Comb pin 8: Hard coating 9: Corner portion W: Punch side Width of tip shape of machining die L: Length of tip shape of machining die on punch side R: Round radius

Claims (4)

基体の表面に硬質皮膜が被覆されたリード切断用被覆金型部材において、該金型部材の少なくとも加工先端部近傍に硬質皮膜を有し、該硬質皮膜は周期律表4a、5a、6a族、Al、Siから選ばれる1種以上の金属成分と、C、N、O、Bから選ばれる1種以上の非金属成分とから構成されることを特徴とするリード切断用被覆金型部材。 In a lead cutting coated mold member having a surface coated with a hard coating, the mold member has a hard coating at least in the vicinity of the processing tip, and the hard coating is a periodic table 4a, 5a, 6a group, A lead cutting coating mold member comprising one or more metal components selected from Al and Si and one or more non-metal components selected from C, N, O, and B. 基体の表面に硬質皮膜が被覆されたリード切断用被覆金型部材において、該金型部材の少なくとも加工先端部近傍に硬質皮膜を有し、該硬質皮膜は周期律表4a、5a、6a族、Al、Siから選ばれる1種以上の金属成分と、C、N、O、Bから選ばれる1種以上の非金属成分とから構成され、該金型部材の加工先端部における丸み半径Rμmを、0.05≦R≦3としたことを特徴とするリード切断用被覆金型部材。 In a lead cutting coated mold member having a surface coated with a hard coating, the mold member has a hard coating at least in the vicinity of the processing tip, and the hard coating is a periodic table 4a, 5a, 6a group, It is composed of one or more metal components selected from Al and Si and one or more non-metal components selected from C, N, O, and B, and the rounding radius Rμm at the processing tip of the mold member is A lead-cutting die member characterized by satisfying 0.05 ≦ R ≦ 3. 請求項1又は2記載の硬質皮膜を被覆した被覆金型部材において、該金型部材の基体はWC基超硬合金であり、該超硬合金に含まれるWC粒子の平均粒径が0.7μm以下、Co含有量は質量%で2%から9%であり、該金型部材はダイ1に対向して相対的に離接可能なパンチ2を有し、該硬質皮膜が被覆されたダイ1の加工先端部3とパンチ2の加工先端部4とが交差する交差部を有することを特徴とするリード切断用被覆金型部材。 3. A coated mold member coated with the hard coating according to claim 1, wherein the base of the mold member is a WC-based cemented carbide, and the average particle size of WC particles contained in the cemented carbide is 0.7 μm. Hereinafter, the Co content is 2% to 9% by mass, the die member has a punch 2 that is relatively separable facing the die 1, and the die 1 covered with the hard film. A lead-cutting die member characterized by having a crossing portion where the processing tip portion 3 of the above and the processing tip portion 4 of the punch 2 intersect. 請求項1乃至3何れかに記載の硬質皮膜を被覆した被覆金型部材において、該硬質皮膜表面を機械加工により平滑化したことを特徴とするリード切断用被覆金型部材。
4. A coated mold member coated with the hard coating according to claim 1, wherein the surface of the hard coating is smoothed by machining.
JP2004285581A 2004-09-30 2004-09-30 Coated die member for cutting lead Pending JP2006100605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285581A JP2006100605A (en) 2004-09-30 2004-09-30 Coated die member for cutting lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285581A JP2006100605A (en) 2004-09-30 2004-09-30 Coated die member for cutting lead

Publications (1)

Publication Number Publication Date
JP2006100605A true JP2006100605A (en) 2006-04-13

Family

ID=36240110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285581A Pending JP2006100605A (en) 2004-09-30 2004-09-30 Coated die member for cutting lead

Country Status (1)

Country Link
JP (1) JP2006100605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085116A (en) * 2006-09-28 2008-04-10 Allied Material Corp Punching tool for processing lead of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085116A (en) * 2006-09-28 2008-04-10 Allied Material Corp Punching tool for processing lead of semiconductor device

Similar Documents

Publication Publication Date Title
CN109072406B (en) Coated cutting tool
JP4747268B2 (en) Surface coated cemented carbide cutting tool with high temperature strength with excellent hard coating layer
EP2656948B1 (en) Cutting tool
JP2009061579A (en) Coated cemented carbide cutting tool insert
JP2005177981A (en) Cemented carbide tool and manufacturing method thereof
JP2011080153A (en) Hard metal and cutting tool
KR20140138711A (en) Surface coating cutting tool
CN111093873B (en) Cutting tool and method for manufacturing same
EP3284845A1 (en) Protective film and method for producing same
JP2010105099A (en) Cutting tool
JP6489412B2 (en) Hard coating layer and cold plastic working mold
JP4357160B2 (en) Sputtering target, hard coating using the same, and hard film coating member
JP2005336565A (en) Cemented carbide
KR20160084434A (en) Sputtering target comprising tungsten carbide or titanium carbide
KR20150131049A (en) Surface-coated cutting tool
JP7029646B2 (en) Molds for processing metal materials, their manufacturing methods, and molds
KR20180011148A (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
JP2007118126A (en) Surface coated cutting tool
JP2006021257A (en) Surface-coated cemented carbide cutting tool having lubrication-coated layer exhibiting superior abrasion resistance
JP5268771B2 (en) Method for producing sputtering target, method for forming hard film using the same, and hard film coated member
JP2005350707A (en) Cermet, coated cermet and method for manufacturing them
JP2008155335A (en) Cutting tool
JP2006100605A (en) Coated die member for cutting lead
KR101807629B1 (en) Cermet tool
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance