JP2006089323A - Visible light-responsive photocatalyst and its synthetic method - Google Patents

Visible light-responsive photocatalyst and its synthetic method Download PDF

Info

Publication number
JP2006089323A
JP2006089323A JP2004275946A JP2004275946A JP2006089323A JP 2006089323 A JP2006089323 A JP 2006089323A JP 2004275946 A JP2004275946 A JP 2004275946A JP 2004275946 A JP2004275946 A JP 2004275946A JP 2006089323 A JP2006089323 A JP 2006089323A
Authority
JP
Japan
Prior art keywords
block metal
tin
composite material
visible light
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004275946A
Other languages
Japanese (ja)
Other versions
JP4240310B2 (en
Inventor
Shigeru Ikeda
茂 池田
Keigo Nango
景悟 南郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Osaka University NUC
Original Assignee
Japan Science and Technology Agency
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Osaka University NUC filed Critical Japan Science and Technology Agency
Priority to JP2004275946A priority Critical patent/JP4240310B2/en
Publication of JP2006089323A publication Critical patent/JP2006089323A/en
Application granted granted Critical
Publication of JP4240310B2 publication Critical patent/JP4240310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst which absorbs visible light of a longer wavelength. <P>SOLUTION: The visible light-responsive photocatalyst comprises a tin/d-block metal composite material obtained through hydrothermal treatment of a bivalent inorganic tin salt and an alkoxide of a d-block metal chosen from the group consisting of titanium (IV), niobium (V), tantalum (V) and zirconium (IV) under an alkaline condition. Their production methods are also provided. Preferably, the d-block metal is titanium (IV). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、可視光応答型光触媒およびその合成方法に関する。より詳細には、本発明は、従来の可視光応答型光触媒よりも長波長の可視光を吸収し得るスズ/d−ブロック金属複合材料からなる可視光応答型光触媒、およびその合成方法に関する。   The present invention relates to a visible light responsive photocatalyst and a synthesis method thereof. More specifically, the present invention relates to a visible light responsive photocatalyst composed of a tin / d-block metal composite material capable of absorbing visible light having a longer wavelength than a conventional visible light responsive photocatalyst, and a method for synthesizing the same.

酸化チタンは、高い光安定性、高い光触媒能、低コスト、高い安全性などの点で、現在のところ、光触媒として最も優れた材料である。しかし、酸化チタンが吸収・利用できる光は、紫外光領域に限られている。太陽エネルギーの有効利用の観点から、より長波長の光、すなわち可視光を利用できることが望ましい。   Titanium oxide is currently the most excellent material as a photocatalyst in terms of high light stability, high photocatalytic activity, low cost, and high safety. However, the light that can be absorbed and used by titanium oxide is limited to the ultraviolet light region. From the viewpoint of effective use of solar energy, it is desirable that light having a longer wavelength, that is, visible light can be used.

これまでに、いくつかの可視光応答型酸化チタン光触媒が開発されている。例えば、窒化チタンの酸化処理などにより得られる窒素ドープ酸化チタン(非特許文献1)、チオウレアとチタンテトライソプロポキシドとを空気中焼成処理することにより得られる硫黄ドープ二酸化チタン(非特許文献2)などがある。しかし、これらの吸収波長は最長で500nm付近であり、太陽光の大部分の可視光を利用できないため、可視光応答効果は大きくはない。   So far, several visible light responsive titanium oxide photocatalysts have been developed. For example, nitrogen-doped titanium oxide obtained by oxidizing titanium nitride (Non-patent Document 1), sulfur-doped titanium dioxide obtained by firing in air with thiourea and titanium tetraisopropoxide (Non-patent Document 2) and so on. However, since these absorption wavelengths are around 500 nm at the longest and most visible light of sunlight cannot be used, the visible light response effect is not great.

また、酸化チタン以外にも、酸化タンタル、酸化亜鉛、酸化スズなどの紫外線照射によって光触媒活性を示す材料が知られており、これらの材料についても、可視光応答型の光触媒の検討が行われている。例えば、酸化タンタルに窒素をドープしたタンタルオキシナイトライド(非特許文献3)、高温焼成により得られる2価のスズを含む酸化ニオブや酸化タンタル(非特許文献4)などがある。しかし、これらは、可視光下での酸化触媒能力が低く、あるいは最大吸収波長が500nm付近であるため、可視光を十分に利用できるとは言い難い。   In addition to titanium oxide, materials that exhibit photocatalytic activity when irradiated with ultraviolet light, such as tantalum oxide, zinc oxide, and tin oxide, are known. Visible light-responsive photocatalysts have also been studied for these materials. Yes. For example, there are tantalum oxynitride in which tantalum oxide is doped with nitrogen (Non-patent Document 3), niobium oxide containing divalent tin obtained by high-temperature firing, tantalum oxide (Non-patent Document 4), and the like. However, these have low oxidation catalytic ability under visible light, or have a maximum absorption wavelength of around 500 nm, so it is difficult to say that visible light can be fully utilized.

このように、現状では、太陽エネルギーを有効利用するための光触媒は、実用レベルには至っていない。
Morikawa T.ら、Jpn. J. Appl. Phys.,2巻,L561-L563頁,2001年 Ohno T.ら、Chem. Lett.,32巻,362-365頁,2003年 Hitoki G.ら、Chem. Commun.,16巻,1698頁,2002年 Hosogi Y.ら、Chem. Lett.,33巻,28-29頁,2004年
Thus, at present, the photocatalyst for effectively using solar energy has not reached a practical level.
Morikawa T. et al., Jpn. J. Appl. Phys., 2, L561-L563, 2001 Ohno T. et al., Chem. Lett., 32, 362-365, 2003 Hitoki G. et al., Chem. Commun., 16, 1698, 2002 Hosogi Y. et al., Chem. Lett., 33, 28-29, 2004

本発明は、より長波長の可視光を吸収する光触媒を提供することを目的とする。   An object of the present invention is to provide a photocatalyst that absorbs visible light having a longer wavelength.

本発明は、2価の無機スズ塩と、チタン(IV)、ニオブ(V)、タンタル(V)、およびジルコニウム(IV)からなる群より選択されるd−ブロック金属のアルコキシドとを、アルカリ条件下で水熱処理することによって得られる、スズ/d−ブロック金属複合材料を提供する。   The present invention provides a divalent inorganic tin salt and an alkoxide of a d-block metal selected from the group consisting of titanium (IV), niobium (V), tantalum (V), and zirconium (IV) under alkaline conditions. Provided is a tin / d-block metal composite obtained by hydrothermal treatment under.

好適な実施態様では、上記複合材料に含まれるd−ブロック金属は、チタン(IV)である。   In a preferred embodiment, the d-block metal contained in the composite material is titanium (IV).

他の好適な実施態様では、上記複合材料は、上記水熱処理後に、さらに焼成処理または酸洗浄が行われている。   In another preferred embodiment, the composite material is further subjected to a baking treatment or an acid cleaning after the hydrothermal treatment.

本発明はまた、上記のスズ/d−ブロック金属複合材料からなる、可視光応答型光触媒を提供する。   The present invention also provides a visible light responsive photocatalyst comprising the above tin / d-block metal composite material.

本発明はさらに、スズ/d−ブロック金属複合材料の製造方法を提供し、該方法は、2価の無機スズ塩と、チタン(IV)、ニオブ(V)、タンタル(V)、およびジルコニウム(IV)からなる群より選択されるd−ブロック金属のアルコキシドとを、アルカリ条件下で水熱処理する工程を含む。   The present invention further provides a method for producing a tin / d-block metal composite material comprising a divalent inorganic tin salt, titanium (IV), niobium (V), tantalum (V), and zirconium ( A step of hydrothermally treating an alkoxide of a d-block metal selected from the group consisting of IV) under alkaline conditions.

好適な実施態様では、上記d−ブロック金属は、チタン(IV)である。   In a preferred embodiment, the d-block metal is titanium (IV).

他の好適な実施態様では、上記方法は、得られた水熱処理物を焼成処理または酸洗浄する工程をさらに含む。   In another preferred embodiment, the method further comprises a step of subjecting the obtained hydrothermally treated product to a calcination treatment or an acid cleaning.

本発明はさらに、水素の生成方法を提供し、該方法は、上記のスズ/d−ブロック金属複合材料または可視光応答型光触媒、白金助触媒、およびメタノールを含む水溶液に、可視光を照射する工程を含む。   The present invention further provides a method for producing hydrogen, which irradiates an aqueous solution containing the above tin / d-block metal composite material or visible light responsive photocatalyst, platinum promoter, and methanol with visible light. Process.

本発明の方法によれば、従来の光触媒とは異なる特性を有する、すなわち、より長波長の可視光を吸収する新規な光触媒を合成することができる。この方法により得られた、スズおよびd−ブロック金属を含む複合材料からなる本発明の可視光吸収型の光触媒は、可視光領域の光を吸収できるため、太陽エネルギーを有効に利用することが可能である。   According to the method of the present invention, it is possible to synthesize a novel photocatalyst having characteristics different from those of the conventional photocatalyst, that is, absorbing visible light having a longer wavelength. The visible light absorption photocatalyst of the present invention made of a composite material containing tin and a d-block metal obtained by this method can absorb light in the visible light region, so that solar energy can be used effectively. It is.

本発明のスズ/d−ブロック金属複合材料は、2価の無機スズ塩と、チタン(IV)、ニオブ(V)、タンタル(V)、およびジルコニウム(IV)からなる群より選択されるd−ブロック金属のアルコキシドとを、アルカリ条件下で水熱処理する工程を含む方法によって製造される。   The tin / d-block metal composite of the present invention is a d- selected from the group consisting of a divalent inorganic tin salt, titanium (IV), niobium (V), tantalum (V), and zirconium (IV). The block metal alkoxide is produced by a method comprising a hydrothermal treatment under alkaline conditions.

本発明の方法に用いられる2価の無機スズ塩としては、フッ化スズ、塩化スズ、臭化スズ、ヨウ化スズなどのスズ(II)ハロゲン化物;KSnF3、KSnI3、K2SnBr4、K4SnCl6、K4SnBr6などのハロゲノ塩などが挙げられる。特に、SnCl2・2H2Oは市販されており、最も一般的に用いられ得る。 Examples of the divalent inorganic tin salt used in the method of the present invention include tin (II) halides such as tin fluoride, tin chloride, tin bromide and tin iodide; KSnF 3 , KSnI 3 , K 2 SnBr 4 , Examples thereof include halogeno salts such as K 4 SnCl 6 and K 4 SnBr 6 . In particular, SnCl 2 .2H 2 O is commercially available and can be used most commonly.

本発明の方法に用いられるd−ブロック金属のアルコキシドにおいて、d−ブロック金属は、チタン(IV)、ニオブ(V)、タンタル(V)、およびジルコニウム(IV)からなる群より選択される。これらの金属のうち、触媒活性が高い生成物が得られる点で、チタン(IV)が最も好ましい。また、アルコキシドの種類は、特に限定されないが、1価の低級アルコールのアルコキシドが好ましい。例えば、メトキシド、エトキシド、n−プロポキシド、i−プロポキシド、n−ブトキシド、sec−ブトキシド、t−ブトキシドなどが挙げられる。d−ブロック金属のアルコキシドとしては、具体的には、チタニウム(IV)n−ブトキシド、チタニウム(IV)エトキシド、ニオビウム(V)エトキシドなどが挙げられる。   In the d-block metal alkoxide used in the method of the present invention, the d-block metal is selected from the group consisting of titanium (IV), niobium (V), tantalum (V), and zirconium (IV). Of these metals, titanium (IV) is most preferable because a product having high catalytic activity is obtained. The type of alkoxide is not particularly limited, but an alkoxide of a monovalent lower alcohol is preferable. Examples thereof include methoxide, ethoxide, n-propoxide, i-propoxide, n-butoxide, sec-butoxide, t-butoxide and the like. Specific examples of the d-block metal alkoxide include titanium (IV) n-butoxide, titanium (IV) ethoxide, niobium (V) ethoxide, and the like.

本発明の方法においては、原料である上記の2価の無機スズ塩とd−ブロック金属のアルコキシドとを、アルカリ条件下で混合し、水熱処理する。   In the method of the present invention, the above-mentioned divalent inorganic tin salt as a raw material and an alkoxide of a d-block metal are mixed under alkaline conditions and hydrothermally treated.

通常、2価の無機スズ塩とd−ブロック金属のアルコキシドとの反応においては、2価の無機スズ塩は水に懸濁させ、一方、d−ブロック金属のアルコキシドはアルコールに溶解して、これらをアルカリ条件下で混合する。反応混合液中のそれぞれの原料の濃度は、これらが十分に混合し得るように適宜決定され得る。2価の無機スズ塩とd−ブロック金属のアルコキシドとのモル比は、好ましくは1:3〜3:1、より好ましくは1:1〜2:1、さらに好ましくは3:2である。アルカリ条件にするには、水酸化ナトリウム、水酸化カリウムなどの強アルカリ性水溶液が加えられる。使用するアルカリの量は、原料の2価の無機スズ塩またはd−ブロック金属のアルコキシドの量に対して、好ましくは約1.5〜3倍、より好ましくは約2倍である。アルカリの量が少なすぎると、十分な触媒能を有する材料が得られにくい。   Usually, in the reaction of a divalent inorganic tin salt and an alkoxide of a d-block metal, the divalent inorganic tin salt is suspended in water, while the alkoxide of a d-block metal is dissolved in an alcohol. Are mixed under alkaline conditions. The concentration of each raw material in the reaction mixture can be appropriately determined so that they can be sufficiently mixed. The molar ratio of the divalent inorganic tin salt to the d-block metal alkoxide is preferably 1: 3 to 3: 1, more preferably 1: 1 to 2: 1, and even more preferably 3: 2. For alkaline conditions, a strong alkaline aqueous solution such as sodium hydroxide or potassium hydroxide is added. The amount of alkali used is preferably about 1.5 to 3 times, more preferably about 2 times the amount of the raw material divalent inorganic tin salt or d-block metal alkoxide. When the amount of alkali is too small, it is difficult to obtain a material having sufficient catalytic ability.

アルカリ条件下の反応混合物は、次いで水熱処理される。水熱処理とは、高温高圧水の存在下で反応(合成、結晶育成など)させることをいう。本発明の方法においては、上記反応混合物を、オートクレーブなどの耐圧、耐熱、かつ耐食性の容器中に入れ、高温下で攪拌して反応させる。反応温度は、通常120℃〜200℃、好ましくは約180℃である。圧力は、0.2〜1.5MPaである。反応時間は、通常12〜96時間、好ましくは24〜72時間である。   The reaction mixture under alkaline conditions is then hydrothermally treated. Hydrothermal treatment refers to a reaction (synthesis, crystal growth, etc.) in the presence of high-temperature high-pressure water. In the method of the present invention, the reaction mixture is placed in a pressure-resistant, heat-resistant, and corrosion-resistant container such as an autoclave and stirred at a high temperature for reaction. The reaction temperature is usually 120 ° C to 200 ° C, preferably about 180 ° C. The pressure is 0.2 to 1.5 MPa. The reaction time is usually 12 to 96 hours, preferably 24 to 72 hours.

反応終了後、容器内の反応混合物を濾過し、生成物を濾取して回収する。さらに、この生成物を適切な手段で乾燥させることによって、目的の複合材料を得ることができる。この複合材料は、必要に応じて、さらに熱処理または酸洗浄してもよい。   After completion of the reaction, the reaction mixture in the container is filtered, and the product is collected by filtration. Furthermore, the target composite material can be obtained by drying the product by an appropriate means. This composite material may be further subjected to heat treatment or acid cleaning as required.

熱処理は、空気中または高真空下で高温(例えば、約300℃)にて適切な時間焼成することによって行われ得る。水熱処理で得られた複合材料をさらに焼成することにより、光触媒としての活性が向上され得る。   The heat treatment can be performed by firing at a high temperature (eg, about 300 ° C.) for an appropriate time in air or under a high vacuum. By further firing the composite material obtained by the hydrothermal treatment, the activity as a photocatalyst can be improved.

酸洗浄は、水熱処理で得られた複合材料を、希塩酸、希硫酸などの無機酸で洗浄することによって行う。酸洗浄により、水熱処理で得られた材料中に不純物として含まれているSnOを除去することができる。   The acid cleaning is performed by cleaning the composite material obtained by hydrothermal treatment with an inorganic acid such as dilute hydrochloric acid or dilute sulfuric acid. By the acid cleaning, SnO contained as an impurity in the material obtained by hydrothermal treatment can be removed.

このようにして得られた本発明のスズ/d−ブロック金属複合材料は、500nmよりも長波長側、好ましくは約600nmに吸収端を有し、そしてスズとd−ブロック金属とをほぼ同程度含む、新規な複合材料である。この新規複合材料は、従来行われている2価のスズ化合物とd−ブロック金属アルコキシドとを混合して焼成する方法では得ることができない。水熱処理、すなわち亜臨界状態での反応により、従来の一般的な方法(例えば、焼成など)では得ることができない特殊な結晶構造を有する新規複合材料が得られたと考えられる。また、この新規な複合材料の光吸収能は、d−ブロック金属の種類によって異なる。これは、金属の種類によって、伝導帯の電子エネルギーレベルが異なるためであると考えられる。   The tin / d-block metal composite material of the present invention thus obtained has an absorption edge at a wavelength longer than 500 nm, preferably about 600 nm, and tin and d-block metal are approximately the same. Including new composite materials. This novel composite material cannot be obtained by a conventional method of mixing and baking a divalent tin compound and a d-block metal alkoxide. It is considered that a novel composite material having a special crystal structure that cannot be obtained by a conventional general method (for example, firing) is obtained by hydrothermal treatment, that is, a reaction in a subcritical state. Further, the light-absorbing ability of this novel composite material varies depending on the type of d-block metal. This is thought to be because the electron energy level of the conduction band varies depending on the type of metal.

本発明のスズ/d−ブロック金属複合材料は、光触媒として使用できる。特に、水の分解、すなわち、太陽エネルギーを利用して水から水素を生成するための光触媒として有用である。具体的には、白金助触媒および電子供与犠牲試薬(例えば、メタノール)の存在下で本発明の可視光応答型光触媒を用いると、これらを含有する水に、太陽光あるいは420nmより長波長の光を照射することにより、水が分解して水素が発生する。   The tin / d-block metal composite material of the present invention can be used as a photocatalyst. In particular, it is useful as a photocatalyst for water decomposition, that is, to generate hydrogen from water using solar energy. Specifically, when the visible light responsive photocatalyst of the present invention is used in the presence of a platinum promoter and an electron donating sacrificial reagent (for example, methanol), sunlight or light having a wavelength longer than 420 nm is added to water containing them. Irradiation of water decomposes water and generates hydrogen.

(実施例1:スズ/チタン(Sn(II)/Ti(IV))複合材料の合成)
ナスフラスコに0.25〜4.0Mの種々の濃度の水酸化カリウム水溶液25mLを入れ、次いで0.20Mのチタニウムn−ブトキシドのエタノール溶液25mLを加えた。さらに、0.30Mの塩化スズ二水和物の水懸濁液25mLを加えて、数分間攪拌した。このとき、ナスフラスコ内の液体は、薄黄色に懸濁した。次いで、オートクレーブ(180℃、10rpm)で48時間水熱反応を行った。反応終了後、減圧濾過によって生成物を回収し、110℃で減圧乾燥させて、結晶性の明るいオレンジ色のSn(II)/Ti(IV)複合材料を得た(約1.5g)。
Example 1: Synthesis of tin / titanium (Sn (II) / Ti (IV)) composite material
An eggplant flask was charged with 25 mL of aqueous potassium hydroxide solution having various concentrations of 0.25 to 4.0 M, and then 25 mL of an ethanol solution of 0.20 M titanium n-butoxide was added. Further, 25 mL of an aqueous suspension of 0.30 M tin chloride dihydrate was added and stirred for several minutes. At this time, the liquid in the eggplant flask was suspended in a light yellow color. Subsequently, the hydrothermal reaction was performed for 48 hours by the autoclave (180 degreeC, 10 rpm). After completion of the reaction, the product was collected by vacuum filtration and dried under reduced pressure at 110 ° C. to obtain a crystalline bright orange Sn (II) / Ti (IV) composite material (about 1.5 g).

得られたSn(II)/Ti(IV)複合材料について、X線回折(XRD)測定を行った。Rigaku製MiniFlex/HRCによって得られた代表的なXRDパターンを図1および2に示す。なお、比較として、酸化スズ(図1)または酸化チタンのアナターゼまたはルチル構造(図2)についてもXRDを測定した。図1のXRDパターンでは、下から順に、合成に使用したKOH濃度を上昇させた場合のXRDパターンを示しており、最上に示すパターンは、酸化スズ(SnO)のXRDパターンである。また、図2においては、下から順に、合成に使用したKOH濃度が0.64Mおよび0.66Mの場合、酸化チタンアナターゼ構造、およびルチル構造のXRDパターンを示す。   X-ray diffraction (XRD) measurement was performed on the obtained Sn (II) / Ti (IV) composite material. A typical XRD pattern obtained with a Rigaku MiniFlex / HRC is shown in FIGS. For comparison, XRD was also measured for tin oxide (FIG. 1) or anatase or rutile structure of titanium oxide (FIG. 2). The XRD pattern of FIG. 1 shows the XRD pattern when the KOH concentration used for the synthesis is increased in order from the bottom, and the pattern shown at the top is the XRD pattern of tin oxide (SnO). In FIG. 2, when the KOH concentrations used for synthesis are 0.64M and 0.66M, the titanium oxide anatase structure and the XRD pattern of the rutile structure are shown in order from the bottom.

図1および2からわかるように、得られたSn(II)/Ti(IV)複合材料は、2θ=26.6°、35.3°、37.2°、および53.8°などに特徴的なピークを有する。このピークは、K、Ti、またはSnを含む既知のあらゆる化合物のXRDパターンとも一致しなかった。そのため、XRDでは、Sn(II)/Ti(IV)複合材料の構造を同定できなかった。また、図1から、0.64Mまたは0.66MのKOH溶液を用いて合成した場合、生成物中にSnOが含まれることがわかった。さらに、図2より、生成物中に酸化チタン(TiO2)が全く含まれていないこともわかった。 As can be seen from FIGS. 1 and 2, the resulting Sn (II) / Ti (IV) composite material is characterized by 2θ = 26.6 °, 35.3 °, 37.2 °, 53.8 °, etc. Has a typical peak. This peak did not match the XRD pattern of any known compound containing K, Ti, or Sn. Therefore, XRD could not identify the structure of the Sn (II) / Ti (IV) composite material. Further, from FIG. 1, it was found that SnO was included in the product when synthesized using a 0.64M or 0.66M KOH solution. Further, FIG. 2 also shows that the product contains no titanium oxide (TiO 2 ).

次に、Sn(II)/Ti(IV)複合材料について、紫外可視吸収スペクトルを測定した。なお、比較として、水熱処理を行わなかった試料についてもスペクトルを測定した。Kubelka-Munk変換した紫外可視吸収スペクトルを図3に示す。水熱処理を行った試料の吸収端は、いずれも約590nm(明るいオレンジ色)であり、このことからバンドギャップは2.1eVと推定された。   Next, an ultraviolet-visible absorption spectrum was measured for the Sn (II) / Ti (IV) composite material. For comparison, the spectrum was also measured for a sample that was not subjected to hydrothermal treatment. The UV-visible absorption spectrum after Kubelka-Munk conversion is shown in FIG. The absorption edges of the samples subjected to hydrothermal treatment were all about 590 nm (bright orange), and from this, the band gap was estimated to be 2.1 eV.

さらに、組成を調べるために、上記のSn(II)/Ti(IV)複合材料をさらに0.1M塩酸で洗浄した試料について、蛍光X線分析を行った。原料のモル比がTi:Sn=2:3であったが、得られた試料の元素成分のモル比は3:2〜1:3であった。このことから、得られた試料は、TiとSnとを含む複合材料であることが確認できた。   Further, in order to examine the composition, a fluorescent X-ray analysis was performed on a sample obtained by further washing the above Sn (II) / Ti (IV) composite material with 0.1 M hydrochloric acid. The molar ratio of the raw materials was Ti: Sn = 2: 3, but the molar ratio of the elemental components of the obtained sample was 3: 2 to 1: 3. From this, it was confirmed that the obtained sample was a composite material containing Ti and Sn.

(実施例2:Sn(II)/Ti(IV)複合材料を用いる水素生成反応)
10wt%メタノール水溶液70mLに、0.19Mの塩化白金酸(H2PtCl6)水溶液79.6μLを加え(触媒量に対してPtは1wt%相当)、さらに上記実施例1で得られた種々のSn(II)/Ti(IV)複合材料300mgを加えて懸濁させた。この懸濁液に、アルゴン雰囲気下で、L−42フィルター(HOYA製)を装着した300WのXeランプ(USHIO製)で可視光(>420nm)を照射した。代表的なSn(II)/Ti(IV)複合材料についての、可視光の照射時間と水素生成量との関係を図4に、そして水素生成速度を表1に示す。
(Example 2: Hydrogen generation reaction using Sn (II) / Ti (IV) composite material)
79.6 μL of 0.19 M chloroplatinic acid (H 2 PtCl 6 ) aqueous solution was added to 70 mL of 10 wt% methanol aqueous solution (Pt is equivalent to 1 wt% with respect to the amount of catalyst), and the various types obtained in Example 1 above were further added. 300 mg of Sn (II) / Ti (IV) composite material was added and suspended. This suspension was irradiated with visible light (> 420 nm) with a 300 W Xe lamp (manufactured by USHIO) equipped with an L-42 filter (manufactured by HOYA) under an argon atmosphere. FIG. 4 shows the relationship between the irradiation time of visible light and the amount of hydrogen produced for a typical Sn (II) / Ti (IV) composite material, and Table 1 shows the hydrogen production rate.

Figure 2006089323
Figure 2006089323

水熱処理により得られた材料は、水素生成活性を有することがわかった。特に、0.62M〜0.68Mの濃度のKOHを用いて水熱処理を行った場合に、より高い水素生成活性を有する材料が得られた。   The material obtained by hydrothermal treatment was found to have hydrogen generation activity. In particular, when hydrothermal treatment was performed using KOH having a concentration of 0.62M to 0.68M, a material having higher hydrogen generation activity was obtained.

(実施例3:水熱処理後の熱処理の検討)
水熱処理により得られた材料について、さらなる活性の向上を目的として、以下のように熱処理を行った。上記実施例1において0.64MのKOH水溶液を用いる水熱処理により得られたSn(II)/Ti(IV)複合材料を、空気中または高真空下(5×10-7Pa)で300℃にて2時間焼成した。焼成後のSn(II)/Ti(IV)複合材料について、XRDを測定した。焼成前後のXRDパターンを図5に示す。図5からわかるように、熱処理後にはXRDのパターン強度が強くなっていた。また、焼成によっても2θ=35.3°および37.2°付近に見られる水熱処理で特徴的なピークの強度も強くなっており、水熱処理せずに焼成のみによって得られる材料とは異なっていた(データを示さず)。
(Example 3: Examination of heat treatment after hydrothermal treatment)
The material obtained by the hydrothermal treatment was heat-treated as follows for the purpose of further improving the activity. The Sn (II) / Ti (IV) composite material obtained by hydrothermal treatment using 0.64M KOH aqueous solution in Example 1 was heated to 300 ° C. in air or under high vacuum (5 × 10 −7 Pa). And calcined for 2 hours. XRD was measured about the Sn (II) / Ti (IV) composite material after baking. The XRD patterns before and after firing are shown in FIG. As can be seen from FIG. 5, the XRD pattern strength increased after the heat treatment. In addition, the intensity of the characteristic peak in the hydrothermal treatment seen near 2θ = 35.3 ° and 37.2 ° is also increased by firing, which is different from the material obtained only by firing without hydrothermal treatment. (Data not shown).

(実施例4:水熱処理後の酸洗浄の検討)
上記実施例1に記載のように、水熱処理により得られたSn(II)/Ti(IV)複合材料中に、不純物としてSnOが含まれているため、これを除去する目的で、以下のように酸洗浄を行った。上記実施例1において0.66MのKOH水溶液を用いる水熱処理により得られたSn(II)/Ti(IV)複合材料0.1gをナスフラスコにとり、100mLの0.1M塩酸を加え、室温にて5時間攪拌した。得られた材料についてXRDを測定した。酸洗浄前後のXRDパターンを、図6に示す。図6から明らかなように、酸洗浄によりSnOは除去された。
(Example 4: Examination of acid cleaning after hydrothermal treatment)
As described in Example 1 above, the Sn (II) / Ti (IV) composite material obtained by hydrothermal treatment contains SnO as an impurity. For the purpose of removing this, the following is performed. Then, acid washing was performed. In the above Example 1, 0.1 g of Sn (II) / Ti (IV) composite material obtained by hydrothermal treatment using 0.66M KOH aqueous solution was placed in a recovery flask, 100 mL of 0.1M hydrochloric acid was added, and at room temperature. Stir for 5 hours. XRD was measured about the obtained material. The XRD pattern before and after the acid cleaning is shown in FIG. As apparent from FIG. 6, SnO was removed by the acid cleaning.

(実施例5:水素生成活性の波長依存性の検討)
上記実施例1において0.64MのKOH水溶液を用いる水熱処理により得られたSn(II)/Ti(IV)複合材料、さらにこの材料を高真空下(5×10-7Pa)で300℃にて2時間焼成した試料、ならびに0.1M塩酸で酸洗浄した試料を用いた。上記実施例2と同様に、各試料300mgを用い、種々のフィルター(L42、Y−44、Y−52、およびR60:いずれもHOYA製)をそれぞれ装着した300WのXeランプで可視光(それぞれ>420nm、>440nm、>520nm、および>600nm)を照射した。また、比較のために、暗所での水素生成も測定した。300℃で焼成した試料についての可視光の照射時間と水素生成量との関係を図7に、そして各試料の水素生成速度を表2に示す。
(Example 5: Examination of wavelength dependency of hydrogen generation activity)
The Sn (II) / Ti (IV) composite material obtained by hydrothermal treatment using 0.64M KOH aqueous solution in Example 1 above, and this material at 300 ° C. under high vacuum (5 × 10 −7 Pa) A sample calcined for 2 hours and a sample washed with 0.1 M hydrochloric acid were used. As in Example 2 above, 300 mg of each sample was used, and visible light (each>> 300 W Xe lamp equipped with various filters (L42, Y-44, Y-52, and R60: all manufactured by HOYA), respectively. 420 nm,> 440 nm,> 520 nm, and> 600 nm). For comparison, hydrogen production in the dark was also measured. FIG. 7 shows the relationship between the irradiation time of visible light and the amount of hydrogen produced for the sample fired at 300 ° C., and Table 2 shows the hydrogen production rate of each sample.

Figure 2006089323
Figure 2006089323

図7からわかるように、水素の発生は、照射光波長を長くしても見られたが、暗所または吸収端よりも長い波長の照射では見られなかった。したがって、観測された水素生成は、得られた試料の光触媒作用によることが確認された。また、表2からわかるように、酸洗浄した場合も水素生成活性が見られることから、この活性はSnOによるものではないことが明らかとなった。さらに、水熱処理後に焼成を行った試料は、非常に高い水素生成活性を示した。これは、焼成により、結晶性がさらに向上したためと思われる。   As can be seen from FIG. 7, the generation of hydrogen was observed even when the irradiation light wavelength was increased, but was not observed in the irradiation at a wavelength longer than the dark place or the absorption edge. Therefore, it was confirmed that the observed hydrogen production was due to the photocatalytic action of the obtained sample. Further, as can be seen from Table 2, since hydrogen generation activity was observed even when acid cleaning was performed, it was clarified that this activity was not due to SnO. Furthermore, the sample fired after hydrothermal treatment showed very high hydrogen generation activity. This is probably because the crystallinity was further improved by firing.

(実施例6:スズ/ジルコニウム(Sn(II)/Zr(IV))、スズ/ニオブ(Sn(II)/Nb(V))、およびスズ/タンタル(Sn(II)/Ta(V))複合材料の合成)
ジルコニウムn−ブトキシド、ニオブエトキシド、およびタンタルエトキシド、および0.60〜1.20MのKOH水溶液を用いて、上記実施例1においてSn(II)/Ti(IV)複合材料を合成した場合と同様の手順で、Sn(II)/Zr(IV)、Sn(II)/Nb(V)、およびSn(II)/Ta(V)の試料をそれぞれ合成した。これらの試料はいずれも結晶性を有していた。これらについて、XRDを測定した。それぞれのXRDパターンを図8に示す。
(Example 6: Tin / zirconium (Sn (II) / Zr (IV)), tin / niobium (Sn (II) / Nb (V)), and tin / tantalum (Sn (II) / Ta (V)) Synthesis of composite materials)
When the Sn (II) / Ti (IV) composite material was synthesized in Example 1 above using zirconium n-butoxide, niobium ethoxide, and tantalum ethoxide, and a 0.60 to 1.20 M KOH aqueous solution. Samples of Sn (II) / Zr (IV), Sn (II) / Nb (V), and Sn (II) / Ta (V) were synthesized in the same procedure. All of these samples had crystallinity. For these, XRD was measured. Each XRD pattern is shown in FIG.

Sn(II)/Zr(IV)のXRDパターンでは、2θ=38°付近に特徴的なピークが見られた。しかし、他のピークはSn23のパターンならびにジルコニウムn−ブトキシドを加えなかった試料とほぼ一致していた。Sn(II)/Nb(V)のXRDパターンについては、パイロクロア型のSn2Nb27に、そしてSn(II)/Ta(V)については、パイロクロア型のK2Ta26にほぼ帰属できた。したがって、本実施例の条件でのこれらの複合材料の生成率はあまり良好ではないと思われる。 In the XRD pattern of Sn (II) / Zr (IV), a characteristic peak was observed around 2θ = 38 °. However, the other peaks were almost consistent with the Sn 2 O 3 pattern and the sample without zirconium n-butoxide. The XRD pattern of Sn (II) / Nb (V) is almost the same as the pyrochlore type Sn 2 Nb 2 O 7 and the Sn (II) / Ta (V) is almost the same as the pyrochlore type K 2 Ta 2 O 6 . I was able to attribute. Therefore, the production rate of these composite materials under the conditions of this example seems not very good.

次に、これらの試料について、紫外可視吸収スペクトルを測定した。Kubelka-Munk変換した紫外可視吸収スペクトルを図9に示す。いずれの試料も、可視光領域に吸収端を有していた。   Next, an ultraviolet-visible absorption spectrum was measured for these samples. The UV-visible absorption spectrum after Kubelka-Munk conversion is shown in FIG. All samples had an absorption edge in the visible light region.

(実施例7:Sn(II)/Zr(IV)、Sn(II)/Nb(V)、およびSn(II)/Ta(V)複合材料を用いる水素生成反応)
上記実施例2と同様の手順で、上記実施例6で得た各試料の懸濁液を調製した。これらの懸濁液に、アルゴン雰囲気下で、L−42フィルターを装着したまたはフィルターなしで300WのXeランプで光を照射した。水素生成速度を表3に示す。
(Example 7: Hydrogen production reaction using Sn (II) / Zr (IV), Sn (II) / Nb (V), and Sn (II) / Ta (V) composite materials)
A suspension of each sample obtained in Example 6 was prepared in the same procedure as in Example 2. These suspensions were irradiated with light with a 300 W Xe lamp with or without an L-42 filter under an argon atmosphere. Table 3 shows the hydrogen production rate.

Figure 2006089323
Figure 2006089323

水熱処理により得られた各試料は、Sn(II)/Ti(IV)複合材料よりも弱いが、水素生成活性を有することがわかった。これらのことから、Sn(II)/Zr(IV)、Sn(II)/Nb(V)、およびSn(II)/Ta(V)複合材料については、収率および触媒活性を上昇させるための合成条件の検討の必要があると思われる。   Each sample obtained by hydrothermal treatment was weaker than the Sn (II) / Ti (IV) composite material, but was found to have hydrogen generation activity. From these, Sn (II) / Zr (IV), Sn (II) / Nb (V), and Sn (II) / Ta (V) composite materials are used to increase yield and catalytic activity. It seems necessary to examine the synthesis conditions.

本発明のスズ/d−ブロック金属複合材料からなる可視光吸収型光触媒は、水素生成反応に高い活性を示す。そのため、太陽エネルギーまたは可視光を利用した水分解、すなわち、水素エネルギー製造システムへ応用が可能である。あるいは、太陽光によって有害物質を分解する環境浄化システムへの応用も考えられる。さらに、本発明による複合材料の合成方法は、種々の元素を原料として利用できるため、これまでに確認されてない新規な光触媒を合成できる可能性がある。   The visible light absorption type photocatalyst comprising the tin / d-block metal composite material of the present invention exhibits high activity in the hydrogen generation reaction. Therefore, it can be applied to water splitting using solar energy or visible light, that is, a hydrogen energy production system. Alternatively, application to an environmental purification system that decomposes harmful substances with sunlight is also conceivable. Furthermore, since the composite material synthesis method according to the present invention can use various elements as raw materials, there is a possibility that a novel photocatalyst that has not been confirmed so far can be synthesized.

種々のKOH濃度を用いて合成した本発明のSn(II)/Ti(IV)複合材料のXRDパターンおよび酸化スズのXRDパターンを示す図である。It is a figure which shows the XRD pattern of the Sn (II) / Ti (IV) composite material of this invention synthesize | combined using various KOH density | concentration, and the XRD pattern of a tin oxide. 種々のKOH濃度を用いて合成した本発明のSn(II)/Ti(IV)複合材料のXRDパターンおよび酸化チタンのXRDパターンを示す図である。It is a figure which shows the XRD pattern of the Sn (II) / Ti (IV) composite material of this invention synthesize | combined using various KOH density | concentration, and the XRD pattern of a titanium oxide. 本発明のSn(II)/Ti(IV)複合材料の紫外可視吸収スペクトル図である。FIG. 3 is an ultraviolet-visible absorption spectrum diagram of the Sn (II) / Ti (IV) composite material of the present invention. Sn(II)/Ti(IV)複合材料を用いた水素生成反応における、可視光の照射時間と水素生成量との関係を示すグラフである。3 is a graph showing the relationship between the irradiation time of visible light and the amount of hydrogen produced in a hydrogen production reaction using Sn (II) / Ti (IV) composite material. 焼成前後のSn(II)/Ti(IV)複合材料のXRDパターンを示す図である。It is a figure which shows the XRD pattern of Sn (II) / Ti (IV) composite material before and behind baking. 酸洗浄前後のSn(II)/Ti(IV)複合材料のXRDパターンを示す図である。It is a figure which shows the XRD pattern of Sn (II) / Ti (IV) composite material before and after acid cleaning. 熱処理した試料を用いた水素生成反応における、種々の可視光の照射時間と水素生成量との関係を示すグラフである。It is a graph which shows the relationship between the irradiation time of various visible light, and the amount of hydrogen production in the hydrogen production reaction using the heat-processed sample. 本発明のSn(II)/Zr(IV)、Sn(II)/Nb(V)、およびSn(II)/Ta(V)複合材料のXRDパターンを示す図である。It is a figure which shows the XRD pattern of Sn (II) / Zr (IV), Sn (II) / Nb (V), and Sn (II) / Ta (V) composite material of this invention. 本発明のSn(II)/Zr(IV)、Sn(II)/Nb(V)、およびSn(II)/Ta(V)複合材料の紫外可視吸収スペクトル図である。FIG. 4 is an ultraviolet-visible absorption spectrum diagram of the Sn (II) / Zr (IV), Sn (II) / Nb (V), and Sn (II) / Ta (V) composite materials of the present invention.

Claims (8)

2価の無機スズ塩と、チタン(IV)、ニオブ(V)、タンタル(V)、およびジルコニウム(IV)からなる群より選択されるd−ブロック金属のアルコキシドとを、アルカリ条件下で水熱処理することによって得られる、スズ/d−ブロック金属複合材料。   Hydrothermal treatment of a divalent inorganic tin salt and an alkoxide of a d-block metal selected from the group consisting of titanium (IV), niobium (V), tantalum (V), and zirconium (IV) under alkaline conditions A tin / d-block metal composite material obtained by: 前記d−ブロック金属が、チタン(IV)である、請求項1に記載のスズ/d−ブロック金属複合材料。   The tin / d-block metal composite according to claim 1, wherein the d-block metal is titanium (IV). 前記水熱処理後に、さらに焼成処理または酸洗浄が行われている、請求項1または2に記載のスズ/d−ブロック金属複合材料。   The tin / d-block metal composite material according to claim 1, wherein after the hydrothermal treatment, firing treatment or acid cleaning is further performed. 請求項1から3のいずれかの項に記載のスズ/d−ブロック金属複合材料からなる、可視光応答型光触媒。   A visible light responsive photocatalyst comprising the tin / d-block metal composite material according to any one of claims 1 to 3. 2価の無機スズ塩と、チタン(IV)、ニオブ(V)、タンタル(V)、およびジルコニウム(IV)からなる群より選択されるd−ブロック金属のアルコキシドとを、アルカリ条件下で水熱処理する工程を含む、スズ/d−ブロック金属複合材料の製造方法。   Hydrothermal treatment of a divalent inorganic tin salt and an alkoxide of a d-block metal selected from the group consisting of titanium (IV), niobium (V), tantalum (V), and zirconium (IV) under alkaline conditions The manufacturing method of a tin / d-block metal composite material including the process to do. 前記d−ブロック金属が、チタン(IV)である、請求項5に記載の方法。   6. The method of claim 5, wherein the d-block metal is titanium (IV). 得られた水熱処理物を焼成処理または酸洗浄する工程をさらに含む、請求項5または6に記載の方法。   The method according to claim 5 or 6, further comprising a step of baking or acid cleaning the obtained hydrothermally treated product. 請求項1から4のいずれかの項に記載のスズ/d−ブロック金属複合材料または可視光応答型光触媒、白金助触媒、およびメタノールを含む水溶液に、可視光を照射する工程を含む、水素の生成方法。   A step of irradiating an aqueous solution containing the tin / d-block metal composite material according to any one of claims 1 to 4 or the visible light responsive photocatalyst, a platinum promoter, and methanol with visible light. Generation method.
JP2004275946A 2004-09-22 2004-09-22 Visible light responsive photocatalyst and synthesis method thereof Expired - Fee Related JP4240310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275946A JP4240310B2 (en) 2004-09-22 2004-09-22 Visible light responsive photocatalyst and synthesis method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275946A JP4240310B2 (en) 2004-09-22 2004-09-22 Visible light responsive photocatalyst and synthesis method thereof

Publications (2)

Publication Number Publication Date
JP2006089323A true JP2006089323A (en) 2006-04-06
JP4240310B2 JP4240310B2 (en) 2009-03-18

Family

ID=36230651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275946A Expired - Fee Related JP4240310B2 (en) 2004-09-22 2004-09-22 Visible light responsive photocatalyst and synthesis method thereof

Country Status (1)

Country Link
JP (1) JP4240310B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020246A (en) * 2010-07-15 2012-02-02 Panasonic Corp Visible light response photocatalyst, photocatalytic water decomposition, device for generating hydrogen and water decomposition method
JP2012139612A (en) * 2010-12-28 2012-07-26 Showa Ceramics Co Ltd Manufacturing method for metal-carrying photocatalyst
JPWO2012046493A1 (en) * 2010-10-08 2014-02-24 信越化学工業株式会社 Rutile-type titanium oxide fine particle dispersion, method for producing the same, and member having the rutile-type titanium oxide thin film on the surface
JP2014128768A (en) * 2012-12-28 2014-07-10 Tohoku Univ Method for manufacturing photocatalyst
CN104226340A (en) * 2014-09-02 2014-12-24 湖北文理学院 Preparation method of visible-light nano composite photocatalyst AgCl-SnO2
WO2015137511A1 (en) * 2014-03-11 2015-09-17 Nitto Denko Corporation Photocatalytic element
JP2016527078A (en) * 2013-07-05 2016-09-08 日東電工株式会社 Transparent photocatalytic coating and method for producing the same
JP2017202437A (en) * 2016-05-09 2017-11-16 公立大学法人首都大学東京 Photocatalytic glass
CN113231056A (en) * 2021-04-30 2021-08-10 大连海事大学 Preparation method of niobium-doped modified tin dioxide quantum dot visible light catalytic material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020246A (en) * 2010-07-15 2012-02-02 Panasonic Corp Visible light response photocatalyst, photocatalytic water decomposition, device for generating hydrogen and water decomposition method
JPWO2012046493A1 (en) * 2010-10-08 2014-02-24 信越化学工業株式会社 Rutile-type titanium oxide fine particle dispersion, method for producing the same, and member having the rutile-type titanium oxide thin film on the surface
JP5633571B2 (en) * 2010-10-08 2014-12-03 信越化学工業株式会社 Method for producing rutile type titanium oxide fine particle dispersion
JP2012139612A (en) * 2010-12-28 2012-07-26 Showa Ceramics Co Ltd Manufacturing method for metal-carrying photocatalyst
JP2014128768A (en) * 2012-12-28 2014-07-10 Tohoku Univ Method for manufacturing photocatalyst
US10391482B2 (en) 2013-07-05 2019-08-27 Nitto Denko Corporation Transparent photocatalyst coating and methods of manufacturing the same
US10710063B2 (en) 2013-07-05 2020-07-14 Nitto Denko Corporation Transparent photocatalyst coating and methods of manufacturing the same
JP2016527078A (en) * 2013-07-05 2016-09-08 日東電工株式会社 Transparent photocatalytic coating and method for producing the same
WO2015137511A1 (en) * 2014-03-11 2015-09-17 Nitto Denko Corporation Photocatalytic element
JP2017509481A (en) * 2014-03-11 2017-04-06 日東電工株式会社 Photocatalytic element
US10464055B2 (en) 2014-03-11 2019-11-05 Nitto Denko Corporation Photocatalytic element
CN104226340A (en) * 2014-09-02 2014-12-24 湖北文理学院 Preparation method of visible-light nano composite photocatalyst AgCl-SnO2
JP2017202437A (en) * 2016-05-09 2017-11-16 公立大学法人首都大学東京 Photocatalytic glass
CN113231056A (en) * 2021-04-30 2021-08-10 大连海事大学 Preparation method of niobium-doped modified tin dioxide quantum dot visible light catalytic material
CN113231056B (en) * 2021-04-30 2023-08-01 大连海事大学 Preparation method of niobium-doped modified tin dioxide quantum dot visible light catalytic material

Also Published As

Publication number Publication date
JP4240310B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
Fiorenza et al. Visible light photocatalytic activity of macro-mesoporous TiO2-CeO2 inverse opals
Belver et al. Solar photocatalytic purification of water with Ce-doped TiO2/clay heterostructures
Ohno et al. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light
Vieira et al. CeO2/TiO2 nanostructures enhance adsorption and photocatalytic degradation of organic compounds in aqueous suspension
Zhang et al. Nonaqueous sol–gel synthesis of a nanocrystalline InNbO4 visible‐light photocatalyst
US7763149B2 (en) Solar photocatalysis using transition-metal oxides combining d0 and d6 electron configurations
Zou et al. Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading
JP4495162B2 (en) Rutile-type titanium oxide ultrafine particles
JP5165155B2 (en) Optical semiconductor and manufacturing method thereof, optical semiconductor device, photocatalyst, hydrogen generation device and energy system
JP3076844B1 (en) Mesoporous titanium oxide porous body and method for producing the same
KR101318743B1 (en) Tungsten oxide photocatalyst and method for producing the same
JP7045662B2 (en) Photocatalyst manufacturing method and hydrogen generation method
CN102380366B (en) Bismuth and silicon doped nano titanium dioxide photocatalyst, preparation and application thereof
Kominami et al. Synthesis of highly active tungsten (VI) oxide photocatalysts for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions
Zhang et al. Influence of In3+-doping and Ag0-depositing on the visible-light-induced photocatalytic activity of TiO2
WO2011013850A1 (en) Photocatalytic materials and process for producing the same
JP4240310B2 (en) Visible light responsive photocatalyst and synthesis method thereof
JP3845720B2 (en) Potassium niobate photocatalyst and method for producing the same
TWI428281B (en) Titanium oxide and producing method thereof
US8420046B1 (en) Method of preparing high crystalline nanoporous titanium dioxide photocatalyst
WO2003068393A1 (en) Photocatalyst comprising titanium fluoride nitride for water decomposition with visible light irradiation
CN111790418B (en) Calcium-titanium composite material and preparation method and application thereof
US8852548B2 (en) Method of preparing high crystalline nanoporous titanium dioxide at room temperature
JP2000157874A (en) Titanium oxide photocatalyst and production thereof
JP2001157843A (en) Photocatalyst and method of manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees