JP2006097111A - Method for producing metal-carrying electrically conductive powder and catalyst using the same - Google Patents

Method for producing metal-carrying electrically conductive powder and catalyst using the same Download PDF

Info

Publication number
JP2006097111A
JP2006097111A JP2004287038A JP2004287038A JP2006097111A JP 2006097111 A JP2006097111 A JP 2006097111A JP 2004287038 A JP2004287038 A JP 2004287038A JP 2004287038 A JP2004287038 A JP 2004287038A JP 2006097111 A JP2006097111 A JP 2006097111A
Authority
JP
Japan
Prior art keywords
conductive powder
electrode
metal
solution
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004287038A
Other languages
Japanese (ja)
Other versions
JP4507802B2 (en
Inventor
Daizo Yamazaki
大蔵 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004287038A priority Critical patent/JP4507802B2/en
Publication of JP2006097111A publication Critical patent/JP2006097111A/en
Application granted granted Critical
Publication of JP4507802B2 publication Critical patent/JP4507802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a metal-carrying electrically conductive powder in which metal can safely and inexpensively be carried on the surface of electrically conductive powder without depending on the size and specific gravity of powder having electrical conductivity. <P>SOLUTION: The metal-carrying electrically conductive powder is produced through: a preparing stage of a metal precursor solution where a metal precursor is dissolved in a solvent; a preparing stage of an electrically conductive powder solution where electrically conductive powder is dispersed into a solvent; a carrying stage where the metal precursor solution and the electrically conductive powder-dispersed solution are mixed, so as to produce electrically conductive powder carrying the metal precursor; an electrode fixing stage where the electrically conductive powder carrying the metal precursor is fixed to a first electrode; an electrolytic reduction stage where the first electrode is dipped into an electrolytic solution, so as to be a cathode, a second electrode as an anode is dipped into the electrolytic solution, and electric current is made to flow between the first and second electrodes; and a recovering stage where the electrically conductive powder is recovered from the electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属担持導電性粉体の製造方法に関し、より詳細には、電解還元法による金属担持導電性粉体の製造方法に関するものである。   The present invention relates to a method for producing a metal-carrying conductive powder, and more particularly to a method for producing a metal-carrying conductive powder by an electrolytic reduction method.

金属担持導電性粉体は、燃料電池、電解の水素陽極および酸素陰極、公害物質である窒素酸化物等の除去、ガス反応を利用したセンサー等の幅広い用途がある。例えば燃料電池においては、白金担持カーボン粉体もしくは白金ルテニウム担持カーボン粉体等の貴金属担持カーボン粉体が、燃料の酸化還元反応を促進する電極触媒として利用されている。貴金属担持カーボン粉体の貴金属は表面積を高め利用効率を増すために、一般に数十nmのカーボン粉体表面に数nmの微粒子状態で担持されている。   Metal-supported conductive powders have a wide range of uses such as fuel cells, electrolytic hydrogen anodes and oxygen cathodes, removal of pollutants such as nitrogen oxides, and sensors utilizing gas reactions. For example, in a fuel cell, a noble metal-supported carbon powder such as platinum-supported carbon powder or platinum-ruthenium-supported carbon powder is used as an electrode catalyst for promoting the oxidation-reduction reaction of fuel. The noble metal of the noble metal-supported carbon powder is generally supported in the form of fine particles of several nm on the surface of the carbon powder of several tens nm in order to increase the surface area and increase the utilization efficiency.

このような金属担持導電性粉体の製造方法は、一般に化学メッキ法を用いることが多く、例えば、還元剤として水素や水素化ホウ素ナトリウムを用いた白金担持カーボン粉体の製造方法がある(例えば、特許文献1参照)。しかしながら、これらの方法は、還元剤自身が有害危険であるため、安全のための付帯設備を設けなければならず、製造設備にコストがかかるという課題を有している。さらに、還元剤の共析による担持金属の品質低下という課題を有している。   Such a metal-carrying conductive powder is generally produced by a chemical plating method, for example, a platinum-carrying carbon powder production method using hydrogen or sodium borohydride as a reducing agent (for example, And Patent Document 1). However, these methods have a problem that the reductant itself is harmful and dangerous, and therefore an auxiliary facility for safety must be provided, and the manufacturing facility is expensive. Furthermore, there is a problem that the quality of the supported metal is lowered due to the eutectoid of the reducing agent.

このような課題を解決する方法として、電解還元法の一種である電気メッキ法を用いた金属担持導電性粉体の製造方法がある。電気メッキ法は、被メッキ物を金属前駆体が含まれるメッキ液に接触させた状態で通電する方法である。すなわち、メッキ液中の電極間に電位を加えると、メッキ液中の金属前駆体が、陰極として作用する被メッキ物表面に移動し、電子を受容することによって被メッキ物表面に金属として還元析出する。しかしながら、導電性粉体を被メッキ物として電気メッキする場合、分散しやすい導電性粉体を電極に対して保持することが極めて難しい。また保持できた場合でも、導電性粉体は凝集した状態で保持されるため、通電しても凝集体内部の粉体はメッキ液中の金属前駆体に接触できず、メッキが施されないという課題が生じる。   As a method for solving such a problem, there is a method for producing a metal-supporting conductive powder using an electroplating method which is a kind of electrolytic reduction method. The electroplating method is a method of energizing the object to be plated in contact with a plating solution containing a metal precursor. That is, when a potential is applied between the electrodes in the plating solution, the metal precursor in the plating solution moves to the surface of the object to be plated that acts as a cathode, and accepts electrons to reduce and deposit as metal on the surface of the object to be plated. To do. However, when electroplating the conductive powder as an object to be plated, it is extremely difficult to hold the conductive powder that is easily dispersed against the electrode. Even if it can be held, the conductive powder is held in an agglomerated state, so that the powder inside the agglomerate cannot contact the metal precursor in the plating solution even when energized, and plating is not performed. Occurs.

このような課題を解決する技術として、遠心作用を用いた導電性粉体の電気メッキ法が提案されている(例えば、特許文献2参照)。この方法は、メッキ槽を高速回転させ、陰極として作用するメッキ槽壁面に、導電性粉体を遠心力により固定通電し、電気メッキを行うものである。また、メッキ槽の回転方向を時々反転させることにより粉体をばらし、導電性粉体が塊状でメッキされることを防ぐものである。
特開平8−162133号公報 特開平9−137289号公報
As a technique for solving such a problem, an electroplating method of conductive powder using a centrifugal action has been proposed (see, for example, Patent Document 2). In this method, electroplating is performed by rotating a plating tank at a high speed and applying and fixing conductive powder to a plating tank wall surface acting as a cathode by centrifugal force. Also, the rotating direction of the plating tank is sometimes reversed to separate the powder and prevent the conductive powder from being plated in a lump.
JP-A-8-162133 JP-A-9-137289

しかしながら、遠心作用を用いた金属担持導電性粉体の製造方法では、粉体の大きさが直径0.5μm〜5000μmの範囲でないと適用できない。また、比重の小さな粉体になると遠心力が作用しにくくなるので十分なメッキが施せない。そのため、前記従来の技術では、大きさが数十nmである極小の導電性粉体にメッキを施すことが出来なかった。   However, the method for producing a metal-supported conductive powder using a centrifugal action cannot be applied unless the size of the powder is in the range of 0.5 μm to 5000 μm in diameter. Further, if the powder has a small specific gravity, the centrifugal force becomes difficult to act, so that sufficient plating cannot be performed. For this reason, in the conventional technique, it was not possible to apply plating to an extremely small conductive powder having a size of several tens of nanometers.

本発明は従来の課題を解決するもので、導電性粉体の大きさや比重に関係なく、安全かつ低コストで前記導電性粉体に金属を担持させることが可能である電解還元法による金属担持導電性粉体の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the conventional problems, and is capable of supporting a metal on the conductive powder safely and at low cost regardless of the size and specific gravity of the conductive powder. It aims at providing the manufacturing method of electroconductive powder.

従来の課題を解決するために、本発明の金属担持導電性粉体の製造方法は、金属前駆体を担持した導電性粉体を第1の電極に固定する電極固定工程と、前記第1の電極を電解液に浸し陰極とし、陽極となる第2の電極を前記電解液に浸し、前記第1と第2の電極に電流を流す電解還元工程と、前記電極から導電性粉体を回収する回収工程とからなることを特徴としたものである。 In order to solve the conventional problems, a method for producing a metal-supported conductive powder according to the present invention includes an electrode fixing step of fixing a conductive powder supporting a metal precursor to a first electrode, An electrode is immersed in an electrolyte solution to form a cathode, a second electrode serving as an anode is immersed in the electrolyte solution, and an electrolytic reduction process in which current is passed through the first and second electrodes, and conductive powder is recovered from the electrode. And a recovery step.

また、本発明の金属担持導電性粉体の製造方法は、金属前駆体を溶媒に溶解させる金属前駆体溶液の作製工程と、導電性粉体を溶媒に分散させる導電性粉体溶液の作製工程と、前記金属前駆体溶液と前記導電性粉体溶液とを混合し金属前駆体を担持した導電性粉体を作製する担持工程と、前記金属前駆体を担持した導電性粉体を第1の電極に固定する電極固定工程と、前記第1の電極を電解液に浸し陰極とし、陽極となる第2の電極を前記電解液に浸し、前記第1と第2の電極に電流を流す電解還元工程と、前記電極から導電性粉体を回収する回収工程とからなることを特徴としたものである。   In addition, the method for producing a metal-supported conductive powder according to the present invention includes a process for producing a metal precursor solution in which a metal precursor is dissolved in a solvent, and a process for producing a conductive powder solution in which the conductive powder is dispersed in a solvent. And a supporting step for preparing a conductive powder carrying the metal precursor by mixing the metal precursor solution and the conductive powder solution, and the conductive powder carrying the metal precursor as a first An electrode fixing step for fixing to an electrode, and electrolytic reduction in which the first electrode is immersed in an electrolytic solution to form a cathode, a second electrode to be an anode is immersed in the electrolytic solution, and current is passed through the first and second electrodes The method includes a step and a recovery step of recovering the conductive powder from the electrode.

さらに、本発明の金属担持導電性粉体の製造方法は、前記電極固定工程が、結着剤を用いて固定することを特徴としたものである。   Furthermore, the method for producing a metal-supported conductive powder of the present invention is characterized in that the electrode fixing step is fixed using a binder.

さらに、本発明の金属担持導電性粉体の製造方法は、前記結着剤が、ポリマー、セラミックもしくはそれらの混合物であることを特徴としたものである。   Furthermore, the method for producing a metal-supported conductive powder of the present invention is characterized in that the binder is a polymer, a ceramic, or a mixture thereof.

さらに、本発明の金属担持導電性粉体の製造方法は、前記ポリマー、セラミックもしくはそれらの混合物がイオン伝導性を有することを特徴としたものである。   Furthermore, the method for producing a metal-supported conductive powder according to the present invention is characterized in that the polymer, ceramic, or mixture thereof has ionic conductivity.

本発明の金属担持導電性粉体の製造方法によれば、導電性粉体の大きさ比重に関係なく、電解還元法を用いて金属担持導電性粉体を製造することができる。すなわち、従来の化学メッキ法に代わり、還元剤不要の電解還元法を用いるため、安全かつ低コストで高品質の金属担持導電性粉体を製造することができる。   According to the method for producing a metal-supported conductive powder of the present invention, the metal-supported conductive powder can be produced using an electrolytic reduction method regardless of the size specific gravity of the conductive powder. That is, since an electrolytic reduction method that does not require a reducing agent is used in place of the conventional chemical plating method, a high-quality metal-supported conductive powder can be manufactured safely and at low cost.

以下に、本発明である金属担持導電性粉体の製造方法を図面とともに詳細に説明する。   Below, the manufacturing method of the metal carrying | support conductive powder which is this invention is demonstrated in detail with drawing.

金属前駆体溶液の作製工程について説明する。本実施例では、金属前駆体として白金前駆体であるHPtClを用いた。HPtClの0.78M水溶液0.22mlに対し、エタノール25mlを添加し、金属前駆体溶液である6.4×10−3MのHPtCl溶液を作製した。本実施例では、金属前駆体として白金前駆体HPtClを用いたが、これに限るものでは無く、金前駆体、銀前駆体、銅前駆体、HPtCl以外の白金前駆体、ルテニウム前駆体、ロジウム前駆体、パラジウム前駆体、バナジウム前駆体、セリウム前駆体、ジルコニウム前駆体、タンタル前駆体、亜鉛前駆体、モリブデン前駆体、タングステン前駆体、鉄前駆体、鉛前駆体、錫前駆体、アルミニウム前駆体、コバルト前駆体、インジウム前駆体、ニッケル前駆体、クロム前駆体、チタン前駆体、アンチモン前駆体、ビスマス前駆体、ゲルマニウム前駆体、カドミウム前駆体、ケイ素前駆体もしくはこれらの混合物を挙げることができる。上記以外の物質にも本発明は適用可能であり、電解還元可能な金属であればその前駆体を使用できる。 The production process of the metal precursor solution will be described. In this example, H 2 PtCl 6 that is a platinum precursor was used as the metal precursor. To 0.22 ml of a 0.78 M aqueous solution of H 2 PtCl 6 , 25 ml of ethanol was added to prepare a 6.4 × 10 −3 M H 2 PtCl 6 solution as a metal precursor solution. In this example, the platinum precursor H 2 PtCl 6 was used as the metal precursor, but the present invention is not limited to this, and a gold precursor, a silver precursor, a copper precursor, a platinum precursor other than H 2 PtCl 6 , Ruthenium precursor, rhodium precursor, palladium precursor, vanadium precursor, cerium precursor, zirconium precursor, tantalum precursor, zinc precursor, molybdenum precursor, tungsten precursor, iron precursor, lead precursor, tin precursor Bodies, aluminum precursors, cobalt precursors, indium precursors, nickel precursors, chromium precursors, titanium precursors, antimony precursors, bismuth precursors, germanium precursors, cadmium precursors, silicon precursors or mixtures thereof Can be mentioned. The present invention can also be applied to substances other than those described above, and precursors thereof can be used as long as they are metals that can be electrolytically reduced.

次に導電性粉体溶液の作製工程について説明する。本実施例では、導電性粉体として2種類の粒子径の異なるカーボン粉体(平均粒径23nmと55nm)を用いた。カーボン粉体50mgをエタノール25mlに超音波照射(周波数:42kHz)して分散させ導電性粉体の分散溶液を作製した。前記カーボン粉体の粒子径は、特に限定されるものではないが、10nm〜1μmの範囲を使用できる。特にバレルメッキや遠心作用を利用した電気メッキ法を用いることができない10nm〜500nmの導電性粉末に適用できる利点がある。また、前記カーボン粉体を公知の任意の方法により表面改質した、例えば親水化処理したカーボン粉体を使用することもできる。本実施例では、導電性粉体として粒子状のカーボン粉体を用いたが、これに限るものでは無く、例えば、カーボンナノチューブ等の繊維状カーボン粉体もしくは活性炭等を挙げることができる。カーボン粉体以外にも本発明は適用可能であり、金属前駆体が担持可能な導電性粉体であれば使用できる。また、本実施例では、超音波照射の周波数として42kHzを用いたが、これに限るものではなく、例えば20〜100kHzの範囲で行っても良い。   Next, the production process of the conductive powder solution will be described. In this example, two kinds of carbon powders (average particle diameters of 23 nm and 55 nm) having different particle diameters were used as the conductive powder. 50 mg of carbon powder was dispersed in 25 ml of ethanol by ultrasonic irradiation (frequency: 42 kHz) to prepare a dispersion solution of conductive powder. The particle diameter of the carbon powder is not particularly limited, but a range of 10 nm to 1 μm can be used. In particular, there is an advantage that it can be applied to a conductive powder of 10 nm to 500 nm in which an electroplating method using barrel plating or centrifugal action cannot be used. Further, for example, carbon powder obtained by surface modification of the carbon powder by any known method, for example, hydrophilic treatment can be used. In this embodiment, particulate carbon powder is used as the conductive powder, but the present invention is not limited to this, and examples thereof include fibrous carbon powder such as carbon nanotubes or activated carbon. The present invention can be applied to other than carbon powder, and any conductive powder capable of supporting a metal precursor can be used. In this embodiment, 42 kHz is used as the frequency of ultrasonic irradiation, but the present invention is not limited to this. For example, the frequency may be 20 to 100 kHz.

次に担持工程について説明する。この工程では、先に説明した金属前駆体溶液の作製工程と導電性粉体溶液の作製工程との結果得られた前記金属前駆体溶液と前記導電性粉体溶液とを混合した。混合には、20分間超音波照射(周波数:42kHz)することにより、金属前駆体であるHPtClを導電性粉体であるカーボン粉体に担持させた。その後、この溶液をマグネチックスターラーを用いて撹拌しながら60℃で加熱することにより溶媒を除去し、粉状のHPtCl担持カーボン粉体を得た。本実施例では、超音波照射により金属前駆体を導電性粉体に担持させたが、これに限るものでは無く、撹拌もしくは自然吸着等により金属前駆体を担持させても良い。また、本実施例では、超音波照射の周波数として42kHzを用いたが、これに限るものではなく、例えば20〜100kHzの範囲で行っても良い。また、本実施例では、60℃で加熱することにより溶媒を除去したが、これに限るものでは無く、真空乾燥もしくは自然乾燥等で溶媒を除去してもよい。 Next, the supporting process will be described. In this step, the metal precursor solution and the conductive powder solution obtained as a result of the metal precursor solution preparation step and the conductive powder solution preparation step described above were mixed. For mixing, the metal precursor H 2 PtCl 6 was supported on the carbon powder as the conductive powder by ultrasonic irradiation (frequency: 42 kHz) for 20 minutes. Then, the solvent was removed by heating this solution at 60 ° C. while stirring using a magnetic stirrer to obtain powdered H 2 PtCl 6 -supported carbon powder. In this embodiment, the metal precursor is supported on the conductive powder by ultrasonic irradiation. However, the present invention is not limited to this, and the metal precursor may be supported by stirring or natural adsorption. In this embodiment, 42 kHz is used as the frequency of ultrasonic irradiation, but the present invention is not limited to this. For example, the frequency may be 20 to 100 kHz. In this embodiment, the solvent is removed by heating at 60 ° C. However, the present invention is not limited to this, and the solvent may be removed by vacuum drying or natural drying.

次に電極固定工程について説明する。この工程では、先に説明した担持工程で得られたHPtCl担持カーボン粉体100mgのうち20mgをエタノール5mlに混和し、3分間マグネチックスターラーを用いて撹拌することにより分散させた。この溶液を電極である直径5mmの円筒形状のグラッシーカーボン上面に滴下した後、60℃で10分間加熱ことにより電極を乾燥させた。加熱することにより溶媒が除去されるので、HPtCl担持カーボン粉体は、グラッシーカーボン上面に残る。本実施例では、60℃で10分間加熱することにより電極を乾燥させたが、これに限るものでは無く、真空乾燥もしくは自然乾燥等で電極の表面を乾燥させても良い。また、本実施例では、電極材料は、グラッシーカーボンを用いたが、これに限るものでは無く、カーボンもしくは白金等の電気抵抗が小さく耐食性の高い材料であれば良い。次に、グラッシーカーボン上面に、結着剤として作用するイオン伝導性ポリマー(ナフィオン、登録商標)の1%溶液を30μl滴下した。このグラッシーカーボンを60℃で5分間加熱して溶媒を除去して、イオン伝導性ポリマーによりHPtCl担持カーボン粉体をグラッシーカーボンに固定した。本実施例では、ポリマー溶液の溶媒としてエタノールを用いたが、これに限るものでは無く、揮発性および使用するポリマーの溶解性が高い溶媒であれば良い。また、本実施例では、結着剤としてイオン伝導性ポリマーを用いた。イオン伝導性を有するポリマー、セラミックもしくはこれらの混合物等の利用は、後工程の金属前駆体の電解還元反応に伴うイオン交換を円滑に進行させるためより好適であるが。これに限るものでは無く、イオン伝導性を持たないポリマーもしくはセラミック等の結着材を用いることもできる。電極への固定化方法は、特に限定されるものではないが、前記の結着剤を利用する方法のほかに、圧着もしくは遠心による固定等が挙げられる。 Next, the electrode fixing process will be described. In this step, 20 mg of 100 mg of the H 2 PtCl 6 -supported carbon powder obtained in the support step described above was mixed with 5 ml of ethanol and dispersed by stirring for 3 minutes using a magnetic stirrer. This solution was dropped on the upper surface of a cylindrical glassy carbon having a diameter of 5 mm, which was an electrode, and then the electrode was dried by heating at 60 ° C. for 10 minutes. Since the solvent is removed by heating, the H 2 PtCl 6 -supported carbon powder remains on the upper surface of the glassy carbon. In this embodiment, the electrode is dried by heating at 60 ° C. for 10 minutes. However, the present invention is not limited to this, and the surface of the electrode may be dried by vacuum drying or natural drying. In this embodiment, glassy carbon is used as the electrode material. However, the electrode material is not limited to this, and any material that has low electrical resistance, such as carbon or platinum, and high corrosion resistance may be used. Next, 30 μl of a 1% solution of an ion conductive polymer (Nafion, registered trademark) acting as a binder was dropped on the upper surface of the glassy carbon. The glassy carbon was heated at 60 ° C. for 5 minutes to remove the solvent, and the H 2 PtCl 6 -supported carbon powder was fixed to the glassy carbon with an ion conductive polymer. In this embodiment, ethanol is used as the solvent for the polymer solution, but the present invention is not limited to this, and any solvent may be used as long as it is volatile and highly soluble in the polymer used. In this example, an ion conductive polymer was used as the binder. The use of a polymer, ceramic, or a mixture thereof having ion conductivity is more preferable because the ion exchange accompanying the electroreduction reaction of the metal precursor in the subsequent step smoothly proceeds. However, the present invention is not limited to this, and a binder such as a polymer or ceramic that does not have ionic conductivity can also be used. The method for immobilization on the electrode is not particularly limited, and examples thereof include immobilization by pressure bonding or centrifugation in addition to the method using the binder.

次に電解還元工程について説明する。この工程では、先に述べた電極固定工程の結果得られたHPtCl担持カーボン粉体が固定化されたグラッシーカーボンを陰極、白金ワイヤーを陽極となるよう電源に接続した。前記陰極および前記陽極を電解液として作用する2×10−2MのHClO水溶液10mlの中に浸漬し、電流密度20mA/cmで30分間通電することにより、前記HPtCl担持カーボン粉体におけるHPtClを電解還元し、白金担持カーボン粉体を作製した。本実施例では、電解液としてHClO水溶液を用いたが、これに限るものでは無く、硫酸水溶液等を使用できる。また、本実施例では、定電流にて電解還元を行ったが、これに限るものではなく、定電圧、パルス電圧もしくはパルス電流等を用いても良い。また、本実施例では、対極として白金ワイヤーを用いたが、これに限るものではなく、カーボン等の電気抵抗が小さく耐食性の高い材料であれば良い。 Next, the electrolytic reduction process will be described. In this step, the glassy carbon on which the H 2 PtCl 6 -supported carbon powder obtained as a result of the electrode fixing step described above was fixed was connected to a power source so that the cathode and the platinum wire became the anode. The cathode and anode are immersed in 10 ml of a 2 × 10 −2 M HClO 4 aqueous solution acting as an electrolyte, and energized for 30 minutes at a current density of 20 mA / cm 2 , whereby the H 2 PtCl 6 -supported carbon powder is obtained. The body was electrolytically reduced with H 2 PtCl 6 to produce platinum-supported carbon powder. In this embodiment, an HClO 4 aqueous solution is used as the electrolytic solution, but the present invention is not limited to this, and an aqueous sulfuric acid solution or the like can be used. In this embodiment, the electrolytic reduction is performed with a constant current. However, the present invention is not limited to this, and a constant voltage, a pulse voltage, a pulse current, or the like may be used. In this embodiment, platinum wire is used as the counter electrode. However, the present invention is not limited to this, and any material such as carbon having a low electrical resistance and high corrosion resistance may be used.

次に回収工程にについて説明する。この工程では、先に述べた電解還元工程の結果得られた白金担持カーボン粉体が固定化されているグラッシーカーボンを電解液から引き上げ、白金担持カーボン粉体を回収した。   Next, the recovery process will be described. In this step, the glassy carbon on which the platinum-supported carbon powder obtained as a result of the electrolytic reduction step described above was immobilized was pulled up from the electrolytic solution, and the platinum-supported carbon powder was recovered.

上記実施例1で作成された2種類の白金担持カーボン粉体について、粉末X線回折測定を行った。測定結果を図2(横軸は回折角、縦軸は規格化された強度を表す)に示す。ここで図2a.は実施例1(カーボン粉体の平均粒径23nm)、図2b.は実施例1(カーボン粉体の平均粒径55nm)、図2c.はHPtCl担持カーボン粉体、図2d.は市販の白金担持カーボン粉体を示す。図2c.においては、白金前駆体担持カーボン粉体であるため、白金金属由来の回折ピークを観察することはできない。一方、図2a.および図2b.においては図2d.と同様、白金金属の面心立方格子(f.c.c.)由来回折ピークが観察でき{高角度側からそれぞれf.c.c.の(111)(200)(220)(311)面に対応している)}、本発明の電解還元法により白金前駆体担持カーボン粉体から白金担持カーボン粉体が得られることを示している。 The two types of platinum-supported carbon powders prepared in Example 1 were subjected to powder X-ray diffraction measurement. The measurement results are shown in FIG. 2 (the horizontal axis represents the diffraction angle and the vertical axis represents the normalized intensity). Here, FIG. Is Example 1 (average particle size of carbon powder 23 nm), FIG. Is Example 1 (average particle size of carbon powder 55 nm), FIG. Is H 2 PtCl 6 -supported carbon powder, FIG. Indicates a commercially available platinum-supported carbon powder. Figure 2c. In, since it is a platinum precursor-supported carbon powder, a diffraction peak derived from platinum metal cannot be observed. On the other hand, FIG. And FIG. 2b. In FIG. In the same manner as above, a diffraction peak derived from the face-centered cubic lattice (fc) of platinum metal can be observed {from the high angle side respectively f. c. c. (Corresponding to the (111) (200) (220) (311) plane)}}, it is shown that platinum-supported carbon powder can be obtained from platinum precursor-supported carbon powder by the electrolytic reduction method of the present invention. .

なお、本発明において最も注目すべきは、導電性粉体に予め金属前駆体を担持させた状態で該導電性粉体を電極に固定し、電解還元する点にある。この状態で導電性粉体を電極に固定することにより、各導電性粉体に対して確実に金属を担持させることが可能となる。導電性粉体に金属前駆体を担持させた金属前駆体担持導電性粉体は、公知の任意の方法によりすることができる。例えば、本発明の実施例1限ることはなく、導電性粉体に金属前駆体溶液を噴霧する方法等により作製しても良い。   It should be noted that the most notable point in the present invention is that the conductive powder is fixed to the electrode in a state where the metal precursor is previously supported on the conductive powder, and electrolytic reduction is performed. By fixing the conductive powder to the electrode in this state, it becomes possible to securely support the metal on each conductive powder. The metal precursor-supporting conductive powder in which the metal precursor is supported on the conductive powder can be produced by any known method. For example, the present invention is not limited to the first embodiment, and the conductive powder may be produced by a method of spraying a metal precursor solution.

上記の方法によって、水素等の危険な還元剤を用いることなく、安全かつ低コストで金属担持導電性粉体が得られる。   By the above method, a metal-supported conductive powder can be obtained safely and at low cost without using a dangerous reducing agent such as hydrogen.

本発明にかかる金属担持導電性粉体の製造方法は、燃料電池、電解の水素陽極および酸素陰極、公害物質である窒素酸化物等の除去、ガス反応を利用したセンサー等の電気化学装置用触媒の製造方法等として有用である。   A method for producing a metal-supported conductive powder according to the present invention includes a catalyst for an electrochemical device such as a fuel cell, an electrolytic hydrogen anode and an oxygen cathode, removal of pollutant nitrogen oxides, a sensor utilizing a gas reaction, etc. It is useful as a production method of

本発明の実施例1を示すフローチャートThe flowchart which shows Example 1 of this invention. (a)本発明の実施例1(カーボン粉体の平均粒径23nm)により得られた白金担持カーボン粉体の粉末X線回折スペクトルを示す図(b)本発明の実施例1(カーボン粉体の平均粒径55nm)により得られた白金担持カーボン粉体の粉末X線回折スペクトルを示す図(c)HPtCl担持カーボン粉体の粉末X線回折スペクトルを示す図(d)市販の白金担持カーボンの粉末X線回折スペクトルを示す図(A) Figure showing the powder X-ray diffraction spectrum of the platinum-supported carbon powder obtained in Example 1 of the present invention (average particle diameter of carbon powder 23 nm). (B) Example 1 of the present invention (carbon powder) (C) A diagram showing a powder X-ray diffraction spectrum of a platinum-supported carbon powder obtained with an average particle size of 55 nm) (c) A diagram showing a powder X-ray diffraction spectrum of a H 2 PtCl 6 -supported carbon powder (d) Commercially available platinum Figure showing the powder X-ray diffraction spectrum of supported carbon

符号の説明Explanation of symbols

1 金属前駆体溶液の作製工程
2 導電性粉体溶液の作製工程
3 担持工程
4 電極固定工程
5 電解還元工程
6 回収工程
1 Preparation process of metal precursor solution 2 Preparation process of conductive powder solution 3 Supporting process 4 Electrode fixing process
5 Electrolytic reduction process 6 Collection process

Claims (7)

金属前駆体を担持した導電性粉体を第1の電極に固定する電極固定工程と、
前記第1の電極を電解液に浸し陰極とし、陽極となる第2の電極を前記電解液に浸し、前記第1と第2の電極に電流を流す電解還元工程と、
前記電極から導電性粉体を回収する回収工程とからなることを特徴とする金属担持導電性粉体の製造方法。
An electrode fixing step of fixing the conductive powder carrying the metal precursor to the first electrode;
An electrolytic reduction process in which the first electrode is immersed in an electrolytic solution to form a cathode, a second electrode serving as an anode is immersed in the electrolytic solution, and a current is passed through the first and second electrodes;
And a recovery step of recovering the conductive powder from the electrode.
金属前駆体を溶媒に溶解させる金属前駆体溶液の作製工程と、
導電性粉体を溶媒に分散させる導電性粉体溶液の作製工程と、
前記金属前駆体溶液と前記導電性粉体溶液とを混合し金属前駆体を担持した導電性粉体を作製する担持工程と、
前記金属前駆体を担持した導電性粉体を第1の電極に固定する電極固定工程と、
前記第1の電極を電解液に浸し陰極とし、陽極となる第2の電極を前記電解液に浸し、前記第1と第2の電極に電流を流す電解還元工程と、
前記電極から導電性粉体を回収する回収工程とからなることを特徴とする金属担持導電性粉体の製造方法。
A step of producing a metal precursor solution in which the metal precursor is dissolved in a solvent;
A process for producing a conductive powder solution in which the conductive powder is dispersed in a solvent;
A supporting step of mixing the metal precursor solution and the conductive powder solution to produce a conductive powder supporting the metal precursor;
An electrode fixing step of fixing the conductive powder carrying the metal precursor to the first electrode;
An electrolytic reduction process in which the first electrode is immersed in an electrolytic solution to form a cathode, a second electrode serving as an anode is immersed in the electrolytic solution, and a current is passed through the first and second electrodes;
And a recovery step of recovering the conductive powder from the electrode.
前記電極固定工程が、結着剤を用いて固定することを特徴とする請求項1または2に記載の金属担持導電性粉体の製造方法。 The method for producing a metal-supported conductive powder according to claim 1 or 2, wherein the electrode fixing step fixes the electrode using a binder. 前記結着剤が、ポリマー、セラミックもしくはそれらの混合物であることを特徴とする請求項3に記載の金属担持導電性粉体の製造方法。 The method for producing a metal-supported conductive powder according to claim 3, wherein the binder is a polymer, a ceramic, or a mixture thereof. 前記ポリマー、セラミックもしくはそれらの混合物がイオン伝導性を有することを特徴とする請求項4に記載の金属担持導電性粉体の製造方法。 The method for producing a metal-supported conductive powder according to claim 4, wherein the polymer, ceramic, or a mixture thereof has ion conductivity. 請求項1から5に記載の製造方法により製造された金属担持導電性粉体を用いたことを特徴とする燃料電池用触媒。 6. A fuel cell catalyst characterized in that the metal-supported conductive powder produced by the production method according to claim 1 is used. 請求項1から5に記載の製造方法により製造された金属担持導電性粉体を用いたことを特徴とする電気化学装置用触媒。 6. A catalyst for an electrochemical device, wherein the metal-supported conductive powder produced by the production method according to claim 1 is used.
JP2004287038A 2004-09-30 2004-09-30 Method for producing metal-supported conductive powder and catalyst using the same Expired - Fee Related JP4507802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287038A JP4507802B2 (en) 2004-09-30 2004-09-30 Method for producing metal-supported conductive powder and catalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287038A JP4507802B2 (en) 2004-09-30 2004-09-30 Method for producing metal-supported conductive powder and catalyst using the same

Publications (2)

Publication Number Publication Date
JP2006097111A true JP2006097111A (en) 2006-04-13
JP4507802B2 JP4507802B2 (en) 2010-07-21

Family

ID=36237196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287038A Expired - Fee Related JP4507802B2 (en) 2004-09-30 2004-09-30 Method for producing metal-supported conductive powder and catalyst using the same

Country Status (1)

Country Link
JP (1) JP4507802B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297713A (en) * 2006-04-28 2007-11-15 Inha-Industry Partnership Inst Preparation method of multi-metals/activated carbon composite
JP2007335338A (en) * 2006-06-19 2007-12-27 Toyota Motor Corp Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same
JP2008121047A (en) * 2006-11-10 2008-05-29 Kyushu Institute Of Technology Method for electrochemically immobilizing particle
JP2010520954A (en) * 2007-02-21 2010-06-17 ソルビコア ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Electrochemical deposition method of catalyst particles on carbon fiber-containing substrate and apparatus therefor
WO2017170355A1 (en) * 2016-03-29 2017-10-05 東レ株式会社 Gas diffusion electrode base, laminate and fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941489A (en) * 1982-08-31 1984-03-07 C Uyemura & Co Ltd Method for electroplating particulate material
JPH03243793A (en) * 1990-02-21 1991-10-30 Fuji Kobunshi Kk Method for electroplating electrically conductive fine powder
JP2000309895A (en) * 1999-04-22 2000-11-07 Sekisui Chem Co Ltd Device for producing electrically conductive fine particle
JP2001325964A (en) * 2000-05-19 2001-11-22 Ne Chemcat Corp Electrode catalyst for solid polymer electrolyte fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941489A (en) * 1982-08-31 1984-03-07 C Uyemura & Co Ltd Method for electroplating particulate material
JPH03243793A (en) * 1990-02-21 1991-10-30 Fuji Kobunshi Kk Method for electroplating electrically conductive fine powder
JP2000309895A (en) * 1999-04-22 2000-11-07 Sekisui Chem Co Ltd Device for producing electrically conductive fine particle
JP2001325964A (en) * 2000-05-19 2001-11-22 Ne Chemcat Corp Electrode catalyst for solid polymer electrolyte fuel cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297713A (en) * 2006-04-28 2007-11-15 Inha-Industry Partnership Inst Preparation method of multi-metals/activated carbon composite
JP2007335338A (en) * 2006-06-19 2007-12-27 Toyota Motor Corp Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell and polymer electrolyte fuel cell equipped with the same
WO2007148765A1 (en) * 2006-06-19 2007-12-27 Toyota Jidosha Kabushiki Kaisha Method for manufacturing electrode catalyst for fuel cell, electrode catalyst for fuel cell, and solid polymer electrolyte fuel cell comprising the same
JP2008121047A (en) * 2006-11-10 2008-05-29 Kyushu Institute Of Technology Method for electrochemically immobilizing particle
JP2010520954A (en) * 2007-02-21 2010-06-17 ソルビコア ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Electrochemical deposition method of catalyst particles on carbon fiber-containing substrate and apparatus therefor
WO2017170355A1 (en) * 2016-03-29 2017-10-05 東レ株式会社 Gas diffusion electrode base, laminate and fuel cell
JPWO2017170355A1 (en) * 2016-03-29 2019-02-07 東レ株式会社 Gas diffusion electrode substrate, laminate, and fuel cell
US10804542B2 (en) 2016-03-29 2020-10-13 Toray Industries, Inc. Gas diffusion electrode base, laminate and fuel cell
TWI710468B (en) * 2016-03-29 2020-11-21 日商東麗股份有限公司 Gas diffusion electrode substrate, laminate and fuel cell

Also Published As

Publication number Publication date
JP4507802B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
Zhang et al. Defect engineering of palladium–tin nanowires enables efficient electrocatalysts for fuel cell reactions
Wang et al. Nanoporous iridium-based alloy nanowires as highly efficient electrocatalysts toward acidic oxygen evolution reaction
JP6554266B2 (en) Fuel cell electrode catalyst and method for activating the catalyst
Jiang et al. Trimetallic PtSnRh wavy nanowires as efficient nanoelectrocatalysts for alcohol electrooxidation
Zhang et al. Recent progress in nanostructured electrocatalysts for PEM fuel cells
Çögenli et al. Catalytic activity, stability and impedance behavior of PtRu/C, PtPd/C and PtSn/C bimetallic catalysts toward methanol and formic acid oxidation
Muthuchamy et al. Bimetallic NiPd nanoparticle-incorporated ordered mesoporous carbon as highly efficient electrocatalysts for hydrogen production via overall urea electrolysis
Qin et al. Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium
JP6001793B2 (en) Method for producing fuel cell catalyst
Cui et al. Pd nanoparticles supported on HPMo-PDDA-MWCNT and their activity for formic acid oxidation reaction of fuel cells
JP5660603B2 (en) Method for producing platinum core-shell catalyst
Xiao et al. Synthesizing nanoparticles of Co-P-Se compounds as electrocatalysts for the hydrogen evolution reaction
Satyanarayana et al. Electrocatalytic activity of Pd20–x Ag x nanoparticles embedded in carbon nanotubes for methanol oxidation in alkaline media
US20090004552A1 (en) Nanowire supported catalysts for fuel cell electrodes
WO2012105107A1 (en) Processes for production of catalyst microparticles, catalyst microparticles supported on carbon, catalyst mix and electrode
Lin et al. Hierarchical iron-doped nickel diselenide hollow spheres for efficient oxygen evolution electrocatalysis
JP2002100373A (en) Manufacturing method of catalyzed porous carbon electrode for fuel cell
Rostami et al. Investigation on ethanol electrooxidation via electrodeposited Pd–Co nanostructures supported on graphene oxide
CN1317158A (en) Electrochemical oxidation of hydrogen sulfide
Yi et al. Palladium–nickel nanoparticles loaded on multi-walled carbon nanotubes modified with β-cyclodextrin for electrooxidation of alcohols
Melchionna et al. The electrifying effects of carbon-CeO2 interfaces in (electro) catalysis
Maulana et al. Understanding the structural evolution of IrFeCoNiCu high-entropy alloy nanoparticles under the acidic oxygen evolution reaction
JPWO2006114942A1 (en) Carbon particle, particle comprising platinum and ruthenium oxide and method for producing the same
WO2014136798A1 (en) Catalyst for solid polymer fuel cell cathodes and method for producing catalyst for solid polymer fuel cell cathodes
JP4507802B2 (en) Method for producing metal-supported conductive powder and catalyst using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080205

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees