JP2005336565A - Cemented carbide - Google Patents

Cemented carbide Download PDF

Info

Publication number
JP2005336565A
JP2005336565A JP2004158458A JP2004158458A JP2005336565A JP 2005336565 A JP2005336565 A JP 2005336565A JP 2004158458 A JP2004158458 A JP 2004158458A JP 2004158458 A JP2004158458 A JP 2004158458A JP 2005336565 A JP2005336565 A JP 2005336565A
Authority
JP
Japan
Prior art keywords
cemented carbide
cobalt
carbide
peak intensity
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004158458A
Other languages
Japanese (ja)
Other versions
JP5031182B2 (en
Inventor
Hiroshi Ohata
浩志 大畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004158458A priority Critical patent/JP5031182B2/en
Publication of JP2005336565A publication Critical patent/JP2005336565A/en
Application granted granted Critical
Publication of JP5031182B2 publication Critical patent/JP5031182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide cemented carbide having excellent chipping resistance and used for a cutting tool, a sliding member, a wear resistant member or the like. <P>SOLUTION: The cemented carbide is obtained by binding tungsten carbide and a hard phase composed of at least one kind of the carbide, nitride and carbonitride (except tungsten carbide) of at least one kind selected from the group consisting of the group 4a, 5a and 6a metals in the Periodic Table in 0 to 30 mass% with a binder metal composed of 2 to 20 mass% cobalt (Co). In the surface of the cemented carbide, the cobalt is composed of mixed crystals of cubic cobalt and hexagonal cobalt. Further, regarding the peak of the cobalt in an X-ray diffraction pattern, provided that the (111) plane peak intensity of the cubic cobalt is defined as I<SB>c</SB>and the (101) plane peak intensity of the hexagonal cobalt as I<SB>h</SB>, in the surface of the cemented carbide, the relation of 0.05≤I<SB>hs</SB>/(I<SB>hs</SB>+I<SB>cs</SB>)≤0.3 is satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、切削工具や摺動部材、耐摩耗部材等に使用される超硬合金に関する。   The present invention relates to a cemented carbide used for cutting tools, sliding members, wear-resistant members, and the like.

金属の切削加工用工具や摺動部材、耐摩耗部材等に広く用いられている超硬合金は、炭化タングステン(WC)を主体とする硬質相を、コバルト(Co)を主体とする結合金属で結合させたWC−Co合金、もしくは該WC−Co合金に周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物のいわゆるβ相と呼ばれる硬質相を分散せしめた系がよく知られている。これらの超硬合金は、特に、炭素鋼や合金鋼、ステンレス鋼等の一般鋼の切削工具として利用されている。   Cemented carbides widely used in metal cutting tools, sliding members, wear-resistant members, etc. are hard phases mainly composed of tungsten carbide (WC), and are bonded metals mainly composed of cobalt (Co). A bonded WC-Co alloy or a system in which a hard phase called a β phase of the carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals of the periodic table is dispersed in the WC-Co alloy is good. Are known. These cemented carbides are particularly used as cutting tools for general steels such as carbon steel, alloy steel, and stainless steel.

例えば、特許文献1、2では、超硬合金中に含まれる炭素および炭化クロム等の含有量に応じてコバルトの格子定数が変化し、このコバルトの格子定数が所定の範囲内にあるときにη相や遊離炭素が析出せず、かつ耐欠損性の高い超硬合金となることが開示されている。   For example, in Patent Documents 1 and 2, the lattice constant of cobalt varies depending on the contents of carbon and chromium carbide contained in the cemented carbide, and when the lattice constant of cobalt is within a predetermined range, η It is disclosed that a phase or free carbon does not precipitate and a cemented carbide with high fracture resistance is obtained.

また、特許文献3には、超硬合金母材からなるドリルやエンドミルのシャンク部と切刃の備わったボデー部との境界周辺に相当する首部にショットピーニング加工を施すことによって、この首部分に圧縮残留応力を生ぜしめて疲労強度を高める方法が開示されている。
特開平2−97640号公報 特開2000−15513号公報 特開平9−174435号公報
Further, in Patent Document 3, the neck portion corresponding to the periphery of the boundary between the shank portion of a drill or end mill made of a cemented carbide base material and the body portion provided with a cutting blade is subjected to shot peening processing, and thereby this neck portion is applied. A method for increasing the fatigue strength by generating compressive residual stress is disclosed.
Japanese Patent Laid-Open No. 2-97640 JP 2000-15513 A Japanese Patent Laid-Open No. 9-174435

しかしながら、特許文献1、2の超硬合金では、結合金属相中の組成の最適化により合金全体の耐欠損性は向上するものの、合金表面における微小チッピングの発生を抑制することはできず、特に合金表面における更なる耐欠損性の向上が求められていた。また、特許文献3のように合金の表面をショットピーニング処理することによって合金の表面に圧縮残留応力を生ぜしめる方法では、前述したドリルやエンドミル等の工具がおかれている環境や経時変化によって圧縮残留応力が次第に消失してしまうことがあり、前記工具毎に寿命がばらついて安定した加工ができないという問題があった。   However, in the cemented carbides of Patent Documents 1 and 2, the chipping resistance of the entire alloy is improved by optimizing the composition in the bonded metal phase, but it is not possible to suppress the occurrence of minute chipping on the alloy surface. There has been a demand for further improvement in fracture resistance on the alloy surface. Moreover, in the method of generating compressive residual stress on the surface of the alloy by performing shot peening treatment on the surface of the alloy as in Patent Document 3, it is compressed depending on the environment in which the tool such as the drill or the end mill is placed or the change over time. Residual stress may gradually disappear, and there is a problem in that the tool life varies from tool to tool and stable machining cannot be performed.

本発明者は、上記課題について、特に超硬合金中の結合金属が鉄系材料の加工に及ぼす影響を検討した結果、X線回折パターンにおけるコバルトのピークが、立方晶コバルトの(111)面ピーク強度:I、六方晶コバルトの(101)面ピーク強度:Iとしたとき、超硬合金の表面において、0.05≦Ihs/(Ihs+Ics)≦0.3の範囲に制御された立方晶コバルトと六方晶コバルトとの混晶からなる結合金属とすることにより、合金表面における耐欠損性が向上することを知見した。 As a result of examining the effect of the bonding metal in the cemented carbide on the processing of the iron-based material, the present inventor has found that the cobalt peak in the X-ray diffraction pattern is the (111) plane peak of cubic cobalt. Strength: I c , (101) plane peak intensity of hexagonal cobalt: When I h is set, the surface of the cemented carbide is controlled in the range of 0.05 ≦ I hs / (I hs + I cs ) ≦ 0.3. It was found that the fracture resistance on the alloy surface is improved by using a bonded metal composed of a mixed crystal of cubic cobalt and hexagonal cobalt.

すなわち、本発明の超硬合金は、炭化タングステンと、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および炭窒化物を0〜30質量%と、からなる硬質相を、コバルト(Co)2〜20質量%からなる結合金属にて結合してなる超硬合金であって、該超硬合金の表面において、前記コバルトが立方晶コバルトと六方晶コバルトとの混晶からなるとともに、X線回折パターンにおける前記コバルトのピークを、立方晶コバルトの(111)面ピーク強度:I、六方晶コバルトの(101)面ピーク強度:Iとしたとき、前記超硬合金の表面におけるピーク強度比が、0.05≦Ihs/(Ihs+Ics)≦0.3の関係を満たすことを特徴とする。 That is, the cemented carbide of the present invention contains tungsten carbide and at least one kind of carbide, nitride, and carbonitride selected from the group of metals in groups 4a, 5a, and 6a of the periodic table, 0 to 30% by mass, A cemented carbide obtained by bonding a hard phase consisting of 2 to 20% by mass of a cobalt (Co) metal, and the cobalt on the surface of the cemented carbide comprises cubic cobalt and hexagonal cobalt. When the cobalt peak in the X-ray diffraction pattern is (111) plane peak intensity of cubic cobalt: I c and (101) plane peak intensity of hexagonal cobalt: I h , The peak intensity ratio on the surface of the cemented carbide satisfies a relationship of 0.05 ≦ I hs / (I hs + I cs ) ≦ 0.3.

ここで、前記超硬合金の内部におけるピーク強度比Ihi/(Ihi+Ici)が0.05以下であることが、超硬合金の内部と表面との組織構成の内外差によって超硬合金表面に圧縮残留応力を効果的に付与することができてクラックの発生や伝播を抑制し、切削工具や摺動部材等として使用した場合に超硬合金表面におけるチッピングの発生を抑制して耐欠損性が向上する点で望ましい。 Here, the peak intensity ratio I hi / (I hi + I ci ) in the inside of the cemented carbide is 0.05 or less because of the difference in structure between the inside and the surface of the cemented carbide. Effectively imparts compressive residual stress to the surface, suppresses the generation and propagation of cracks, and suppresses chipping on the cemented carbide surface when used as a cutting tool or sliding member. It is desirable in terms of improving the performance.

さらに、前記超硬合金の表面に、周期律表第4a、5a、6a族金属、Si、およびAlから選ばれる1種または2種以上からなる金属の炭化物、窒化物、炭窒化物、DLC(ダイヤモンドライクカーボン)、ダイヤモンドおよびAlの群から選ばれる少なくとも1種からなる硬質被覆層を少なくとも1層を総厚み1〜30μmにて被着形成してなる場合においても、超硬合金表面の残留応力を制御できることによって、超硬合金と上記硬質被覆層との密着性を高めることができることから、硬質被覆層が剥離することなく耐摩耗性を向上させることができる。 Furthermore, on the surface of the cemented carbide, a carbide, nitride, carbonitride, or DLC (metal of one or more metals selected from Group 4a, 5a, and 6a metals of the periodic table, Si, and Al are used. Even when a hard coating layer made of at least one selected from the group of diamond-like carbon), diamond, and Al 2 O 3 is deposited with a total thickness of 1 to 30 μm, the cemented carbide surface By controlling the residual stress, it is possible to improve the adhesion between the cemented carbide and the hard coating layer, so that the wear resistance can be improved without peeling off the hard coating layer.

上記本発明の超硬合金によれば、炭化タングステンと、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および炭窒化物を0〜30質量%と、からなる硬質相を、コバルト(Co)2〜20質量%からなる結合金属にて結合してなる超硬合金の表面において、X線回折パターンにおけるコバルトのピークが、立方晶コバルトの(111)面ピーク強度:I、六方晶コバルトの(101)面ピーク強度:Iとしたとき、前記超硬合金の表面におけるピーク強度比が0.05≦Ihs/(Ihs+Ics)≦0.3の範囲に制御された立方晶コバルトと六方晶コバルトとの混晶からなるコバルトを結合金属相とする表面からなる超硬合金とすることにより、超硬合金表面に圧縮残留応力を付与することができるとともに、クラックの進展に対して六方晶コバルトが変態することによってクラックの進展を抑制できることから、合金表面における圧縮残留応力を長期にわたって維持することができ、かつ耐欠損性に優れた超硬合金となる。 According to the cemented carbide of the present invention, tungsten carbide and at least one kind of carbide, nitride, and carbonitride selected from the group of metals in groups 4a, 5a, and 6a of the periodic table are 0 to 30% by mass. In the surface of a cemented carbide formed by bonding a hard phase composed of 2 to 20% by mass of cobalt (Co), the cobalt peak in the X-ray diffraction pattern is (111) of cubic cobalt. When the plane peak intensity is I c and the (101) plane peak intensity of hexagonal cobalt is I h , the peak intensity ratio on the surface of the cemented carbide is 0.05 ≦ I hs / (I hs + I cs ) ≦ 0. .3 By applying a cemented carbide alloy with a mixed metal phase of cubic cobalt and hexagonal cobalt controlled to a range of 3 to a bonded metal phase, compressive residual stress is imparted to the cemented carbide surface. Since the hexagonal cobalt is transformed with respect to the growth of cracks, the growth of cracks can be suppressed, so that the compressive residual stress on the alloy surface can be maintained for a long period of time and the fracture resistance is excellent. It becomes a hard alloy.

本発明の超硬合金は、炭化タングステンと、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および炭窒化物を0〜30質量%と、からなる硬質相を、コバルト(Co)2〜20質量%からなる結合金属にて結合してなり、前記超硬合金の表面において、前記コバルトが立方晶コバルトと六方晶コバルトとの混晶からなるとともに、X線回折パターンにおける前記コバルトのピークを、立方晶コバルトの(111)面ピーク強度:I、六方晶コバルトの(101)面ピーク強度:Iとしたとき、前記超硬合金の表面において0.05≦Ihs/(Ihs+Ics)≦0.3の関係を満たすことを特徴とするものである。 The cemented carbide of the present invention is composed of tungsten carbide and 0 to 30% by mass of at least one carbide, nitride, and carbonitride selected from the group of metals in groups 4a, 5a, and 6a of the periodic table. The hard phase is bonded with a binding metal composed of 2 to 20% by mass of cobalt (Co), and the cobalt is a mixed crystal of cubic cobalt and hexagonal cobalt on the surface of the cemented carbide, When the cobalt peak in the X-ray diffraction pattern is set to (111) plane peak intensity of cubic cobalt: I c and (101) plane peak intensity of hexagonal cobalt: I h , it is 0 on the surface of the cemented carbide. 0.05 ≦ I hs / (I hs + I cs ) ≦ 0.3.

これによって、超硬合金表面に圧縮残留応力を付与することができるとともに、クラックの進展に対して六方晶コバルトが変態することによってクラックの進展を抑制することから、合金表面における圧縮残留応力を長期にわたって維持することができ、かつ耐欠損性に優れた超硬合金となる。なお、本発明においては、X線回折測定は、CuのKα1線を用いて測定する。   As a result, compressive residual stress can be applied to the cemented carbide surface, and since the hexagonal cobalt is transformed by the transformation of the crack, crack growth is suppressed. It becomes a cemented carbide excellent in fracture resistance. In the present invention, the X-ray diffraction measurement is performed using Cu Kα1 ray.

すなわち、前記超硬合金表面におけるピーク強度比Ihs/(Ihs+Ics)が0.05より小さいと合金表面に付与される圧縮残留応力が不十分であり超硬合金表面においてチッピングが発生しやすくなる。逆に、Ihs/(Ihs+Ics)が0.2より大きいとWC(タングステンカーバイド)と結合相との濡れ性が劣化して焼結性が低下するとともに、超硬合金表面に残存する残留応力が大きくなりすぎて衝撃に対する抵抗力が低下して、結果的に耐欠損性が低下する。前記超硬合金表面におけるピーク強度比Ihs/(Ihs+Ics)の望ましい範囲は0.07〜0.15であり、特に望ましい範囲は0.08〜0.12である。 That is, if the peak intensity ratio I hs / (I hs + I cs ) on the cemented carbide surface is less than 0.05, the compressive residual stress applied to the alloy surface is insufficient and chipping occurs on the cemented carbide surface. It becomes easy. Conversely, if I hs / (I hs + I cs ) is greater than 0.2, the wettability between WC (tungsten carbide) and the binder phase deteriorates, the sinterability decreases, and it remains on the cemented carbide surface. Residual stress becomes too large and resistance to impact decreases, resulting in a decrease in fracture resistance. A desirable range of the peak intensity ratio I hs / (I hs + I cs ) on the cemented carbide surface is 0.07 to 0.15, and a particularly desirable range is 0.08 to 0.12.

また、前記超硬合金の内部におけるピーク強度比Ihi/(Ihi+Ici)が0.05以下であることが、超硬合金の表面と内部の組織差によって超硬合金の表面に適正で安定した圧縮残留応力を付与できる点で望ましい。前記超硬合金内部におけるピーク強度比Ihi/(Ihi+Ici)の望ましい範囲は0.005〜0.04であり、特に0.01〜0.03である。 Further, the peak intensity ratio I hi / (I hi + I ci ) in the inside of the cemented carbide is 0.05 or less, which is appropriate for the surface of the cemented carbide due to the difference in structure between the surface of the cemented carbide and the inside. It is desirable in that stable compressive residual stress can be applied. A desirable range of the peak intensity ratio I hi / (I hi + I ci ) inside the cemented carbide is 0.005 to 0.04, particularly 0.01 to 0.03.

ここで、本発明における超硬合金の内部とは、超硬合金の表面から300μm以上の深さ領域を指す。また、超硬合金の表面に硬質被覆層を被着形成する場合は、硬質被覆層の厚みを除いて硬質被覆層と超硬合金との界面から超硬合金内側に向かって300μm以上の深さ領域をいう。   Here, the inside of the cemented carbide in the present invention refers to a depth region of 300 μm or more from the surface of the cemented carbide. When a hard coating layer is formed on the surface of the cemented carbide, the depth is 300 μm or more from the interface between the hard coating layer and the cemented carbide alloy to the inside of the cemented carbide alloy except for the thickness of the hard coating layer. An area.

また、超硬合金中のコバルトの含有量が2質量%以下であると、超硬合金の靭性が低下して耐欠損性が悪くなり、逆に、コバルトの含有量が20質量%を超えると、超硬合金の表面における耐摩耗性が低下する。コバルト含有量の望ましい範囲は5〜15質量%、特に望ましい範囲は10〜14質量%である。   In addition, when the content of cobalt in the cemented carbide is 2% by mass or less, the toughness of the cemented carbide decreases and the fracture resistance deteriorates. Conversely, when the content of cobalt exceeds 20% by mass. In addition, the wear resistance on the surface of the cemented carbide decreases. A desirable range of the cobalt content is 5 to 15% by mass, and a particularly desirable range is 10 to 14% by mass.

さらに、前記超硬合金を粉砕し、#20メッシュを通した粉砕粉末を50℃の希塩酸(HCl:HO=1:1)中で24時間溶解してろ過したろ液中に、ろ液中の総金属量に対して、4a、5aおよび6a族金属を総量で5〜25質量%の割合で含有することが望ましい。この範囲内にあることによって、結合相として存在するコバルトの結晶形態(六法晶と立方晶)を効果的に変化させることが可能である。ろ液中の総金属量に対して、4a、5aおよび6a族金属の望ましい含有量は総量で15〜23質量%である。 Further, the cemented carbide is pulverized, and the pulverized powder passing through # 20 mesh is dissolved in dilute hydrochloric acid (HCl: H 2 O = 1: 1) at 50 ° C. for 24 hours. It is desirable to contain 4a, 5a, and 6a group metals in a total amount of 5 to 25% by mass with respect to the total amount of metal in them. By being in this range, it is possible to effectively change the crystal form (hexagonal crystal and cubic crystal) of cobalt existing as a binder phase. The desirable content of group 4a, 5a and 6a metals is 15 to 23% by mass in total with respect to the total amount of metal in the filtrate.

ここで、前記超硬合金の表面に研磨傷が存在することが圧縮残留応力の調整の点で望ましい。なお、上記研磨傷とは筋状のものをいいラッピング加工またはブラシ加工のように研磨剤が硬質被覆層表面をこすれながら研磨する加工によって形成される。さらに、上記研磨傷はランダムな方向についていることが応力緩和の点で望ましい。   Here, it is desirable from the viewpoint of adjusting the compressive residual stress that the surface of the cemented carbide has polishing flaws. The above-mentioned polishing flaw means a streak and is formed by a process of polishing while rubbing the surface of the hard coating layer like a lapping process or a brush process. Further, it is desirable in terms of stress relaxation that the polishing scratches are in random directions.

また、前記研磨面における算術平均粗さ(Ra)が0.10〜0.45μmであることが、耐摩耗性の向上、切削抵抗の低減、耐溶着性および耐欠損性の向上の点で望ましい。なお、本発明における超硬合金表面の表面粗さの測定に関しては、接触式の表面粗さ計を用いるか、または非接触式のレーザー顕微鏡を用い、測定面がレーザーに対して垂直となるようにチップを動かしながら測定する。また、切刃形状自体がうねりを有するような場合にはこのうねり分を差し引いて直線近似した後に表面粗さを算出する。   The arithmetic average roughness (Ra) on the polished surface is preferably from 0.10 to 0.45 μm from the viewpoint of improving wear resistance, reducing cutting resistance, welding resistance and chipping resistance. . In addition, regarding the measurement of the surface roughness of the cemented carbide surface in the present invention, a contact type surface roughness meter or a non-contact type laser microscope is used so that the measurement surface is perpendicular to the laser. Measure while moving the tip. When the cutting edge shape itself has waviness, the surface roughness is calculated after subtracting this waviness and approximating a straight line.

また、合金の切刃部周辺のみにRホーニング、またはチャンファホーニングを施してもよい。   Further, R honing or chamfer honing may be performed only around the cutting edge portion of the alloy.

さらに、前記超硬合金の表面に、周期律表第4a、5a、6a族金属、Si、およびAlから選ばれる1種または2種以上からなる金属の炭化物、窒化物、炭窒化物、DLC(ダイヤモンドライクカーボン)、ダイヤモンドおよびAlの群から選ばれる少なくとも1種からなる硬質被覆層の少なくとも1層を総厚み1〜30μmにて被着形成してもよい。この場合には、特に超硬合金表面の残留応力を制御できることによって、超硬合金と上記硬質被覆層との密着性が高く、優れた耐欠損性および耐摩耗性を有する切削工具等の部材となる。 Furthermore, on the surface of the cemented carbide, a carbide, nitride, carbonitride, or DLC (metal of one or more metals selected from Group 4a, 5a, and 6a metals of the periodic table, Si, and Al are used. Diamond-like carbon), diamond, and at least one hard coating layer composed of at least one selected from the group of Al 2 O 3 may be deposited with a total thickness of 1 to 30 μm. In this case, in particular, by controlling the residual stress on the surface of the cemented carbide, the adhesion between the cemented carbide and the hard coating layer is high, and a member such as a cutting tool having excellent fracture resistance and wear resistance. Become.

上記硬質被覆層の中でも、Tiを含有する硬質被覆層の場合、特に合金と硬質被覆層との密着性に優れたものとなる。さらに、前述した切削工具の場合、すくい面において研磨された前記Ti系表面層が残存することが、光沢のある黄色味がかった色を呈する美しい外観となり切刃の使用/未使用状態を目視で容易に確認できる点で望ましい。   Among the hard coating layers, in the case of a hard coating layer containing Ti, the adhesion between the alloy and the hard coating layer is particularly excellent. Further, in the case of the above-described cutting tool, the remaining Ti-based surface layer polished on the rake face has a beautiful appearance with a glossy yellowish color, and the used / unused state of the cutting blade is visually observed. This is desirable because it can be easily confirmed.

ここで、超硬合金表面に硬質被覆層を被着形成した場合の超硬合金表面における表面粗さの測定に関しては、超硬合金の断面における走査型電子顕微鏡(SEM)写真にて観察される超硬合金と硬質被覆層との界面の凹凸状態から、超硬合金の基本形状に基づいたうねりを差し引いて直線近似した部分をJISB0601−2001に基づく算術平均粗さ(Ra)に準じて測定することができる。   Here, regarding the measurement of the surface roughness on the surface of the cemented carbide when the hard coating layer is deposited on the surface of the cemented carbide, it is observed with a scanning electron microscope (SEM) photograph in the section of the cemented carbide. A portion which is linearly approximated by subtracting the undulation based on the basic shape of the cemented carbide from the uneven state of the interface between the cemented carbide and the hard coating layer is measured according to the arithmetic average roughness (Ra) based on JISB0601-2001. be able to.

また、本発明によれば、硬質被覆層についても少なくとも切刃(交差稜)に対してホーニング処理を施すことが、硬質被覆層内に発生する残留応力を適正化することができ、硬質被覆層が合金から剥離することを防止できて耐欠損性を向上できるという効果の点で望ましい。   In addition, according to the present invention, the hard coating layer can be subjected to honing treatment at least on the cutting edge (crossing ridges) to optimize the residual stress generated in the hard coating layer. Is desirable in view of the effect that it is possible to prevent peeling from the alloy and to improve the fracture resistance.

次に、上述した本発明の超硬合金を製造する方法について説明する。   Next, a method for producing the above-described cemented carbide of the present invention will be described.

まず、例えば平均粒径0.05〜0.4μmの炭化タングステン(WC)粉末、平均粒径0.3〜2.0μmの炭化タングステンを除く周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および炭窒化物を0〜30質量%、平均粒径0.2〜0.6μmの金属コバルト(Co)を2〜20質量%、さらには所望により、金属タングステン(W)粉末、あるいはカーボンブラック(C)を混合する。   First, for example, from a group of metals in Group 4a, 5a, and 6a of the periodic table excluding tungsten carbide (WC) powder having an average particle size of 0.05 to 0.4 μm and tungsten carbide having an average particle size of 0.3 to 2.0 μm. 0 to 30% by mass of at least one selected carbide, nitride and carbonitride, 2 to 20% by mass of metallic cobalt (Co) having an average particle size of 0.2 to 0.6 μm, and optionally metal Tungsten (W) powder or carbon black (C) is mixed.

次に、上記混合粉末を用いて、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定形状に成形した後、0.1〜5Paの真空中、1320〜1430℃の温度で0.2〜2時間真空焼成する。また、所望により、アルゴンガスを5MPa以上導入して前記真空焼成温度よりも5〜50℃低い温度で0.5〜2時間熱間静水圧プレス焼成を施してもよい。さらに、焼成が終了した時点で5〜10℃/分の冷却速度で1000℃以下の温度まで冷却する。   Next, the mixture powder is molded into a predetermined shape by a known molding method such as press molding, casting molding, extrusion molding, cold isostatic pressing, and then in a vacuum of 0.1 to 5 Pa, 1320 Vacuum firing at a temperature of ˜1430 ° C. for 0.2-2 hours. Further, if desired, argon gas may be introduced at 5 MPa or more and hot isostatic pressing may be performed at a temperature 5 to 50 ° C. lower than the vacuum baking temperature for 0.5 to 2 hours. Furthermore, when baking is complete | finished, it cools to the temperature of 1000 degrees C or less with the cooling rate of 5-10 degrees C / min.

そして、超硬合金の焼成が終了した後、真空、窒素ガスもしくは不活性ガス雰囲気中、再度1000〜1300℃に昇温し0.5〜2時間保持し、さらに、この保持温度から急冷するという手順でアニール処理を施す。   And after the firing of the cemented carbide is completed, the temperature is again raised to 1000 to 1300 ° C. in a vacuum, nitrogen gas or inert gas atmosphere, held for 0.5 to 2 hours, and further rapidly cooled from this holding temperature. Annealing is performed according to the procedure.

その後、超硬合金の表面を研削加工する。研削加工に関しては、研削点での加工温度が通常の湿式研削にくらべて超硬合金の表面が30〜100℃高くなる条件(例えば、研削液の温度、その他に、研削液量、ダイヤモンドホイールのダイヤ粒度、結合材、回転数等)を設定して研削加工することにより、超硬合金表面において立方晶コバルトの一部が六方晶コバルトに変態して超硬合金表面におけるピーク強度比Ihs/(Ihs+Ics)を0.05〜0.3に制御することが可能となる。 Thereafter, the surface of the cemented carbide is ground. Regarding the grinding process, the condition that the processing temperature at the grinding point is 30 to 100 ° C. higher than the normal wet grinding (for example, the temperature of the grinding fluid, in addition to the grinding fluid amount, the diamond wheel (Diamond grain size, binder, rotational speed, etc.) are set and grinding is performed, so that a part of cubic cobalt is transformed into hexagonal cobalt on the cemented carbide surface and the peak intensity ratio I hs / (I hs + I cs ) can be controlled to 0.05 to 0.3.

さらに、所望により、得られた上記超硬合金に対して、化学蒸着(CVD)法または物理蒸着(PVD)法にて、超硬合金の表面に上述した硬質被覆層を成膜する。成膜方法としては、超硬合金の表面における残留応力の適正化の観点から物理蒸着(PVD)法を用いることが望ましく、その膜厚は残留応力の適正化の点から0.2〜3μmであることが望ましく、特に望ましくは耐摩耗性を向上させるという点から0.5〜2μmである。   Furthermore, if desired, the hard coating layer described above is formed on the surface of the cemented carbide by chemical vapor deposition (CVD) or physical vapor deposition (PVD) on the obtained cemented carbide. As a film forming method, it is desirable to use a physical vapor deposition (PVD) method from the viewpoint of optimizing the residual stress on the surface of the cemented carbide, and the film thickness is 0.2 to 3 μm from the point of optimizing the residual stress. Desirably, it is preferably 0.5 to 2 μm from the viewpoint of improving wear resistance.

さらには、硬質被覆層を成膜した後、さらにその表面を研磨加工することによって、硬質被覆層を含む超硬合金の表面における圧縮残留応力を調整することもできる。また、この方法によって切削工具のすくい面全体における硬質被覆層の表面粗さを平滑にするとともに、その研磨状態を調整してすくい面を光沢のある黄色味がかった色とすることができる。   Furthermore, after forming a hard coating layer, the surface of the cemented carbide containing the hard coating layer can be adjusted by further polishing the surface thereof. Further, by this method, the surface roughness of the hard coating layer on the entire rake face of the cutting tool can be smoothed, and the rake face can be adjusted to make the rake face have a glossy yellowish color.

表1に示す平均粒径のWC粉末、Co粉末および他の炭化物粉末を添加・混合し、有機バインダとしてパラフィンワックスを1.6質量%添加して金型プレス成形し、真空度0.5Pa、昇温速度6℃/分で昇温し、1375℃で2時間保持して焼結させて、一旦室温まで冷却した。次に、焼成した超硬合金を再度表1に示すアニール条件でアニール処理した。   Add and mix WC powder, Co powder and other carbide powder with the average particle size shown in Table 1, add 1.6% by mass of paraffin wax as an organic binder, press mold, vacuum degree 0.5 Pa, The temperature was raised at a rate of temperature increase of 6 ° C./min, held at 1375 ° C. for 2 hours for sintering, and then cooled to room temperature. Next, the fired cemented carbide was annealed again under the annealing conditions shown in Table 1.

得られた超硬合金に対して、#400番のダイヤモンドホイールを用いて表1に示す方法で研削加工を行った。なお、表中湿式にて研削加工を施す際には表1に示す温度の水溶性研削液を超硬合金の表面にかけながら研削加工を行った。また、試料No.8については乾式にて研削加工を行ったため、超硬合金表面の温度を測定したところ250℃に達していた。   The obtained cemented carbide was ground by the method shown in Table 1 using a # 400 diamond wheel. In addition, when performing the grinding process by wet in the table, the grinding process was performed while applying a water-soluble grinding liquid having a temperature shown in Table 1 to the surface of the cemented carbide. Sample No. For No. 8, since the grinding process was performed in a dry manner, the temperature of the cemented carbide surface was measured and reached 250 ° C.

そして、加工された超硬合金の表面についてX線回折測定を行ない、Ihs、Ics、Ihi、Iciの各ピーク強度を求めて前述したピーク強度比を算出した。また、上記超硬合金を粉砕し#20メッシュを通した粉砕粉末1gに塩酸(HCl:HO=1:1)溶液を加え、スターラーにて攪拌し24時間50℃で加熱溶解した溶液をろ過した。この溶液に希塩酸(HCl:HO=1:1)溶液を加えて50ml定容とし、このろ液について、ICP法によってろ液中の4a、5a、6a族金属(表2では硬質相金属と記載。)の総含有量および含有比率を測定した。さらに、上記同様に作製したSDKN1203形状の超硬合金製切削工具についてPVD法によりTiAlN膜を2μm被覆した。得られた切削工具を用いて下記条件にて切削試験を行い、工具性能を評価した。 And the X-ray-diffraction measurement was performed about the surface of the processed cemented carbide, each peak intensity of Ihs , Ics , Ihi , and Ici was calculated | required, and the peak intensity ratio mentioned above was computed. In addition, a hydrochloric acid (HCl: H 2 O = 1: 1) solution was added to 1 g of pulverized powder obtained by pulverizing the above cemented carbide and passing through a # 20 mesh, and a solution obtained by stirring and stirring for 24 hours at 50 ° C. Filtered. A dilute hydrochloric acid (HCl: H 2 O = 1: 1) solution is added to this solution to make a constant volume of 50 ml, and this filtrate is subjected to ICP method for group 4a, 5a, 6a metals (hard phase metals in Table 2). The total content and content ratio were measured. Furthermore, a 2 μm TiAlN film was coated on the cutting tool made of cemented carbide having the shape of SDKN1203 as described above by the PVD method. A cutting test was performed using the obtained cutting tool under the following conditions to evaluate the tool performance.

(切削条件)
<切削条件>
被削材:SKD11材
切削速度:150m/分
1刃あたりの送り:0.45mm
切り込み深さ:3mm
その他:乾式切削
評価方法:切れ刃が欠損して、加工不能になるまでの切れ刃に加わる衝撃回数をもって耐欠損性とした。
(Cutting conditions)
<Cutting conditions>
Work material: SKD11 material Cutting speed: 150 m / min Feed per tooth: 0.45 mm
Cutting depth: 3mm
Other: Dry cutting evaluation method: The number of impacts applied to the cutting edge until the cutting edge was broken and became incapable of machining was defined as fracture resistance.

結果は表2に示した。

Figure 2005336565
The results are shown in Table 2.
Figure 2005336565

Figure 2005336565
Figure 2005336565

表1から明らかなように、超硬合金を焼成した後、従来の方法に準じて単純に研磨した試料No.5、アニール処理後に研削加工を行わなかった試料No.6、およびアニール温度が1000℃より低い試料No.9では、Ihs/(Ihs+Ics)が0.05より小さく、切削試験においてチッピングが多数発生した。また、乾式で研削した試料No.8、および研磨時間が10分より長い試料No.7では、Ihs/(Ihs+Ics)が0.2より大きくなり、切削加工時の衝撃によって欠損が発生する場合があった。 As apparent from Table 1, after firing the cemented carbide, sample No. 1 was simply polished according to the conventional method. 5. Sample No. that was not ground after annealing. 6 and Sample No. with an annealing temperature lower than 1000 ° C. In No. 9, I hs / (I hs + I cs ) was smaller than 0.05, and many chippings occurred in the cutting test. In addition, the sample No. 1 was ground by dry method. 8 and sample No. 8 with a polishing time longer than 10 minutes. In No. 7, I hs / (I hs + I cs ) was larger than 0.2, and a defect sometimes occurred due to an impact at the time of cutting.

これに対して、本発明に従い、超硬合金を焼成した後に表面処理を行なった試料No.1〜4では、いずれも耐欠損性に優れるものであった。   On the other hand, in accordance with the present invention, the sample No. In 1-4, all were excellent in fracture resistance.

Claims (3)

炭化タングステンと、周期律表第4a、5a、6a族金属の群から選ばれる少なくとも1種の炭化物、窒化物および炭窒化物(炭化タングステンを除く)を0〜30質量%と、からなる硬質相を、コバルト(Co)2〜20質量%からなる結合金属にて結合してなる超硬合金であって、該超硬合金の表面において、前記コバルトが立方晶コバルトと六方晶コバルトとの混晶からなるとともに、X線回折パターンにおける前記コバルトのピークを、立方晶コバルトの(111)面ピーク強度:I、六方晶コバルトの(101)面ピーク強度:Iとしたとき、前記超硬合金表面におけるピーク強度比が、
0.05≦Ihs/(Ihs+Ics)≦0.3の関係を満たす超硬合金。
Hard phase comprising tungsten carbide and 0-30% by mass of at least one carbide, nitride and carbonitride (excluding tungsten carbide) selected from group 4a, 5a, and 6a group metals of periodic table Is a cemented carbide formed by bonding with a bonding metal consisting of 2 to 20% by mass of cobalt (Co), and the cobalt is a mixed crystal of cubic cobalt and hexagonal cobalt on the surface of the cemented carbide. And when the cobalt peak in the X-ray diffraction pattern is (111) plane peak intensity of cubic cobalt: I c and (101) plane peak intensity of hexagonal cobalt: I h The peak intensity ratio at the surface is
A cemented carbide that satisfies the relationship of 0.05 ≦ I hs / (I hs + I cs ) ≦ 0.3.
前記超硬合金の内部におけるピーク強度比Ihi/(Ihi+Ici)が0.05以下である請求項1記載の超硬合金。 The cemented carbide according to claim 1, wherein a peak intensity ratio I hi / (I hi + I ci ) inside the cemented carbide is 0.05 or less. 前記超硬合金の表面に、周期律表第4a、5a、6a族金属、Si、およびAlから選ばれる1種または2種以上からなる金属の炭化物、窒化物、炭窒化物、DLC(ダイヤモンドライクカーボン)、ダイヤモンドおよびAlの群から選ばれる少なくとも1種からなる硬質被覆層の少なくとも1層を、総厚み1〜30μmにて被着形成してなることを特徴とする請求項1または2記載の超硬合金。 On the surface of the cemented carbide, carbide, nitride, carbonitride, DLC (diamond-like) of one or more metals selected from Group 4a, 5a, 6a metal, Si and Al of the periodic table Carbon or diamond, and at least one hard coating layer made of at least one selected from the group consisting of Al 2 O 3 is formed with a total thickness of 1 to 30 μm. The cemented carbide according to 2.
JP2004158458A 2004-05-27 2004-05-27 Cemented carbide Expired - Fee Related JP5031182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004158458A JP5031182B2 (en) 2004-05-27 2004-05-27 Cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004158458A JP5031182B2 (en) 2004-05-27 2004-05-27 Cemented carbide

Publications (2)

Publication Number Publication Date
JP2005336565A true JP2005336565A (en) 2005-12-08
JP5031182B2 JP5031182B2 (en) 2012-09-19

Family

ID=35490452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004158458A Expired - Fee Related JP5031182B2 (en) 2004-05-27 2004-05-27 Cemented carbide

Country Status (1)

Country Link
JP (1) JP5031182B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925383A2 (en) * 2006-11-22 2008-05-28 Sandvik Intellectual Property AB Method of making a sintered body, a powder mixture and a sintered body
JP2009024214A (en) * 2007-07-19 2009-02-05 Tungaloy Corp Hard metal and manufacturing method therefor
EP2128287A1 (en) * 2008-05-21 2009-12-02 Sandvik Intellectual Property AB Method of making a composite diamond body
JP2010012552A (en) * 2008-07-03 2010-01-21 Mitsubishi Materials Corp Cemented carbide-made miniature drill excellent in breaking resistance
JP2010209398A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Drill made of cemented carbide having excellent breaking resistance
US8252435B2 (en) 2006-08-31 2012-08-28 Kyocera Corporation Cutting tool, process for producing the same, and method of cutting
JP2013111711A (en) * 2011-11-29 2013-06-10 Mitsubishi Materials Corp Cutting tool made of diamond-coated cemented carbide excellent in toughness and wear resistance
KR20150068912A (en) * 2013-12-12 2015-06-22 뵐러 에델슈탈 게엠베하 운트 코 카게 Method for manufacture objects consisting of iron-cobalt-molybdenum/wolfram-nitrogen-alloys
WO2015178484A1 (en) * 2014-05-23 2015-11-26 株式会社タンガロイ Cemented carbide alloy and coated cemented carbide alloy
WO2018198414A1 (en) * 2017-04-26 2018-11-01 住友電気工業株式会社 Cutting tool
CN110527891A (en) * 2019-09-16 2019-12-03 东华大学 Hard alloy in low cobalt surface diamond coating and preparation method thereof
CN113322405A (en) * 2021-04-21 2021-08-31 自贡硬质合金有限责任公司 Hard alloy with mixed crystal structure and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150182A (en) * 1997-07-30 1999-02-23 Sumitomo Electric Ind Ltd Cemented carbide and its production
JP2000234136A (en) * 1999-02-09 2000-08-29 Sumitomo Electric Ind Ltd Cemented carbide, coated cemented carbide and production thereof
JP2002205207A (en) * 2001-01-09 2002-07-23 Sumitomo Electric Ind Ltd Cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150182A (en) * 1997-07-30 1999-02-23 Sumitomo Electric Ind Ltd Cemented carbide and its production
JP2000234136A (en) * 1999-02-09 2000-08-29 Sumitomo Electric Ind Ltd Cemented carbide, coated cemented carbide and production thereof
JP2002205207A (en) * 2001-01-09 2002-07-23 Sumitomo Electric Ind Ltd Cutting tool

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8252435B2 (en) 2006-08-31 2012-08-28 Kyocera Corporation Cutting tool, process for producing the same, and method of cutting
EP1925383A3 (en) * 2006-11-22 2010-01-06 Sandvik Intellectual Property AB Method of making a sintered body, a powder mixture and a sintered body
US7713468B2 (en) 2006-11-22 2010-05-11 Sandvik Intellectual Property Ab Method of making a sintered body, a powder mixture and a sintered body
EP1925383A2 (en) * 2006-11-22 2008-05-28 Sandvik Intellectual Property AB Method of making a sintered body, a powder mixture and a sintered body
JP2009024214A (en) * 2007-07-19 2009-02-05 Tungaloy Corp Hard metal and manufacturing method therefor
KR101606595B1 (en) 2008-05-21 2016-03-25 산드빅 인터렉츄얼 프로퍼티 에이비 Method of making a composite diamond body
EP2128287A1 (en) * 2008-05-21 2009-12-02 Sandvik Intellectual Property AB Method of making a composite diamond body
US8172915B2 (en) 2008-05-21 2012-05-08 Sandvik Intellectual Property Ab Method of making a composite diamond body
JP2010012552A (en) * 2008-07-03 2010-01-21 Mitsubishi Materials Corp Cemented carbide-made miniature drill excellent in breaking resistance
JP2010209398A (en) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp Drill made of cemented carbide having excellent breaking resistance
JP2013111711A (en) * 2011-11-29 2013-06-10 Mitsubishi Materials Corp Cutting tool made of diamond-coated cemented carbide excellent in toughness and wear resistance
KR20150068912A (en) * 2013-12-12 2015-06-22 뵐러 에델슈탈 게엠베하 운트 코 카게 Method for manufacture objects consisting of iron-cobalt-molybdenum/wolfram-nitrogen-alloys
KR101700680B1 (en) 2013-12-12 2017-01-31 뵐러 에델슈탈 게엠베하 운트 코 카게 Method for manufacture objects consisting of iron-cobalt-molybdenum/wolfram-nitrogen-alloys
WO2015178484A1 (en) * 2014-05-23 2015-11-26 株式会社タンガロイ Cemented carbide alloy and coated cemented carbide alloy
JPWO2015178484A1 (en) * 2014-05-23 2017-04-20 株式会社タンガロイ Cemented carbide and coated cemented carbide
WO2018198414A1 (en) * 2017-04-26 2018-11-01 住友電気工業株式会社 Cutting tool
WO2018198719A1 (en) * 2017-04-26 2018-11-01 住友電気工業株式会社 Cutting tool
JPWO2018198719A1 (en) * 2017-04-26 2020-02-27 住友電気工業株式会社 Cutting tools
JP7143844B2 (en) 2017-04-26 2022-09-29 住友電気工業株式会社 Cutting tools
CN110527891A (en) * 2019-09-16 2019-12-03 东华大学 Hard alloy in low cobalt surface diamond coating and preparation method thereof
CN110527891B (en) * 2019-09-16 2021-11-02 东华大学 Low-cobalt hard alloy surface diamond coating and preparation method thereof
CN113322405A (en) * 2021-04-21 2021-08-31 自贡硬质合金有限责任公司 Hard alloy with mixed crystal structure and preparation method thereof

Also Published As

Publication number Publication date
JP5031182B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5890594B2 (en) Coated tool
JP4854359B2 (en) Surface coated cutting tool
WO2015030073A1 (en) Coated tool
JP2011080153A (en) Hard metal and cutting tool
JPWO2007111301A1 (en) Surface coating tool
KR102107879B1 (en) Surface-coated cutting tool
JP5031182B2 (en) Cemented carbide
JP5918457B1 (en) Coated tool
JP2012251242A (en) Superhard alloy and coated superhard alloy
CN112313037A (en) Method of treating a cutting tool and cutting tool
JP2010105099A (en) Cutting tool
JP4711691B2 (en) Surface covering member and cutting tool
JP2008238392A (en) Cutting tool
JP2004263254A (en) Cemented carbide, coated cemented carbide member, and their production methods
JP2006205300A (en) Surface-coated member and cutting tool
JP2009172697A (en) Wc-based cemented carbide cutting tool showing excellent chipping resistance, thermal crack resistance and wear resistance in high-speed intermittent heavy cutting
JP2015085417A (en) Coated tool
JP6522985B2 (en) Coated tools
JP4776395B2 (en) Cutting tools
JP2001179507A (en) Cutting tool
JP4845490B2 (en) Surface coated cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP4284153B2 (en) Cutting method
JP2004330314A (en) Coated cemented carbide tool
JP5864826B1 (en) Coated and cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101206

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Ref document number: 5031182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees