JP2006100047A - Photoelectric conversion device and optical power generation device using it - Google Patents

Photoelectric conversion device and optical power generation device using it Download PDF

Info

Publication number
JP2006100047A
JP2006100047A JP2004282790A JP2004282790A JP2006100047A JP 2006100047 A JP2006100047 A JP 2006100047A JP 2004282790 A JP2004282790 A JP 2004282790A JP 2004282790 A JP2004282790 A JP 2004282790A JP 2006100047 A JP2006100047 A JP 2006100047A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
dye
multimer
conversion device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004282790A
Other languages
Japanese (ja)
Other versions
JP4841128B2 (en
Inventor
Koji Segawa
浩司 瀬川
Jiyoutaro Nakasaki
城太郎 中崎
Hisashi Sakai
久 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004282790A priority Critical patent/JP4841128B2/en
Publication of JP2006100047A publication Critical patent/JP2006100047A/en
Application granted granted Critical
Publication of JP4841128B2 publication Critical patent/JP4841128B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion device enhancing conversion efficiency and reducing cost and to provide an optical power generation device using it. <P>SOLUTION: The photoelectric conversion device 1 uses a polymer 13 formed by bonding porphyrin skeleton monomers and having adsorption substituent groups as a photoelectric conversion material. The photoelectric conversion device 1 is formed by arranging metal oxide semiconductors (electron transporter) 12 formed by adsorbing the polymers 13 formed by bonding the porphyrin skeleton monomers and conducting photoelectric conversion on a conductive substrate 11 in a state exiting in an electrolyte 14. The optical power generation device uses the photoelectric conversion device as a power generation means, and supplies electric power generated with the power generation means to a load. The photoelectric conversion device having long wavelength sensitivity and high conversion efficiency and the optical power generation device are realized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高い光電変換効率が期待できる新規な材料を用いた太陽電池や受光素子等の光電変換装置およびそれを用いた光発電装置に関するものである。   The present invention relates to a photoelectric conversion device such as a solar cell or a light receiving element using a novel material that can be expected to have high photoelectric conversion efficiency, and a photovoltaic device using the photoelectric conversion device.

光電変換装置の一つである色素増感型太陽電池は、高温処理や真空装置を必要としないことから低コスト化に有利であると考えられ、近年急速に研究開発が進められている。この色素増感型太陽電池は、例えば、導電性ガラス基板上に粒径20nm程度の微粒子を焼結して得られる多孔質酸化チタン層を設け、この多孔質酸化チタン層の粒子表面に色素を単分子吸着させた電極を光作用極として用い、白金をスパッタした導電性ガラス対極との間に、ヨウ素/ヨウ化物レドックス対を含む電解質溶液を満たし、この電解質溶液を封止した構造を有する。このような多孔質化により光作用極の表面積を1000倍以上に高めて、吸着色素による光吸収を効率よく行ない光発電することができる。   A dye-sensitized solar cell, which is one of photoelectric conversion devices, is considered advantageous for cost reduction because it does not require high-temperature treatment or a vacuum device, and research and development have been promoted rapidly in recent years. In this dye-sensitized solar cell, for example, a porous titanium oxide layer obtained by sintering fine particles having a particle diameter of about 20 nm is provided on a conductive glass substrate, and the dye is applied to the particle surface of the porous titanium oxide layer. A single molecule adsorbed electrode is used as a photoworking electrode, and a conductive glass counter electrode sputtered with platinum is filled with an electrolyte solution containing an iodine / iodide redox pair, and the electrolyte solution is sealed. By making such a porous structure, the surface area of the light working electrode can be increased by 1000 times or more, and light absorption by the adsorbing dye can be efficiently performed to generate photovoltaic power.

しかし、高変換効率を与える金属錯体色素とりわけルテニウム錯体色素は、短波長光感度を有する色素であり、このような色素を多孔質半導体層に担持した単独の光電変換装置では変換効率が不十分であった。このため、長波長光感度を高めたブラックダイ等の新しいルテニウム錯体色素が開発され、光吸収波長域が長波長領域に拡大されたが、期待されたほどの変換効率の向上に至っていない。   However, metal complex dyes that give high conversion efficiency, especially ruthenium complex dyes, are dyes having short wavelength photosensitivity, and conversion efficiency is insufficient with a single photoelectric conversion device in which such a dye is supported on a porous semiconductor layer. there were. For this reason, new ruthenium complex dyes such as black dyes with improved long wavelength photosensitivity have been developed and the light absorption wavelength range has been expanded to the long wavelength range, but the conversion efficiency has not been improved as expected.

また、ルテニウムは希少金属であり、高価であるため、金属フリー、特にルテニウムの無い有機色素が種々開発されているが、ルテニウム錯体色素を超えるものは見出されておらず、精力的に研究開発が行なわれている。   Also, since ruthenium is a rare metal and expensive, various organic dyes that are metal-free, especially ruthenium-free, have been developed. Has been done.

また、有機色素では、色素に長波長感度を持たせるために、色素分子の共役長を大きくする等の手法が研究開発されている。このように、変換効率に限っても市場投入に至るには厳しい状況であり、更なる光電変換効率の向上が必要とされている。   For organic dyes, techniques such as increasing the conjugate length of dye molecules have been researched and developed in order to give the dye long wavelength sensitivity. Thus, even if it is limited to the conversion efficiency, it is a severe situation to reach the market, and further improvement of the photoelectric conversion efficiency is required.

これに対し、非特許文献1では、5,10,15,20−テトラキス(4−カルボキシフェニル)ポルフィリン等について、光電変換特性を検討した結果が報告されている。しかしながら、その光電変換特性は実用化し得る状態には至っていない。   On the other hand, Non-Patent Document 1 reports a result of examining photoelectric conversion characteristics of 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin and the like. However, the photoelectric conversion characteristics have not yet been put into practical use.

次に、色素が単独でない従来の光電変換装置、および色素を担持した多孔質半導体層が単独でない光電変換装置の例について説明する。   Next, an example of a conventional photoelectric conversion device in which the dye is not single and a photoelectric conversion device in which the porous semiconductor layer carrying the dye is not single will be described.

特許文献1には、少なくとも2種の異なった色素からなる色素層を用いて、光吸収波長領域を有効に利用した太陽電池が開示されている。具体的には、このような太陽電池は、所定の極性に帯電した第1の色素を含む溶液に多孔質半導体層を接触させて、前記第1の色素を吸着させる工程と、前記第1の色素とは逆極性に帯電した第2の色素を含む溶液に第2の色素を接触させて、第1の色素に第2の色素を吸着させる工程により形成される。   Patent Document 1 discloses a solar cell that effectively uses a light absorption wavelength region by using a dye layer composed of at least two different dyes. Specifically, such a solar cell includes a step of bringing a porous semiconductor layer into contact with a solution containing a first dye charged to a predetermined polarity, and adsorbing the first dye; It is formed by bringing the second dye into contact with a solution containing the second dye charged to a polarity opposite to that of the dye and causing the first dye to adsorb the second dye.

また、特許文献2には、2種の異なった色素がそれぞれ異なった入射波長に対入射光量子収率の最大値を示す色素であり、広範囲の波長の光を利用し、高い変換効率を有する光電変換装置が開示されている。   Patent Document 2 discloses that two types of different dyes each exhibit a maximum value of the incident light quantum yield at different incident wavelengths, and use a light having a wide range of wavelengths and have high conversion efficiency. A conversion device is disclosed.

また、特許文献3には、異なる吸収波長を有する色素を担持した複数の半導体層を有する太陽電池(光電変換素子)が開示されている。この太陽電池の作製を行なう場合、酸化物半導体粒子に色素を吸着させ、乾燥させた後、アルコールに溶解したバインダと混合しペースト化したものを使用して成膜・乾燥させる工程を繰り返すことにより、それぞれの色素を吸着させた酸化物半導体層を形成させている。   Patent Document 3 discloses a solar cell (photoelectric conversion element) having a plurality of semiconductor layers carrying dyes having different absorption wavelengths. When producing this solar cell, the dye semiconductor is adsorbed on the oxide semiconductor particles, dried, then mixed with a binder dissolved in alcohol and pasted into a film and dried. The oxide semiconductor layer in which each dye is adsorbed is formed.

また、特許文献4に開示されている色素増感型太陽電池によれば、増感色素として異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素を吸着した多孔質半導体層を備え、2つの発色系を有することにより、従来の太陽電池に比べて、光吸収波長領域が広く、光吸収量が多く、光電変換効率の高い太陽電池を提供することができるとしている。具体的には、透明基板の表面に形成された透明導電膜と導電性基板との間に、色素が吸着された多孔質半導体層とキャリア輸送層とを有する色素増感型太陽電池の作製方法において、(1)多孔質半導体層を形成した基板を最大感度波長領域が短い第1色素を溶解した溶液に浸漬して、第1色素を多孔質半導体層に吸着させるか、あるいは透明導電膜を形成した基板を多孔質半導体層となる半導体材料と第1色素との混合溶液に浸漬し、電気化学反応により第1色素が吸着された多孔質半導体層を透明導電膜上に形成し、次いで、第1色素が吸着された多孔質性半導体層を最大感度波長領域が長い第2色素を溶解した溶液に浸漬し、第1色素(カルボキシル基を有する)と第2色素(水酸基を有する)とを化学反応(化学吸着結合)させて、複合体色素を形成することを特徴とするものがある。また、(2)最大感度波長領域が短い第1色素と最大感度波長領域が長い第2色素とを化学反応(化学吸着結合)させて、複合体色素を調製し、次いで、多孔質半導体層を形成した基板を複合体色素を溶解した溶液に浸漬して、複合体色素を多孔質半導体層に吸着させることを特徴とするものが提案されている。
ティングリ・マ(Tingli Ma),他8名、「フォトエレクトロケミカル・プロパティーズ・オブ・TiO2・エレクトローズ・センシタイズド・バイ・ポルフィリン・デリバティブズ・ウイズ・ディファレント・ナンバーズ・オブ・カルボキシル・グループス(Photoelectrochemical properties of TiO2 electrodes sensitized by porphyrin derivatives with different numbers of carboxyl groups)」,ジャーナル・オブ・エレクトロアナリティカル・ケミストリィ(Journal of Electroanalytical Chemistry),2002年,第537巻,p.31−38 特開2000−195569号公報 特開2000−268892号公報 特開2000−243466号公報 特開2002−343455号公報
In addition, according to the dye-sensitized solar cell disclosed in Patent Document 4, a porous material that adsorbs a composite dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemically adsorbed to each other as a sensitizing dye. By providing a semiconductor layer and having two coloring systems, it is possible to provide a solar cell with a wide light absorption wavelength range, a large amount of light absorption, and a high photoelectric conversion efficiency as compared with a conventional solar cell. . Specifically, a method for producing a dye-sensitized solar cell having a porous semiconductor layer on which a dye is adsorbed and a carrier transport layer between a transparent conductive film formed on the surface of the transparent substrate and a conductive substrate In (1), the substrate on which the porous semiconductor layer is formed is immersed in a solution in which the first dye having a shortest maximum sensitivity wavelength region is dissolved, and the first dye is adsorbed on the porous semiconductor layer, or a transparent conductive film is formed. The formed substrate is immersed in a mixed solution of a semiconductor material to be a porous semiconductor layer and a first dye, and a porous semiconductor layer in which the first dye is adsorbed by an electrochemical reaction is formed on the transparent conductive film, and then The porous semiconductor layer on which the first dye is adsorbed is immersed in a solution in which the second dye having a long maximum sensitivity wavelength region is dissolved, and the first dye (having a carboxyl group) and the second dye (having a hydroxyl group) are added. Chemical reaction (chemisorption bonding) There is one and forming a combined dye. In addition, (2) the first dye having a short maximum sensitivity wavelength region and the second dye having a long maximum sensitivity wavelength region are chemically reacted (chemisorption bonding) to prepare a composite dye, and then the porous semiconductor layer is formed. There has been proposed a substrate characterized in that the formed substrate is immersed in a solution in which the complex dye is dissolved, and the complex dye is adsorbed to the porous semiconductor layer.
Tingli Ma, 8 others, “Photoelectrochemical Properties of TiO2 Electrodes Sensitized by Porphyrin Derivatives with Different Numbers of Carboxy Groups (Photoelectrochemical properties of TiO2 electrodes sensitized by porphyrin derivatives with different numbers of carboxyl groups), Journal of Electroanalytical Chemistry, 2002, Vol. 537, p. 31-38 JP 2000-195569 A JP 2000-268892 A JP 2000-243466 A JP 2002-343455 A

上述したように、色素増感型太陽電池は、高温処理や真空装置を必要としないことから最も低コストで製造が可能な太陽電池と考えられている。しかしながら、変換効率が低く、バルク型結晶系シリコン太陽電池や積層型薄膜シリコン系太陽電池に及ばない。この変換効率向上が第1の課題である。また、長波長光感度を高めたブラックダイ等の新しいルテニウム錯体色素が開発されたが、期待されたほどの変換効率の向上に至っていない。さらに、金属フリー、特にルテニウムの無い有機色素がいろいろと開発されているが、ルテニウム錯体色素を超えるものは見出されておらず、様々な研究開発が盛んに行なわれている。例えば、色素に長波長感度を持たせるために、色素分子の共役長を大きくする等の手法が行なわれているが、色素分子自身も大きくなり、高分子量化するため、溶媒への溶解が困難となり、多孔質の酸化物半導体への吸着が困難となる。   As described above, the dye-sensitized solar cell is considered as a solar cell that can be manufactured at the lowest cost because it does not require high-temperature treatment or a vacuum apparatus. However, the conversion efficiency is low and it does not reach the bulk type crystalline silicon solar cell and the laminated thin film silicon solar cell. This conversion efficiency improvement is the first problem. In addition, new ruthenium complex dyes such as black dyes with improved long wavelength photosensitivity have been developed, but the conversion efficiency has not been improved as expected. Furthermore, various organic dyes that are free of metal, particularly ruthenium-free dyes, have been developed. However, nothing more than ruthenium complex dyes has been found, and various research and development have been actively conducted. For example, in order to give the dye long wavelength sensitivity, methods such as increasing the conjugate length of the dye molecule are being used, but the dye molecule itself becomes larger and has a higher molecular weight, making it difficult to dissolve in a solvent. Thus, adsorption to the porous oxide semiconductor becomes difficult.

前述のように、非特許文献1に開示された技術によれば、5,10,15,20−テトラ(4−カルボキシフェニル)ポルフィリン等について、光電変換特性を検討した結果が報告されている。しかしながら、その光電変換特性は実用化しうる状態には至っていない。   As described above, according to the technique disclosed in Non-Patent Document 1, the result of examining the photoelectric conversion characteristics of 5,10,15,20-tetra (4-carboxyphenyl) porphyrin has been reported. However, the photoelectric conversion characteristics have not yet been put into practical use.

特許文献1および特許文献2に開示された技術によれば、少なくとも2種の異なった色素からなる色素層を用いて、光吸収波長領域を有効に利用できるとされている。具体的には、所定の極性に帯電した第1の色素を含む溶液に多孔質半導体層を接触させて、前記第1の色素を吸着させる工程と、前記第1の色素とは逆極性に帯電した第2の色素を含む溶液に第1の色素を接触させて、第1の色素に第2の色素を吸着させる工程により形成される。このように2種以上の異なった色素からなる色素層を用いた太陽電池では、2種の色素間の工程中の相互作用によって様々な支障がでて光電変換効率が不安定となり、多孔質半導体層への担持工程が増える問題がある。また、2種以上の異なった色素を同時に吸着させる場合、各色素の吸着速度が異なるために、所定量の色素を吸着させることが困難である。   According to the techniques disclosed in Patent Document 1 and Patent Document 2, it is said that the light absorption wavelength region can be effectively used by using a dye layer composed of at least two different dyes. Specifically, the porous semiconductor layer is brought into contact with a solution containing a first dye charged to a predetermined polarity to adsorb the first dye, and the first dye is charged to a reverse polarity. The first dye is brought into contact with the solution containing the second dye and the second dye is adsorbed to the first dye. Thus, in a solar cell using a dye layer composed of two or more different dyes, various troubles are caused by the interaction between the two kinds of dyes in the process, and the photoelectric conversion efficiency becomes unstable. There is a problem that the number of steps for supporting the layer increases. Further, when two or more different dyes are adsorbed simultaneously, it is difficult to adsorb a predetermined amount of dye because the adsorption speed of each dye is different.

また、特許文献3においては、異なる吸収波長を有する色素を担持した複数の半導体層を有する太陽電池(光電変換素子)が提案されている。この太陽電池の作製を行なう場合は、酸化物半導体粒子に色素を吸着させ、乾燥させた後、アルコールに溶解したバインダと混合しペースト化したものを使用して成膜・乾燥させる工程を繰り返すことにより、それぞれの色素を吸着させた酸化物半導体層を形成させている。このような作製方法では、焼結工程が行なえないため、酸化物半導体粒子間の接触が悪く、抵抗が大きくなり高性能な太陽電池の作製は不可能である。   Patent Document 3 proposes a solar cell (photoelectric conversion element) having a plurality of semiconductor layers carrying dyes having different absorption wavelengths. When making this solar cell, the dye semiconductor is adsorbed on the oxide semiconductor particles, dried, then mixed with a binder dissolved in alcohol and pasted into a film and dried. Thus, an oxide semiconductor layer in which each dye is adsorbed is formed. In such a manufacturing method, since a sintering process cannot be performed, contact between oxide semiconductor particles is poor, resistance is increased, and a high-performance solar cell cannot be manufactured.

また、特許文献4に開示された色素増感型太陽電池では、増感色素として、異なる最大光吸収波長を有する少なくとも2種の色素が互いに化学吸着結合した複合体色素を吸着した多孔質半導体層を備え、2つの発色系を有するので、従来の太陽電池に比べて、光吸収波長領域が広く、光吸収量が多く、光電変換効率の高い太陽電池を提供することができるとしている。しかしながら、2種以上の色素を順次担持する第1の作製方法では、2種の色素間の相互作用によって様々な支障がでて光電変換効率が不安定であり、多孔質半導体層への担持工程が増える問題がある。また、予め2種以上の色素を化学反応(化学吸着結合)させて、複合体色素を調製し、担持するという、第2の作製方法では複合体色素が溶液中で3分子以上に化学反応(化学吸着結合)して複合体色素の分子が大きくなり、多孔質半導体層中に色素が浸透しない問題がある。   Moreover, in the dye-sensitized solar cell disclosed in Patent Document 4, as a sensitizing dye, a porous semiconductor layer in which a composite dye in which at least two kinds of dyes having different maximum light absorption wavelengths are chemically adsorbed and bonded to each other is adsorbed And having two color developing systems, it is said that a solar cell having a wide light absorption wavelength region, a large amount of light absorption, and high photoelectric conversion efficiency can be provided as compared with a conventional solar cell. However, in the first production method in which two or more dyes are sequentially supported, the photoelectric conversion efficiency is unstable due to various obstacles due to the interaction between the two kinds of dyes, and the supporting process to the porous semiconductor layer There is a problem that increases. In addition, in the second production method in which two or more kinds of dyes are chemically reacted (chemisorption bonding) in advance to prepare and carry a complex dye, the complex dye is chemically reacted to three or more molecules in a solution ( There is a problem that the molecule of the complex dye becomes large due to chemical adsorption bonding, and the dye does not penetrate into the porous semiconductor layer.

また、色素増感型太陽電池には耐久性の課題があり、特に屋外用途ではこの耐久性の課題解決が重要である。色素増感型太陽電池では色素を二酸化チタン等に担持しており、紫外線や短波長光によって色素の光劣化が生じることが懸念されている。強い照度の太陽光下では、光入射側に紫外線吸収フィルム等を挿入して、色素の光劣化を抑制することが考えられているが、この手法で光劣化が完全に抑制できるかどうかは疑問であり、紫外線吸収フィルム等の挿入は可視光の吸収も生じてしまい光電変換効率の低下を招く。   Further, the dye-sensitized solar cell has a problem of durability, and it is important to solve the problem of durability particularly in outdoor use. In dye-sensitized solar cells, a dye is supported on titanium dioxide or the like, and there is a concern that the dye may be photodegraded by ultraviolet rays or short-wavelength light. Under strong sunlight, it is considered to suppress the photodegradation of the dye by inserting an ultraviolet absorbing film on the light incident side, but it is doubtful whether this method can completely suppress the photodegradation. In addition, insertion of an ultraviolet absorbing film or the like also causes visible light absorption, leading to a decrease in photoelectric conversion efficiency.

本発明はかかる事情に鑑みてなされたものであり、その目的は、変換効率を高め、また低コスト化と高耐久性の達成が可能な光電変換装置およびそれを用いた光発電装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a photoelectric conversion device capable of enhancing conversion efficiency, achieving low cost and high durability, and a photovoltaic device using the photoelectric conversion device. There is.

本発明の光電変換装置は、1)ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体を光電変換材料として用いたことを特徴とするものである。   The photoelectric conversion device of the present invention is characterized in that 1) a multimer having an adsorbing substituent group formed by bonding a porphyrin skeleton monomer is used as a photoelectric conversion material.

また、本発明の光電変換装置は、上記1)の構成において、2)前記多量体は、前記ポルフィリン骨格単量体がメゾ−メゾ結合してなるものであることを特徴とするものである。   The photoelectric conversion device of the present invention is characterized in that, in the configuration of 1), 2) the multimer is formed by meso-meso bonding of the porphyrin skeleton monomer.

また、本発明の光電変換装置は、上記1)の構成において、3)前記多量体は、前記ポルフィリン骨格単量体がメゾ−メゾ結合およびβ−β結合してなるものであることを特徴とするものである。   The photoelectric conversion device of the present invention is characterized in that, in the configuration of 1), 3) the multimer is formed by meso-meso bond and β-β bond of the porphyrin skeleton monomer. To do.

また、本発明の光電変換装置は、上記1)の構成において、4)前記多量体は、前記ポルフィリン骨格単量体がメゾ−β結合してなるものであることを特徴とするものである。   The photoelectric conversion device of the present invention is characterized in that, in the configuration of 1), 4) the multimer is formed by meso-β bonding of the porphyrin skeleton monomer.

また、本発明の光電変換装置は、上記1)の構成において、5)前記吸着置換基はカルボキシル基であることを特徴とするものである。   The photoelectric conversion device of the present invention is characterized in that, in the configuration of 1), 5) the adsorption substituent is a carboxyl group.

また、本発明の光電変換装置は、上記1)の構成において、6)前記多量体は、電子供与性置換基を有することを特徴とするものである。   The photoelectric conversion device of the present invention is characterized in that, in the configuration of 1), 6) the multimer has an electron donating substituent.

また、本発明の光電変換装置は、上記6)の構成において、7)前記電子供与性置換基はジターシャルブチルフェニル基であることを特徴とするものである。   The photoelectric conversion device of the present invention is characterized in that, in the configuration of 6), 7) the electron donating substituent is a di-tert-butylphenyl group.

さらに、本発明の光発電装置は、上記1)の構成の本発明の光電変換装置を発電手段として用い、この発電手段の発電電力を負荷へ供給するように成したことを特徴とするものである。   Furthermore, the photovoltaic device of the present invention is characterized in that the photoelectric conversion device of the present invention having the configuration 1) described above is used as a power generation means, and the generated power of this power generation means is supplied to a load. is there.

本発明の光電変換装置は、ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体を光電変換材料として用いたので、多量体が光電変換装置において電子輸送体として用いられる多孔質酸化物半導体の表面に化学吸着でき、多量体から多孔質酸化物半導体への電子移動がスムーズに行なえ、またエキシトンカップリングやπ電子共役系の拡大により、従来見出せなかった入射太陽光の長波長側(450nm以上)に高感度で広範囲の応答が得られ、変換効率を向上させることができる。また、色素である多量体の構造がかさ高いので、色素間の凝集を抑制することができ、これによっても変換効率を向上させることができる。また、入射光の短波長側にも高感度を有するので、長波長側との重畳作用によって、本発明のポルフィリン骨格単量体が結合してなる多量体単独にて、より高効率の太陽電池や受光素子等の光電変換装置を提供することができる。   In the photoelectric conversion device of the present invention, the porphyrin skeleton monomer is bonded, and the multimer having an adsorption substituent is used as the photoelectric conversion material. Therefore, the multimer is used as an electron transporter in the photoelectric conversion device. It can be chemisorbed on the surface of the oxide semiconductor, enables smooth electron transfer from the multimer to the porous oxide semiconductor, and the long wavelength of incident sunlight that could not be found before due to the exciton coupling and expansion of the π-electron conjugated system. A wide range of responses with high sensitivity can be obtained on the side (450 nm or more), and the conversion efficiency can be improved. Moreover, since the structure of the multimer which is a pigment | dye is bulky, aggregation between pigment | dyes can be suppressed and conversion efficiency can also be improved by this. In addition, since it has high sensitivity on the short wavelength side of incident light, a higher efficiency solar cell can be obtained by a multimer formed by combining the porphyrin skeleton monomer of the present invention by a superimposing action with the long wavelength side. And a photoelectric conversion device such as a light receiving element.

また、多量体が、ポルフィリン骨格単量体がメゾ−メゾ結合してなるものであるときには、単量体間のエキシトンカップリングによって長波長側(450nm以上)に光吸収を得ることができるので、より高効率の色素増感型太陽電池等の光電変換装置を容易に提供することができる。   In addition, when the multimer is formed by meso-meso bonding of porphyrin skeleton monomers, light absorption can be obtained on the long wavelength side (450 nm or more) by exciton coupling between the monomers. A highly efficient photoelectric conversion device such as a dye-sensitized solar cell can be easily provided.

また、多量体が、ポルフィリン骨格単量体がメゾ−メゾ結合およびβ−β結合してなるものであるときには、単量体間にπ電子共役を構成し、多量体の共役長を拡大して、長波長側に光吸収を得ることができるので、より高効率の色素増感型太陽電池等の光電変換装置を容易に提供することができる。   In addition, when the multimer is composed of a porphyrin skeleton monomer having a meso-meso bond and a β-β bond, a π electron conjugation is formed between the monomers, and the conjugation length of the multimer is increased. Since light absorption can be obtained on the long wavelength side, a highly efficient photoelectric conversion device such as a dye-sensitized solar cell can be easily provided.

また、多量体が、ポルフィリン骨格単量体がメゾ−β結合してなるものであるときには、単量体間にπ電子共役を構成し、多量体の共役長を拡大して、長波長側に光吸収を得ることができるので、より高効率の色素増感型太陽電池等の光電変換装置を容易に提供することができる。   In addition, when the multimer is formed by a meso-β bond of a porphyrin skeleton monomer, a π-electron conjugation is formed between the monomers, the conjugation length of the multimer is expanded, and the long wavelength side is increased. Since light absorption can be obtained, a more efficient photoelectric conversion device such as a dye-sensitized solar cell can be easily provided.

また、吸着置換基がカルボキシル基であるときには、色素である多量体が多孔質半導体層に化学吸着できるので、より高効率の色素増感型太陽電池等の光電変換装置を容易に提供することができる。   In addition, when the adsorption substituent is a carboxyl group, a multimer as a dye can be chemically adsorbed to the porous semiconductor layer, so that it is possible to easily provide a photoelectric conversion device such as a dye-sensitized solar cell with higher efficiency. it can.

また、多量体が、さらに電子供与性置換基を有するときには、色素である多量体は多孔質半導体へ電子を供給する能力がさらに高まるので、より高効率の色素増感型太陽電池等の光電変換装置を容易に提供することができる。   In addition, when the multimer further has an electron-donating substituent, the multimer that is a dye further increases the ability to supply electrons to the porous semiconductor, so that the photoelectric conversion of a more efficient dye-sensitized solar cell, etc. The device can be provided easily.

また、電子供与性置換基が体積の大きいジターシャルブチルフェニル基であるときには、色素である多量体の構造をかさ高くでき、溶媒への溶解性を高めることができるので、多孔質半導体層への化学吸着が容易なものとなり、変換効率を向上させることができる。また、色素の凝集を抑制できることから、これによっても変換効率を向上させることができる。   In addition, when the electron donating substituent is a large volume ditertiary butylphenyl group, the structure of the multimer that is a dye can be made bulky, and the solubility in a solvent can be increased. Chemosorption is easy, and conversion efficiency can be improved. Further, since the aggregation of the dye can be suppressed, the conversion efficiency can also be improved by this.

さらに、本発明の光発電装置は、上記本発明の光電変換装置を発電手段として用い、この発電手段の発電電力を負荷へ供給するように成したことから、高効率の光発電装置を提供することができる。   Furthermore, the photovoltaic device of the present invention uses the photoelectric conversion device of the present invention as a power generation means and supplies the generated power of the power generation means to a load, thus providing a highly efficient photovoltaic power generation apparatus. be able to.

以下、本発明の実施の形態の例について図面を参照しつつ詳細に説明する。なお、図面において同一部材には同一符号を付すものとする。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same members are denoted by the same reference numerals.

色素増感型太陽電池の基本構造をなす光電変換装置を模式的に説明する断面図を図1に、積層型の光電変換装置を模式的に説明する断面図を図2にそれぞれ示す。図1および図2において、図中の矢印Lは光の入射する様子(方向)を示す。   FIG. 1 is a cross-sectional view schematically illustrating a photoelectric conversion device having a basic structure of a dye-sensitized solar cell, and FIG. 2 is a cross-sectional view schematically illustrating a stacked photoelectric conversion device. 1 and 2, an arrow L in the drawing indicates a state (direction) of incident light.

図1に示す光電変換装置1は、導電性支持体である導電性基板11上に、ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体13を吸着させた金属酸化物半導体からなる一導電型輸送体である電子輸送体(金属酸化物半導体)12を、他方導電型輸送体である電解質中に存在する状態で配設したことを特徴とするものである。この構造は、多量体13の増感作用により光電変換を行なう色素増感型光電変換体をなしており、この色素増感型光電変換体は、導電性基板11上に形成され多量体13を担持した多孔質の電子輸送体12、この電子輸送体12を埋めるように形成した逆多孔質の逆導電型輸送体である電解質14、白金やカーボンを担持させた透明導電層17および透光性被覆体18からなる。   The photoelectric conversion device 1 shown in FIG. 1 is a metal oxide semiconductor in which a porphyrin skeleton monomer is bonded to a conductive substrate 11 which is a conductive support and a multimer 13 having an adsorption substituent is adsorbed. An electron transporter (metal oxide semiconductor) 12 which is a one-conductivity type transporter made of is disposed in an electrolyte which is the other conductivity-type transporter. This structure forms a dye-sensitized photoelectric converter that performs photoelectric conversion by sensitizing action of the multimer 13, and this dye-sensitized photoelectric converter is formed on the conductive substrate 11 to form the multimer 13. Porous electron transporter 12 supported, electrolyte 14 which is a reverse porous reverse conductivity type transporter formed so as to fill electron transporter 12, transparent conductive layer 17 supporting platinum or carbon, and translucency It consists of a covering 18.

図2の光電変換装置1は、一主面側から光を入射させる導電性基板11の一主面上に、多量体13を有しこの多量体13の増感作用により光電変換を行なう色素増感型光電変換体と、薄膜形成法により作製し、光電変換を行なう無機半導体層を有し光を透過させる薄膜光電変換体とを積層してなる積層型光電変換装置を構成したものであり、色素増感型光電変換体が薄膜光電変換体より長波長側にピーク感度を有し、薄膜光電変換体を透過した光を吸収する。   The photoelectric conversion device 1 in FIG. 2 has a multimer 13 on one main surface of a conductive substrate 11 on which light is incident from one main surface side, and performs dye conversion that performs photoelectric conversion by the sensitizing action of the multimer 13. A laminated photoelectric conversion device comprising a photosensitive photoelectric conversion body and a thin film photoelectric conversion body that is produced by a thin film forming method and has an inorganic semiconductor layer that performs photoelectric conversion and transmits light, The dye-sensitized photoelectric converter has a peak sensitivity on the longer wavelength side than the thin film photoelectric converter and absorbs light transmitted through the thin film photoelectric converter.

薄膜光電変換体は、第1の透明導電層15上に、薄膜光電変換層16、第2の透明導電層17および透光性被覆体18が順次積層された構成を有する。なお、薄膜光電変換層16としては、シリコン系の薄膜pin接合層でもよく、CIGS(CuInGaSe)等の化合物半導体系の薄膜接合層でもよい。また、これらの接合層はpin接合型,pn接合型,ショットキー接合型,ヘテロ接合型等の内部電界を生じるものがよい。シリコン系としては、アモルファスシリコン系,ナノサイズ結晶を含むアモルファスシリコン系,微結晶シリコン系などがよく、特に短波長感度を有するアモルファスシリコン系や光劣化が抑制されるナノサイズ結晶を含むアモルファスシリコン系がよい。ここで、アモルファスシリコン系とは、アモルファスシリコンカーバイト,アモルファスシリコンナイトライド等の合金系を含む。   The thin film photoelectric converter has a configuration in which a thin film photoelectric conversion layer 16, a second transparent conductive layer 17, and a translucent covering 18 are sequentially laminated on a first transparent conductive layer 15. The thin film photoelectric conversion layer 16 may be a silicon thin film pin junction layer or a compound semiconductor thin film junction layer such as CIGS (CuInGaSe). These junction layers are preferably those that generate an internal electric field such as a pin junction type, a pn junction type, a Schottky junction type, and a hetero junction type. As silicon-based materials, amorphous silicon-based materials, amorphous silicon-based materials including nano-sized crystals, microcrystalline silicon-based materials, etc. are particularly suitable. Amorphous silicon-based materials including short-wavelength-sensitive amorphous silicon-based materials and nano-sized crystals that suppress light degradation Is good. Here, the amorphous silicon system includes alloy systems such as amorphous silicon carbide and amorphous silicon nitride.

薄膜光電変換体からの第1の出力と、色素増感型光電変換体からの第2の出力とは、それぞれ独立して出力しても、接続して出力してもよい。図2に示すような積層型光電変換装置の場合であれば、第1の出力の電流と第2の出力の電流とが同じになるように両光電変換装置の性能を合わせてやれば、第1の透明導電層15から外部に出力を取り出す必要がなく、集積化等を行なう際の電極配線構造がシンプルになって具合がよい。両光電流を合わせるには、それぞれの膜厚や感度等を調整すればよい。   The first output from the thin film photoelectric converter and the second output from the dye-sensitized photoelectric converter may be output independently or connected to each other. In the case of a stacked photoelectric conversion device as shown in FIG. 2, if the performance of both photoelectric conversion devices is matched so that the current of the first output and the current of the second output are the same, It is not necessary to take out an output from one transparent conductive layer 15, and the electrode wiring structure for integration or the like is simple and good. In order to match both photocurrents, the film thickness, sensitivity, etc. of each may be adjusted.

また、本発明の光電変換装置1は、図3に断面図で示すように、多量体13と異なる吸収スペクトルを有する色素19を適当な比率で混合させた構成を有するものでもよい。この光電変換装置によれば、多量体13と異なる吸収スペクトルを有する色素19と多量体13とを混合していることから、吸収波長を広くすることができ、変換効率や耐久性の向上を図ることができる。   Moreover, the photoelectric conversion device 1 of the present invention may have a configuration in which a dye 19 having an absorption spectrum different from that of the multimer 13 is mixed in an appropriate ratio, as shown in a cross-sectional view in FIG. According to this photoelectric conversion device, since the dye 19 having an absorption spectrum different from that of the multimer 13 and the multimer 13 are mixed, the absorption wavelength can be widened, and conversion efficiency and durability are improved. be able to.

また、本発明の光電変換装置1は、図4に断面図で示すように、導電性基板11を間に挟んで、多量体13と異なる吸収スペクトルを有する色素19を有する光電変換体2aと、多量体13を設けた光電変換体2bとを積層させた構造とすることも可能である。この積層型光電変換装置によっても、導電性基板11の両側に多量体13と異なる吸収スペクトルを有する色素19と多量体13とを設けたことから、光吸収波長を広くすることができ、変換効率の向上と耐久性を図ることができる。   The photoelectric conversion device 1 of the present invention includes a photoelectric conversion body 2a having a dye 19 having an absorption spectrum different from that of the multimer 13 with a conductive substrate 11 interposed therebetween, as shown in a sectional view in FIG. It is also possible to have a structure in which the photoelectric conversion body 2b provided with the multimer 13 is laminated. Even with this stacked photoelectric conversion device, the dye 19 having a different absorption spectrum from the multimer 13 and the multimer 13 are provided on both sides of the conductive substrate 11, so that the light absorption wavelength can be widened and the conversion efficiency can be increased. Improvement and durability can be achieved.

次に、上述した光電変換装置1の各構成について詳細に説明する。   Next, each structure of the photoelectric conversion apparatus 1 mentioned above is demonstrated in detail.

<導電性基板>
導電性基板11としては、図1に示す光電変換装置1の場合は、薄い金属シートを単独で用いればよく、チタン,ステンレス,アルミニウム,銀,銅,ニッケル等がよい。また、カーボンや金属の微粒子や微細線を含浸した樹脂、導電性有機樹脂等がよい。また、金属薄膜のチタン,ステンレス,アルミニウム,銀,銅,ニッケル等、あるいは透明導電膜のITO,SnO:F,ZnO:Al等、あるいは積層体のTi/ITO/Ti等の導電膜11b付き絶縁基板11a等がよい。絶縁基板11aの材料としては、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネート等の樹脂材料や青板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等の無機質材料,導電性有機樹脂材料,有機無機ハイブリッド材料等がよい。
<Conductive substrate>
As the conductive substrate 11, in the case of the photoelectric conversion device 1 shown in FIG. 1, a thin metal sheet may be used alone, and titanium, stainless steel, aluminum, silver, copper, nickel and the like are preferable. Further, a resin impregnated with carbon or metal fine particles or fine lines, a conductive organic resin, or the like is preferable. In addition, with metal thin film titanium, stainless steel, aluminum, silver, copper, nickel, etc., transparent conductive film ITO, SnO 2 : F, ZnO: Al, etc., or laminate Ti / ITO / Ti conductive film 11b. An insulating substrate 11a or the like is preferable. As a material for the insulating substrate 11a, resin materials such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, etc., inorganic materials such as blue plate glass, soda glass, borosilicate glass, ceramics, and conductive organic resin materials Organic-inorganic hybrid materials are good.

導電性基板11に光反射性を持たせると、透過光を反射させて再利用することができる。導電性基板11に金属基板を用いる場合は、銀やアルミニウム等がよい。また、導電膜11bを形成する場合は、銀,密着層付きTi/Ag/Ti等の積層膜等がよく、それらは真空蒸着法,イオンプレーティング法,スパッタリング法,電解析出法等で形成するのがよい。導電性基板11の厚みは0.01mm〜5mm、好ましくは0.02mm〜3mmがよい。導電膜11bの厚みは0.001μm〜10μm、好ましくは0.05μm〜2μmがよい。また、導電性基板11が透光性の場合(SnO:F膜付き青板ガラス等)には、基板の裏面に光反射性のアルミニウムや銀等のシートや膜等を用いて光反射性を持たせるようにしても構わない。 If the conductive substrate 11 has light reflectivity, the transmitted light can be reflected and reused. When a metal substrate is used for the conductive substrate 11, silver, aluminum, or the like is preferable. When the conductive film 11b is formed, a laminated film of silver, Ti / Ag / Ti, etc. with an adhesion layer is preferable, and these are formed by a vacuum deposition method, an ion plating method, a sputtering method, an electrolytic deposition method, or the like. It is good to do. The thickness of the conductive substrate 11 is 0.01 mm to 5 mm, preferably 0.02 mm to 3 mm. The thickness of the conductive film 11b is 0.001 μm to 10 μm, preferably 0.05 μm to 2 μm. In addition, when the conductive substrate 11 is translucent (SnO 2 : blue plate glass with F film, etc.), a light-reflective sheet or film such as light-reflective aluminum or silver is used on the back surface of the substrate to provide light reflectivity. You may make it have.

また、図1〜図3に示した例の場合には、導電性基板11に透光性を持たせれば、光入射を電子輸送体12側からとすることもできる。この場合、絶縁基板11aの材料としては、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネート等の樹脂シートや白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等の無機質シート,有機無機ハイブリッドシート等がよい。また同様に、透明な導電膜11bとしては、低温成長のスパッタリング法や低温スプレー熱分解法で作製したスズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)等がよい。他に、溶液成長法で作製した不純物ドープの酸化亜鉛膜(ZnO膜)等がよく、これらを積層して用いてもよい。また熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)等を用いてもよい。他に、不純物ドープの酸化インジウム膜(In膜)等が使える。他の成膜法として、真空蒸着法,イオンプレーティング法,ディップコート法,ゾル・ゲル法等がある。これらの膜成長によって入射光の波長オーダーの表面凹凸を形成すると、光閉じ込め効果を持たせることができて、なおよいものとなる。また、第1の透明導電層15としては、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等の薄い金属膜でもよい。 In the case of the example shown in FIGS. 1 to 3, if the conductive substrate 11 has translucency, light incidence can be made from the electron transporter 12 side. In this case, as the material of the insulating substrate 11a, resin sheets such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, etc., white sheets, soda glass, borosilicate glass, inorganic sheets such as ceramics, organic inorganic Hybrid seats are good. Similarly, as the transparent conductive film 11b, a tin-doped indium oxide film (ITO film) or an impurity-doped indium oxide film (In 2 O 3 film) produced by a low-temperature growth sputtering method or a low-temperature spray pyrolysis method is used. Good. In addition, an impurity-doped zinc oxide film (ZnO film) or the like manufactured by a solution growth method may be used, and these may be stacked and used. Alternatively, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by a thermal CVD method may be used. In addition, an impurity-doped indium oxide film (In 2 O 3 film) or the like can be used. Other film forming methods include vacuum deposition, ion plating, dip coating, and sol / gel. If surface irregularities in the order of the wavelength of incident light are formed by these film growths, a light confinement effect can be provided, which is even better. The first transparent conductive layer 15 may be a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method or a sputtering method.

また、導電性基板11の光入射側の表面は、両面が平坦なものでよいが、入射光の波長オーダーの凹凸を有する表面とすると、光閉じ込め効果を持たせることができて、なおよいものとなる。   In addition, the surface on the light incident side of the conductive substrate 11 may be flat on both sides, but if the surface has irregularities in the order of the wavelength of incident light, it is possible to provide a light confinement effect, which is even better. It becomes.

<電子輸送体>
一導電型輸送体である電子輸送体12としては、多孔質の二酸化チタン等の電子輸送体(n型金属酸化物半導体)が特に好ましい。図1に示す光電変換装置1の場合は、導電性基板11上にこの多孔質の一導電型輸送体12を形成する。
<Electron transporter>
As the electron transporter 12 which is a one conductivity type transporter, an electron transporter (n-type metal oxide semiconductor) such as porous titanium dioxide is particularly preferable. In the case of the photoelectric conversion device 1 shown in FIG. 1, this porous one-conductive transporter 12 is formed on a conductive substrate 11.

電子輸送体12は、n型の金属酸化物半導体が好適であり、粒状体または線状体(針状体,チューブ状体,柱状体等)の複数が集合してなるものが最適である。   The electron transporter 12 is preferably an n-type metal oxide semiconductor, and is most preferably an aggregate of a plurality of granular or linear bodies (needle-like bodies, tube-like bodies, columnar bodies, etc.).

電子輸送体12を多孔質体等とすることにより、粒状体間または線状体間の接合面積が拡がり、多量体13を担持する表面積が増えて、光電変換効率を高めることができる。   By making the electron transporter 12 a porous body or the like, the junction area between the granular bodies or the linear bodies is expanded, the surface area for supporting the multimers 13 is increased, and the photoelectric conversion efficiency can be increased.

また、電子輸送体12を多孔質体等とすることにより、色素増感型光電変換体の表面が凹凸形状となり、薄膜光電変換体や色素増感型光電変換体に光閉じ込め効果をもたらして、光電変換効率をより高めることができる。   In addition, by making the electron transporter 12 a porous body or the like, the surface of the dye-sensitized photoelectric conversion body becomes uneven, bringing a light confinement effect to the thin film photoelectric conversion body or the dye-sensitized photoelectric conversion body, Photoelectric conversion efficiency can be further increased.

金属酸化物半導体の材料や組成としては、酸化チタン(TiO)が最適であり、他の材料や組成としては、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V)等の金属元素の少なくとも1種以上からなる酸化物半導体がよい。また、窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有させてもよい。これらはいずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2eV〜5eVの範囲にあり、かつ電子エネルギー準位において金属酸化物半導体の伝導帯が多量体13の伝導帯より低いn型半導体がよい。 As the material and composition of the metal oxide semiconductor, titanium oxide (TiO 2 ) is optimal, and as other material and composition, titanium (Ti), zinc (Zn), tin (Sn), niobium (Nb), Indium (In), Yttrium (Y), Lanthanum (La), Zirconium (Zr), Tantalum (Ta), Hafnium (Hf), Strontium (Sr), Barium (Ba), Calcium (Ca), Vanadium (V), etc. An oxide semiconductor composed of at least one of these metal elements is preferable. Moreover, you may contain 1 or more types of nonmetallic elements, such as nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), and phosphorus (P). These are all preferably n-type semiconductors whose electron energy band gap is in the range of 2 eV to 5 eV, which is larger than the energy of visible light, and in which the conduction band of the metal oxide semiconductor is lower than that of the multimer 13 at the electron energy level. .

この金属酸化物半導体は、空孔率が20%〜80%、より好適には40%〜60%の多孔質体状がよい。この理由は、この程度の空孔率の多孔質化により光作用極の表面積を1000倍以上に高めることができて、光吸収と発電と電子伝導とを効率よく行なうことができるからである。多孔質体の形状は、その表面積が大きくなり、かつ電気抵抗が小さい形状がよく、通常は、微細粒子もしくは微細線状からなるのがよい。その平均粒径もしくは平均線径は5nm〜500nmとするのがよく、より好適には10nm〜200nmとするのがよい。ここで、平均線径の5nm〜500nmにおける下限値は、これ以下になると材料の微細化が困難になるからであり、上限値は、これ以上になると接合面積が小さくなり光電流が著しく小さくなるからである。   The metal oxide semiconductor is preferably in the form of a porous body having a porosity of 20% to 80%, more preferably 40% to 60%. This is because the surface area of the light working electrode can be increased 1000 times or more by making the porosity of this degree of porosity, and light absorption, power generation and electron conduction can be performed efficiently. The shape of the porous body is preferably a shape having a large surface area and low electrical resistance, and is usually preferably composed of fine particles or fine lines. The average particle diameter or average line diameter is preferably 5 nm to 500 nm, and more preferably 10 nm to 200 nm. Here, if the lower limit of the average wire diameter of 5 nm to 500 nm is less than this, it is difficult to make the material finer, and if the upper limit is greater than this, the junction area is reduced and the photocurrent is significantly reduced. Because.

また、金属酸化物半導体の膜厚は0.1μm〜50μmがよく、より好適には1μm〜20μmとするのがよい。ここで、0.1μm〜50μmにおける下限値は、これより膜厚が小さくなると光電変換作用が著しく小さくなって実使用が困難となるからであり、上限値は、これ以上膜厚が厚くなると光が透過しなくなって光が入射しなくなるからである。   Further, the thickness of the metal oxide semiconductor is preferably 0.1 μm to 50 μm, more preferably 1 μm to 20 μm. Here, the lower limit value in the range of 0.1 μm to 50 μm is because if the film thickness becomes smaller than this, the photoelectric conversion action becomes remarkably small and practical use becomes difficult. This is because light is not transmitted and no light enters.

チタン酸化物半導体の製造方法は、まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。作製したペーストをドクターブレード法によって、透光性導電膜が形成されている面上に一定の速度で塗布し、大気中において300℃〜600℃、好適には400℃〜500℃で、10分〜60分、好適には20分〜40分の条件で加熱処理することにより、多孔質体の金属酸化物半導体を作製する。この手法は簡便であり、図1に示す例のように、耐熱性の導電性基板11上に予め形成できる場合に有効である。 The titanium oxide semiconductor is manufactured by first adding acetylacetone to TiO 2 anatase powder and then kneading with deionized water to produce a titanium oxide paste stabilized with a surfactant. The prepared paste is applied by a doctor blade method on the surface on which the translucent conductive film is formed at a constant rate, and is 300 ° C to 600 ° C in air, preferably 400 ° C to 500 ° C, preferably 10 minutes. A porous metal oxide semiconductor is produced by heat treatment for -60 minutes, preferably 20-40 minutes. This technique is simple and effective when it can be formed in advance on a heat-resistant conductive substrate 11 as in the example shown in FIG.

このような金属酸化物半導体の低温成長法としては、電析法,泳動電着法,水熱合成法等がよく、後処理としてマイクロ波処理,CVDUV処理等を行なうのがよい。金属酸化物半導体の材料としては、電析法による多孔質ZnO,泳動電着法による多孔質TiO等がよい。 As a low temperature growth method of such a metal oxide semiconductor, an electrodeposition method, an electrophoretic electrodeposition method, a hydrothermal synthesis method or the like is preferable, and a microwave treatment, a CVD / UV treatment or the like is preferably performed as a post treatment. As a material of the metal oxide semiconductor, porous ZnO by an electrodeposition method, porous TiO 2 by an electrophoretic electrodeposition method, or the like is preferable.

<色素>
色素である多量体13としては、ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体13とする。本発明の光電変換装置1によれば、ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体13を光電変換材料として用いたことから、多量体を構成するポルフィリン骨格単量体間のエキシトンカップリングやπ電子共役系の拡大により、光吸収範囲が拡大するので、従来見出せなかった入射太陽光の長波長側(450nm以上)に高感度で広範囲の応答が得られ、変換効率を向上させることができる。また、ポルフィリン骨格単量体が三次元的に組み立てられていることから、色素である多量体13の構造がかさ高いので、色素(多量体)13間の凝集を抑制することができ、色素(多量体)13同士の間のエネルギー移動および電子移動によるエネルギー損失を低減することができて、色素(多量体)13から多孔質酸化物半導体(電子輸送体)12への電子移動がスムーズに行なえることとなり、これによっても変換効率を向上させることができる。また、ポルフィリン骨格単量体が結合してなる多量体である化合物はその分子の対称性が高いので、基底状態と励起S状態との間の遷移確率が大きく、光吸収が強いことから、入射光の短波長側にも高感度を有するので、長波長側との重畳作用によって、本発明のポルフィリン骨格単量体が結合してなる多量体13単独にて、より高効率の太陽電池や受光素子等の光電変換装置1を提供することができる。
<Dye>
The multimer 13 which is a dye is a multimer 13 having an adsorbing substituent formed by bonding a porphyrin skeleton monomer. According to the photoelectric conversion device 1 of the present invention, since the porphyrin skeleton monomer is bonded and the multimer 13 having an adsorption substituent is used as the photoelectric conversion material, the porphyrin skeleton monomer constituting the multimer is used. Exciton coupling between the two and the expansion of the π-electron conjugated system increase the light absorption range, so a wide range of responses with high sensitivity can be obtained on the long wavelength side (450 nm or more) of incident sunlight, which could not be found before, and conversion efficiency Can be improved. In addition, since the porphyrin skeleton monomer is assembled three-dimensionally, the structure of the polymer multimer 13 is bulky, so that aggregation between the dye (multimer) 13 can be suppressed, and the dye ( Energy transfer between multimers) 13 and energy loss due to electron transfer can be reduced, and electrons can be smoothly transferred from the dye (multimer) 13 to the porous oxide semiconductor (electron transporter) 12. This also improves the conversion efficiency. Further, since the compound porphyrin skeleton monomer is multimer formed by bonding the high symmetry of the molecule, large probabilities of transitions between the ground state and the excited S 2 state, since the light absorption is strong, Since it has high sensitivity also on the short wavelength side of incident light, the multimer 13 formed by combining the porphyrin skeleton monomer of the present invention by a superimposing action with the long wavelength side alone, a more efficient solar cell or A photoelectric conversion device 1 such as a light receiving element can be provided.

また、効率よく太陽光吸収させるために、多孔質体の金属酸化物半導体(電子輸送体)12の表面に多量体13を吸着させる必要があるので、多量体13に少なくとも1個以上の吸着置換基、すなわちカルボキシル基,スルホニル基,ヒドロキサム酸基,アルコキシ基,アリール基,ホスホリル基等を置換基として有することが必要である。多量体13は、吸着置換基を1個以上有していればよいが、より好ましくは吸着置換基を多量体13の長軸の末端に有しているとよく、その場合には、長細い分子の多量体13が金属酸化物半導体(電子輸送体)12に縦長に化学吸着するようになるので、金属酸化物半導体(電子輸送体)12の表面に高濃度の多量体13が吸着でき、より高効率の色素増感型太陽電池等の光電変換装置1を容易に提供することができるものとなる。   In addition, in order to absorb sunlight efficiently, it is necessary to adsorb the multimer 13 on the surface of the porous metal oxide semiconductor (electron transporter) 12, so that at least one adsorption substitution is performed on the multimer 13. It is necessary to have a substituent such as a carboxyl group, a sulfonyl group, a hydroxamic acid group, an alkoxy group, an aryl group, or a phosphoryl group. The multimer 13 has only to have one or more adsorption substituents, and more preferably has an adsorption substituent at the end of the long axis of the multimer 13, in which case it is long and thin. Since the molecular multimer 13 is chemisorbed vertically on the metal oxide semiconductor (electron transporter) 12, the high concentration multimer 13 can be adsorbed on the surface of the metal oxide semiconductor (electron transporter) 12, The photoelectric conversion device 1 such as a higher efficiency dye-sensitized solar cell can be easily provided.

ここで、吸着置換基としては、金属酸化物半導体(電子輸送体)12に強固に化学吸着することができ、励起状態の色素(多量体)13から金属酸化物半導体へ容易に電荷移動できるものであればよい。   Here, as the adsorption substituent, one that can be strongly chemically adsorbed to the metal oxide semiconductor (electron transporter) 12 and can easily transfer charges from the excited state dye (multimer) 13 to the metal oxide semiconductor. If it is.

中でも、吸着置換基がカルボキシル基であるときには、金属酸化物半導体(電子輸送体)12の表面のOH基と反応して化学結合を形成するので、色素である多量体13が電子輸送体12の多孔質半導体層に化学吸着できることから、電子輸送体12の表面全体に高濃度の色素(多量体)13を強固に吸着することとなり、また、色素(多量体)13から電子輸送体12へスムーズな電子移動が行なえることとなり、より高効率の色素増感型太陽電池等の光電変換装置1を容易に提供することができる。   In particular, when the adsorption substituent is a carboxyl group, it reacts with an OH group on the surface of the metal oxide semiconductor (electron transporter) 12 to form a chemical bond, so that the multimer 13 as a dye is formed on the electron transporter 12. Because it can be chemically adsorbed on the porous semiconductor layer, the high concentration of dye (multimer) 13 is firmly adsorbed to the entire surface of the electron transporter 12, and from the dye (multimer) 13 to the electron transporter 12 smoothly. Therefore, it is possible to easily provide the photoelectric conversion device 1 such as a dye-sensitized solar cell with higher efficiency.

また、色素(多量体)13から電子輸送体12の多孔質半導体層への電子移動を効率よく行なわせるために、色素(多量体)13に少なくとも1個以上の電子供与性置換基、すなわちメチル基,エチル基,イソプロピル基等のアルキル基、メトキシ基,エトキシ基等のアルコキシ基、フェニル基,ナフチル基等のアリール基、塩素,臭素等のハロゲン基、ヒドロキシ基、アミノ基、チオシアナート基、シアノ基、ターシャルブチル基、3,5−ジターシャルブチルフェニル基等を置換基として有することが好ましい。   In order to efficiently transfer electrons from the dye (multimer) 13 to the porous semiconductor layer of the electron transporter 12, at least one electron donating substituent, that is, methyl, is added to the dye (multimer) 13. Group, alkyl group such as ethyl group and isopropyl group, alkoxy group such as methoxy group and ethoxy group, aryl group such as phenyl group and naphthyl group, halogen group such as chlorine and bromine, hydroxy group, amino group, thiocyanate group, cyano It preferably has a group, a tertiary butyl group, a 3,5-ditertiary butylphenyl group or the like as a substituent.

色素(多量体)13が吸着置換基に加えて電子供与性置換基を有するときには、色素(多量体)13から電子輸送体12の多孔質半導体層への電子を供給する能力がさらに高まるので、より高効率の色素増感型太陽電池等の光電変換装置1を容易に提供することができるものとなる。   When the dye (multimer) 13 has an electron-donating substituent in addition to the adsorption substituent, the ability to supply electrons from the dye (multimer) 13 to the porous semiconductor layer of the electron transporter 12 is further enhanced. The photoelectric conversion device 1 such as a higher efficiency dye-sensitized solar cell can be easily provided.

ここで、電子供与性置換基としては、電解質14から効率よく電子を捕獲することができ、電解質14の還元体、例えばヨウ素レドックスを用いた場合に電解質14から色素(多量体)13へ容易に電荷移動できるものであればよい。   Here, as an electron donating substituent, electrons can be efficiently captured from the electrolyte 14, and when the reduced form of the electrolyte 14, such as iodine redox, is used, the electrolyte 14 can easily be changed to the dye (multimer) 13. Any device capable of charge transfer may be used.

中でも、電子供与性置換基がジターシャルブチルフェニル基であるときには、ターシャルブチル基の体積が大きいので、色素である多量体13の構造をかさ高くでき、溶媒への溶解性を高めることができることから、電子輸送体12の多孔質半導体層への化学吸着が容易なものとなり、電子輸送体12に高濃度の多量体13を吸着させることができ、光をより多く吸収することとなるので、変換効率を向上させることができる。また、色素の凝集を抑制できることから、色素(多量体)13同士の間のエネルギー移動および電子移動によるエネルギー損失を低減でき、色素(多量体)13から多孔質酸化物半導体(電子輸送体)12への電子移動がスムーズに行なえることとなり、これによっても変換効率を向上させることができる。   Above all, when the electron-donating substituent is a ditertiary butylphenyl group, the volume of the tertiary butyl group is large, so that the structure of the polymer multimer 13 can be made bulky and the solubility in a solvent can be increased. Therefore, chemical adsorption to the porous semiconductor layer of the electron transporter 12 becomes easy, the high-concentration multimer 13 can be adsorbed to the electron transporter 12, and more light is absorbed. Conversion efficiency can be improved. In addition, since aggregation of the dye can be suppressed, energy loss between the dye (multimer) 13 and energy transfer due to electron transfer can be reduced. From the dye (multimer) 13 to the porous oxide semiconductor (electron transporter) 12 Electrons can be moved smoothly, and this can also improve the conversion efficiency.

ポルフィリン骨格単量体が結合してなる多量体13としては、好適にはポルフィリン骨格単量体がメゾ−メゾ結合してなる多量体13を挙げることができる。具体例として、二量体を下記化1に、三量体以上を下記化2に示す構造を挙げることができるが、これらに限定されるものではない。M,M’をメタルフリーあるいはMg,Ca,Sr,Ba,Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tn,Yb,Lu,Ti,Zr,Hf,V,Nb,Ta,Th,U,Cr,Mo,W,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ab,Au,Cd,Hg,Al,Ga,In,Tl,Si,Ge,Sn,Pb,As,Sb,Biで各々置換してもよい。R2,R3,R4,R5をカルボキシル基、スルホニル基、ヒドロキサム酸基、アルコキシ基、アリール基、ホスホリル基、メチル基,エチル基,イソプロピル基等のアルキル基、メトキシ基,エトキシ基等のアルコキシ基、フェニル基,ナフチル基等のアリール基、塩素,臭素等のハロゲン基、ヒドロキシ基、アミノ基、チオシアナート基、シアノ基、ターシャルブチル基で各々置換してもよい。

Figure 2006100047
Preferred examples of the multimer 13 formed by bonding a porphyrin skeleton monomer include the multimer 13 formed by bonding a porphyrin skeleton monomer to a meso-meso bond. Specific examples include structures shown in the following chemical formula 1 for dimers and chemical formulas shown in the following chemical formula 2 for trimers and higher, but are not limited thereto. M, M ′ are metal-free or Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tn, Yb, Lu, Ti, Zr, Hf, V, Nb, Ta, Th, U, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ab, Au, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, and Bi may be substituted respectively. R2, R3, R4, R5 are carboxyl groups, sulfonyl groups, hydroxamic acid groups, alkoxy groups, aryl groups, phosphoryl groups, alkyl groups such as methyl groups, ethyl groups, isopropyl groups, alkoxy groups such as methoxy groups, ethoxy groups, You may respectively substitute by aryl groups, such as a phenyl group and a naphthyl group, halogen groups, such as chlorine and a bromine, a hydroxy group, an amino group, a thiocyanate group, a cyano group, and a tertiary butyl group.
Figure 2006100047

Figure 2006100047
Figure 2006100047

多量体13がこのようなポルフィリン骨格単量体がメゾ−メゾ結合してなるものであるときには、単量体間のエキシトンカップリングによって長波長側(450nm以上)に光吸収を得ることができるので、単量体に比べ、多量体13の方が光吸収波長領域を拡大でき、太陽光の白色光を効率良く吸収することとなり、より高効率の色素増感型太陽電池等の光電変換装置1を容易に提供することができる。   When the polymer 13 is formed by meso-meso bonding of such porphyrin skeleton monomers, light absorption can be obtained on the long wavelength side (450 nm or more) by exciton coupling between the monomers. In comparison with the monomer, the polymer 13 can expand the light absorption wavelength region, and absorbs white light of sunlight more efficiently, and the photoelectric conversion device 1 such as a dye-sensitized solar cell with higher efficiency. Can be provided easily.

また、ポルフィリン骨格単量体が結合してなる多量体13としては、好適にはポルフィリン骨格単量体がメゾ−メゾ結合およびβ−β結合してなる多量体13を挙げることもできる。具体例として、二量体を下記化3に、三量体以上を下記化4に示す構造を挙げることができる。

Figure 2006100047
As the multimer 13 formed by bonding a porphyrin skeleton monomer, a multimer 13 formed by preferably bonding a porphyrin skeleton monomer to a meso-meso bond and a β-β bond can also be exemplified. As a specific example, the structure which shows a dimer in following Chemical formula 3, and a trimer or more in following Chemical formula 4 can be mentioned.
Figure 2006100047

Figure 2006100047
Figure 2006100047

多量体13がこのようなポルフィリン骨格単量体がメゾ−メゾ結合およびβ−β結合してなるものであるときには、単量体間にπ電子共役を構成し、多量体の共役長を拡大して、長波長側に光吸収を得ることができるので、単量体に比べ、多量体13の方が光吸収波長領域を拡大でき、太陽光の白色光を効率良く吸収することとなり、より高効率の色素増感型太陽電池等の光電変換装置1を容易に提供することができる。   When the multimer 13 is formed by such a porphyrin skeleton monomer having a meso-meso bond and a β-β bond, a π electron conjugation is formed between the monomers, and the conjugation length of the multimer is increased. Therefore, since the light absorption can be obtained on the long wavelength side, the multimer 13 can expand the light absorption wavelength region and absorb the white light of sunlight more efficiently than the monomer. The photoelectric conversion device 1 such as an efficient dye-sensitized solar cell can be easily provided.

また、ポルフィリン骨格単量体が結合してなる多量体13としては、ポルフィリン骨格単量体がメゾ−β結合してなる多量体13を挙げることもできる。具体例として、二量体を下記化5に示す構造を挙げることができるが、これに限定されるものではない。M,M’をメタルフリーあるいはMg,Ca,Sr,Ba,Sc,Y,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tn,Yb,Lu,Ti,Zr,Hf,V,Nb,Ta,Th,U,Cr,Mo,W,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pd,Pt,Cu,Ab,Au,Cd,Hg,Al,Ga,In,Tl,Si,Ge,Sn,Pb,As,Sb,Biで各々置換してもよい。R2,R3,R4,R5をカルボキシル基、スルホニル基、ヒドロキサム酸基、アルコキシ基、アリール基、ホスホリル基、メチル基,エチル基,イソプロピル基等のアルキル基、メトキシ基,エトキシ基等のアルコキシ基、フェニル基,ナフチル基等のアリール基、塩素,臭素等のハロゲン基、ヒドロキシ基、アミノ基、チオシアナート基、シアノ基、ターシャルブチル基で各々置換してもよい。

Figure 2006100047
Examples of the multimer 13 formed by bonding a porphyrin skeleton monomer include the multimer 13 formed by bonding a porphyrin skeleton monomer to a meso-β bond. As a specific example, a structure of the dimer shown in the following chemical formula 5 can be exemplified, but the structure is not limited thereto. M, M ′ are metal-free or Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tn, Yb, Lu, Ti, Zr, Hf, V, Nb, Ta, Th, U, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ab, Au, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, and Bi may be substituted respectively. R2, R3, R4, R5 are carboxyl groups, sulfonyl groups, hydroxamic acid groups, alkoxy groups, aryl groups, phosphoryl groups, alkyl groups such as methyl groups, ethyl groups, isopropyl groups, alkoxy groups such as methoxy groups, ethoxy groups, You may respectively substitute by aryl groups, such as a phenyl group and a naphthyl group, halogen groups, such as chlorine and a bromine, a hydroxy group, an amino group, a thiocyanate group, a cyano group, and a tertiary butyl group.
Figure 2006100047

多量体13がこのようなポルフィリン骨格単量体がメゾ−β結合してなるものであるときには、単量体間にπ電子共役を構成し、多量体の共役長を拡大して、HOMO−LUMO間バンドギャップを小さくできることから長波長側に光吸収を得ることができるので、単量体に比べ、多量体13の方が光吸収波長領域を拡大でき、太陽光の白色光を効率良く吸収することとなり、より高効率の色素増感型太陽電池等の光電変換装置1を容易に提供することができる。   When the multimer 13 is formed by such a meso-β bond between such porphyrin skeleton monomers, a π-electron conjugation is formed between the monomers, the conjugation length of the multimer is expanded, and the HOMO-LUMO Since the interband band gap can be reduced, light absorption can be obtained on the long wavelength side, so that the polymer 13 can expand the light absorption wavelength region and absorb white light of sunlight more efficiently than the monomer. That is, it is possible to easily provide the photoelectric conversion device 1 such as a dye-sensitized solar cell with higher efficiency.

多孔質体の金属酸化物半導体(電子輸送体)12に色素(多量体)13を吸着させる方法としては、金属酸化物半導体(電子輸送体)12を形成した導電性基板11を、色素(多量体)13を溶解した溶液に浸漬する方法が挙げられる。多孔質体の金属酸化物半導体(電子輸送体)12を形成した導電性基板11を、色素(多量体)13を溶解した溶液に浸漬する際は、溶液および雰囲気の温度は特に限定されるものではなく、例えば、雰囲気は大気圧下とし、温度は室温とすればよく、浸漬時間は色素(多量体)13の種類,溶媒の種類,溶液の濃度、温度等により適宜調整することができる。これにより色素(多量体)13を多孔質体の金属酸化物半導体(電子輸送体)12に吸着させることができる。   As a method for adsorbing the dye (multimer) 13 to the porous metal oxide semiconductor (electron transporter) 12, the conductive substrate 11 on which the metal oxide semiconductor (electron transporter) 12 is formed is used by using the dye (multiple). Body) 13 may be immersed in a solution. When the conductive substrate 11 on which the porous metal oxide semiconductor (electron transporter) 12 is formed is immersed in a solution in which the dye (multimer) 13 is dissolved, the temperature of the solution and the atmosphere are particularly limited. Instead, for example, the atmosphere may be atmospheric pressure, the temperature may be room temperature, and the immersion time can be appropriately adjusted depending on the type of the dye (multimer) 13, the type of solvent, the concentration of the solution, the temperature, and the like. As a result, the dye (multimer) 13 can be adsorbed to the porous metal oxide semiconductor (electron transporter) 12.

色素(多量体)13を溶解させるために用いる溶媒は、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。   The solvent used to dissolve the dye (multimer) 13 is a mixture of one or more alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, etc. Is mentioned.

また、溶液中の色素(多量体)13の濃度は5×10−5〜2×10−3mol/l程度が好ましい。 The concentration of the dye (multimer) 13 in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l.

また、色素(多量体)13の凝集を抑制するために、添加剤として弱塩基性化合物、例えばターシャルブチルピリジンや弱酸性化合物、例えばデオキシコール酸を色素(多量体)13の溶液に溶解し、色素(多量体)13と添加剤とを多孔質体の金属酸化物半導体(電子輸送体)12に共吸着させる方法を用いるとよい。さらにこのような方法だけでなく、多孔質体の金属酸化物半導体(電子輸送体)12に色素(多量体)13を吸着させた後、その多孔質体の金属酸化物半導体(電子輸送体)12を上記の添加剤溶液に浸漬して添加剤を吸着させる方法により、金属酸化物半導体(電子輸送体)12に注入された電子が酸化状態の色素(多量体)13と、金属酸化物半導体(電子輸送体)12に注入された電子が電解質14の酸化状態物質とそれぞれ再結合反応(電子のリーク)することが抑制でき、変換効率を向上させることができる。   In order to suppress aggregation of the dye (multimer) 13, a weakly basic compound such as tertiary butylpyridine or a weakly acidic compound such as deoxycholic acid is dissolved in the solution of the dye (multimer) 13 as an additive. A method of co-adsorbing the dye (multimer) 13 and the additive to the porous metal oxide semiconductor (electron transporter) 12 may be used. In addition to such a method, the porous metal oxide semiconductor (electron transporter) 12 is adsorbed with the dye (multimer) 13 and then the porous metal oxide semiconductor (electron transporter). Electrons injected into the metal oxide semiconductor (electron transporter) 12 are in an oxidized state (multimer) 13 and the metal oxide semiconductor by immersing 12 in the above additive solution and adsorbing the additive (Electron transporter) Electrons injected into 12 can be suppressed from recombination reaction (electron leakage) with the oxidation state substance of electrolyte 14, respectively, and conversion efficiency can be improved.

<電解質>
逆多孔質で他方導電型輸送体である電解質14としては、ゲル電解質等の正孔輸送体(p型半導体,液体電解質,固体電解質,電解塩等)が特によい。ここで、逆多孔質体とは前記多孔質体を埋めるように形成するものであり、電解液が最もよいキャリア移動を示すが、液体の場合には液漏れ等の問題があるのでゲル化や固体化したものを用いることが好ましい。
<Electrolyte>
The electrolyte 14 which is a reverse porous and other conductive type transporter is particularly preferably a hole transporter (p-type semiconductor, liquid electrolyte, solid electrolyte, electrolyte salt, etc.) such as a gel electrolyte. Here, the reverse porous body is formed so as to fill the porous body, and the electrolytic solution shows the best carrier movement, but in the case of a liquid, there is a problem such as liquid leakage, It is preferable to use a solidified product.

電解質14の材料としては、透明導電性酸化物,電解質溶液,ゲル電解質や固体電解質等の電解質、有機正孔輸送剤、極薄膜金属等が挙げられる。透明導電性酸化物としては、一価の銅を含む化合物半導体やGaP,NiO,CoO,FeO,Bi,MoO,Cr等がよく、中でも一価の銅を含む半導体がよい。好適な化合物半導体としては、CuI,CuInSe,CuO,CuSCN,CuS,CuInS,CuAlSe等がよく、この中ではCuIおよびCuSCNがよく、CuIが製造しやすく最も望ましい。 Examples of the material of the electrolyte 14 include transparent conductive oxides, electrolyte solutions, electrolytes such as gel electrolytes and solid electrolytes, organic hole transport agents, and ultrathin metal films. As the transparent conductive oxide, a compound semiconductor containing monovalent copper, GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3, etc. are preferable. Among them, a semiconductor containing monovalent copper is used. Good. Suitable compound semiconductors include CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , and CuAlSe 2 , and among these, CuI and CuSCN are preferred, and CuI is most preferable because it is easy to manufacture.

電解質溶液としては第4級アンモニウム塩やLi塩等を用いる。電解質溶液の組成としては例えば、炭酸エチレン,アセトニトリル,またはメトキシプロピオニトリル等に、ヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素等を混合して調製したものを用いることができる。   As the electrolyte solution, quaternary ammonium salt, Li salt or the like is used. As the composition of the electrolyte solution, for example, a solution prepared by mixing ethylene carbonate, acetonitrile, methoxypropionitrile, or the like with tetrapropylammonium iodide, lithium iodide, iodine, or the like can be used.

ゲル電解質は、大別して化学ゲルと物理ゲルとに分けられる。化学ゲルは架橋反応等により化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル,エチレンカーボネート,プロピレンカーボネートまたはそれらの混合物に対し、ポリエチレンオキサイド,ポリアクリロニトリル,ポリフッ化ビニリデン,ポリビニルアルコール,ポリアクリル酸,ポリアクリルアミド等のホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合には、低粘度の前駆体を酸化物半導体層に含有させ、加熱,紫外線照射,電子線照射等の手段で二次元,三次元の架橋反応を起こさせることによってゲル化または固体化させることができる。   Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to a physical interaction. The gel electrolyte is a gel obtained by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid, or polyacrylamide with acetonitrile, ethylene carbonate, propylene carbonate, or a mixture thereof. An electrolyte is preferred. When a gel electrolyte or solid electrolyte is used, a low-viscosity precursor is included in the oxide semiconductor layer, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.

イオン伝導性の固体電解質としては、ポリエチレンオキサイド,ポリエチレンオキサイドもしくはポリエチレン等の高分子鎖に、スルホンイミダゾリウム塩,テトラシアノキノジメタン塩,ジシアノキノジイミン塩等の塩を持つ固体電解質が好ましい。ヨウ化物の溶融塩としては、イミダゾリウム塩,第4級アンモニウム塩,イソオキサゾリジニウム塩,イソチアゾリジニウム塩,ピラゾリジウム塩,ピロリジニウム塩,ピリジニウム塩等のヨウ化物を用いることができる。   As the ion conductive solid electrolyte, a solid electrolyte having a polymer chain such as polyethylene oxide, polyethylene oxide, or polyethylene and having a salt such as sulfonimidazolium salt, tetracyanoquinodimethane salt, or dicyanoquinodiimine salt is preferable. As the molten salt of iodide, an iodide such as an imidazolium salt, a quaternary ammonium salt, an isoxazolidinium salt, an isothiazolidinium salt, a pyrazolidium salt, a pyrrolidinium salt, or a pyridinium salt can be used.

上述のヨウ化物の溶融塩としては、例えば、1,1−ジメチルイミダゾリウムアイオダイド、1,メチル−3−エチルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。   Examples of the molten salt of iodide include 1,1-dimethylimidazolium iodide, 1, methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide, 1-methyl- 3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide, 1-ethyl- Examples thereof include 3-isopropylimidazolium iodide and pyrrolidinium iodide.

有機正孔輸送剤として機能する電解質14には、トリフェニルジアミン(TPD1,TPD2,TPD3)やOMeTAD等が挙げられる。   Examples of the electrolyte 14 that functions as an organic hole transporting agent include triphenyldiamine (TPD1, TPD2, TPD3), OMeTAD, and the like.

<透明導電層>
透明導電層(第2の透明導電層)17および第1の透明導電層15としては、低温成長のスパッタリング法や低温スプレー熱分解法で作製したスズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)等がよい。他に、溶液成長法で作製した不純物ドープの酸化亜鉛膜(ZnO膜)等がよく、これらを積層して用いてもよい。また、熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)等を用いてもよい。他に、不純物ドープの酸化インジウム膜(In膜)等が使える。他の成膜法としては、真空蒸着法,イオンプレーティング法,ディップコート法,ゾル・ゲル法等がある。これらの膜成長によって表面に入射光の波長オーダーの凹凸を形成すると、光閉じ込め効果を持たせることができて、なおよいものとなる。また、第1の透明導電層15としては、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等の薄い金属膜でもよい。
<Transparent conductive layer>
As the transparent conductive layer (second transparent conductive layer) 17 and the first transparent conductive layer 15, a tin-doped indium oxide film (ITO film) produced by a low temperature growth sputtering method or a low temperature spray pyrolysis method or an impurity doped oxidation An indium film (In 2 O 3 film) or the like is preferable. In addition, an impurity-doped zinc oxide film (ZnO film) or the like manufactured by a solution growth method may be used, and these may be stacked and used. Alternatively, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by a thermal CVD method may be used. In addition, an impurity-doped indium oxide film (In 2 O 3 film) or the like can be used. As other film forming methods, there are a vacuum deposition method, an ion plating method, a dip coating method, a sol-gel method, and the like. By forming irregularities in the order of the wavelength of incident light on the surface by these film growths, a light confinement effect can be provided, which is even better. The first transparent conductive layer 15 may be a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method or a sputtering method.

<薄膜光電変換層>
薄膜光電変換層16としては、プラズマCVD法によって連続堆積したpin接合の水素化アモルファスシリコン系半導体膜がよい。第1の透光性導電膜側にp型半導体膜を設けたpin接合とするとよいが、逆接合のnip接合でも構わない。ここで、一導電型シリコン系半導体層と逆導電型シリコン系半導体層とは、それぞれp型半導体とn型半導体と、もしくはn型半導体とp型半導体とからなるものを意味する。また実質的に真性であるシリコン系半導体層はi型半導体を意味する。
<Thin film photoelectric conversion layer>
The thin film photoelectric conversion layer 16 is preferably a pin junction hydrogenated amorphous silicon semiconductor film continuously deposited by plasma CVD. A pin junction in which a p-type semiconductor film is provided on the first light-transmitting conductive film side may be used, but a reverse junction nip junction may also be used. Here, the one-conductivity-type silicon-based semiconductor layer and the reverse-conductivity-type silicon-based semiconductor layer mean a p-type semiconductor and an n-type semiconductor, or an n-type semiconductor and a p-type semiconductor, respectively. Further, a silicon semiconductor layer that is substantially intrinsic means an i-type semiconductor.

ここで、i型半導体膜がアモルファス(非晶質)であれば、p型半導体膜およびn型半導体膜は少なくともいずれかが微結晶を有するもの、または水素化アモルファスシリコン(a−Si:H)合金系の膜を用いるとよい。また、光入射側のp型半導体膜には水素化アモルファスシリコンカーバイドを用いると、透光性を高めて光の侵入ロスが少なくなるので、より好ましい。他の成膜法として触媒CVD法を用いて成膜してもよい。プラズマCVD法と触媒CVD法とを組み合わせると、成膜した半導体膜における光劣化が抑制できて、信頼性を高めることができる。これらのシリコン系半導体層は、化学気相成長法によりそれぞれの成膜条件で連続して成膜することができるので具合がよい。   Here, if the i-type semiconductor film is amorphous (amorphous), at least one of the p-type semiconductor film and the n-type semiconductor film has microcrystals, or hydrogenated amorphous silicon (a-Si: H) An alloy film may be used. In addition, it is more preferable to use hydrogenated amorphous silicon carbide for the p-type semiconductor film on the light incident side, because it increases translucency and reduces light penetration loss. As another film forming method, a film may be formed using a catalytic CVD method. When the plasma CVD method and the catalytic CVD method are combined, photodegradation in the formed semiconductor film can be suppressed and reliability can be improved. These silicon-based semiconductor layers are favorable because they can be continuously formed under the respective film forming conditions by chemical vapor deposition.

より詳しく説明すると、例えば、p型a−Si:H膜の場合は、原料ガスとしてSiH+HガスおよびB(Hで500ppmに希釈したもの)ガスを用い、これらのガスの流量をそれぞれ最適化して成膜する。膜厚は50Å〜200Åの範囲がよく、好適には80Å〜120Åがよい。薄過ぎると十分な内部電界が形成できず、厚過ぎると光量損失が増えることとなる。続いて、i型a−Si:Hの原料ガスとしてSiH+Hガスを用い、これらのガスの流量を最適化して成膜する。膜厚は500Å〜5000Å(0.05μm〜0.5μm)の範囲がよく、好適には1500Å〜2500Å(0.15μm〜0.25μm)がよい。薄過ぎると充分な光電流が得られず、厚過ぎると色素増感型光電変換装置に光を十分に透過できないこととなる。続いて、n型a−Si:H膜の場合は、原料ガスとしてSiH+HガスおよびPH(Hで1000ppmに希釈したもの)ガスを用い、これらのガスの流量をそれぞれ最適化して成膜する。膜厚は50Å〜200Åの範囲がよく、好適には80Å〜120Åがよい。薄過ぎると十分な内部電界が形成できず、厚過ぎると光量損失が増えることとなる。成膜時の基板温度は、pin膜のいずれも150℃〜300℃の範囲がよく、好適には180℃〜240℃がよい。低過ぎても高過ぎてもよい光半導体が得られないこととなる。 More specifically, for example, in the case of a p-type a-Si: H film, SiH 4 + H 2 gas and B 2 H 6 (diluted to 500 ppm with H 2 ) gas are used as source gases. Film formation is performed with each flow rate optimized. The film thickness is in the range of 50 to 200 mm, preferably 80 to 120 mm. If it is too thin, a sufficient internal electric field cannot be formed, and if it is too thick, the light amount loss increases. Subsequently, SiH 4 + H 2 gas is used as the i-type a-Si: H source gas, and the flow rate of these gases is optimized to form a film. The film thickness is preferably in the range of 500 mm to 5000 mm (0.05 μm to 0.5 μm), preferably 1500 mm to 2500 mm (0.15 μm to 0.25 μm). If it is too thin, sufficient photocurrent cannot be obtained, and if it is too thick, light cannot be sufficiently transmitted to the dye-sensitized photoelectric conversion device. Subsequently, in the case of an n-type a-Si: H film, SiH 4 + H 2 gas and PH 3 (diluted to 1000 ppm with H 2 ) gas are used as source gases, and the flow rates of these gases are optimized respectively. Form a film. The film thickness is in the range of 50 to 200 mm, preferably 80 to 120 mm. If it is too thin, a sufficient internal electric field cannot be formed, and if it is too thick, the light amount loss increases. The substrate temperature during film formation is preferably in the range of 150 ° C. to 300 ° C., preferably 180 ° C. to 240 ° C. for all pin films. An optical semiconductor that may be too low or too high cannot be obtained.

<透光性被覆体>
透光性被覆体18としては、フッ素樹脂,シリコンポリエステル樹脂,高耐候性ポリエステル樹脂,ポリ塩化ビニル樹脂PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネート等の樹脂シートや白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等の無機質シート,有機無機ハイブリッドシート等がよい。この透光性被覆体18の厚みは0.1μm〜6mm、好ましくは1μm〜4mmがよい。また、防眩性,遮熱性,耐熱性,低汚染性,抗菌性,防かび性,意匠性,高加工性,耐疵付き性,耐摩耗性,滑雪性,帯電防止性,遠赤外線放射性,耐酸性,耐食性,環境対応性等を透光性被覆体18に付与することにより、光電変換装置1の信頼性や商品性をより高めることができる。
<Translucent covering>
As the translucent covering 18, a resin sheet such as fluorine resin, silicon polyester resin, high weather resistance polyester resin, polyvinyl chloride resin PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, white plate glass, Inorganic sheets such as soda glass, borosilicate glass, and ceramics, and organic-inorganic hybrid sheets are preferable. The translucent covering 18 has a thickness of 0.1 μm to 6 mm, preferably 1 μm to 4 mm. In addition, antiglare, heat shield, heat resistance, low contamination, antibacterial, antifungal, design, high workability, scratch resistance, wear resistance, snow sliding, antistatic, far infrared radiation, By imparting acid resistance, corrosion resistance, environmental compatibility, and the like to the translucent covering 18, the reliability and merchantability of the photoelectric conversion device 1 can be further improved.

また、透光性被覆体18の光入射側の表面は両面が平坦なものでよいが、入射光の波長オーダーの凹凸を有する表面としておく方が、光閉じ込め効果を持たせることができて、なおよいものとなる。   In addition, the surface on the light incident side of the translucent covering 18 may be flat on both sides, but it is possible to have a light confinement effect if the surface has unevenness in the wavelength order of incident light, Even better.

<下地層>
下地層は図示していないが、図1に示す例の構成では、導電性基板11と多孔質体で一導電型の電子輸送体12との間に、多孔質の一導電型輸送体の薄い緻密層を挿入すると、逆電流が流れなくなるのでよい。
<Underlayer>
Although the base layer is not shown, in the configuration of the example shown in FIG. 1, the porous single-conducting transporter is thin between the conductive substrate 11 and the porous single-conducting electron transporter 12. If a dense layer is inserted, the reverse current may not flow.

<触媒層>
触媒層は図示していないが、図1に示す例の構成では、第1の透明導電層15と逆多孔質体で逆導電型の輸送体である電解質14との間に、白金あるいはカーボン等の極薄膜を挿入すると、正孔の移動がよくなるので具合がよい。
<Catalyst layer>
Although the catalyst layer is not shown in the drawing, platinum or carbon or the like is interposed between the first transparent conductive layer 15 and the electrolyte 14 which is a reverse porous and reverse conductivity type transporter in the configuration shown in FIG. If the ultrathin film is inserted, the movement of holes is improved, which is good.

なお、第1の透明導電層15および第2の透明導電層17にそれぞれ集電極を設けて、電気抵抗を小さくするとよい。   In addition, it is good to provide a collector electrode in the 1st transparent conductive layer 15 and the 2nd transparent conductive layer 17, respectively, and to make electrical resistance small.

かくして、本発明の光電変換装置によれば、ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体を用いることにより、また、さらに電子供与性置換基を有する多量体を用いることにより、良好な長波長感度を有し、光吸収波長幅を広げることができ、光電変換効率の向上ができる。   Thus, according to the photoelectric conversion device of the present invention, by using a multimer having an adsorbing substituent formed by bonding a porphyrin skeleton monomer, and further using a multimer having an electron donating substituent. Thus, it has good long wavelength sensitivity, can broaden the light absorption wavelength width, and can improve the photoelectric conversion efficiency.

また、本発明の積層型光電変換装置は、主面側から光を入射させる導電性基板の主面上に、色素(多量体)を有しこの色素の増感作用により光電変換を行なう色素増感型光電変換体と、光電変換を行なう半導体層を有する薄膜光電変換体とが、この順で積層され、この薄膜光電変換体で短波長光がよく光電変換され、薄膜光電変換体を透過した光を、吸収し色素の増感作用により光電変換を行なう色素増感型光電変換体が吸収するので、両光電変換体の変換効率を合わせた高い変換効率が得られるものとなる。   In addition, the stacked photoelectric conversion device of the present invention includes a dye sensitizer that has a dye (multimer) on the main surface of a conductive substrate on which light is incident from the main surface side and performs photoelectric conversion by a sensitizing action of the dye. A photosensitive photoelectric conversion body and a thin film photoelectric conversion body having a semiconductor layer that performs photoelectric conversion are laminated in this order, and short-wavelength light is often photoelectrically converted by this thin film photoelectric conversion body, and transmitted through the thin film photoelectric conversion body. Since the dye-sensitized photoelectric converter that absorbs light and performs photoelectric conversion by the sensitizing action of the dye absorbs light, high conversion efficiency combining the conversion efficiencies of both photoelectric converters can be obtained.

また、薄膜光電変換体も色素増感型光電変換体もそれぞれが低温プロセスで作製できるので、積層構成をとっても従来の太陽電池より簡便容易にかつ低コストで製造可能である。さらに、光の入射側に薄膜光電変換体を配し、その後側に色素増感型光電変換体を配したことにより、後側の色素増感型光電変換体が太陽光等の強い光を直接受けることがない。しかも、光入射側の薄膜光電変換体では、よりよく短波長光を吸収し、長波長光をほとんど透過する。よって、後側に配置された色素増感型光電変換体は、太陽光等の強い光を直接受けることがなく、紫外線が無く短波長光が激減するので色素の光劣化を大幅に軽減して解消させることができる。また強い光を直接受けることがなく、背面側の導電性基板の他の主面側(裏面側)から容易に色素増感型光電変換体を冷却することができるので、これにより温度上昇が抑制できて、色素(多量体)の熱劣化を抑制することができる。   In addition, since each of the thin-film photoelectric conversion body and the dye-sensitized photoelectric conversion body can be produced by a low-temperature process, it can be easily and easily manufactured at a lower cost than a conventional solar cell even if it has a laminated structure. Furthermore, by arranging a thin film photoelectric converter on the light incident side and a dye-sensitized photoelectric converter on the rear side, the rear dye-sensitized photoelectric converter directly emits strong light such as sunlight. I will not receive it. Moreover, the thin film photoelectric conversion body on the light incident side better absorbs short wavelength light and transmits almost all long wavelength light. Therefore, the dye-sensitized photoelectric converter placed on the back side does not receive strong light such as sunlight directly and drastically reduces short-wavelength light without ultraviolet rays. It can be eliminated. In addition, it does not receive strong light directly, and the dye-sensitized photoelectric conversion body can be easily cooled from the other main surface side (back side) of the conductive substrate on the back side, thereby suppressing temperature rise. And thermal deterioration of the pigment (multimer) can be suppressed.

以上の実施の形態の例においては、本発明の光電変換装置として、導電性基板上に、ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体を吸着させた金属酸化物半導体(電子輸送体)を、電解質中に存在する状態で配設した例について説明したが、この構成に限定されるものではない。例えば、基板上に金属等の導電層と、ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体を含む層と、無機または有機半導体層および透明導電層とを順次積層した薄膜太陽電池とすることも可能であり、ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体を光電変換材料として用いたものであれば、いずれも本発明の光電変換装置として実施することが可能である。   In the example of the above embodiment, as the photoelectric conversion device of the present invention, a metal oxide semiconductor in which a porphyrin skeleton monomer is bonded onto a conductive substrate and a multimer having an adsorption substituent is adsorbed. Although the example which arrange | positioned the (electron transporter) in the state which exists in electrolyte was demonstrated, it is not limited to this structure. For example, a thin film in which a conductive layer such as metal, a porphyrin skeleton monomer, a layer containing a multimer having an adsorption substituent, an inorganic or organic semiconductor layer, and a transparent conductive layer are sequentially laminated on a substrate It can also be a solar cell, and any multimer having an adsorbing substituent formed by bonding a porphyrin skeleton monomer as a photoelectric conversion material can be used as the photoelectric conversion device of the present invention. Is possible.

上述した光電変換装置を発電手段として用い、この発電手段からの発電電力を負荷へ供給するように成すことによって、本発明の光発電装置とすることができる。   By using the above-described photoelectric conversion device as the power generation means and supplying the generated power from the power generation means to the load, the photovoltaic power generation device of the present invention can be obtained.

すなわち、上述した光電変換装置を1つ以上(複数であれば、直列,並列または直並列に)接続したものを発電手段として用い、この発電手段から直接に直流負荷へ発電電力を供給するようにすればよい。また、上述した光電変換装置から出力された直流電力をインバータ等の電力変換手段を介して適当な交流電力に変換した後で、この発電電力を商用電源系統や各種の電気機器等の交流負荷に供給することが可能な光発電装置としてもよい。さらに、このような光発電装置を日当たりのよい建物に設置する等して、各種態様の太陽光発電システム等の光発電装置として利用することも可能であり、これにより、高効率で耐久性のある光発電装置を提供することができる。   That is, one or more of the photoelectric conversion devices described above (in the case of multiple photoelectric conversion devices connected in series, parallel or series-parallel) is used as the power generation means, and the generated power is supplied directly to the DC load from this power generation means. do it. In addition, after the DC power output from the above-described photoelectric conversion device is converted into appropriate AC power via power conversion means such as an inverter, this generated power is applied to an AC load such as a commercial power supply system or various electric devices. It is good also as a photovoltaic device which can be supplied. Furthermore, such a photovoltaic power generation device can be used as a photovoltaic power generation device such as a photovoltaic power generation system in various aspects by installing it in a building with good sunlight. A photovoltaic device can be provided.

以下、本発明をより具体化した実施例について説明する。   Examples of the present invention will be described below.

まず導電性基板として、フッ素ドープ酸化スズの透明導電膜付ガラス基板を用い、その上に多孔質の二酸化チタンを形成した。電子輸送体である二酸化チタンの製造方法は、まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製した。作製したペーストをドクターブレード法でチタニウム基板上に一定の速度で塗布し、大気中において450℃で30分間焼成した。 First, a fluorine-doped tin oxide glass substrate with a transparent conductive film was used as a conductive substrate, and porous titanium dioxide was formed thereon. In the production method of titanium dioxide, which is an electron transporter, first, acetylacetone was added to TiO 2 anatase powder, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. The prepared paste was applied onto a titanium substrate at a constant speed by a doctor blade method, and baked at 450 ° C. for 30 minutes in the atmosphere.

色素(多量体)としては化1で示されるポルフィリン骨格単量体が多数結合してなるものを用い、色素(多量体)を溶解させるために用いる溶媒としてはエタノールを用い、多孔質酸化チタン層を形成した導電性支持体を、色素(多量体)を溶解した溶液(0.3mM)に12時間浸漬して、色素(多量体)を多孔質酸化チタン層に担持させた。この色素溶液の吸収スペクトルを図5に特性図で示す。また、比較例として、化6で示されるポルフィリン単量体のテトラキス(4−カルボキシフェニル)ポルフィリンのエタノール溶液の吸収スペクトルを図5に併せて示す。なお、図5において、横軸は光の波長(単位:nm)を、縦軸は光の吸収度(単位:無(吸収比の対数値))を表わし、太線の特性曲線は化1で示されるポルフィリン骨格多量体が結合してなる多量体を用いた本発明の実施例における吸収スペクトルを、細線の特性曲線は化6で示されるポルフィリン単量体による比較例における吸収スペクトルを示している。

Figure 2006100047
As the dye (multimer), a substance in which a large number of porphyrin skeleton monomers represented by Chemical Formula 1 are bonded is used. As the solvent used for dissolving the dye (multimer), ethanol is used, and the porous titanium oxide layer is used. The conductive support having formed thereon was immersed in a solution (0.3 mM) in which a dye (multimer) was dissolved for 12 hours, and the dye (multimer) was supported on the porous titanium oxide layer. The absorption spectrum of this dye solution is shown in the characteristic diagram of FIG. Moreover, the absorption spectrum of the ethanol solution of the tetrakis (4-carboxyphenyl) porphyrin of the porphyrin monomer shown by Chemical formula 6 as a comparative example is shown collectively in FIG. In FIG. 5, the horizontal axis represents the wavelength of light (unit: nm), the vertical axis represents the light absorbance (unit: none (logarithm of absorption ratio)), and the bold characteristic curve is represented by Chemical Formula 1. An absorption spectrum in an example of the present invention using a multimer formed by binding a porphyrin skeleton multimer, and a characteristic curve of a thin line shows an absorption spectrum in a comparative example with a porphyrin monomer represented by Chemical Formula 6.
Figure 2006100047

図5に示す結果から、化6の単量体では、対称性がよいことを反映して420nmにS2遷移にあたるSoret−bandによる強く鋭い吸収と500〜700nm付近にS1遷移にあたるQ−bandによる幅広く弱い吸収が見られるが、化1の単量体が結合してなる多量体では、非対称性とエキシトンカップリングによる相互作用とにより、430nmと460nmとにS2遷移にあたるSoret−bandが2つに大きく***した強く幅広い吸収と、長波長側の570nmと610nm付近にS1遷移にあたるQ−bandによる幅広く比較的強い吸収とが見られ、長波長の光吸収領域が増加していることが分かる。   From the results shown in FIG. 5, the monomer of chemical formula 6 reflects the good symmetry, so that the sharp and sharp absorption due to the Soret-band corresponding to the S2 transition at 420 nm and the wide Q-band corresponding to the S1 transition near 500 to 700 nm. Weak absorption is seen, but in the multimer formed by combining monomers of Chemical 1, the Soret-band corresponding to the S2 transition is greatly increased to two at 430 nm and 460 nm due to the asymmetry and interaction by exciton coupling. It can be seen that split strong and broad absorption and broad and relatively strong absorption due to the Q-band corresponding to the S1 transition are observed near 570 nm and 610 nm on the long wavelength side, and the long wavelength light absorption region is increased.

その後、上記基板をエタノールにて洗浄してから乾燥させた。   Thereafter, the substrate was washed with ethanol and dried.

この化1の単量体が結合してなる多量体が吸着した多孔質酸化チタン層を設けた導電性基板の吸収スペクトルを図6に図5と同様の特性図で示す。図6に示す結果から、化1の単量体が結合してなる多量体と化6の単量体とを比較すると、化6に比べ、化1の吸収スペクトルが長波長側(図において右側、420nm〜460nm付近)にあり、化1の単量体が結合してなる多量体の方が、長波長の光吸収がより強く、化1の単量体が結合してなる多量体も化6の単量体と同程度に多孔質酸化チタン層に吸着していることが分かる。   An absorption spectrum of a conductive substrate provided with a porous titanium oxide layer adsorbed with a multimer formed by bonding of the monomer of chemical formula 1 is shown in FIG. 6 as a characteristic diagram similar to FIG. From the results shown in FIG. 6, when the multimer formed by bonding the monomer of chemical formula 1 and the monomer of chemical formula 6 are compared, the absorption spectrum of chemical formula 1 is longer than that of chemical formula 6 (on the right side in the figure). In the vicinity of 420 nm to 460 nm), the multimer formed by binding of the monomer of chemical formula 1 has stronger absorption of light at a longer wavelength, and the multimer formed by binding of the chemical formula monomer is also formed. It can be seen that it is adsorbed on the porous titanium oxide layer as much as the monomer No. 6.

なお、これらの吸収スペクトルの測定は、日本分光株式会社製の吸光度測定装置V−570を用い、分析条件はスペクトルバンド幅を0.5nmとし、波長走査速度を100nm/分として測定を行なった。   These absorption spectra were measured using an absorbance measuring device V-570 manufactured by JASCO Corporation, and the analysis conditions were a spectral bandwidth of 0.5 nm and a wavelength scanning speed of 100 nm / min.

次に、正孔輸送層(電解質)として、0.1MのLiIおよび0.05MのIをプロピルカーボネートに入れ、電解質が溶解するまで攪拌して溶液を調製した。 Next, as a hole transport layer (electrolyte), placed I 2 of 0.1M of LiI and 0.05M propyl carbonate A solution was prepared by stirring until the electrolyte is dissolved.

また、対極として、Ptを膜厚50nmでスパッタリング蒸着させたフッ素ドープ酸化スズの透明導電膜付ガラス基板を用いた。   Further, as a counter electrode, a glass substrate with a transparent conductive film of fluorine-doped tin oxide obtained by sputtering and depositing Pt with a film thickness of 50 nm was used.

そして、上記の化1の多量体または化6の単量体を吸着させた導電性基板と対極基板とをハイミラン等の熱可塑性樹脂をスペーサとして用いて対向させ、開口部より電解質の溶液を注入し、熱可塑性樹脂(反応性樹脂でもよい)を用いて封止して、光電変換装置のセルを形成した。   Then, the conductive substrate adsorbing the monomer of Chemical Formula 1 or the monomer of Chemical Formula 6 is opposed to the counter electrode substrate using a thermoplastic resin such as high-milan as a spacer, and an electrolyte solution is injected from the opening. And it sealed using the thermoplastic resin (it may be reactive resin), and the cell of the photoelectric conversion apparatus was formed.

ここで、化6で示される単量体の分光感度(spectral sensitivity)スペクトルを図7に、化1で示される単量体が結合してなる多量体の入射光変換効率(IPCE)スペクトルを図8に、それぞれ特性図で示す。なお、図7において、横軸は光の波長(単位:nm)を、縦軸は分光感度(単位:A/W)を表わし、特性曲線は分光感度スペクトルを示している。また、図8において、横軸は光の波長(単位:nm)を、縦軸はIPCE(単位:無(比率))を表わし、特性曲線は入射光変換効率スペクトルを示している。図7に示す化6の結果では、300nm〜450nmの光に対して光電変換効率(1W光強度に対する光電変換電流量A)が高く、450nm〜700nmまで弱い光電変換効率があるのに対して、図8に示す化1の結果では、300nm〜600nmの光に対して光電変換効率(単位光子数(光強度)に対する光電変換電子数(電流))が高いことから、化1で示される単量体が結合してなる多量体の方が、長波長光に感度が強いことが分かる。   Here, the spectral sensitivity spectrum of the monomer represented by Chemical Formula 6 is shown in FIG. 7, and the incident light conversion efficiency (IPCE) spectrum of the multimer formed by combining the monomers represented by Chemical Formula 1 is shown. 8 is a characteristic diagram. In FIG. 7, the horizontal axis represents the light wavelength (unit: nm), the vertical axis represents the spectral sensitivity (unit: A / W), and the characteristic curve represents the spectral sensitivity spectrum. In FIG. 8, the horizontal axis represents the wavelength of light (unit: nm), the vertical axis represents IPCE (unit: none (ratio)), and the characteristic curve represents the incident light conversion efficiency spectrum. In the result of Chemical Formula 6 shown in FIG. 7, the photoelectric conversion efficiency (photoelectric conversion current amount A with respect to 1 W light intensity) is high with respect to light of 300 nm to 450 nm, whereas the photoelectric conversion efficiency is weak from 450 nm to 700 nm. In the result of Chemical Formula 1 shown in FIG. 8, the photoelectric conversion efficiency (the number of photoelectric conversion electrons (current) with respect to the number of unit photons (light intensity)) is high with respect to light of 300 nm to 600 nm. It can be seen that the multimer formed by bonding the bodies is more sensitive to long wavelength light.

また、電流電圧特性を測定したところ、化6で示される単量体を用いた比較例の光電変換装置では、開放電圧Vocが0.350V、短絡電流Jscが0.67mA/cm、形状因子FFが0.50、変換効率が0.12%と低い光電変換効率であった。これに対して、化1で示される単量体が結合してなる多量体を用いた本発明の実施例の光電変換装置では、開放電圧Vocが0.577V、短絡電流Jscが3.98mA/cm、形状因子FFが0.64、変換効率が1.47%であり、大幅な光電変換効率の向上を図ることができた。 Further, when the current-voltage characteristics were measured, in the photoelectric conversion device of the comparative example using the monomer represented by Chemical Formula 6, the open-circuit voltage Voc was 0.350 V, the short-circuit current Jsc was 0.67 mA / cm 2 , and the shape factor FF was The photoelectric conversion efficiency was as low as 0.50 and the conversion efficiency was 0.12%. On the other hand, in the photoelectric conversion device of the example of the present invention using a multimer formed by bonding monomers represented by Chemical Formula 1, the open circuit voltage Voc is 0.577 V and the short circuit current Jsc is 3.98 mA / cm 2. The shape factor FF was 0.64, and the conversion efficiency was 1.47%, and the photoelectric conversion efficiency was greatly improved.

なお、ここでは本実施例において、置換基として電子供与性の強いジターシャルブチルフェニル基を用いたが、置換基としてフェニル基を主に用いた場合には光電変換効率は若干低下したことから、強い電子供与性置換基を有することにより、大幅な光電変換効率の向上を図ることができることも確認できた。   In this example, a ditertiary butylphenyl group having a strong electron donating property was used as a substituent in this example, but when a phenyl group was mainly used as a substituent, the photoelectric conversion efficiency was slightly reduced. It was also confirmed that the photoelectric conversion efficiency can be greatly improved by having a strong electron-donating substituent.

以上の結果から、本発明の光電変換装置は、簡便容易に作製することができ、しかも高い光電変換効率を実現できるものであることが確認できた。   From the above results, it was confirmed that the photoelectric conversion device of the present invention can be easily and easily manufactured and can realize high photoelectric conversion efficiency.

本発明の光電変換装置の実施の形態の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の実施の形態の他の例を模式的に示す断面図である。It is sectional drawing which shows typically the other example of embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の実施の形態の他の例を模式的に示す断面図である。It is sectional drawing which shows typically the other example of embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の実施の形態の他の例を模式的に示す断面図である。It is sectional drawing which shows typically the other example of embodiment of the photoelectric conversion apparatus of this invention. 吸収スペクトルを説明する特性図である。It is a characteristic view explaining an absorption spectrum. 吸収スペクトルを説明する特性図である。It is a characteristic view explaining an absorption spectrum. 分光感度を説明する特性図である。It is a characteristic view explaining spectral sensitivity. 入射光変換効率を説明する特性図である。It is a characteristic view explaining incident light conversion efficiency.

符号の説明Explanation of symbols

1:光電変換装置
11:導電性基板
11a:絶縁基板
11b:導電膜
12:電子輸送体(金属酸化物半導体)
13:多量体(色素)
14:電解質
15:第1の透明導電層
16:薄膜光電変換層
17:透明導電層(第2の透明導電層)
18:透光性被覆体
19:多量体と異なる吸収スペクトルを有する色素
1: Photoelectric conversion device
11: Conductive substrate
11a: Insulating substrate
11b: Conductive film
12: Electron transporter (metal oxide semiconductor)
13: Multimer (Dye)
14: Electrolyte
15: First transparent conductive layer
16: Thin film photoelectric conversion layer
17: Transparent conductive layer (second transparent conductive layer)
18: Translucent coating
19: Dye with absorption spectrum different from multimer

Claims (8)

ポルフィリン骨格単量体が結合してなり、吸着置換基を有する多量体を光電変換材料として用いたことを特徴とする光電変換装置。 A photoelectric conversion device comprising a multimer having an adsorbing substituent, which is formed by bonding porphyrin skeleton monomers, as a photoelectric conversion material. 前記多量体は、前記ポルフィリン骨格単量体がメゾ−メゾ結合してなるものであることを特徴とする請求項1に記載の光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein the multimer is formed by meso-meso bonding of the porphyrin skeleton monomer. 前記多量体は、前記ポルフィリン骨格単量体がメゾ−メゾ結合およびβ−β結合してなるものであることを特徴とする請求項1に記載の光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein the multimer is formed by meso-meso bond and β-β bond of the porphyrin skeleton monomer. 前記多量体は、前記ポルフィリン骨格単量体がメゾ−β結合してなるものであることを特徴とする請求項1に記載の光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein the multimer is formed by meso-β bonding of the porphyrin skeleton monomer. 前記吸着置換基はカルボキシル基であることを特徴とする請求項1に記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the adsorption substituent is a carboxyl group. 前記多量体は、電子供与性置換基を有することを特徴とする請求項1に記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the multimer has an electron-donating substituent. 前記電子供与性置換基はジターシャルブチルフェニル基であることを特徴とする請求項6に記載の光電変換装置。 The photoelectric conversion device according to claim 6, wherein the electron donating substituent is a di-tert-butylphenyl group. 請求項1記載の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする光発電装置。 A photovoltaic device comprising the photoelectric conversion device according to claim 1 as a power generation means, and the power generated by the power generation means is supplied to a load.
JP2004282790A 2004-09-28 2004-09-28 Photoelectric conversion device and photovoltaic device using the same Expired - Fee Related JP4841128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004282790A JP4841128B2 (en) 2004-09-28 2004-09-28 Photoelectric conversion device and photovoltaic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004282790A JP4841128B2 (en) 2004-09-28 2004-09-28 Photoelectric conversion device and photovoltaic device using the same

Publications (2)

Publication Number Publication Date
JP2006100047A true JP2006100047A (en) 2006-04-13
JP4841128B2 JP4841128B2 (en) 2011-12-21

Family

ID=36239646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004282790A Expired - Fee Related JP4841128B2 (en) 2004-09-28 2004-09-28 Photoelectric conversion device and photovoltaic device using the same

Country Status (1)

Country Link
JP (1) JP4841128B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309990A (en) * 2005-04-26 2006-11-09 Ngk Spark Plug Co Ltd Dye-sensitized solar cell with capacitor
JP2008248134A (en) * 2007-03-30 2008-10-16 Kyoto Univ Pigment and pigment-sensitizing solar cell using this pigment
JP2009252726A (en) * 2008-04-11 2009-10-29 Konica Minolta Holdings Inc Dye-sensitized solar cell
WO2010029961A1 (en) * 2008-09-10 2010-03-18 京セラ株式会社 Photoelectric converter
WO2012121236A1 (en) 2011-03-07 2012-09-13 国立大学法人 東京大学 Pigment for photoelectric converter, and photoelectric conversion film, electrode, and solar cell using same
WO2012138037A1 (en) * 2011-04-04 2012-10-11 포항공과대학교 산학협력단 Dye-sensitized solar cell comprising ion layer and method for manufacturing same
CN103052689A (en) * 2010-08-03 2013-04-17 富士胶片株式会社 Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
JP2013229609A (en) * 2012-04-26 2013-11-07 Changzhou Almaden Co Ltd Solar photovoltaic-thermal system
JP2016032086A (en) * 2014-07-30 2016-03-07 アイシン精機株式会社 Sensitizing dye for dye-sensitized solar cell, and dye-sensitized solar cell including sensitizing dye

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353553A (en) * 1999-06-10 2000-12-19 Fuji Photo Film Co Ltd Photoelectric transducing element and photocell
JP2001253883A (en) * 2000-03-13 2001-09-18 Nara Institute Of Science & Technology New mercapto-substituted imidazolylporphyrin metal complex monomer, polymer having the same as recurring unit and method for producing the same
WO2004006380A1 (en) * 2002-07-02 2004-01-15 Sony Corporation Coloring matter sensitization type photoelectric conversion device
JP2005085659A (en) * 2003-09-10 2005-03-31 Sony Corp Photoelectric conversion element, its manufacturing method, electronic equipment and its manufacturing method, semiconductor electrode and its manufacturing method, as well as ring fusion porphyrin complex and compound photoelectric conversion device
JP2005276510A (en) * 2004-03-23 2005-10-06 Sony Corp Dye sensitized photoelectric conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353553A (en) * 1999-06-10 2000-12-19 Fuji Photo Film Co Ltd Photoelectric transducing element and photocell
JP2001253883A (en) * 2000-03-13 2001-09-18 Nara Institute Of Science & Technology New mercapto-substituted imidazolylporphyrin metal complex monomer, polymer having the same as recurring unit and method for producing the same
WO2004006380A1 (en) * 2002-07-02 2004-01-15 Sony Corporation Coloring matter sensitization type photoelectric conversion device
JP2005085659A (en) * 2003-09-10 2005-03-31 Sony Corp Photoelectric conversion element, its manufacturing method, electronic equipment and its manufacturing method, semiconductor electrode and its manufacturing method, as well as ring fusion porphyrin complex and compound photoelectric conversion device
JP2005276510A (en) * 2004-03-23 2005-10-06 Sony Corp Dye sensitized photoelectric conversion device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309990A (en) * 2005-04-26 2006-11-09 Ngk Spark Plug Co Ltd Dye-sensitized solar cell with capacitor
JP2008248134A (en) * 2007-03-30 2008-10-16 Kyoto Univ Pigment and pigment-sensitizing solar cell using this pigment
JP2009252726A (en) * 2008-04-11 2009-10-29 Konica Minolta Holdings Inc Dye-sensitized solar cell
WO2010029961A1 (en) * 2008-09-10 2010-03-18 京セラ株式会社 Photoelectric converter
JPWO2010029961A1 (en) * 2008-09-10 2012-02-02 京セラ株式会社 Photoelectric conversion device
JP5681716B2 (en) * 2010-08-03 2015-03-11 富士フイルム株式会社 Metal complex dye, photoelectric conversion element and photoelectrochemical cell
CN103052689A (en) * 2010-08-03 2013-04-17 富士胶片株式会社 Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
CN103052689B (en) * 2010-08-03 2016-04-27 富士胶片株式会社 Metal complex dye, photo-electric conversion element and photoelectrochemical cell
WO2012121236A1 (en) 2011-03-07 2012-09-13 国立大学法人 東京大学 Pigment for photoelectric converter, and photoelectric conversion film, electrode, and solar cell using same
WO2012138037A1 (en) * 2011-04-04 2012-10-11 포항공과대학교 산학협력단 Dye-sensitized solar cell comprising ion layer and method for manufacturing same
KR101286075B1 (en) * 2011-04-04 2013-07-15 포항공과대학교 산학협력단 Dye-sensitized solar cells and manufacturing methods thereof
JP2013229609A (en) * 2012-04-26 2013-11-07 Changzhou Almaden Co Ltd Solar photovoltaic-thermal system
JP2016032086A (en) * 2014-07-30 2016-03-07 アイシン精機株式会社 Sensitizing dye for dye-sensitized solar cell, and dye-sensitized solar cell including sensitizing dye

Also Published As

Publication number Publication date
JP4841128B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
US10366842B2 (en) Dye-sensitized solar cell and method for manufacturing thereof
Sharifi et al. Recent Developments in Dye‐Sensitized Solar Cells
JP4023596B2 (en) Photovoltaic device and manufacturing method thereof
Nwanya et al. Dyed sensitized solar cells: A technically and economically alternative concept to pn junction photovoltaic devices.
EP1667275B1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
WO2010029961A1 (en) Photoelectric converter
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
CN103620791A (en) Photoelectric conversion element and photoelectric conversion element module
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2011129526A (en) Dye-sensitized solar cell module and method of manufacturing the same
JP4841128B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2004241378A (en) Dye sensitized solar cell
Stathatos Dye sensitized solar cells as an alternative approach to the conventional photovoltaic technology based on silicon-recent developments in the field and large scale applications
JP5153215B2 (en) Photoelectric conversion device
JP2002164563A (en) Photovoltaic power generating/emitting apparatus pigment sensitizing method for photoelectric transducer
JP2001345124A (en) Chemically modified semiconductor electrode, method of manufacturing it, and photocell using it
JP4716636B2 (en) Compound semiconductor
KR20100115629A (en) Metal oxide semiconductor electrodes comprising hyper-hydrophobic compounds and manufacturing methods thereof
JP2008277422A (en) Laminated photoelectric converter
JP2005191137A (en) Stacked photoelectric converter
JP4637473B2 (en) Stacked photoelectric conversion device
JP4578090B2 (en) Stacked photoelectric conversion device
JP4637543B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP5332114B2 (en) Photoelectric conversion element and solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R150 Certificate of patent or registration of utility model

Ref document number: 4841128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees